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Abstract 

The accuracy of the model used for prediction in Nonlinear Model Predictive Controller (NMPC) 

is one of the main factors affecting the closed loop performance. Since it is impossible to formulate 

a perfect model for a real process, there are always differences between the responses predicted by 

the model and the responses observed from the process. Hence, robustness to model error is an 

essential property that the controller must have to be adopted in industrial applications. 

Propagating the uncertainty in the model onto the variables used by the controller is one the key 

challenges for efficient implementation of a robust controller. Uncertainty propagation approaches 

such as Monte Carlo simulations and the Polynomial Chaos Expansions (PCE) has been found to 

suffer from exponentially increasing computational effort with the number of uncertain 

parameters. Accordingly, the main goal of this thesis is to develop a novel formulation of NMPC 

based on an uncertainty propagation approach that is more computationally efficient as compared 

to previously reported approaches. The proposed robust controller in this thesis is specifically 

targeted to biosystems that are modeled by Dynamic Metabolic Flux models. These models that 

are becoming increasingly popular for modelling bioprocesses are based on the premise that 

microorganisms have learned through natural evolution to optimally allocate their resources 

(nutrients) to maximize a biological objective such as growth or ATP production. Accordingly, 

these flux models are formulated by LP (Linear Programming) optimizations with constraints that 

are solved at each time interval and then can be used in conjunction with mass balances to predict 

the dynamic evolution of different metabolites.  The uncertainty in these models is associated to 

inaccuracies of model parameters involved in the constraints. Thus, although the problem can be 

solved for particular model parameters by an LP, in the presence of uncertainty the problem 

becomes nonlinear since different active sets of constraints may become active for parameters’ 

values within their possible range of variation.  Accordingly, the solution space of this nonlinear 

system can be divided into a set of polyhedrons where each point corresponds to a particular set 

of parameters within their range of uncertainty. The solution space is often referred in the thesis 

as the RHS (Right Hand Side) space since it is defined by the variations in the RHS of the 

constraints with respect to the uncertain parameters. To identify these polyhedrons a dividing 

procedure has been developed. Since all the polyhedrons can be proven to be convex cones based 

on a standard simplex form of LP, this dividing method is referred to as the Convex Cone Method 
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(CCM).  The regions found by the CCM method are then compared to regions calculated with 100 

Percent Rule where the latter has been often used to find a region of existence of a particular 

tableau in the Simplex method. From this comparison it is found that the CCM can both identify 

all the possible tableaus with a given region of uncertain parameters and it can also be used the 

probability for occurrence of each one of the tableaus. These two facts make the CCM an attractive 

basis for uncertainty propagation in an LP problem instead of the 100 Percent Rule.  

After identifying the possible tableaus for a given region of model parameters, a novel method is 

developed for propagating uncertainty onto the controlled variables to be referred to as Tableau 

Based Tree (TBT) method. The TBT method is based on the concept of propagating uncertainty 

into the prediction horizon of the controlled by using a tree structure which branches correspond 

to different tableaus identified by the CCM approach. It is then shown that the conservativeness 

of the NMPC controller can be significantly reduced based on this tree structure as compared to a 

Monte Carlo approach for uncertainty propagation. After propagating the uncertainty onto the 

relevant variables, the control actions for each branch of the tree structure can be obtained by a 

simple linear calculation. An EMPC (Economic Model Predictive Controller) is adopted in this 

work as a special realization of an NMPC algorithm where the controller pursues the maximization 

of an economic objective function. A simple theoretical comparison with a Monte Carlo 

uncertainty propagation approach shows that the TBT method have a potential to save considerable 

computational effort as compared to Monte Carlo simulation and PCEs. Finally, the TBT-based 

robust EMPC is applied in a case study dealing with a fed-batch reactor which is described by 

dynamic metabolic flux model (DMFM). 
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Introduction 

Automation is prevalent in every aspect of modern life, such as energy, technology, fertility, 

security and productivity. Controllers can be used to attain quality control and improve 

productivity while satisfying operational, safety and environmental constraints. For instance,  

controllers in the chemical industry can be used to produce desired products while minimizing the 

utilization of raw materials and energy and reduce the production of environmentally 

adverse(Gutierrez, Ricardez-Sandoval, Budman, & Prada, 2014; Mehta & Ricardez-Sandoval, 

2016; Patil, Maia, & Ricardez-Sandoval, 2015) By using an optimized model-based control system, 

the process can be manipulated under physical, environmental and economical constraints and be 

able to maintain a certain level of robustness to disturbances arising from the environment, to 

uncertainty in the process measurements or model parameters or to variability in the plant’s input, 

e.g. quality of the raw materials. In this thesis, the robustness of an Economic Model Predictive 

Controller (EMPC), a particular version of Model Predictive Control (MPC), is investigated. (He, 

Sahraei, & Ricardez-Sandoval, 2016; Rasoulian & Ricardez-Sandoval, 2016; Santander, Elkamel, 

& Budman, 2016) 

A conventional MPC is a control methodology that provides a set of future moves in the control 

actions so as to minimize the variability of the controlled variables with respect to the targets while 

respecting constraints in both input and output variables. In MPC the optimal future control actions 

are calculated based on predicted trajectories of the controlled variables using a model. The control 

actions are calculated from a constrained optimization problem by taking into account the physical 

limits of the system and its parameters such as inputs and outputs. In most cases, the applications 

of MPC in industry practices are based on empirical linear models which are derived from 

experimental data or linearization of mechanistic (nonlinear) process models. While easy to 

implement, it has been shown that the application of linear models in the MPC formulation may 

produce a loss in plant’s performance, particularly when the process that need to be controlled 

exhibits highly nonlinear dynamic behavior. Therefore, a nonlinear model is required for accurate 

prediction. The resulting predictive control strategy that is based on the nonlinear model is referred 

to as Nonlinear Model Predictive Control (NMPC).  
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MPC, as a typical multivariable controller, holds a key position in the organization of an advanced 

process system. The integration of optimization and control in chemical plants is generally 

achieved by hierarchical control structures that are typically of the form shown in Figure 1.1 (Ellis, 

Liu, & Christofides, 2017). This structure contains a Real Time Optimization (RTO) layer at the 

top of the pyramid a second layer that involves MPC or other multivariable control strategies and 

finally a lower level involving singular input/output regulatory controllers, e.g. PID controllers. In 

most cases, the RTO is generally used to optimize the economic cost of a system based on a steady 

state model. This RTO level will provide optimal set-points to the multivariable controllers, e.g. 

