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Abstract
Biomedical event extraction is a crucial task in order to automatically extract information from the increasingly growing body of
biomedical literature. Despite advances in the methods in recent years, most event extraction systems are still evaluated in-domain
and on complete event structures only. This makes it hard to determine the performance of intermediate stages of the task, such as
edge detection, across different corpora. Motivated by these limitations, we present the first cross-domain study of edge detection for
biomedical event extraction. We analyze differences between five existing gold standard corpora, create a standardized benchmark
corpus, and provide a strong baseline model for edge detection. Experiments show a large drop in performance when the baseline is
applied on out-of-domain data, confirming the need for domain adaptation methods for the task. To encourage research efforts in this
direction, we make both the data and the baseline available to the research community: https://www.cosbi.eu/cfx/9985.

Keywords: Corpus (Creation, Annotation, etc.), Information Extraction, Information Retrieval, Statistical and Machine Learning
Methods.

1. Introduction
Information extraction systems in the biomedical field are
valuable for a wide range of purposes, from the popula-
tion of knowledge bases to the construction of biochem-
ical pathways (Ananiadou et al., 2010). Among the nat-
ural language processing tasks for information extraction
is Event Extraction (EE). Its goal is to extract semanti-
cally rich, structured information from unstructured texts.
These representations, called events, are suitable to capture
the elaborate biomedical statements in the scientific litera-
ture.1 The expressivity of EE commonly comes at the cost
of multiple classification stages (Figure 1). Given the in-
put text and entity annotations, these stages are: (1) trig-
ger detection: the identification of words – usually verbs
or nominalized verbs – that may trigger events, and the
assignment of the event type they express; (2) edge de-
tection: the identification and classification of the seman-
tic relations which hold between trigger words and named
entities (or other triggers); and (3) event construction: the
building of complete, multi-argument event structures from
the edges. For instance, consider the example in Figure
1. Firstly, “phosphorylation” and “augments” are iden-
tified as Phosphorylation and +Regulation trig-
gers, respectively. Then, arguments for those event triggers
are determined (e.g., Phosphorylation is the Cause
of +Regulation). Lastly, arguments are composed into
self-contained event structures: two Phosphorylation
events and two +Regulation events.
Recent studies on EE have shown that supervised machine
learning approaches and in particular neural methods pro-
vide state-of-the-art performance on the task (Björne and
Salakoski, 2018; Li et al., 2019). These methods require

1Unlike traditional relation extraction, event representations
can capture the association of one or more participants in different
semantic roles, where each association in turn can be argument of
higher-level associations.
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Figure 1: The classification stages in EE for the example
sentence “SLP-76 and Vav Tyr phosphorylation augments
IL-2 activity”. The responsibilities of each stage are marked
in green. In this work, we focus on the edge detection stage
(illustrated within a grey box).

labeled data, therefore are trained and evaluated using cor-
pora that have been manually annotated by field experts
mainly in the context of community challenges (i.e., Shared
Tasks) (Huang and Lu, 2016).
Despite the progress in the techniques, most EE systems
are developed and evaluated under a strong, closed-world
assumption which hinders their application in real-world
scenarios. In fact, current models are typically trained un-
der the implicit hypothesis that the test data (i.e., the target)
follows the same underlying distribution of the training data
(i.e., the source), an assumption that is clearly violated in
the real world. In practice, this translates to a dramatic drop
in performance when the model is applied – or evaluated –
into the wild (i.e., out-of-domain), due to the differences of
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source and target corpora. This is the case of biomedicine,
a field that is often seen as a domain per se, but instead
comprises a lot of sub-domains, from molecular biology to
genetics and physiology. In order to adequately assess the
performance of biomedical EE systems, a thorough cross-
domain evaluation is needed.
Since biomedical EE is typically framed as a multi-stage
task, this evaluation could be carried out at each stage, sim-
ilarly to what happens in the non-biomedical ACE event ex-
traction challenge (Walker et al., 2006). However, biomed-
ical EE has traditionally given emphasis on the equality of
complete event structures only, for which predicted results
are submitted to Shared Task online evaluation services.
This has three main consequences: (i) test data is blind and
is meant for the evaluation of entire events, thus it cannot
be used for intermediate stages; (ii) most work report the
final results only, making it difficult to evaluate and inter-
pret how well the stages perform in isolation; and (iii) even
if those performances are reported, results are incompara-
ble due the different preprocessing conditions, such as the
generation of negative examples, and experimental setups.
In this work, we focus on the edge detection stage since
we believe it represents the most important module of the
EE pipeline. In fact, in addition to being the middle step
where both input and output data are not explicitly avail-
able, we argue the task shares most of the incomparabil-
ity issues with relation extraction, including the number
of negative examples one could generate, and the indepen-
dence of training and test data with regard to the examples
within the same sentences (Pyysalo et al., 2008).

