18 research outputs found

    Template-based hardware-software codesign for high-performance embedded numerical accelerators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 129-132).Sophisticated algorithms for control, state estimation and equalization have tremendous potential to improve performance and create new capabilities in embedded and mobile systems. Traditional implementation approaches are not well suited for porting these algorithmic solutions into practical implementations within embedded system constraints. Most of the technical challenges arise from design approach that manipulates only one level in the design stack, thus being forced to conform to constraints imposed by other levels without question. In tightly constrained environments, like embedded and mobile systems, such approaches have a hard time efficiently delivering and delivering efficiency. In this work we offer a solution that cuts through all the design stack layers. We build flexible structures at the hardware, software and algorithm level, and approach the solution through design space exploration. To do this efficiently we use a template-based hardware-software development flow. The main incentive for template use is, as in software development, to relax the generality vs. efficiency/performance type tradeoffs that appear in solutions striving to achieve run-time flexibility. As a form of static polymorphism, templates typically incur very little performance overhead once the design is instantiated, thus offering the possibility to defer many design decisions until later stages when more is known about the overall system design. However, simply including templates into design flow is not sufficient to result in benefits greater than some level of code reuse. In our work we propose using templates as flexible interfaces between various levels in the design stack. As such, template parameters become the common language that designers at different levels of design hierarchy can use to succinctly express their assumptions and ideas. Thus, it is of great benefit if template parameters map directly and intuitively into models at every level. To showcase the approach we implement a numerical accelerator for embedded Model Predictive Control (MPC) algorithm. While most of this work and design flow are quite general, their full power is realized in search for good solutions to a specific problem. This is best understood in direct comparison with recent works on embedded and high-speed MPC implementations. The controllers we generate outperform published works by a handsome margin in both speed and power consumption, while taking very little time to generate.by Ranko Radovin Sredojević.Ph.D

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    In many engineering domains, systems are composed of partially independent subsystems—power systems are composed of distribution and transmission systems, teams of robots are composed of individual robots, and chemical process systems are composed of vessels, heat exchangers and reactors. Often, these subsystems should reach a common goal such as satisfying a power demand with minimum cost, flying in a formation, or reaching an optimal set-point. At the same time, limited information exchange is desirable—for confidentiality reasons but also due to communication constraints. Moreover, a fast and reliable decision process is key as applications might be safety-critical. Mathematical optimization techniques are among the most successful tools for controlling systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization control the subsystems in a distributed or decentralized fashion, reducing or avoiding central coordination. These methods have a long and successful history. Classical distributed optimization algorithms, however, are typically designed for convex problems. Hence, they are only partially applicable in the above domains since many of them lead to optimization problems with non-convex constraints. This thesis develops one of the first frameworks for distributed and decentralized optimization with non-convex constraints. Based on the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-level distributed ALADIN framework is presented, solving the coordination step of ALADIN in a decentralized fashion. This framework can handle various decentralized inner algorithms, two of which we develop here: a decentralized variant of the Alternating Direction Method of Multipliers (ADMM) and a novel decentralized Conjugate Gradient algorithm. Decentralized conjugate gradient is to the best of our knowledge the first decentralized algorithm with a guarantee of convergence to the exact solution in a finite number of iterates. Sufficient conditions for fast local convergence of bi-level ALADIN are derived. Bi-level ALADIN strongly reduces the communication and coordination effort of ALADIN and preserves its fast convergence guarantees. We illustrate these properties on challenging problems from power systems and control, and compare performance to the widely used ADMM. The developed methods are implemented in the open-source MATLAB toolbox ALADIN-—one of the first toolboxes for decentralized non-convex optimization. ALADIN- comes with a rich set of application examples from different domains showing its broad applicability. As an additional contribution, this thesis provides new insights why state-of-the-art distributed algorithms might encounter issues for constrained problems