MPC, that are expected to maintain the plant on target. Thus, MPC aims to control the process 

around the set-points which are generated by RTO. Subsequently, the multivariable controller 

computes the values of the control actions either directly or indirectly by calculating the set-points 

for the PID controllers in the lower level. This hierarchical strategy generally maintains 

satisfactory performance. However, since chemical process are rarely at steady state, the set-points 

designed by the RTO, and enforced by MPC controller, may be suboptimal or even infeasible in 

the presence of transient scenarios (Santander et al., 2016). Following these considerations, there 

is a great incentive for improving the performance within this hierarchical control approach. 

 

Figure 1.1 Hierarchical structure in process operations 

When discussing model uncertainty, it is inherently assumed that there exists an accurate 

mathematical model that describes the process but this model is never available to the user due to 

the use of noisy data for model calibration, the limited amount of data for calibration and 

incomplete physical knowledge about the process phenomena. As a result of that the process 

models available to the user are never perfect and there is always model structure and/or parameter 

RTO

MPC

PID

Process



   

 3 

uncertainty that is collectively referred to as plant-model mismatch. Since predictive controllers 

rely heavily on models robustness to model error must be provided in order to ensure adoption of 

these controllers in industrial applications (Findeisen, Imsland, Allgower, & Foss, 2003; Lalo 

Magni & Scattolini, 2010). Accurate and fast uncertainty propagation onto the variables involved 

in the control strategy is the key element for formulating an efficient robust controller. Currently 

reported methods such as the Monte Carlo simulations (Kawohl, Heine, & King, 2007), 

Polynomial Chaos Expansions (PCE) (Ghanem & Spanos, 1990; Kumar & Budman, 2017; 

Mandur & Budman, 2012) or Power Series Expansions (PSE) (Rasoulian & Ricardez-Sandoval, 

2015) cannot avoid the exponentially increasing computational load needed to estimate control 

actions as a function of the number of model uncertain parameters. Thus, developing a NMPC 

framework that is insensitive to the number of the uncertain parameters is one of the main 

objectives of this thesis. 

1.1 Objectives of the Research 

As discussed above, the motivation of current research is the development of a novel formulation 

of NMPC which requires less computational effort than conventional NMPC controllers. In the 

current research we have focused on bioprocesses that are modelled by a particular modelling 

approach referred to as Dynamic Metabolic Flux Model (DMFM). These models assume that 

organisms are able to allocate resources optimally so as to achieve a biological objective, e.g. 

growth rate. Accordingly, DMFM are formulated as constrained Linear Programming (LP) 

problems. The uncertainty in the problem is captured by allowing variation of the model 

parameters that define the constraints of the LP problem. The algorithms presented in this work 

explicitly make use of the mathematical properties of LP problems in order to propagate the 

uncertainty onto the variables involved in the EMPC strategy. Although the problem is an LP for 

each particular set of model parameters, in the presence of uncertainty the problem becomes 

nonlinear since it is described by a family of LP problems each corresponding to a particular set 

of model parameters’ values. 

With this in mind, an assumption is introduced here for the current study: the output/solution space 

of a nonlinear system can be divided into a set of polyhedrons each corresponding to a particular 

active set of constraints, i.e. a region corresponding to a Simplex tableau or part of it. Based on 
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this partitioning approach, the main objectives that have been accomplished in the current study 

are outlined as follows: 

 Provide a new uncertainty propagation algorithm that can quantify uncertainty into the 

solutions of an LP problem. This algorithm aims to divide and bound the output/solution 

space of a nonlinear system. Accordingly, it is able to generate the entire uncertainty regions 

which can be composed by a series of polyhedrons, the solutions in any one of these 

polyhedrons can be calculated by using simple linear operation. 

 Compare the proposed uncertainty propagation algorithm with other conventional 

approaches, such as the partially uncertainty region generating algorithm based on the 100 

Percent Rule where the latter has been proposed in the classical LP literature to calculate 

regions of existence of a particular Simplex tableau. 

 Develop an uncertainty propagation algorithm based on a tree structure where each branch 

of the tree corresponds to one of the polyhedrons calculated by partitioning the space as 

explained above. Although a tree structure  has been proposed before for MPC in (Lucia, 

Finkler, & Engell, 2013) the approach proposed in this work is more efficient as compared 

to the reported work since it exploits the LP structure of the model. 

 Formulate a novel robust economic MPC (EMPC) controller for a biochemical process that 

uses steady state and dynamic metabolic flux model under uncertainty. The proposed robust 

EMPC makes use of the new uncertainty propagation algorithm as well as the tree structure. 

1.2 Overview of the Thesis 

Overall this thesis is organized in 5 chapters as follows: 

 Chapter 2 discusses the background and literature review relevant to the proposed research 

objectives. The tree (scenario) based structure of NMPC, simplex algorithm for Linear 

Programming (LP), control and optimization of bioreactors and the dynamic Metabolic Flux 

Analysis (MFA) modeling are the fundamental concepts of the methodology that are 

reviewed in this section and that are relevant for this thesis. 

 Chapter 3 presents two novel algorithms referred to as the 100 Percent Rule Based Method 

and the Convex Cone Method (CCM) for propagating the uncertainty in model parameters 

onto the solutions of an LP problem. This chapter shows that the 100 Percent Rule Based 
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Method can provide a necessary but not sufficient polyhedron region based bounds around 

a nominal point but it cannot cover the entire uncertainty region and thus is computationally 

inefficient. To address this problem, the novel CCM algorithm is proposed that it is able to 

account in an efficient fashion for the entire region of uncertainty. A series of lemmas and 

theorems are presented that served as the basis of the proposed CCM algorithm. Some simple 

case studies and examples are also discussed in this chapter to illustrate the algorithm in a 

graphical form. 