Contributions. In the absence of explicit data and com-
mon means to evaluate edge detection in biomedical EE,
we contribute to the field and provide:

• Standardized training and test data for edge detection
for five different gold-standard corpora enabling cross-
domain experimentation, together with a characteriza-
tion of the differences between the corpora;

• A model for edge detection based on recent advances
in neural methods, setting it as a strong baseline for
future research;

• A thorough experimentation of edge detection in a
cross-domain setting, quantifying the drop in perfor-
mance of baseline models.

To the best of our knowledge, we are the first to provide
such insights. We thus believe our work could encourage
research efforts in domain adaptation in the near future, as
well as in-depth evaluation of other stages.

2. Related Work
In recent years, a number of Shared Tasks have been orga-
nized in order to promote the development of techniques for
biomedical natural language processing, providing anno-
tated corpora and evaluation means (Huang and Lu, 2016).
Of particular interest for biomedical EE are the GE11 cor-
pus (Kim et al., 2011), the ID11 corpus (Pyysalo et al.,
2011), the EPI11 corpus (Ohta et al., 2011), the PC13 cor-
pus (Ohta et al., 2013), and the MLEE corpus (Pyysalo

et al., 2012). Several techniques have been employed to
tackle the problem, ranging from rule-based to machine
learning based systems (Vanegas et al., 2015). Recently,
neural methods have shown to provide state-of-the-art per-
formance on the task, using either Convolutional Neural
Networks (CNNs) (Björne and Salakoski, 2018) or Long
Short-Term Memory (LSTM) networks (Li et al., 2019).
However, due to the lack of explicit data for evaluating edge
detection, most work only report end-to-end performance
of EE systems. Further, biomedical corpora comprise many
textual variations. According to the language variety space
proposed by Plank (2016), each corpus could be charac-
terized by several factors, including the topic, the genre,
and the language used, amongst others. Adapting trained
models to different language varieties would be desirable
to enable cross-domain generalizability.
Although domain adaptation has received increasing im-
portance in other fields, little and scattered work has been
done so far in biomedical EE. Vlachos and Craven (2012)
showed that a simple supervised domain adaptation ap-
proach (Daumé, 2007) is beneficial in handling the differ-
ences between abstracts and full-texts, i.e., what we here-
after refer to as textual scope, in GE11. However, their
work assumed labeled data is available in the target domain,
and that the textual scope is the only source of language
variation. Nguyen and Grishman (2015) conducted experi-
ments in the newswire domain, showing that CNNs without
any external features are more robust than other statistical
approaches for the trigger detection stage. Miwa and Ana-
niadou (2015) integrated weighting and covariate shift into
their EE system showing how these methods could improve
recall at the cost of precision, while Miwa et al. (2013) pro-
posed a multi-corpus learning approach combining seman-
tic annotations shared across corpora, heuristically filtering
corpus-specific annotation instances. Although these works
are the closest to our goal, data and performance evaluation
results for edge detection in isolation are not available. Fur-
ther, since our goal is to enable robust cross-domain gener-
alization of models for edge detection on unseen and unan-
notated domains, we expressly avoid to filter likely spu-
rious negative edge instances based on the knowledge of
instances in other corpora (see Section 3.2.2).

3. Data
In this section we present the corpora used in this study, the
commonalities and differences in their language aspects, as
well as how we use them to generate standardized data for
edge detection to enable cross-domain experimentation.

