312 research outputs found

    A Formal Approach to Computer Aided 2D Graphical Design for Blind People

    Get PDF
    The growth of computer aided drawing systems for blind people (CADB) has long been recognised and has increased in interest within the assistive technology research area. The representation of pictorial data by blind and visually impaired (BVI) people has recently gathered momentum with research and development; however, a survey of published literature on CADB reveals that only marginal research has been focused on the use of a formal approach for on screen spatial orientation, creation and reuse of graphics artefacts. To realise the full potential of CADB, such systems should possess attributes of usability, spatial navigation and shape creation features without which blind users drawing activities are less likely to be achieved. As a result of this, usable, effective and self-reliant CADB have arisen from new assistive Technology (AT) research. This thesis contributes a novel, abstract, formal approach that facilitates BVI users to navigate on the screen, create computer graphics/diagrams using 2D shapes and user-defined images. Moreover, the research addresses the specific issues involved with user language by formulating specific rules that make BVI user interaction with the drawing effective and easier. The formal approach proposed here is descriptive and it is specified at a level of abstraction above the concrete level of system technologies. The proposed approach is unique in problem modelling and syntheses of an abstract computer-based graphics/drawings using a formal set of user interaction commands. This technology has been applied to enable blind users to independently construct drawings to satisfy their specific needs without recourse to a specific technology and without the intervention of support workers. The specification aims to be the foundation for a system scope, investigation guidelines and user-initiated command-driven interaction. Such an approach will allow system designers and developers to proceed with greater conceptual clarity than it is possible with current technologies that is built on concrete system-driven prototypes. In addition to the scope of the research the proposed model has been verified by various types of blind users who have independently constructed drawings to satisfy their specific needs without the intervention of support workers. The effectiveness and usability of the proposed approach has been compared against conventional non-command driven drawing systems by different types of blind users. The results confirm that the abstract formal approach proposed here using command-driven means in the context of CADB enables greater comprehension by BVI users. The innovation can be used for both educational and training purposes. The research, thereby sustaining the claim that the abstract formal approach taken allows for the greater comprehension of the command-driven means in the context of CADB, and how the specification aid the design of such a system

    Human Factors in Automated and Robotic Space Systems: Proceedings of a symposium. Part 1

    Get PDF
    Human factors research likely to produce results applicable to the development of a NASA space station is discussed. The particular sessions covered in Part 1 include: (1) system productivity -- people and machines; (2) expert systems and their use; (3) language and displays for human-computer communication; and (4) computer aided monitoring and decision making. Papers from each subject area are reproduced and the discussions from each area are summarized

    Empirical modelling as a new paradigm for educational technology

    Get PDF
    Educational technology has yet to deliver the benefits or successes that were expected in educational practice, especially in relation to issues other than the communication and delivery of teaching materials. Evidence suggests that these difficulties stem from the mismatch between formalised virtual learning environments and everyday sensemaking and between the rich potential for enhanced learning afforded by new technology and the constraints of old-style educational practice. In addressing this mismatch, some commentators suggest that the primary need is for a new culture of educational practice-and even that such a culture is already emerging, and others identify the need for a new paradigm for educational technology. The aim of this thesis is to explore the potential for a new paradigm for educational technology based on the principles and tools of Empirical Modelling (see http://dcs.warwick.ac.uk/modelling). The thesis builds upon previous research on Empirical Modelling as a constructionist approach to learning, and in particular Roe's doctoral thesis 'Computers for learning: an Empirical Modelling perspective'. Roe's treatment of Empirical Modelling can be viewed as generalising the use of spreadsheets for learning through applying 'programming by dependency' within the framework of existing educational practice. In contrast, this thesis is concerned at a more fundamental level with the contribution that Empirical Modelling can make to technology enhanced learning that may lead to new educational practices. In particular, it identifies eight significant characteristics of learning that are well-matched to Empirical Modelling activity, and associates these with experimental, flexible and meaningful strands in learning. The credentials of Empirical Modelling as a potential new foundation for educational technology are enhanced by demonstrating that Empirical Modelling is radically different from traditional software development and use. It provides a methodology for modelling with dependency that is more closely related to the use of spreadsheets for learning. The thesis elaborates on the relationship between Empirical Modelling and learning in a variety of different contexts, ways and applications. Three examples drawn from computer science higher education are explored to emphasise the experimental, flexible and meaningful characteristics of Empirical Modelling. This discussion of Empirical Modelling in a specific educational context is complemented by an investigation of its relevance to learning in a wider context, with reference to a broad range of subjects, to specific issues in language learning, and to the topics of lifelong learning and collaborative learning. Although the application of Empirical Modelling for learning is as yet too immature for large scale empirical studies, its potential is evaluated using informal empirical evidence arising from Empirical Modelling practice at Warwick. The sources for this evaluation are well-established teaching activities relating to Empirical Modelling in Computer Science at the University of 'Warwick, comprising an introductory module and a number of final year undergraduate projects. The thesis concludes by considering the extent to which Empirical Modelling can go beyond the support for constructionism envisaged by Roe, to address the broader agenda of supporting constructivist learning using computers. To this end, a close relationship between Empirical Modelling and a vision of constructivism recently set out by Bruno Latour in his paper 'The Promises of Constructivism' is demonstrated