 Chapter 4 presents a novel robust EMPC algorithm which is computationally efficient with 

respect to the number of uncertain parameters as compared to other methods. This algorithm 

is accomplished based on an algorithm, referred as CCM, for partitioning the parameter 

space of the family of LP problems describing the uncertain model into a series of 

polyhedrons where for the supremum for each one of them can be obtained by linear 

calculations. Based on the polyhedrons calculated by the CCM algorithm, a tree structure 

multistage uncertainty propagation method is proposed and is referred as Tableaus Based 

Tree (TBT) method. Each branch of the tree corresponds to a polyhedron identified by the 

CCM method. Based on a theoretical comparison this proposed method is found to be more 

computationally efficient than Monte Carlo or PCE method. Finally, the robust EMPC 

algorithm is applied in a case study where the final biomass amount in a bioreactor is 

maximized. The robustness of the proposed controller is assessed based to comparisons to a 

non-robust algorithm. 

 Chapter 5 summarizes the key conclusions and contributions of this thesis; recommendations 

and research plan for future work are also discussed in this section. 
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Background and Literature Review 

In this section, the background and literature review on concepts relevant to this thesis are 

presented. Nonlinear Model Predictive Control (NMPC) and Economic Model Predictive Control 

(EMPC) that are the fundamental theories of this study are introduced in the first sections of this 

chapter. Then robustness of NMPC algorithms, a key focus of the current work, is reviewed. This 

is followed by a discussion on contributions related to the tree (scenario)-based structure on Robust 

NMPC and the sensitivity analysis of the Right Hand Side (RHS) of the constraints in LP problems 

which is often used for studying parametric sensitivity.  Then, a review on control and optimization 

of bioreactors as well as metabolic flux models are presented. 

2.1 Model Predictive Control 

Model Predictive Control (MPC) is one of the most commonly used model-based control 

technologies where the internal model may be linear or nonlinear. When the process to be 

controlled exhibits highly nonlinear dynamic behavior, a nonlinear model is required for accurate 

prediction. The resulting predictive control strategy that is based on the nonlinear model is referred 

to as Nonlinear Model Predictive Control (NMPC). Since models are never perfect, it is essential 

to design a control strategy that is robust to model plant mismatch, where such mismatch is often 

referred to as model uncertainty. Although there are multiple techniques that can be used to analyze 

robustness of controllers that are based on linear models, e.g. SSV (Structured Singular Value or 

μ) and LMI’s (Linear Matrix Inequalities), the design of nonlinear robust controllers is still 

challenging, particularly for NMPC; thus, this is a currently an active area of research (Allgöwer, 

Findeisen, & Nagy, 2004; Lalo Magni & Scattolini, 2010). Since chemical processes generally 

exhibit highly nonlinear behavior, most of the robust control techniques that have been developed 

for linear systems may not be applicable to NMPC or they may lead to highly conservative control 

actions. Accordingly, robust nonlinear predictive control algorithms are a very attractive 

alternative to control chemical systems that will result in improved performance as compared to 

robust linear strategies. Therefore, accounting for robustness to model errors has been identified 

as one of the key challenges in the research of NMPC controllers (Allgöwer et al., 2004). 
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Model Predictive Control usually refers to a series of control algorithms in which a performance 

criterion is optimized along a prediction horizon subject to a set of input/output constraints. In 

general, a dynamic nominal process model is used to predict the output along the prediction 

horizon, and some pre-defined norm of the errors between the controlled variables and pre-defined 

references’ trajectories is optimized to ensure a desired closed loop performance. In most cases, a 

pre-defined number of future control moves are used as the decision variables for the optimization 

problem, and this number is referred to as the control horizon; whereas the number of future 

predictions considered in the objective function is referred to as the prediction horizon.  

The optimization problem is solved at every time interval with respect to the decision variables 

(control moves) but only the first control move is actually implemented into the plant while the 

rest are ignored (Findeisen et al., 2003; Michael A Henson, 1998). By repeating the optimization 

procedure at every time interval, the controller can compensate for unmeasured disturbances that 

may enter the process as well as discrepancies between the model and the process outputs that lead 

to inaccurate predictions. In a linear MPC, the nominal model used for prediction is linear with 

respect to the manipulated variables and the controlled variables; similarly, process constrains, e.g. 

valve saturation limits, are also expressed as linear functions. The cost function in linear MPC is 

commonly formulated as a quadratic function thus resulting in a QP (quadratic programming) for 

which the global optimal solution can be found in a finite number of iterations using off-the-shelf 

standard algorithms. On the other hand, in NMPC the nominal model as well as the process 

constraints can be both linear and nonlinear. In most cases, the MPC schemes which involve 

nonlinear input/output constraints or with a non-quadratic cost function must be resolved with 

nonlinear optimization algorithms that can only guarantee local optima.  

As it is illustrated in Fig. 2.1, the main steps of an NMPC algorithm are as follows: 

1. Using a nonlinear model of the form,  

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝑑𝑑) 

𝑦𝑦� = 𝑔𝑔�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)� 

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘) 

𝑖𝑖 = {0,1,2, … ,𝑝𝑝},𝑘𝑘 ∈ ℕ  

(2.1) 

where 𝑥𝑥 is plant states, 𝑥𝑥� is prediction of plant states, 𝑢𝑢 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 + 1), … ,𝑢𝑢(𝑘𝑘 + 𝑚𝑚)} 

are the adjustable variables and they are equal to the manipulated variables or control 
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actions, 𝑥𝑥(𝑘𝑘 = 0) is measured plant output, 𝑦𝑦� is prediction of plant output, 𝒅𝒅 is vector of 

uncertainty, which is set to its normal condition if no disturbances are considered, 𝑓𝑓 and 𝑔𝑔 

are nonlinear vector functions of plant inputs and outputs which starting from a current 

output measurement 𝑦𝑦 = 𝑔𝑔(𝑥𝑥(𝑘𝑘 = 0)) in order to correct for unmeasured disturbances or 

model errors, future predictions of the outputs are generated over a prediction horizon, 𝑝𝑝 

as a function of a sequence of inputs defined over a control horizon 𝑚𝑚, where 𝑚𝑚 ≤ 𝑝𝑝. 