3.1. Corpora and Linguistic Variations
We focus on five biomedical corpora annotated for event
structures. These corpora are GE11, ID11, EPI11, PC13,
and MLEE. While the first four originate from Shared
Tasks, MLEE results from an independent effort towards
the annotation of events at various levels of the biological
organization. All the corpora share the genre and the lan-
guage aspects, since they all derive from scientific publica-
tions in English taken from PubMed2 and PMC3.

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.ncbi.nlm.nih.gov/pmc/

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/


linguistic variations number of documents
corpus textual scope sub-domain set abstracts full-texts

train 800 5
GE11 full-texts* reactions about transcription factors in human blood cells dev 150 5

test 260 4
train – 15

ID11 full-texts mechanisms of infectious diseases in 2-component regulatory systems dev – 5
test – 10
train 600 –

EPI11 abstracts only epigenetics and post-translational modifications dev 200 –
test 400 –
train 260 –

PC13 abstracts only reactions about some pathway models in BioModels and PantherDB dev 90 –
test 175 –
train 131 –

MLEE abstracts only angiogenesis (formation of new blood vessels from pre-existing ones) dev 44 –
test 87 –

Table 1: The linguistic aspects (or variations) and the number of documents in the biomedical EE corpora. *The corpus, in
addition to full-texts, also contains abstracts from other documents.

Despite these commonalities, the corpora differ along many
other language aspects. The main aspects – or linguistic
variations – we examine are the sub-domain and the textual
scope (Table 1). The sub-domain is the subject topic the
corpus belongs to. It has been previously shown that dif-
ferent sub-domains exhibit different vocabulary, syntax, as
well as discourse and sentential features (Lippincott et al.,
2011). The sub-domain is a fuzzy aspect, since documents
could span different topics with various degrees, and it is
implicitly induced in the data collection step of the corpus
creation. For example, all the five corpora under consid-
eration are sampled according to different research ques-
tions, resulting in different sub-domains. Further, the tex-
tual scope of the documents in the corpora introduces an-
other important variation, since abstracts and full-texts no-
ticeably differ in content and structure (Cohen et al., 2010).
While EPI11, PC13, and MLEE consist of abstracts only,
GE11 and ID11 comprise full-text documents. Note that
the presence of a full-text document implies the presence
of its corresponding abstract too.
These differences, reported in Table 1 along with the num-
ber of documents of each dataset, show that there is no cor-
pus that shares more than one language aspect with another
one. The language variation among corpora provides the
motivation for conducting a thorough cross-domain study
for edge detection.

3.2. Data for Edge Detection
Candidate edge examples are required in order to train and
evaluate an edge detector. However, since the standard
evaluation in biomedical EE cares about complete event
structures only, edges are not explicitly evaluated, and test
data annotations in Shared Tasks corpora are blind. Thus,
except for the MLEE corpus, we can only use the train
and dev portions (see Table 1) to the purpose. Moreover,
there are multiple ways one can generate negative exam-
ples, leading to incomparability issues among individual ef-
forts (Pyysalo et al., 2008). In this section we outline how
we dealt with this problem, creating standardized bench-

mark data from all five corpora. As corpora are stand-off
annotations, we provide unified preprocessing, i.e., we de-
vise the extraction of edges from event structures and the
mapping to unified edge types (Section 3.2.1) and the gen-
eration of negative examples (Section 3.2.2). In order to
allow for the extension to future corpora and the creation of
a wide-coverage system, we propose to focus on the most
widely used edge types across all corpora (Section 3.2.3).