    Convex optimization of launch vehicle ascent trajectories

    Get PDF
    This thesis investigates the use of convex optimization techniques for the ascent trajectory design and guidance of a launch vehicle. An optimized mission design and the implementation of a minimum-propellant guidance scheme are key to increasing the rocket carrying capacity and cutting the costs of access to space. However, the complexity of the launch vehicle optimal control problem (OCP), due to the high sensitivity to the optimization parameters and the numerous nonlinear constraints, make the application of traditional optimization methods somewhat unappealing, as either significant computational costs or accurate initialization points are required. Instead, recent convex optimization algorithms theoretically guarantee convergence in polynomial time regardless of the initial point. The main challenge consists in converting the nonconvex ascent problem into an equivalent convex OCP. To this end, lossless and successive convexification methods are employed on the launch vehicle problem to set up a sequential convex optimization algorithm that converges to the solution of the original problem in a short time. Motivated by the computational efficiency and reliability of the devised optimization strategy, the thesis also investigates the suitability of the convex optimization approach for the computational guidance of a launch vehicle upper stage in a model predictive control (MPC) framework. Being MPC based on recursively solving onboard an OCP to determine the optimal control actions, the resulting guidance scheme is not only performance-oriented but intrinsically robust to model uncertainties and random disturbances thanks to the closed-loop architecture. The characteristics of real-world launch vehicles are taken into account by considering rocket configurations inspired to SpaceX's Falcon 9 and ESA's VEGA as case studies. Extensive numerical results prove the convergence properties and the efficiency of the approach, posing convex optimization as a promising tool for launch vehicle ascent trajectory design and guidance algorithms

    Learning-based methods for planning and control of humanoid robots

    Get PDF
    Nowadays, humans and robots are more and more likely to coexist as time goes by. The anthropomorphic nature of humanoid robots facilitates physical human-robot interaction, and makes social human-robot interaction more natural. Moreover, it makes humanoids ideal candidates for many applications related to tasks and environments designed for humans. No matter the application, an ubiquitous requirement for the humanoid is to possess proper locomotion skills. Despite long-lasting research, humanoid locomotion is still far from being a trivial task. A common approach to address humanoid locomotion consists in decomposing its complexity by means of a model-based hierarchical control architecture. To cope with computational constraints, simplified models for the humanoid are employed in some of the architectural layers. At the same time, the redundancy of the humanoid with respect to the locomotion task as well as the closeness of such a task to human locomotion suggest a data-driven approach to learn it directly from experience. This thesis investigates the application of learning-based techniques to planning and control of humanoid locomotion. In particular, both deep reinforcement learning and deep supervised learning are considered to address humanoid locomotion tasks in a crescendo of complexity. First, we employ deep reinforcement learning to study the spontaneous emergence of balancing and push recovery strategies for the humanoid, which represent essential prerequisites for more complex locomotion tasks. Then, by making use of motion capture data collected from human subjects, we employ deep supervised learning to shape the robot walking trajectories towards an improved human-likeness. The proposed approaches are validated on real and simulated humanoid robots. Specifically, on two versions of the iCub humanoid: iCub v2.7 and iCub v3

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization

    Robust Nonlinear Model Predictive Control of Biosystems described by Dynamic Metabolic Flux Models