2. The optimal control actions are calculated to minimize the cost function with respect to the 

decision variables, i.e. the manipulated variables. In most cases, this cost function is 

assumed as a weighted sum of the errors in future predictions with respect to a reference 

trajectory (or set-point profile) and plant inputs, where the latter are included in the 

objective function to avoid excessive control actions. Therefore, the typical cost used in the 

MPC algorithm is as follows: 

𝐽𝐽 = 𝑚𝑚𝑖𝑖𝑚𝑚
𝑢𝑢(𝑏𝑏+1|𝑏𝑏),𝑢𝑢(𝑏𝑏+2|𝑏𝑏),…,𝑢𝑢(𝑏𝑏+𝑚𝑚|𝑏𝑏)

�[(𝒚𝒚�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝒚𝒚𝑠𝑠𝑝𝑝)𝑇𝑇𝑸𝑸(𝒚𝒚�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝒚𝒚𝑠𝑠𝑝𝑝)]
𝑖𝑖=𝑝𝑝

𝑖𝑖=1

+ �𝒖𝒖(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)𝑇𝑇𝑴𝑴𝒖𝒖
𝑚𝑚

𝑖𝑖=1

(𝑘𝑘 + 𝑖𝑖|𝑘𝑘) 

 
 
(2.2) 

where 𝑸𝑸, 𝑴𝑴 are weights in the MPC formulation and 𝒚𝒚𝑠𝑠𝑝𝑝 is the set-point profile. 

3. The solution of the optimization problem shown in (2.1) consists of 𝑚𝑚 control actions and 

as previously discussed, only the first control action, i.e. 𝑢𝑢(𝑘𝑘 + 1|𝑘𝑘) is implemented in the 

plant.  

4. After implementation of the control action, new plant measurements are obtained and step 

1 to 4 are repeated for the next sampling interval.  

The algorithm described above generally requires supplementary stability constrains since it 

cannot guarantee process closed-loop stability during operation. Eliminating the error between the 

prediction and set-points at the end of an infinite control horizon is one method proposed in the 

literature to ensure stability. This method, referred to as a “terminal constraint condition”, needs 

high computation effort (Chen & Allgöwer, 1998; Findeisen et al., 2003); also, it may be infeasible 

in the presence of input constrains or may result in overly conservative control actions. This 
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terminal constraint condition can be mathematically implemented into the optimization problem 

based on two different options: 

i - An exact terminal equality constraint is added in the optimization problem.  

ii- A terminal inequality constraint as well as a terminal cost are added to the problem. In the 

second option the terminal constraint is relaxed by requiring the output terminal prediction to 

remain within a range of a certain pre-specified error. Thus, using this second approach, the 

optimization problem is re-formulated. 

 

Figure 2.1 One step of a closed-loop MPC trajectory 

The design of the terminal region and terminal penalty , have been reported elsewhere  (Chen & 

Allgöwer, 1998; Michalska & Mayne, 1993). The output is forced to reach the region ℰ by the 

terminal penalty weight 𝑬𝑬  and the plant output would ultimately converge to the reference 

trajectory if ℰ is selected appropriately. 

2.2 Economic Model Predictive Control 

When an MPC algorithm optimizes control actions based on linear or nonlinear formulations to 

satisfy economic cost functions instead of (or in addition to) traditional set-point tracking 

objectives, it is referred to as Economic Model Predictive Control (EMPC). As explained in 

Chapter 1, the hierarchical control structure consisting of an RTO level sending set-points to lower 

control levels is generally sub-optimal during transients since the RTO is based on steady state 

𝑖𝑖 = 0 

𝑢𝑢 

Past Future (Prediction horizon) 

Inputs 

Outputs 𝑦𝑦 

Set-point 𝒚𝒚𝑠𝑠𝑝𝑝 

Prediction of output 𝑦𝑦� 
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information. Thus, the hierarchical strategy is only optimal when the system is operating in the 

neighborhood of a particular steady state. However, since the process conditions might be far away 

from steady state due to dynamic disturbances or transitions between operating points, the RTO 

calculations for optimal solution is often found to be inaccurate. Figure 2.2 illustrates the situation 

in which the line projection of all steady state solutions is not optimal (Rawlings, Angeli, & Bates, 

2012). In this figure, the profit function is illustrated in terms of a state as well as an input assuming 

for simplicity that the system involves only one-state and one-input. The data in the figure is 

expressed in deviation terms with respect to the economic global optimum. The blue plane 

indicates steady state conditions. It is obvious from this figure that the best steady state condition 

(maximum in the red surface), which is defined as the most profitable solution, is not the optimal 

point in terms of the RTO calculated set-points. Moreover, due to the highly nonlinear nature of 

chemical process, there may exist dynamic operating regimes which result in higher profitability 

than that obtained from steady state, i.e. periodic regimes (David Angeli, Amrit, & Rawlings, 

2012). For this reason, to operate the system at the economic global optimum, the control actions 

must be calculated based on the system’s dynamic behavior as it is performed in EMPC.  

 

Figure 2.2 Graphic showing the most profitable solution is away from the calculated set-points 

(blue plane represent steady state solutions) (Rawlings et al., 2012) 

In addition to providing a convenient method for computing the economic optimum, EMPC 

generally maintains a number of other benefits when compared to the standard MPC. For instance, 

direct handling of dynamic (path) constraints, the use of dynamic MIMO models for prediction (J. 

Economic global 
Optimum Economic steady 

state / Set point 
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Ma, Qin, Salsbury, & Xu, 2011),  online computation of control actions, etc. Furthermore, since 

EMPC uses an economic performance index instead of a quadratic stage cost, it does not rely on 

any particular set point value calculation thus eliminating the need for the RTO level (Rawlings et 

al., 2012). The risk of bypassing the RTO level is that the stability or robustness of the controller 

has to be ensured. These aspects are challenging since generally nonconvex stage costs, which is 

generally defined as 𝑓𝑓�𝑥𝑥(𝑖𝑖),𝑢𝑢(𝑖𝑖)� in (2.1), with multiple minima instead of quadratic cost as in 

NMPC, must be considered. The use of nonconvex stage cost might result in convergence to a 

local optimum instead of a global optimum point. 

The classical discrete-time version of the EMPC with finite-time prediction horizon can be 

formulated as an online optimization problem as follows (Rawlings et al., 2012): 

min
𝑢𝑢

� 𝑙𝑙𝑒𝑒(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝑑𝑑 = 0) + 𝑉𝑉𝑓𝑓(𝑥𝑥�(𝑘𝑘 + 𝑝𝑝))
𝑝𝑝−1

𝑖𝑖=0

 

s. t. 