3.2.1. Preprocessing of Event Structures
Each document in a corpus is accompanied by two anno-
tation files, one for entities and one for both triggers and
event structures. Since an edge is a subset of an event
and its endpoints could be both triggers and entities, edges
are implicitly encoded in both annotation files. We thus
used these files in order to divide event structures into a
set of intra-sentence edge examples.4 We use the scispaCy
model with custom postprocessing rules for sentence seg-
mentation (Neumann et al., 2019). Similarly to Miwa et
al. (2013), we also handle name variations on the labels that
refer to the same edge type,5 mapping them to their canon-
ical type (e.g., {Theme, Theme2, Theme3} 7→ Theme).
Due to both the differences in the topic of texts – thus, in the
provided edge annotations – and the goal of a cross-domain
study, we retain all the semantic edge types which are an-
notated in multiple corpora. These edge types are Theme,
Cause, Site, CSite,6 AtLoc, ToLoc, and FromLoc.
For the grouping of these edges refer to Section 3.2.3 while
for the formal definition of the edge types refer to the orig-
inal publications of corpora.

3.2.2. Generation of Negative Examples
For each sentence in the corpus, we generate edge pairs
from each trigger to each of its potential arguments (i.e.,

4Recent work show an high number of false positives on sys-
tems dealing with inter-sentence edges (Lever and Jones, 2016).

5In the corpora these are used to arbitrarily enumerate multiple
arguments of the same type starting from the same trigger.

6CSite is the equivalent of Site for Cause arguments.



Theme Cause Location NoEdge
corpus set edges # % # % # % # %
GE11 train/dev 28,718 9,027 31.43% 1,082 3.77% 487 1.70% 18,122 63.10%

test 9,083 2,905 31.98% 442 4.87% 181 1.99% 5,555 61.16%
ID11 train/dev 6,430 1,270 19.75% 212 3.30% 28 0.44% 4,920 76.52%

test 2,805 453 16.15% 113 4.03% 21 0.75% 2,218 79.07%
EPI11 train/dev 4,410 1,578 35.78% 145 3.29% 582 13.20% 2,105 47.73%

test 1,502 518 34.49% 53 3.53% 188 12.52% 743 49.47%
PC13 train/dev 24,327 4,958 20.38% 1,834 7.54% 286 1.18% 17,249 70.90%

test 8,809 1,782 20.23% 635 7.21% 98 1.11% 6,294 71.45%
MLEE train/dev 19,903 3,482 17.49% 1,001 5.03% 219 1.10% 15,201 76.38%

test 9,415 1,688 17.93% 466 4.95% 91 0.97% 7,170 76.16%

Table 2: Statistics of edges in all the corpora in the newly created training/development and test sets.

triggers or entities). Similarly to previous work (Björne
and Salakoski, 2015), we limit the generation of candidate
edges to valid edges only, as defined in the guidelines of
each corpus. This yields candidate pairs that are useful
for learning, and avoids a highly unbalanced distribution
of negative examples with respect to positive examples.7

Then, each candidate edge which does not have a gold an-
notated type (e.g., Theme, Cause, etc.) is labeled as a
NoEdge type (i.e., a negative instance). In the case an edge
type is not among the overlapping edge types in the corpora
(Section 3.2.1), we discard the instance. As a result, we ob-
tain a dataset of candidate edges for each corpus that can be
used for training and testing.

3.2.3. Merging of Under-Represented Classes
Some classes are highly under-represented. For instance, in
the ID11 training set, there is only one instance (0.02%) for
both AtLoc and ToLoc edges, and there are no AtLoc in-
stances at all in the dev set. In the same corpus, no CSite
instances are present in the training set, while one instance
(0.04%) is present in the dev set. In the MLEE training and
dev sets, there are only 8 instances (0.04%) of FromLoc
edges, and 5 (0.05%) in the test set. In general, Site,
CSite, AtLoc, ToLoc, and FromLoc are minority
classes which are difficult to learn due to the few number of
examples. While for Site the problem is less pronounced,
accounting on average for 3.16% of the edges among cor-
pora, other edges are more problematic. On average, in the
training sets there are 0.13% of CSite, 0.26% of AtLoc,
0.15% of ToLoc, and 0.08% of FromLoc instances. Since
all these edges encode a similar semantic meaning of loca-
tion, we created a new Location class, mapping them
into it (i.e., {Site, CSite,AtLoc, ToLoc, FromLoc} 7→
Location). This strategy overcomes the learning issues
from under-represented classes and provides a mean for
cross-domain experimentation, since all corpora now have
a Location type.