    Get PDF
    The accuracy of the model used for prediction in Nonlinear Model Predictive Controller (NMPC) is one of the main factors affecting the closed loop performance. Since it is impossible to formulate a perfect model for a real process, there are always differences between the responses predicted by the model and the responses observed from the process. Hence, robustness to model error is an essential property that the controller must have to be adopted in industrial applications. Propagating the uncertainty in the model onto the variables used by the controller is one the key challenges for efficient implementation of a robust controller. Uncertainty propagation approaches such as Monte Carlo simulations and the Polynomial Chaos Expansions (PCE) has been found to suffer from exponentially increasing computational effort with the number of uncertain parameters. Accordingly, the main goal of this thesis is to develop a novel formulation of NMPC based on an uncertainty propagation approach that is more computationally efficient as compared to previously reported approaches. The proposed robust controller in this thesis is specifically targeted to biosystems that are modeled by Dynamic Metabolic Flux models. These models that are becoming increasingly popular for modelling bioprocesses are based on the premise that microorganisms have learned through natural evolution to optimally allocate their resources (nutrients) to maximize a biological objective such as growth or ATP production. Accordingly, these flux models are formulated by LP (Linear Programming) optimizations with constraints that are solved at each time interval and then can be used in conjunction with mass balances to predict the dynamic evolution of different metabolites. The uncertainty in these models is associated to inaccuracies of model parameters involved in the constraints. Thus, although the problem can be solved for particular model parameters by an LP, in the presence of uncertainty the problem becomes nonlinear since different active sets of constraints may become active for parameters’ values within their possible range of variation. Accordingly, the solution space of this nonlinear system can be divided into a set of polyhedrons where each point corresponds to a particular set of parameters within their range of uncertainty. The solution space is often referred in the thesis as the RHS (Right Hand Side) space since it is defined by the variations in the RHS of the constraints with respect to the uncertain parameters. To identify these polyhedrons a dividing procedure has been developed. Since all the polyhedrons can be proven to be convex cones based on a standard simplex form of LP, this dividing method is referred to as the Convex Cone Method (CCM). The regions found by the CCM method are then compared to regions calculated with 100 Percent Rule where the latter has been often used to find a region of existence of a particular tableau in the Simplex method. From this comparison it is found that the CCM can both identify all the possible tableaus with a given region of uncertain parameters and it can also be used the probability for occurrence of each one of the tableaus. These two facts make the CCM an attractive basis for uncertainty propagation in an LP problem instead of the 100 Percent Rule. After identifying the possible tableaus for a given region of model parameters, a novel method is developed for propagating uncertainty onto the controlled variables to be referred to as Tableau Based Tree (TBT) method. The TBT method is based on the concept of propagating uncertainty into the prediction horizon of the controlled by using a tree structure which branches correspond to different tableaus identified by the CCM approach. It is then shown that the conservativeness of the NMPC controller can be significantly reduced based on this tree structure as compared to a Monte Carlo approach for uncertainty propagation. After propagating the uncertainty onto the relevant variables, the control actions for each branch of the tree structure can be obtained by a simple linear calculation. An EMPC (Economic Model Predictive Controller) is adopted in this work as a special realization of an NMPC algorithm where the controller pursues the maximization of an economic objective function. A simple theoretical comparison with a Monte Carlo uncertainty propagation approach shows that the TBT method have a potential to save considerable computational effort as compared to Monte Carlo simulation and PCEs. Finally, the TBT-based robust EMPC is applied in a case study dealing with a fed-batch reactor which is described by dynamic metabolic flux model (DMFM)

    Trajectory generation for autonomous highway driving using model predictive control

    Get PDF
    Model Predictive Control (MPC) has had an increasing role in autonomous driving applications over the last decade, enabled by the continuous rising of the computational power in microcontrollers. In this thesis a collision avoidance trajectory generation algorithm based in MPC formulation is developed. The operating environment consists in a one-way highway with two lanes. The overall system is equipped with a low-level controller capable of tracking the trajectory generated by the MPC planner. In the path towards this goal, a MPC based lane changing application in an obstacle-free highway environment has been developed. A point-mass kinematic vehicle model is used as the MPC plant model for its simplicity and enabled by the usage of a low-level controller. This thesis studies several obstacle representation approaches and then, explains in detail the development process of the collision avoidance trajectory generation application, defining and discussing simulation results for each intermediate approach obtained. Both applications have been implemented in a BeagleBone Black online board situated in small-scale trucks (1:12) for testing purpose. The experimental results have been studied and discussed to prove the algorithms functionalities, as well as to check the board capabilities to run online MPC applications in comparison with polynomials based approaches