  
(2.3) 
 

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓𝑑𝑑(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖), 0)  (2.4) 

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘)  (2.5) 

𝑓𝑓�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)� = 0  𝑖𝑖 = {0,1,2, … ,𝑝𝑝},𝑘𝑘 ∈ ℕ  (2.6) 

𝑥𝑥�(𝑘𝑘 + 𝑝𝑝) ∈ 𝕏𝕏𝑓𝑓  (2.7) 

As per the general approach in dynamic optimization problems, the control actions are given by a 

series of piecewise constant inputs along the trajectory of the prediction horizon, i.e. in each time 

interval [𝑖𝑖, 𝑖𝑖 + 1), 𝑥𝑥� refers to the predicted state trajectory sequence over the prediction horizon, 

and p is the number of sampling intervals that form the prediction horizon. 

The cost function (2.3) contains the economic stage cost with a terminal cost/penalty 𝑉𝑉𝑓𝑓: 𝕏𝕏𝑓𝑓 → ℝ. 

The nominal dynamic model (2.4) is used to predict the future evolution of the system and it is 

initialized with each state’s corresponding measurement (2.5). Equations of (2.6) represents the 

process or system constrains. Furthermore, the constraint (2.7) is a terminal constraint, which 

ensures that at the end of horizon the predicted 𝑥𝑥� will be within a neighborhood of a terminal value 

defined by the terminal set 𝕏𝕏𝑓𝑓. 

Angeli et al.(2009)  reported a receding horizon control algorithm to control a nonlinear plant with 

stage cost that is not necessarily convex (D Angeli, Amrit, -, 2009, & 2009, 2009). Those authors 
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illustrated that, when the optimal steady state is used as a terminal constraint with feasible initial 

conditions, the average economic performance of their algorithm will at least achieve a same level 

performance as the optimal steady state. Nevertheless, no further explicit assumption was made in 

that study on the issue of closed-loop stability. After that, that group developed relatively simple 

stability conditions for EMPC based on Lyapunov arguments (Diehl, Amrit, On, & 2011, 2011). 

Based on a predefined Lyapunov function, they proposed a formulation of the EMPC algorithm 

for a continuous system 𝑓𝑓(𝑥𝑥,𝑢𝑢) , with continuous stage cost 𝑙𝑙(𝑥𝑥,𝑢𝑢)  and terminal point-wise 

constraints to ensure nominal stability (David Angeli et al., 2012). It should be emphasized that 

robustness to model error was not addressed in that study. 

2.3 Robust Nonlinear Model Predictive Control (NMPC) 

Robustness to model error remains as an essential challenge for the design of NMPC methods 

(Findeisen et al., 2003; Lalo Magni & Scattolini, 2010). Generally, there are several reasons that 

contribute to the model-plant mismatch, such as disturbances arising from changes in operating 

conditions, uncertainty derived from simplifications of the model structure or model reduction, 

lack of knowledge of key parameters, inaccurate understanding of physical mechanisms of the 

process, etc. Therefore, robustness should be a main emphasis in the design of NMPC algorithms 

to ensure its adoption in industrial applications. 

A key consideration when addressing robustness to model error is that the robust controller would 

not become excessively conservative. The degree of conservatism will generally depend on how 

the model error is quantified with respect to the nominal model and on how this error is propagated 

onto the objective function and the constraints of the optimization problem. A nominal model 

which maintains a desirable accurate prediction over the prediction horizon would require a small 

level of uncertainty to explain the overall process behavior. Since uncertainty may also destabilize 

a control system, robust performance must be considered during the design stage. Following these 

considerations, some techniques that can be used to analyze the stability and performance of a 

robust controller are reviewed in the following sections.  

2.3.1 LMI’s for Robust Control 

Linear Matrix Inequalities based analysis (LMI’s) consists in formulating a series of algebraic 

matrix inequalities that serve to test the stability and performance properties of a closed loop 



   

 13 

system with respect to a polytopic representation of model uncertainty (Vanantwerp & Braatz, 

2000). Three main problems are generally addressed by LMI’s in the control field, the Feasibility 

problem, Generalized Eigenvalue problem, and Linear programming problems. This approach has 

gained considerable attention in the control field, since it can be used to analyze both robust 

stability and robust performance and can be also used for the formulations of on-line robust MPC 

control algorithms that involve input and output constrains (Kothare, Balakrishnan, & Morari, 

1996). A formal theoretical method for synthesis of robust MPC with infinite horizon and different 

forms of uncertainty was proposed in the literature (Kothare et al., 1996). That approach was based 

on an infinite norm based objective function (S Boyd, Ghaoui, Feron, & Balakrishnan, 1994) and 

it was extended to include inputs as well as outputs constrains. This LMI formulation was then 

used for the design of Robust Distributed MPC for polytopic uncertainty with both time-varying 

and time-invariant models (Al-Gherwi, Budman, & Elkamel, 2011). Distributed MPC refers to the 

case where MPC controllers are applied to subsets of input and output variables in a chemical plant 

and communication is exchanged among these multivariable controllers. The sporadic loss of 

communication has also been addressed in Al-Gherwi, 2011 by using a robust estimator based on 

LMI’s. The distributed MPC approach has been proposed as an option to decrease the complexity 

of computation in the algorithms in a real plant implementation (Kumar & Budman, 2017). Though 

LMI’s have been generally used for linear robust control, it could also be used for analyzing 

robustness when a nonlinear process that can be approximated by uncertainty polytopes with 

respect to a nominal linear model (Santander et al., 2016). However, investigating polytopic 

uncertainty to describe the actual nonlinear process is challenging and may result in conservative 

uncertainty descriptions that result in conservative controller designs (Doyle, Packard, & Morari, 

1989).  