3.2.4. Edge Statistics Across Corpora
The final statistics of the edges in all the corpora are pre-
sented in Table 2. The instances in the train/dev set are the

7For instance, a Binding trigger cannot have a
Phosphorylation as a Theme edge, thus the pair
(Trigger:Binding, Argument:Phosphorylation)
is not produced.

ones generated from the original training set of the respec-
tive corpus, while the test instances are the ones coming
from the original development set, since no event annota-
tions are provided in the test sets. For the MLEE corpus,
where test set annotations are available, the train/dev and
the test sets reflect the original splits of the corpus.

4. Experiments
In this section we present the baseline model used in our ex-
periments, the experimental setup, including the tuning of
the hyper-parameters, and an ablation study to investigate
the importance of different input embeddings.

4.1. Model Overview
We cast the edge detection problem as a multi-class clas-
sification problem where the labels to be predicted are
Theme, Cause, Location, and NoEdge. We employ
a CNN architecture as our framework, following its recent
success in biomedical EE (Björne and Salakoski, 2018).
The neural network is composed of an input layer, a con-
volutional layer, a max-pooling layer, and a classification
layer. To introduce a non-linearity, we use the ReLU acti-
vation function at each layer, except the output layer, which
uses softmax. Given a sentence S containing a candidate
edge, an example is modelled as its sequence of tokens
{ti, ..., tn} ∈ S. Each token ti is turned into a real-valued,
vectorial representation xi representing its different syntac-
tic and semantic characteristics. This token-wise represen-
tation is the result of the concatenation of different embed-
dings:

• Word embedding: a vectorial representation for the
token from pre-trained word embeddings resulting
from millions of PubMed abstracts, PMC full-texts,
and English Wikipedia texts (Pyysalo et al., 2013).
Out-of-vocabulary tokens are randomly initialized;

• Position embedding: a vector encoding the relative
position of the current token from each target (Zeng et
al., 2014). Since the targets are two – the source and
the target of the edge to guess – two embeddings are
used, one for the source and one for the target;

• Type embedding: a vector for the trigger type (or the
named entity type) associated with the token, available
in the gold annotations of the corpora;



• POS embedding: a vector for the POS (Part-Of-
Speech) tag the token is assigned. We predict POS
tags using a biomedical model trained on GENIA 1.0
Treebank and OntoNotes 5.0 (Neumann et al., 2019);

• Dependency embedding: we use the path embed-
dings by Björne and Salakoski (2018), encoding the
shortest undirected dependency path from each token
to the source and target tokens of the edge candidate.
We set the path depth to 2, since a depth d > 2 has
been reported to hurt the performance in edge detec-
tion. As a result, we employ a total of four embed-
dings (one for the source and one for the target, both
at a path distance 1 and 2). Similarly to our POS em-
beddings, we use a model trained on biomedical texts
to predict dependency trees (Neumann et al., 2019).

The sentence representation is thus passed through the
convolutional layer and the max-pooling layer. The 4-
class classification is done at the classification layer using
softmax. Similarly to Nguyen and Grishman (2015) we
used shuffled mini-batches of size 50 during training and a
dropout regularization rate ρ = 0.5 to avoid overfitting. All
the weights of the network are updated at training time, ex-
cept for the 200-dimensional pre-trained word embeddings.

4.2. Experimental Setup
Before training, we tuned the hyper-parameters of the net-
work under a 5-fold stratified group cross-validation set-
ting on the train/dev set of GE11 (Table 2).8 We designed
this multifaceted cross validation setting (i) to account for
the class imbalance, ensuring different splits have examples
from all the classes, especially the under-represented ones,
and (ii) to avoid the same document falling into different
splits, a long-standing issue in comparability of relation ex-
traction systems (Pyysalo et al., 2008), which we extend to
the document scope. In fact, not only the same sentence but
contiguous sentences could share common information that
could lead to an overestimation of performance.
We collect hyper-parameter choices that have been em-
ployed in related work (Nguyen and Grishman, 2015;
Björne and Salakoski, 2018) for the optimizer, the learn-
ing rate, the batch size, the window size, and the number of
filters. Additionally, we search for the optimal dimension
of the input embeddings, which we concatenate to the 200-
dimensional word embeddings. We perform a grid search
to select the values, averaging the performance of models
for each combination of input embeddings across the five
executions. To prevent overfitting, we use early stopping
with a patience value of 5 epochs, choosing models from
the epoch with the highest micro F1 score on the develop-
ment set. Table 3 depicts the search space, where we high-
light the best hyper-parameter values we choose. We also
find that no significant differences in performance are given
by different dimensionalities for each input embedding.
Finally, we train the network on the whole train/dev set
of each corpus, evaluating it on the respective test set (Ta-
ble 2). For cross-domain evaluation, we instead test all the