    Applying blended conceptual spaces to variable choice and aesthetics in data visualisation

    Get PDF
    Computational creativity is an active area of research within the artificial intelligence domain that investigates what aspects of computing can be considered as an analogue to the human creative process. Computers can be programmed to emulate the type of things that the human mind can. Artificial creativity is worthy of study for two reasons. Firstly, it can help in understanding human creativity and secondly it can help with the design of computer programs that appear to be creative. Although the implementation of creativity in computer algorithms is an active field, much of the research fails to specify which of the known theories of creativity it is aligning with. The combination of computational creativity with computer generated visualisations has the potential to produce visualisations that are context sensitive with respect to the data and could solve some of the current automation problems that computers experience. In addition theories of creativity could theoretically compute unusual data combinations, or introducing graphical elements that draw attention to the patterns in the data. More could be learned about the creativity involved as humans go about the task of generating a visualisation. The purpose of this dissertation was to develop a computer program that can automate the generation of a visualisation, for a suitably chosen visualisation type over a small domain of knowledge, using a subset of the computational creativity criteria, in order to try and explore the effects of the introduction of conceptual blending techniques. The problem is that existing computer programs that generate visualisations are lacking the creativity, intuition, background information, and visual perception that enable a human to decide what aspects of the visualisation will expose patterns that are useful to the consumer of the visualisation. The main research question that guided this dissertation was, โ€œHow can criteria derived from theories of creativity be used in the generation of visualisations?โ€. In order to answer this question an analysis was done to determine which creativity theories and artificial intelligence techniques could potentially be used to implement the theories in the context of those relevant to computer generated visualisations. Measurable attributes and criteria that were sufficient for an algorithm that claims to model creativity were explored. The parts of the visualisation pipeline were identified and the aspects of visualisation generation that humans are better at than computers was explored. Themes that emerged in both the computational creativity and the visualisation literature were highlighted. Finally a prototype was built that started to investigate the use of computational creativity methods in the โ€˜variable choiceโ€™, and โ€˜aestheticsโ€™ stages of the data visualisation pipeline.School of ComputingM. Sc. (Computing

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools

    User Interface Abstraction for enabling TV set based Inclusive Access to the Information Society

    Get PDF
    199 p.The television (TV) set is present in most homes worldwide, and is the most used Information and Communication Technology (ICT). Despite its large implantation in the market, the interactive services consumption on TV set is limited. This thesis focuses on overcoming the following limiting factors: (i) limited Human Computer Interaction and (ii) lack of considering userโ€™s real life context in the digital television (dTV) service integration strategy. Making interactive services accessible to TV setโ€™s large user base, and especially to the most vulnerable ones, is understood as the path to integrate the mankind with the information society. This thesis explores the use of user interface abstraction technologies to reach the introduced goals. The main contributions of this thesis are: (i) an approach to enable the universally accessible remote control of the TV set, (ii) an approach for the provision of universally accessible interactive services through TV sets, and (iii) an approach for the provision of universally accessible services in the TV userโ€™s real life context. We have implemented the contributing approaches for different use cases, and we have evaluated them with real users, achieving good results

    ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๊ณต๊ฐ„ ๋‚ด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฏธ์ˆ ๋Œ€ํ•™ ๋””์ž์ธํ•™๋ถ€ ๋””์ž์ธ์ „๊ณต, 2019. 2. ๊น€์ˆ˜์ •.Speculative visualization combines both data visualization methods and aesthetics to draw attention to specific social, political and environmental issues. The speculative data visualization project proposed in this work explores electronic waste trade and the environmental performance of various nations. Illegal trading of electronic waste without proper disposal and recycling measures has a severe impact on both human health and the environment. This trade can be represented as a network data structure. The overall environmental health and ecosystem vitality of those trading countries, represented by their Environmental Performance Index (EPI), can also give greater insight into this issue. This EPI data has a hierarchical structure. This work explores methods to visualize these two data sets simultaneously in a manner that allows for analytical exploration of the data while communicating its underlying meaning. This project-based design research specifically focuses on visualizing hierarchical datasets with a node-link type tree structure and suggests a novel data visualization method, called the data garden, to visualize these hierarchical datasets within a spatial network. This draws inspiration from networks found between trees in nature. This is applied to the illegal e-waste trade and environmental datasets to provoke discussion, provide a holistic understanding and improve the peoples awareness on these issues. This uses both analytical data visualization techniques, along with a more aesthetic approach. The data garden approach is used to create a 3D interactive data visualization that users can use to navigate and explore the data in a meaningful way while also providing an emotional connection to the subject. This is due to the ability of the data garden approach to accurately show the underlying data while also closely mimicking natural structures. The visualization project intends to encourage creative professionals to create both visually appealing and thought-provoking data visualizations on significant issues that can reach a mass audience and improve awareness of citizens. Additionally, this design research intends to cause further discussion on the role of aesthetics and creative practices in data visualizations.์‚ฌ๋ณ€์  ์‹œ๊ฐํ™”(speculative visualization)๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•๊ณผ ๋ฏธํ•™์„ ๊ฒฐํ•ฉํ•˜์—ฌ ํŠน์ •ํ•œ ์‚ฌํšŒ, ์ •์น˜ ๋ฐ ํ™˜๊ฒฝ ๋ฌธ์ œ์— ๊ด€์‹ฌ์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ œ์•ˆํ•œ ์‚ฌ๋ณ€์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ตญ๊ฐ€์˜ ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ์„ฑ๊ณผ๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ์ฒ˜๋ฆฌ์™€ ์žฌํ™œ์šฉ ์กฐ์น˜๊ฐ€ ์ด๋ค„์ง€์ง€ ์•Š์€ ์ „์žํ๊ธฐ๋ฌผ์˜ ๋ถˆ๋ฒ• ๊ฑฐ๋ž˜๋Š” ํ™˜๊ฒฝ๊ณผ ์ธ๊ฐ„์— ์‹ฌ๊ฐํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. ์ด ๊ฑฐ๋ž˜๋Š” ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜(EPI)๋ฅผ ํ†ตํ•ด ์ด ๊ฑฐ๋ž˜์— ์ฐธ์—ฌํ•˜๋Š” ๊ตญ๊ฐ€๋“ค์˜ ์ „๋ฐ˜์ ์ธ ํ™˜๊ฒฝ ๋ณด๊ฑด๊ณผ ์ƒํƒœ๊ณ„ ํ™œ๋ ฅ์„ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์€ ์ด ๋ฌธ์ œ์— ๋” ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜๋Š” ๊ณ„์ธต ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„์ ์œผ๋กœ ํƒ๊ตฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ์‹œ๊ฐํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ‘œ๋ฉด์— ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ์˜ ์˜๋ฏธ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กœ์ ํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋””์ž์ธ ์—ฐ๊ตฌ๋กœ, ๋…ธ๋“œ ๋งํฌ ์œ ํ˜• ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋Š” ๊ฒƒ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์—ฐ์—์„œ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋ฌด ๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ์˜๊ฐ์„ ์–ป์–ด ๊ณต๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์ด๋ผ๊ณ  ํ•˜๋Š” ์ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•์„ ๋ถˆ๋ฒ• ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์—ฌ ํ† ๋ก ์„ ์œ ๋ฐœํ•˜๊ณ  ์ „์ฒด์ ์ธ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‚ฌ๋žŒ๋“ค์˜ ์ธ์‹์„ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ณด๋‹ค ๋ฏธ์ ์ธ ์ ‘๊ทผ๊ณผ ๋ถ„์„์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๊ธฐ์ˆ ์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์„ ํ†ตํ•œ ์ ‘๊ทผ์œผ๋กœ ์‚ผ์ฐจ์› ๋Œ€ํ™”ํ˜• ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ๊ฐํ™”๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ์‚ดํŽด๋ณด๋Š” ๋™์‹œ์— ์ฃผ์ œ์™€ ๊ฐ์„ฑ์ ์ธ ์—ฐ๊ฒฐ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ์ •์› ๋ฐฉ๋ฒ•์ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ๋Š” ๋™์‹œ์— ์ž์—ฐ ๊ตฌ์กฐ๋ฅผ ๋ฉด๋ฐ€ํ•˜๊ฒŒ ๋ชจ๋ฐฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋ณธ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋Š” ์ฐฝ์˜์ ์ธ ์ „๋ฌธ๊ฐ€๋“ค์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹œ๊ฐ์ ์œผ๋กœ ๋งค๋ ฅ์ ์ด๊ณ  ์ƒ๊ฐ์„ ์ž๊ทนํ•˜๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค์–ด ๋Œ€์ค‘์—๊ฒŒ ๋„๋‹ฌํ•˜๊ณ  ์‹œ๋ฏผ๋“ค์˜ ์ธ์‹์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋””์ž์ธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์—์„œ ๋ฏธํ•™๊ณผ ์ฐฝ์กฐ์ ์ธ ์‹ค์ฒœ์˜ ์—ญํ• ์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ๋…ผ์˜๋ฅผ ์œ ๋„ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.Abstract I Table of Contents III List of Figures VI 1. Introduction 1 1.1 Research Background 2 1.2 Research Goal and Method 6 1.3 Terminology 9 2. Hierarchical Relationships: Trees 14 2.1 The History of Tree Diagrams 16 2.1.1 Significance of Trees 16 2.1.2 Aristotles Hierarchical Order of Life 19 2.1.3 Early Religious Depictions of Hierarchical Structures 22 2.1.4 Depicting Evolution 26 2.2 Tree Structures 29 2.3 Tree Layouts 31 3. Complex Relationships: Networks 34 3.1 Attributes of Networks 36 3.1.1 Interdependence and Interconnectedness 38 3.1.2 Decentralization 42 3.1.3 Nonlinearity 45 3.1.4 Multiplicity 46 3.2 Spatial Networks 46 3.3 Combining Tree Structures and Networks 48 4. Design Study Goals and Criteria 51 4.1 Objectives of the Design Study 71 4.2 Data Visualization Approaches 54 4.3 Criteria of Data Visualization 57 4.3.1 Aesthetics 58 4.3.2 Information Visualization Principles 62 4.3.2.1 Visual Cues in Data Visualization 62 4.3.2.2 Gestalt Principles 65 4.3.2.3 Increasing Efficiency of Network Visualizations 67 4.4 Case Study 70 5. Design Study: Data Garden Method 78 5.1 Concept of the Data Garden Structure 79 5.2 Data Garden Tree Structure 84 5.2.1 360ยฐVertical Branches 85 5.2.2 Break Point of the Branches 87 5.2.3 Aligning Hierarchy Levels 89 5.2.3.1 Design 01 โ€“ Extend Method 90 5.2.3.2 Design 02 โ€“ Collapse Method 91 5.2.4 Node Placement Technique 92 5.3 Conveying 3D Information 95 6. Design Study: Visualization Project 98 6.1 Theme 99 6.1.1 E-waste Trade 100 6.1.2 Environmental Performance Index 102 6.2 Visual Design Concept 104 6.3 Assigning Attributes 105 6.4 Visual Design Process 107 6.4.1 Leaf (Node) Design Process 107 6.4.1.1 Leaf Inspiration 107 6.4.1.2 Leaf Design 108 6.4.1.3 Leaf Area Calculation and Alignment 113 6.4.2 Stem (Branch) Design Process 116 6.4.3 Root (Link) Design Process 117 6.5 Interaction Design 118 6.5.1 Navigation 118 6.5.2 User Interface 119 6.5.3 Free and Detail Modes 120 6.5.4 Data Details 121 6.6 Visualization Renders 122 6.7 Exhibition 129 7. Conclusion 131 7.1 Conclusion 132 7.2 Limitations and Further Research 133 Bibliography 135 ๊ตญ๋ฌธ์ดˆ๋ก (Abstract in Korean) 144Docto
    • โ€ฆ
    corecore