2.3.2 SSV for Robust Control 

Another method for investigating stability and performance of controllers is Structured Singular 

Value (SSV) analysis, which also referred to as 𝜇𝜇-analysis. This mathematical tool is generally 

used for analyzing controller based on uncertain models with either structured or unstructured 

uncertainties. The main idea of 𝜇𝜇 norms is to extract the uncertain part of the nominal model and 

then generate a Linear Fractional Transformation (LFT) relation between the inputs and outputs 

that can be schematically described by an interconnection matrix. Given a structure of the resulting 
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interconnection matrix (𝑀𝑀) and the uncertainty description 𝛥𝛥, the 𝜇𝜇 norm provides a measure of 

the smallest perturbation within the given uncertainty set, which can cause destabilization or 

violation of a pre-defined performance bound. The ability to quantify performance by an SSV 

based norm has been proposed for calculating worst-case deviations of the output with respect to 

the set-point along the prediction horizon based on a predictive control strategy (Kumar & 

Budman, 2017).  

Some studies have used SSV in the context of robust NMPC algorithms in order to develop a 

competitive method which require lower computational effort. For example, several studies have 

used an analytical approach where the parametric uncertainty is propagated by using Taylor series 

and then an optimization problem is formulated in terms of the Structured Singular Values (SSV) 

of the decision variables (D.L. Ma & Braatz, 2001; David L. Ma, Chung, & Braatz, 1999; Nagy & 

Braatz, 2003). However, since the calculation of SSV-norm is a NP-hard type problem, the 

computational demand for these methods grows exponentially when the dimensions of the process 

with respect of inputs and outputs are large.  

2.3.3 Main Algorithms on Robust NMPC 

Robust NMPC is generally based on a max-min problem involving the minimization of a control 

cost calculated for the maximal uncertainty (Findeisen et al., 2003; Lalo Magni & Scattolini, 

2010). Thus, this is paramount to the optimization of the worst case within the uncertainty set. 

To address robustness, Mayne et al., 2011 proposed a tube-based method where NMPC calculated 

the control actions based on a nominal model and an additional controller was used to drive the 

outputs towards the nominal time trajectory calculated with the nominal model. In this way, the 

tube-based controller ensure that the outputs’ trajectories are bounded within a tube (envelope) 

around the nominal output trajectories (L. Magni, Raimondo, & Scattolini, 2006; Mayne, Kerrigan, 

van Wyk, & Falugi, 2011). At each time interval the tubes around the nominal trajectories are 

determined by computing certain state constraints which are used to ensure Lyapunov stability 

with respect to bounded disturbances. A modification of this approach is proposed by Cannon et 

al., 2011, where the nonlinear model is converted into successive linear functions for every 

prediction into the time horizon. In most cases, these tube-based algorithms were designed based 

on mechanistic models and estimates of the potential disturbances that may enter the process. For 

this reason, it is difficult to apply this method for the case of uncertainty in parameters rather than 
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uncertainty that captures disturbances. Therefore, when designing a robust NMPC controller with 

significant parametric uncertainty, the tube-based controller has not been used. 

A key disadvantage of the min-max algorithms mentioned above is the high computational effort 

required to solve the optimization problem on-line. To circumvent this issue, some approximations 

have been proposed. For instance, using a bounded set description of the parametric uncertainties, 

Diehl et al., 2008 developed an algorithm that satisfies the necessary first order optimality 

conditions instead of the inner maximization problem, and assumed that the worst-case occurs at 

the boundary of the uncertainty set. Zavala and Biegler, 2009 performed a preliminary nominal 

model based estimation of the controller actions at given time steps thus reducing considerably the 

online calculations necessary in their approach. However, both two approaches need to calculate 

the derivatives of the objective function, constraints and disturbance uncertainty set which may be 

time consuming and may be very complex for nonlinear mechanistic models of high dimensions. 

Thus, there is still a good motivation to reduce the online computations of robust NMPC 

algorithms, which is the focus of the current research.  

The general area of optimization with uncertainty is vast. Several different methods in terms of the 

optimization algorithms with uncertainty have been proposed. Some studies, i.e. Kawohl et al., 

2007 provided a simulation based method where the Monte Carlo simulations was used to obtain 

the worst-case of the weighted contribution of the first two statistical momenta (Kawohl et al., 

2007). Monte Carlo is a method where the uncertainty is propagated onto the outputs of interest 

for a large number of samples selected from a priori known uncertainty distribution.  However, 

the high computation costs associated with this approach made it difficult to be applied for on-line 

implementations of MPC robust controllers (Birge & Louveaux, 2011; Niederreiter, 1978).  

Alternatively, several competitive methods which require lower computational effort than the 

Monte Carlo approach have been proposed. For example, some studies have used an analytical 

approach where the parametric uncertainty is propagated by using Taylor series and then an 

optimization problem is formulated in terms of the Structured Singular Values (SSV) of the 

decision variables (D.L. Ma & Braatz, 2001; David L. Ma et al., 1999; Nagy & Braatz, 2003). This 

latter method was found valid when first order estimates are not sufficiently accurate to capture 

the uncertainty and second or higher order estimates are necessary. Using that approach, Diaz-

Mendoza and Budman, 2010 proposed an RNMPC method based on SSV norms for continuous 
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processes (Díaz-Mendoza & Budman, 2010). The cost function in that method is formulated as a 

function of SSV norm where the latter provides a bound on the worst possible output deviation 

with respect to the set-point in the presence of model errors. However, the computational demand 

for this method grows exponentially when the dimensions of the process with respect of inputs and 

outputs are large since the calculation of SSV-norm is a NP-hard type problem. Moreover, the 

performance of this algorithm might be conservative as it is based on the worst case of the output’ 

deviations with respect to the set-point.  

In an effort to address these drawbacks, an alternative method, which is based on the propagation 

of parametric uncertainty using Polynomial Chaos Expansions (PCE), was proposed. PCE refers 

to a random process where orthogonal basis functions are used to generate a spectral expansion as 

a function of random variables (Ghanem & Spanos, 1990). Hover and Triantafyllou, 2006 

proposed a PCE based method to analyze the stability of an explicit nonlinear system with random 

initial conditions or random parameters and showed that the approach significantly reduces the 

computational load as compared to Monte Carlo approaches(Hover & Triantafyllou, 2006). Smith, 

Monti and Ponci, 2009 provided an LQG controller design for linear systems that was based on 

PCE approximations of the parametric uncertainty (Smith, Monti, & Ponci, 2009). Recently, 

Kumar and Budman, 2017 have proposed a new PCE-based method for nonlinear systems where 

the parametric uncertainty was propagated onto the cost and constraints of a robust optimization 

of a batch process. Both on-line and off-line robust optimization problems were addressed. In the 

online problem Kumar and Budman, 2017 also demonstrated the role of the feedback in reducing 

the conservatism of the controller (Kumar & Budman, 2017). On the other hand, the computational 

effort of this PCE based approach was shown to be highly sensitive to the number of parameters 

and states and the conservatism of the controller significantly increased with respect to the 

prediction horizon due to the cumulative effect of uncertainty.  