8We use GE11 since it represents the largest corpus and it in-
cludes both abstract and full-text documents.

Parameter Search space Best value
Optimizer {Adadelta, Adagrad, Adam Adam

Adamax, RMSProp, SGD}
Learning rate {1., .1, .01, .001, .0005, .0001} .0005
Batch size {50, 64} 50
Window sizes {[3,4,5], [1,3,5,7]} [3,4,5]
Filters {32, 150} 150
Emb. size {8, 16, 32, 50, 64} 32

Table 3: The search space for the best hyper-parameter con-
figuration, along with the optimal values.

Model Micro F1 score Difference
All the input embeddings 88.83 ± 0.35

– POS 88.74 ± 0.58 -0.09
– TYP 87.15 ± 0.66 -1.68
– DEP 86.87 ± 0.33 -1.96
– POS, TYP 86.76 ± 0.52 -2.07
– POS, DEP 86.67 ± 0.51 -2.16
– TYP, DEP 84.97 ± 0.61 -3.86
– POS, TYP, DEP 84.55 ± 0.57 -4.28

Table 4: The ablation study about input embeddings. We
report mean and standard deviation of micro F1 scores on
the development splits for each variant of the model, as well
as the performance loss with respect to the complete model.

models – trained on a source train/dev corpus – on the test
set of all the other corpora.
To give a detailed picture of the performance, we report
both the micro F1 and macro F1 scores, while we use mi-
cro F1 for model selection. We believe reporting both is
useful to the community since the evaluation is typically
specific to the use case – in fact, one could be more inter-
ested in good performance among all classes rather than at
an instance level. Additionally, for each metric we also pro-
vide the scores considering negative instances in the eval-
uation (i.e., with NoEdge) and without considering them
(i.e., without NoEdge). We believe this sheds light on the
impact of negative examples in edge detection. For the sake
of comparability of future results, we also make the strati-
fied group splits for each dataset publicly available.

4.3. Ablation Study
We investigate the contribution of different combinations
of input embeddings (i.e., POS: part-of-speech, TYP: type,
DEP: dependency) to the performance of the model on the
GE11 development splits (Table 4). We average micro F1

scores of each variant of the model on the five development
splits, also reporting the standard deviation. This experi-
ment shows that (i) the most informative input embedding
is DEP, which individually contributes 1.96 F1, followed by
TYP, which contributes 1.68 F1; (ii) POS is the least infor-
mative embedding since whether it is removed individually
or with other embeddings it decreases the performance only
slightly (from 0.09 to 0.42 F1); (iii) the behaviour of the
different input embeddings is consistent both individually
and in group, with POS and DEP being highly indepen-
dent from TYP due to their semantic interdependency; (iv)
the inclusion of all the embeddings contributes to a gain of



target→ micro F1 macro F1

source ↓ GE11 ID11 EPI11 PC13 MLEE Avg GE11 ID11 EPI11 PC13 MLEE Avg

w
ith

N
o
E
d
g
e

GE11 88.65 86.67 84.35 84.36 84.79 -3.71 81.01 74.28 77.09 53.28 50.85 -17.13
ID11 80.48 90.05 71.50 81.84 84.07 -10.58 56.90 65.76 52.33 49.61 48.17 -14.01
EPI11 73.67 78.00 87.88 76.17 71.41 -13.07 62.22 54.93 82.19 48.95 42.78 -29.97
PC13 83.87 86.95 73.10 88.11 87.15 -5.34 56.81 54.38 54.57 77.48 56.00 -22.04
MLEE 81.22 88.20 70.24 84.54 90.20 -9.15 55.54 55.42 52.54 57.75 74.59 -19.28

