16,339 research outputs found

    Improved control strategy of DFIG-based wind turbines using direct torque and direct power control techniques

    Get PDF
    This paper presents different control strategies for a variable-speed wind energy conversion system (WECS), based on a doubly fed induction generator. Direct Torque Control (DTC) with Space-Vector Modulation is used on the rotor side converter. This control method is known to reduce the fluctuations of the torque and flux at low speeds in contrast to the classical DTC, where the frequency of switching is uncontrollable. The reference for torque is obtained from the maximum power point tracking technique of the wind turbine. For the grid-side converter, a fuzzy direct power control is proposed for the control of the instantaneous active and reactive power. Simulation results of the WECS are presented to compare the performance of the proposed and classical control approaches.Peer reviewedFinal Accepted Versio

    Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, Portugal

    Get PDF
    This paper presents the results of a pilot experiment with an existing tidal energy converter (TEC), Evopod 1 kW floatable prototype, in a real test case scenario (Faro Channel, Ria Formosa, Portugal). A baseline marine geophysical, hydrodynamic and ecological study based on the experience collected on the test site is presented. The collected data was used to validate a hydro-morphodynamic model, allowing the selection of the installation area based on both operational and environmental constraints. Operational results related to the description of power generation capacity, energy capture area and proportion of energy flux are presented and discussed, including the failures occurring during the experimental setup. The data is now available to the scientific community and to TEC industry developers, enhancing the operational knowledge of TEC technology concerning efficiency, environmental effects, and interactions (i.e. device/environment). The results can be used by developers on the licensing process, on overcoming the commercial deployment barriers, on offering extra assurance and confidence to investors, who traditionally have seen environmental concerns as a barrier, and on providing the foundations whereupon similar deployment areas can be considered around the world for marine tidal energy extraction.Acknowledgements The paper is a contribution to the SCORE project, funded by the Portuguese Foundation for Science and Technology (FCT e PTDC/ AAG-TEC/1710/2014). Andre Pacheco was supported by the Portu- guese Foundation for Science and Technology under the Portuguese Researchers' Programme 2014 entitled “Exploring new concepts for extracting energy from tides” (IF/00286/2014/CP1234). Eduardo GGorbena has received funding for the OpTiCA project from the ~ Marie Skłodowska-Curie Actions of the European Union's H2020- MSCA-IF-EF-RI-2016/under REA grant agreement n [748747]. The authors would like to thank to the Portuguese Maritime Authorities and Sofareia SA for their help on the deployment.info:eu-repo/semantics/publishedVersio

    Operational modal analysis of a spar-type floating platform using frequency domain decomposition method

    Get PDF
    System identification of offshore floating platforms is usually performed by testing small-scale models in wave tanks, where controlled conditions, such as still water for free decay tests, regular and irregular wave loading can be represented. However, this approach may result in constraints on model dimensions, testing time, and costs of the experimental activity. For such reasons, intermediate-scale field modelling of offshore floating structures may become an interesting as well as cost-effective alternative in a near future. Clearly, since the open sea is not a controlled environment, traditional system identification may become challenging and less precise. In this paper, a new approach based on Frequency Domain Decomposition (FDD) method for Operational Modal Analysis is proposed and validated against numerical simulations in ANSYS AQWA v.16.0 on a simple spar-type structure. The results obtained match well with numerical predictions, showing that this new approach, opportunely coupled with more traditional wave tanks techniques, proves to be very promising to perform field-site identification of the model structures

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    A Practical Model and an Optimal Controller for Variable Speed Wind Turbine Permanent Magnet Synchronous Generator

    Get PDF
    The aim of this paper is the complete modeling and simulation of an optimal control system using practical setup parameters for a wind energy conversion system (WECS) through a direct driven permanent magnet synchronous generator (D-PMSG) feeding ac power to the utility grid. The generator is connected to the grid through a back-to-back PWM converter with a switching frequency of 10 KHz. A maximum power point tracking (MPPT) control is proposed to ensure the maximum power capture from wind turbine, and a PI controller designed for the wind turbine to generate optimum speed for the generator via an aerodynamic model. MATLAB/Simulink results demonstrate the accuracy of the developed control scheme

    Adaptive Signal Processing Strategy for a Wind Farm System Fault Accommodation

    Get PDF
    In order to improve the availability of offshore wind farms, thus avoiding unplanned operation and maintenance costs, which can be high for offshore installations, the accommodation of faults in their earlier occurrence is fundamental. This paper addresses the design of an active fault tolerant control scheme that is applied to a wind park benchmark of nine wind turbines, based on their nonlinear models, as well as the wind and interactions between the wind turbines in the wind farm. Note that, due to the structure of the system and its control strategy, it can be considered as a fault tolerant cooperative control problem of an autonomous plant. The controller accommodation scheme provides the on-line estimate of the fault signals generated by nonlinear filters exploiting the nonlinear geometric approach to obtain estimates decoupled from both model uncertainty and the interactions among the turbines. This paper proposes also a data-driven approach to provide these disturbance terms in analytical forms, which are subsequently used for designing the nonlinear filters for fault estimation. This feature of the work, followed by the simpler solution relying on a data-driven approach, can represent the key point when on-line implementations are considered for a viable application of the proposed scheme

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    Characterisation of a horizontal axis wind turbine’s tip and root vortices

    Get PDF
    The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex filaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjæreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind configurations. Qualitative flow visualisations using hydrogen bubble, particle streakline and planar laser-induced fluorescence techniques were combined with quantitative data measurements taken using planar particle image velocimetry. Vortices were identified using velocity gradient tensor invariants. Parameters that describe the helical vortex wake, such as the helicoidal pitch, and vortex circulation, were determined for three tip speed ratios. Particular attention is given here to the root vortex, which has been investigated minimally to date. Signatures of the coherent tip vortices are seen throughout the measurement domain; however, the signature of the root vortex is only evident much closer to the rotor plane, irrespective of the turbine configuration. It is postulated that the root vortex diffuses rapidly due to the effects of the turbine support geometries

    Microtab dynamic modelling for wind turbine blade load rejection

    Get PDF
    A dynamic model characterising the effect of microtab deployment on the aerodynamics of its base aerofoil is presented. The developed model predicts the transient aerodynamic coefficients consistent with the experimental and computational data reported in the literature. The proposed model is then used to carry out investigation on the effectiveness of microtabs in load alleviation and lifespan increase of wind turbine blades. Simulating a bang–bang controller, different load rejection scenarios are examined and their effect on blade lifespan is investigated. Results indicate that the range of frequencies targeted for rejection can significantly impact the blade fatigue life. Case studies are carried out to compare the predicted load alleviation amount and the blade lifespan using the developed model with those obtained by other researchers using the steady state model. It is shown that the assumption of an instantaneous aerodynamic response as used in the steady state model can lead to inaccurate results
    corecore