2.3.4 Tree (Scenario) Based Structure of Nonlinear Model Predictive Control 

To handle some of the limitations of robust NMPC and EMPC strategies such as conservatism and 

the computational complexity of the methods discussed above, scenario based strategies have been 

recently proposed (Lucia et al., 2013).  In this type of strategy different scenarios, corresponding 

to different uncertainty realizations, can occur with different degrees of probability. Then, the 

future predictions of the controlled variables are assumed to follow different possible trajectories 
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thus forming a tree like structure that it is used for formulating a robust optimization problem. This 

tree-based approach has been shown to reduce the conservatism of the resulting NMPC scheme as 

compared to previous robust approaches and it is valid a for variety of controller strategies, such 

as Multi-stage nonlinear model predictive control (Multi-stage NMPC) and economic NMPC 

(Lindhorst, Lucia, Findeisen, & Waldherr, 2016; Lucia, Andersson, Brandt, Diehl, & Engell, 2014; 

Lucia et al., 2013).  

Prediction Horizon
 

Figure 2.3 Scenario tree of the uncertainty evolution (Lucia et al., 2013) 

The main idea of this method is that the time trajectories corresponding to different parameter 

uncertainty or disturbance realizations can be represented by a tree composed of discrete scenarios 

as shown in Fig. 2.3. For generality, both parameter uncertainty and disturbance uncertainty are 

treated in the same fashion. Each node of the branches in this tree structure is generated by 

uncertainty, i.e. parameter or disturbance related uncertainty. Each uncertainty realization is 

denoted as 𝑑𝑑𝑏𝑏
𝑟𝑟(𝑖𝑖). Each one of the paths from the root node 𝑥𝑥0 to a leaf node is referred to as a 

scenario. The scenario tree approach involves discrete time computations of the nonlinear system 

of equations defining the process as follows: 
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where each state 𝑥𝑥𝑏𝑏+1
𝑖𝑖  depends on present state 𝑥𝑥𝑏𝑏

𝑝𝑝(𝑖𝑖),  the corresponding control input 𝑢𝑢𝑏𝑏
𝑖𝑖  as well 

as corresponding realization 𝑟𝑟 of the uncertainty at stage 𝑘𝑘, 𝑑𝑑𝑏𝑏
𝑟𝑟(𝑖𝑖). For simplicity, the branches 

from each one of the nodes are defined by the corresponding value of the uncertainty realization 

by 𝑑𝑑𝑏𝑏
𝑟𝑟(𝑖𝑖) = {𝑑𝑑𝑏𝑏1 ,𝑑𝑑𝑏𝑏2, … ,𝑑𝑑𝑏𝑏𝑠𝑠} at stage stage 𝑘𝑘 for 𝑠𝑠 different possible values of the uncertainty. 

Prediction Horizon = 4

Robust Horizon = 2

 
Figure 2.4 The uncertainty evolution with robust horizon represented by scenario tree structure 

(Lucia et al., 2014) 

As the prediction horizon is expanded, there is an exponential growth of the tree structure that will 

result in increasing computational costs. To avoid this increased computational cost, a 

modification has been proposed, as shown in Fig. 2.4, whereby branching with respect to different 

uncertainty realizations is only done for the initial time intervals of the prediction horizon (2 first 

intervals in Fig. 2.4) and then the uncertainty realization in each trajectory is assumed to remain 

constant until the end of the horizon (intervals 3 and 4 in Fig. 2.4). The rationale for this 

modification is that only the first steps of the prediction horizon may describe the actual process 

behavior whereas the later stages of the prediction are not accurate anyways and they will be 

significantly changed along the solution due to disturbances entering the process and random 

measurement noise. The number of intervals for which branching is done has been referred to as 
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the robust horizon. This idea have been also used in many other scheduling problems such as a 

linear max-min MPC (de la Pena, Alamo, Bemporad, & Camacho, 2006).  

The most challenging problem of the scenario tree structure based method is how to generate a 

reasonable tree structure that maintains a balance between an accurate estimation of uncertainty 

and acceptable size of the robust horizon. To address this issue, there are three main methods that 

have been discussed in the literature as follows: i) Monte Carlo simulations in combination with 

sample average approximations (SAA) method (Shapiro, 2003), for which the computation still 

increases exponentially with the horizon length; ii) a deterministic method, such as moment 

matching method (Høyland, Kaut, & Wallace, 2003) of a probability distribution or the 

minimization of a certain probability matrix like the Wasserstein distance (de Oliveira, 

Sagastizábal, Penna, Maceira, & Damázio, 2010); iii) machine learning techniques for generation 

of scenario trees (Defourny, 2010). 

Several versions of the tree structure based MPC have been reported. Lucia, Finkler and Engell in 

2013 initially established the method and applied it a multi-stage NMPC controller of semi-batch 

polymerization benchmark problem with uncertainty; later on, Lucia et al., 2014 further improved 

this model by using an economic NMPC controller which optimizes the process over a set of affine 

control policies. Lindhorst et al., 2016 have used this approach for bioreactor control and 

optimization. A robust controller framework was generated by Lindhorst et al, 2016 to handle the 

uncertainty of a dynamic enzyme-cost Flux Balance Analysis (deFBA) describing a bioreactor 

process. A receding prediction horizon and a simplified deFBA model describing only the short 

term behavior of the process were used in order deal with the exponential computation cost 

increase along the prediction horizon. However, in Lindhorst approach the number of scenarios 

still increases two-fold with each additional uncertainty. Thus, this framework is only acceptable 

for online implementation with a short prediction horizon or a limited number of uncertainties of 

the deFBA model.  

Considering these limitations, in the current work, a novel tree structure based algorithm is 

proposed in Chapter 3 of the thesis that exploits the particular nature of the dynamic metabolic 

flux model describing the system, i.e. linear programming based model, to reduce the 

computational effort to estimate control actions in the presence of model uncertainty.  
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2.4 Sensitivity Analysis of RHS 

This thesis is dealing with robust optimization of a biotechnological process that is described by a 

Linear Programming (LP) problem. This model will be formally introduced in Chapter 3. 