w
ith

ou
t

N
o
E
d
g
e

GE11 83.66 69.31 83.43 66.14 63.39 -13.09 77.47 68.39 74.35 40.66 37.37 -22.28
ID11 70.67 72.63 59.72 61.54 61.82 -9.19 47.17 56.20 42.99 36.33 33.96 -16.09
EPI11 63.69 53.01 87.17 52.18 47.93 -32.97 56.23 44.53 80.06 36.70 29.76 -38.25
PC13 74.92 68.09 59.90 76.22 70.08 -7.97 46.01 41.70 44.51 72.42 43.79 -28.42
MLEE 69.15 67.68 53.48 64.75 75.95 -12.08 44.92 42.79 42.58 46.67 68.08 -23.84

Table 5: Cross-domain performance of the baseline model for edge detection. Different performance views are presented,
according to both evaluation metric used (i.e., micro F1 score or macro F1 score, on the columns) and whether the scores
consider the classification of negative examples (i.e., with NoEdge or without NoEdge, on the rows). In-domain results
are on the diagonals (with a grey background), while best results on target corpora are in bold. For each combination of
metric and evaluation strategy, we indicate the average out-of-domain drop (in italic).
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Figure 2: Performance of in-domain models for each source corpus on detecting and classifying edge labels on all the other
corpora (target). Each plot indicates a target corpus the source model is tested.

4.28 F1 points with respect to the baseline with only word
and position embeddings. It is worth noting that DEP is
the most informative embedding despite being a predicted
feature. To sum up, the semantic and syntactic features to-
gether help edge detection, with the dependency path being
the most informative feature.

5. Results and Discussion

In-domain and out-of-domain results of the baseline model
across the five corpora are reported in Table 5. Particularly,
we present four evaluation strategies to guide the reader in
choosing the most appropriate approach for assessing edge
detection performance according to its use case. To give
additional insights on the results, we also present per-class
F1 scores of each model trained on a source corpus when
applied to each target corpus (Figure 2). Thus, we hereafter
use both views to complement the discussion of the results.

In-Domain Results As we can see in Table 5, regard-
less of the metric and the classes used, in-domain results
(with a grey background) are consistently better than out-
of-domain results. This is not surprising since corpora are
characterized by important linguistic variations. The only
exception is the ID11 corpus: a model trained on ID11
seems not enough to provide the highest macro F1 score
on the ID11 test set. This is due to both the relatively small
size of the ID11 train/dev set and the very few training ex-
amples having Location as a label, clearly insufficient to
learn the patterns that characterize the class (Table 2). This
only impacts the macro F1 score, where under-represented
classes such as Location are given the same weight as
dominant classes such as Theme and NoEdge. As a mat-
ter of fact, the GE11 model achieves a higher macro F1

score on the ID11 test set only because of the Location
classification performance, almost two times the one pro-
vided by the in-domain ID11 model (Figure 2, “Scores on



ID11 test set”). On average over all five corpora, the in-
domain micro F1 is 88.98 and 79.13 with and without con-
sidering NoEdge, respectively, while the in-domain macro
F1 is 76.21 and 70.85 with and without negative instances,
respectively.

