3,684 research outputs found

    Environmental Sensing by Wearable Device for Indoor Activity and Location Estimation

    Full text link
    We present results from a set of experiments in this pilot study to investigate the causal influence of user activity on various environmental parameters monitored by occupant carried multi-purpose sensors. Hypotheses with respect to each type of measurements are verified, including temperature, humidity, and light level collected during eight typical activities: sitting in lab / cubicle, indoor walking / running, resting after physical activity, climbing stairs, taking elevators, and outdoor walking. Our main contribution is the development of features for activity and location recognition based on environmental measurements, which exploit location- and activity-specific characteristics and capture the trends resulted from the underlying physiological process. The features are statistically shown to have good separability and are also information-rich. Fusing environmental sensing together with acceleration is shown to achieve classification accuracy as high as 99.13%. For building applications, this study motivates a sensor fusion paradigm for learning individualized activity, location, and environmental preferences for energy management and user comfort.Comment: submitted to the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore