601 research outputs found

    Nested Ocean Modeling

    Get PDF

    GRID AND CLOUD COMPUTING FOR E-SCIENCE APPLICATIONS

    Get PDF
    eScience fields which include areas such as spatial data, electromagnetic,bioinformatics, energy, social sciences, simulation, physical science have on the course of recent years a significant development regarding the complexity of algorithms and applications for data analysis. Information data has also evolved with an explosion in term of data volume and datasets for the scientific community. This has led researchers to identify new necessity regarding tools analysis, applications, by a profound change in computing infrastructures utilization. The field of eScience is constantly evolving through the creation of ever more growing scientific community who have a real needs in availability in computational resources ever more powerful calculations. Another important issue is the ability to be able to share results, this is why cloud technology through virtualization can be an important help for the scientist community for giving a flexible and scalable IT infrastructure depending on necessities. Indeed, cloud computing allows for the provision of computing resources, storage in an easy configurable way and adaptable in functions of real needs. Researchers often do not have all the computing capacities to meet their needs, so cloud technology and cloud models as Private, Public and Hybrid is an enable technology for having a guarantee of service availability, scalability and flexibility. The transition from traditional infrastructure to new virtualized with distributed models allows researchers to have access to an environment extremely flexible allowing an optimization of the use of hardware for having more available resources. However, the computational needs on e-Science have a direct effect regarding the way that applications are developed. The approach of writing algorithm and applications is still too tied to a model centered on a workstation for example. The vast majority of researchers conducts the writing process of their applications on their laptop or workstation in a limited context of computing power, storage and in a non-distributed way

    GRID AND CLOUD COMPUTING FOR E-SCIENCE APPLICATIONS

    Get PDF
    eScience fields which include areas such as spatial data, electromagnetic,bioinformatics, energy, social sciences, simulation, physical science have on the course of recent years a significant development regarding the complexity of algorithms and applications for data analysis. Information data has also evolved with an explosion in term of data volume and datasets for the scientific community. This has led researchers to identify new necessity regarding tools analysis, applications, by a profound change in computing infrastructures utilization. The field of eScience is constantly evolving through the creation of ever more growing scientific community who have a real needs in availability in computational resources ever more powerful calculations. Another important issue is the ability to be able to share results, this is why cloud technology through virtualization can be an important help for the scientist community for giving a flexible and scalable IT infrastructure depending on necessities. Indeed, cloud computing allows for the provision of computing resources, storage in an easy configurable way and adaptable in functions of real needs. Researchers often do not have all the computing capacities to meet their needs, so cloud technology and cloud models as Private, Public and Hybrid is an enable technology for having a guarantee of service availability, scalability and flexibility. The transition from traditional infrastructure to new virtualized with distributed models allows researchers to have access to an environment extremely flexible allowing an optimization of the use of hardware for having more available resources. However, the computational needs on e-Science have a direct effect regarding the way that applications are developed. The approach of writing algorithm and applications is still too tied to a model centered on a workstation for example. The vast majority of researchers conducts the writing process of their applications on their laptop or workstation in a limited context of computing power, storage and in a non-distributed wa

    An Exploration of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model.

    Full text link
    Using General Circulation Models (GCMs) for tropical cyclone studies is challenging due to the relatively small size of the storms, the intense convection and a host of scale interactions. However, with the advancement of computer architectures, GCMs are becoming capable of running at high horizontal resolutions with grid spacings of less than 60 km. As a result, high-resolution GCMs are becoming a tool of choice to evaluate tropical cyclones in current and future climate conditions. This raises questions concerning the fidelity of GCMs for tropical cyclone assessments. The physical and dynamical components of GCMs need to be evaluated to assess their reliability for tropical cyclone studies. An idealized tropical cyclone test case for high-resolution GCMs is developed and implemented in aqua-planet mode with constant sea surface temperatures. The initial conditions are based on an analytic initial vortex seed that is in gradient-wind and hydrostatic balance and intensifies over a 10-day period. The influence of the model parameterization package on the development of the tropical cyclone is assessed. In particular, different physics parameterization suites are investigated within the National Center for Atmospheric Research's Community Atmosphere Model CAM, including physics versions 3.1, 4 and 5. The choice of the CAM physics suite has a significant impact on the evolution of the idealized vortex into a tropical cyclone. In addition, a test case of intermediate complexity is introduced. Therein it is suggested that a GCM dynamical core be paired with simple moist physics to test the evolution of the test vortex. This simple-physics configuration includes important driving mechanisms for tropical cyclones, including surface fluxes, boundary layer diffusion and large-scale condensation. The impact of the CAM dynamical core (the resolved fluid flow component) on the tropical cyclone intensity and size is evaluated. In particular, the finite-volume, spectral element, Eulerian spectral transform and semi-Lagrangian spectral transform dynamical cores are utilized. The simple-physics simulations capture the dominant characteristics of tropical cyclones and are compared to the CAM 5 full physics results for each dynamical core. The research isolates the impact of the physical parameterizations, numerical schemes and uncertainties on the evolution of the cyclone in CAM.Ph.D.Atmospheric and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91502/1/kareed_1.pd

    Software development for the optimization of the influence of wind flows within energy applications and sustainable town planning

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi Gabriele d'AnnuzioThis thesis aims to propose and validate an innovative, fully open-source framework capable of performing multiscale analysis for the assessment of local wind flows within the urban fabric. Each part of the framework is fully editable and license-free. A crucial aspect of the adopted methodology concerns the coupling between the mesoscale-microscale analysis in order to increase the accuracy of the final results. In detail, the procedure is based on the interaction between the mesoscale values and the microscale values obtained considering different wind directions. The core of the work is the design and development of an open-source application that allows to generate 3D numerical models for microscale analysis in an automatic way and providing only some basic information. The main benefit of such a procedure is the drastic reduction of the time required for the creation of numerical models and the facilitation, in general, of microscale simulations. The process of geodata retrieval and the subsequent 3D modeling phase, in fact, are completely automated. The results obtained with the above application are compared with those obtained with a commercial software, widely used in the sector, in order to test its potential and accuracy. Finally, the airflows estimated through the application of the whole proposed framework are used as input for dynamic energy simulations to identify the energy consumption, divided into heating and cooling, of a real building located in an urban context. The framework has been tested assuming a domain located in the city of Pescara (central Italy). However, it is important to emphasize that its application to different urban contexts does not present any constraint related, for example, to the geographical location of the area of interest and that it is, therefore, possible to replicate the analysis in any part of the world.La presente tesis tiene como objetivo proponer y validar un marco de trabajo innovador y totalmente de código abierto (open-source) capaz de realizar análisis multiescala para evaluar los flujos de vientos locales dentro del tejido urbano. Cada etapa del marco es totalmente editable y libre de licencia. Uno de los aspectos cruciales de la metodología adoptada es el acoplamiento entre las simulaciones mesoescala-microescala, las cuales permiten aumentar la precisión de los resultados finales obtenidos. Concretamente, el procedimiento se basa en la interacción entre los valores mesoescala y microescala obtenidos considerando diferentes direcciones del viento. El núcleo de la tesis es el diseño y desarrollo de una aplicación open-source capaz de generar automáticamente modelos 3D para el análisis microescala, proporcionando únicamente ciertos datos básicos. El principal beneficio de este procedimiento es la drástica reducción del tiempo requerido para la creación de modelos numéricos y la facilidad, en general, de las simulaciones microescala. El proceso de recuperación de datos de carácter geográficos (geodata) y la posterior fase de modelado 3D están, de hecho, completamente automatizados. Los resultados obtenidos con la aplicación desarrollada son comparados con los generados a través de un software comercial, el cual es usado ampliamente en el sector, con el objetivo de validar y probar el potencial y precisión de la aplicación. Finalmente, los flujos de aire calculados a través de la aplicación del marco de trabajo propuesto son usados como datos de entrada para la realización de simulaciones energéticas dinámicas, las cuales permiten identificar el consumo de energía, dividido este en los requisitos de calefacción y refrigeración, de un edificio real ubicado dentro de un contexto urbano. El marco de trabajo y la metodología adoptada han sido testeados asumiendo un dominio local en la ciudad de Pescara, ubicada en el centro de Italia. No obstante, es importante destacar que su aplicación a diferentes contextos urbanos no presenta ninguna restricción, como por ejemplo la ubicación geográfica de interés, siendo por tanto posible replicar el análisis en cualquier parte del mundo independientemente de la ubicación del caso de estudio.La presente tesi intende proporre e validare un framework innovativo, completamente open-source, in grado di eseguire analisi multiscala per la valutazione dei flussi del vento locale all'interno del tessuto urbano. Ogni fase del framework è interamente editabile e a licenza grauita. Aspetto cruciale della metodologia adottata riguarda l’accoppiamento tra le analisi mesoscala-microscala al fine di incrementare l’accuratezza dei risultati finali. Nel dettaglio, la procedura si basa sul far dialogare i valori stimati dalla mesoscala con quelli della microscala ottenuti considerando diverse direzioni del vento in ingresso. Il nucleo principale del lavoro è la progettazione e lo sviluppo di un’applicazione in ambiente open-source che permetta di generare modelli numerici 3D per le analisi microscala in maniera automatica e fornendo solo alcune informazioni basiche. Beneficio principale di una procedura così individuata è la drastica riduzione dei tempi necessari per la realizzazione di modelli numerici e l’agevolazione, in generale, delle simulazioni microscala. Il processo di reperimento dei geodati e la successiva fase di modellazione 3D, infatti, sono completamente automatizzate. I risultati ottenuti con la suddetta applicazione sono confrontati con quelli ottenuti con un software commerciale, largamente utilizzato nel settore, al fine di testarne le potenzialità e l’accuratezza. Infine, i flussi di aria stimati mediante l’applicazione dell’intero framework proposto, sono impiegati come input per le simulazioni energetiche dinamiche per identificare il consumo energetico, suddiviso in riscaldamento e raffrescamento, di un edificio reale localizzato in un contesto urbano. Il framework è stato testato assumendo un dominio situato nella città di Pescara (centro Italia). Tuttavia, è importante sottolineare che, la sua applicazione a diversi contesti urbani non presenta alcun vincolo legato, ad esempio, alla posizione geografica dell’area di interesse e che è quindi possibile replicare le analisi in qualsiasi parte del mondo.Postprint (published version

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA
    • …
    corecore