Out-of-Domain Results A large drop in performance oc-
curs when in-domain models are applied on out-of-domain
corpora. As reported in Table 5, the drop in micro F1 score
is from 3.71 to 13.07 points if we consider negative in-
stances in the evaluation, and from 7.97 to 32.97 without
considering them. Regarding the macro F1 score, the drop
is even more pronounced, going from 14.01 to 29.97 con-
sidering negative edges, and from 16.09 to 38.25 without
them. From a closer point of view, we notice EPI11 is the
most difficult domain a model could be applied to, as shown
by the highest drop in out-of-domain performance across
all metrics and classes (i.e., -13.07 and -29.97 considering
the NoEdge class, and -32.97 and -38.25 without consid-
ering the NoEdge class, for micro and macro F1 scores,
respectively). This could be due to how EPI11 was con-
structed, since it is the only corpus that was built avoiding
a sample selection bias towards particular proteins or event
expressions (Ohta et al., 2011). Another interesting find-
ing is about the ability of some in-domain models to gen-
eralize reasonably well to a specific target domain. This is
the case of the GE11 model, when applied to EPI11 as a
target (i.e., GE11→EPI11), and of the PC13 model, when
applied to MLEE (i.e., PC13→MLEE). Although they are
far from the performance of the target in-domain models
– especially under the macro F1 metric – they consistently
achieve better results than other in-domain models on all
metrics and classes. As we can see in Figure 2, “Scores
on EPI11 test set”, in the GE11→EPI11 case the GE11
model obtains lower performance mainly due to the clas-
sification of the Cause class, while maintaining close per-
formance on Location and NoEdge classes. Regard-
ing PC13→MLEE, the difference in performance with re-
spect to the MLEE in-domain model could be explained by
the Location score, which is 0% (Figure 2, “Scores on
MLEE test set”).
Location seems to be the trickiest class to predict es-
pecially in the MLEE target test set, where the only source
that achieves a score greater that 0% is EPI11 (7.02%) (Fig-
ure 2, “Scores on MLEE test set”). In general, our exper-
iments highlight that there is no single source corpus in
which a model could be trained to robustly and consistently
achieve good performance on all target corpora. This high-
lights the urgent need of domain adaptation techniques to
make in-domain models able to generalize across linguistic
varieties, even within biomedicine itself.

Metrics and Classes We notice important distinctions
when using micro F1 or macro F1 score as the evaluation
metric. Firstly, the scores using macro F1 are generally
lower than the scores using micro F1. This is because over-
represented classes (e.g., Theme, NoEdge) dominate the
micro F1 score, while the correct classification of under-
represented classes (e.g., Location) is central to obtain
a high macro F1 score. Secondly, considering negative in-
stances (i.e., NoEdge) in computing the averaged scores

of edge detection leads to an over-estimation of the perfor-
mance. This could be explained by the fact that NoEdge
is the majority class in all the corpora, thus giving a high
contribution on both micro and macro F1 scores. Despite it
is a common practice to consider only true annotated labels
(i.e., Theme, Cause, and Location) in the evaluation –
using wrongly predicted negative instances as false nega-
tives for the actual class, and treating as false positives for
the actual class the instances that are negatives, but clas-
sified in that class – we believe considering the negative
class in the evaluation could be beneficial in developing real
world applications, where a high recall is crucial. Whatever
evaluation strategy is used, we see the trend of the scores is
consistent across metrics and classes.

Domain and Annotation Adaptation While training on
the union of all data is a common domain adaptation base-
line (Miwa et al., 2013), it assumes supervision. In contrast,
this work encourages research efforts where the target do-
main is assumed to be unknown and unlabeled, a more dif-
ficult but more realistic scenario. We thus plan to explore
unsupervised domain adaptation in future work. Due to the
lack of a body of research on domain adaptation from data
with non-overlapping labels, in this work we assume source
and target domains having the same set of edge types. How-
ever, we highly value the need of what we call annotation
adaptation in the near future, i.e., the adaptation of a model
from partially overlapping source and target labels.

6. Conclusions
We provided the first cross-domain evaluation study for
biomedical edge detection, together with standardized data
from five gold-standard corpora to enable further progress
in comparable edge detection. We proposed different eval-
uation strategies to assess the performance of models, to-
gether with an in-domain baseline for edge detection, for
which we assessed the contribution of different combina-
tions of input embeddings, finding syntactic and seman-
tic features to be particularly helpful. We used in-domain
models to assess the performance drop across five datasets,
shedding light on the importance of developing robust mod-
els that could deal with the linguistic variations in differ-
ent corpora. We believe this work could encourage future
work in domain adaptation, and could sensitize an aware-
ness about the language differences within the biomedical
domain. The data, the splits, and the baselines for edge de-
tection are publicly available at https://www.cosbi.
eu/cfx/9985.
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