1,307 research outputs found

    Text-to-Text Extraction and Verbalization of Biomedical Event Graphs

    Get PDF
    Biomedical events represent complex, graphical, and semantically rich interactions expressed in the scientific literature. Almost all contributions in the event realm orbit around semantic parsing, usually employing discriminative architectures and cumbersome multi-step pipelines limited to a small number of target interaction types. We present the first lightweight framework to solve both event extraction and event verbalization with a unified text-to-text approach, allowing us to fuse all the resources so far designed for different tasks. To this end, we present a new event graph linearization technique and release highly comprehensive event-text paired datasets, covering more than 150 event types from multiple biology subareas (English language). By streamlining parsing and generation to translations, we propose baseline transformer model results according to multiple biomedical text mining benchmarks and NLG metrics. Our extractive models achieve greater state-of-the-art performance than single-task competitors and show promising capabilities for the controlled generation of coherent natural language utterances from structured data

    Biomedical relation extraction:from binary to complex

    Get PDF
    Biomedical relation extraction aims to uncover high-quality relations from life science literature with high accuracy and efficiency. Early biomedical relation extraction tasks focused on capturing binary relations, such as protein-protein interactions, which are crucial for virtually every process in a living cell. Information about these interactions provides the foundations for new therapeutic approaches. In recent years, more interests have been shifted to the extraction of complex relations such as biomolecular events. While complex relations go beyond binary relations and involve more than two arguments, they might also take another relation as an argument. In the paper, we conduct a thorough survey on the research in biomedical relation extraction. We first present a general framework for biomedical relation extraction and then discuss the approaches proposed for binary and complex relation extraction with focus on the latter since it is a much more difficult task compared to binary relation extraction. Finally, we discuss challenges that we are facing with complex relation extraction and outline possible solutions and future directions

    Biomedical Event Extraction with Machine Learning

    Get PDF
    Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.Siirretty Doriast

    Biomedical Event Extraction with Machine Learning

    Get PDF
    Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein--protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence ``Protein A causes protein B to bind protein C&#39;&#39; can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP&#39;09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing.&nbsp; Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP&#39;09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP&#39;11 and BioNLP&#39;13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.</p

    A computational ecosystem to support eHealth Knowledge Discovery technologies in Spanish

    Get PDF
    The massive amount of biomedical information published online requires the development of automatic knowledge discovery technologies to effectively make use of this available content. To foster and support this, the research community creates linguistic resources, such as annotated corpora, and designs shared evaluation campaigns and academic competitive challenges. This work describes an ecosystem that facilitates research and development in knowledge discovery in the biomedical domain, specifically in Spanish language. To this end, several resources are developed and shared with the research community, including a novel semantic annotation model, an annotated corpus of 1045 sentences, and computational resources to build and evaluate automatic knowledge discovery techniques. Furthermore, a research task is defined with objective evaluation criteria, and an online evaluation environment is setup and maintained, enabling researchers interested in this task to obtain immediate feedback and compare their results with the state-of-the-art. As a case study, we analyze the results of a competitive challenge based on these resources and provide guidelines for future research. The constructed ecosystem provides an effective learning and evaluation environment to encourage research in knowledge discovery in Spanish biomedical documents.This research has been partially supported by the University of Alicante and University of Havana, the Generalitat Valenciana (Conselleria d’Educació, Investigació, Cultura i Esport) and the Spanish Government through the projects SIIA (PROMETEO/2018/089, PROMETEU/2018/089) and LIVING-LANG (RTI2018-094653-B-C22)
    corecore