    Instantaneous Momentum-Based Control of Floating Base Systems

    Get PDF
    In the last two decades a growing number of robotic applications such as autonomous drones, wheeled robots and industrial manipulators started to be employed in several human environments. However, these machines often possess limited locomotion and/or manipulation capabilities, thus reducing the number of achievable tasks and increasing the complexity of robot-environment interaction. Augmenting robots locomotion and manipulation abilities is a fundamental research topic, with a view to enhance robots participation in complex tasks involving safe interaction and cooperation with humans. To this purpose, humanoid robots, aerial manipulators and the novel design of flying humanoid robots are among the most promising platforms researchers are studying in the attempt to remove the existing technological barriers. These robots are often modeled as floating base systems, and have lost the assumption -- typical of fixed base robots -- of having one link always attached to the ground. From the robot control side, contact forces regulation revealed to be fundamental for the execution of interaction tasks. Contact forces can be influenced by directly controlling the robot's momentum rate of change, and this fact gives rise to several momentum-based control strategies. Nevertheless, effective design of force and torque controllers still remains a complex challenge. The variability of sensor load during interaction, the inaccuracy of the force/torque sensing technology and the inherent nonlinearities of robot models are only a few complexities impairing efficient robot force control. This research project focuses on the design of balancing and flight controllers for floating base robots interacting with the surrounding environment. More specifically, the research is built upon the state-of-the-art of momentum-based controllers and applied to three robotic platforms: the humanoid robot iCub, the aerial manipulator OTHex and the jet-powered humanoid robot iRonCub. The project enforces the existing literature with both theoretical and experimental results, aimed at achieving high robot performances and improved stability and robustness, in presence of different physical robot-environment interactions

    Contributions to Confidentiality and Integrity Algorithms for 5G

    Get PDF
    The confidentiality and integrity algorithms in cellular networks protect the transmission of user and signaling data over the air between users and the network, e.g., the base stations. There are three standardised cryptographic suites for confidentiality and integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primitives, respectively. These primitives are used for providing a 128-bit security level and are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus can be quite efficient. When we come to 5G, the innovative network architecture and high-performance demands pose new challenges to security. For the confidentiality and integrity protection, there are some new requirements on the underlying cryptographic algorithms. Specifically, these algorithms should: 1) provide 256 bits of security to protect against attackers equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Gigabits per second) speed in pure software environments, which is the downlink peak data rate in 5G. The reason for considering software environments is that the encryption in 5G will likely be moved to the cloud and implemented in software. Therefore, it is crucial to investigate existing algorithms in 4G, checking if they can satisfy the 5G requirements in terms of security and speed, and possibly propose new dedicated algorithms targeting these goals. This is the motivation of this thesis, which focuses on the confidentiality and integrity algorithms for 5G. The results can be summarised as follows.1. We investigate the security of SNOW 3G under 256-bit keys and propose two linear attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis results indicate that SNOW 3G cannot provide the full 256-bit security level. 2. We design some spectral tools for linear cryptanalysis and apply these tools to investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster than exhaustive key search. 3. We design a new stream cipher called SNOW-V in response to the new requirements for 5G confidentiality and integrity protection, in terms of security and speed. SNOW-V can provide a 256-bit security level and achieve a speed as high as 58 Gbps in software based on our extensive evaluation. The cipher is currently under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a promising candidate for 5G confidentiality and integrity algorithms. 4. We perform deeper cryptanalysis of SNOW-V to ensure that two common cryptanalysis techniques, guess-and-determine attacks and linear cryptanalysis, do not apply to SNOW-V faster than exhaustive key search. 5. We introduce two minor modifications in SNOW-V and propose an extreme performance variant, called SNOW-Vi, in response to the feedback about SNOW-V that some use cases are not fully covered. SNOW-Vi covers more use cases, especially some platforms with less capabilities. The speeds in software are increased by 50% in average over SNOW-V and can be up to 92 Gbps.Besides these works on 5G confidentiality and integrity algorithms, the thesis is also devoted to local pseudorandom generators (PRGs). 6. We investigate the security of local PRGs and propose two attacks against some constructions instantiated on the P5 predicate. The attacks improve existing results with a large gap and narrow down the secure parameter regime. We also extend the attacks to other local PRGs instantiated on general XOR-AND and XOR-MAJ predicates and provide some insight in the choice of safe parameters
    corecore