Sensitivity analysis of the Right Hand Side (RHS) of the inequalities in the LP optimization 

problem is an essential theoretical element of the strategy proposed in this work and it is thus 

reviewed here for completeness. A standard  LP problem can be formulated as follows (Hillier, 

2001): 

𝑚𝑚𝑎𝑎𝑥𝑥 𝑍𝑍 = 𝒄𝒄𝒙𝒙  (2.9) 

s. t.   

𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃 

𝒙𝒙 ≥ 0 

 (2.10) 

where 𝑍𝑍  is an overall measure of performance, 𝒙𝒙  is the vector of 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖  is decision variables 

(solution) with the amount of 𝑚𝑚 ( 𝑗𝑗 =  1, 2, . . ., 𝑚𝑚), 𝒄𝒄 is the row vector of 𝑐𝑐𝑖𝑖, 𝑨𝑨 is the matrix of 

𝑎𝑎𝑖𝑖𝑖𝑖, 𝒃𝒃 is the vector of 𝑏𝑏𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖  𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 (for 𝑖𝑖 =  1, 2, . . ., 𝑚𝑚 and 𝑗𝑗 =  1, 2, . . ., 𝑚𝑚) are the input 

constants which are generally referred as the parameters of the model. The matrix 𝑨𝑨 in (2.10) is 

often referred to as the Left Hand Side of the constraints equations and it will be referred to as LHS 

for short; 𝒃𝒃 is a vector of independent coefficients as will be referred to as the Right Hand Side 

(RHS). 

2.4.1 Simplex Algorithm for Linear Programming 

The Simplex algorithm (or Simplex method) is the most popular algorithm method for solving 

LPs. The solution of LPs is iterative in nature and it involves the use of tableaux that are particular 

matrix representations of either the original problem formulation or transformed formulations 

describing each one of the iterations of the optimization search.  The standard initial tableau of the 

simplex method (the original set of equations) is as follows (Hillier, 2001): 

�1 −𝒄𝒄 0
0 𝑨𝑨 𝑰𝑰� �

𝑍𝑍
𝒙𝒙
𝒙𝒙𝒔𝒔
� = �0𝒃𝒃�  

  
(2.11) 

�
𝒙𝒙
𝒙𝒙𝒔𝒔� ≥ 0   (2.12) 
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𝒙𝒙𝒔𝒔 = �

𝑥𝑥𝑛𝑛+1
𝑥𝑥𝑛𝑛+2
⋮

𝑥𝑥𝑛𝑛+𝑚𝑚

�  
 

(2.13) 

where 𝑰𝑰 is 𝑚𝑚 × 𝑚𝑚 identity matrix, 𝒙𝒙𝒔𝒔 is column vector of slack variables that is needed to obtain 

the augmented form of the problem as it is shown in (2.13). For the given matrix (2.11), the basic 

solutions of this tableau are the solutions of the 𝑚𝑚 equations in (2.14), i.e. 

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃   

(2.14) 

Since the system of algebraic equations given by (2.14) is underdetermined 𝑚𝑚 variables referred to 

as non-basic can be eliminated out of a total of 𝑚𝑚 + 𝑚𝑚 variables of the vector  �
𝒙𝒙
𝒙𝒙𝒔𝒔� by equating 

these variables to zero. This transforms (2.14) into a set of 𝑚𝑚 equations with 𝑚𝑚 unknowns which 

are referred to as the basic variables, i.e. 

𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒃𝒃   (2.15) 
where the vector of basic variables is as follows: 

 𝒙𝒙𝑩𝑩 = �

𝑥𝑥𝐵𝐵1
𝑥𝑥𝐵𝐵2
⋮

𝑥𝑥𝐵𝐵𝑚𝑚

� 

 and the basis matrix is as follows: 

𝑩𝑩 = �
𝐵𝐵11 ⋯ 𝐵𝐵1𝑚𝑚
⋮ ⋱ ⋮

𝐵𝐵𝑚𝑚1 ⋯ 𝐵𝐵𝑚𝑚𝑚𝑚

�  

Matrix 𝑩𝑩 is generated by eliminating the columns corresponding to coefficients of non-basic 

variables from [𝑨𝑨  𝑰𝑰]. The simplex method searches for a solution through a series of iterations 

where each involves a Gaussian elimination procedure. The rearrangement of the resulting tableau 

for the basic and non-basic variables identified at each iteration is referred to as pivoting. During 

the iterations of the simplex method, the order of 𝒙𝒙𝑩𝑩 as well as the column order of 𝑩𝑩 may be 

different from one iteration to the next. The detailed description of the pivoting process is shown 

elsewhere (Hillier, 2001). When the pivoting process of the Simplex Algorithm meets a user 

defined stopping criteria, the inverse matrix 𝑩𝑩−1  of 𝑩𝑩  is obtained. Since 𝒙𝒙𝑩𝑩  is not zero by 
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definition (basic variables) then 𝑩𝑩 is nonsingular and 𝑩𝑩−1 always will exist. This inverse of 𝑩𝑩 is 

used to solve for the basic variables from (2.15) as follows: 

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1𝒃𝒃   (2.16) 
Let 𝒄𝒄𝑩𝑩 be a vector of the objective function coefficients, including zeros for slack variables, for 

the corresponding elements of 𝒙𝒙𝑩𝑩. The optimal solution 𝑍𝑍 of the objective function for the basic 

solution can be calculated as follows: 

𝑍𝑍 = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒄𝒄𝑩𝑩𝑩𝑩−1𝒃𝒃   (2.17) 

2.4.2 100 Percent Rule for Linear Programming 

Sensitivity analysis of the RHS is conducted to assess the effect of changes in the elements of the 

vector 𝒃𝒃  (RHS of LP), on the basic solutions 𝒙𝒙𝑩𝑩  as well as the cost function 𝑍𝑍 . Since the 

uncertainty in most problems is captured through changes in 𝑏𝑏𝑖𝑖 the sensitivity of the RHS is of 

particular interest in robust LP solutions. In most cases, the sensitivity analysis of the RHS is used 

to find an allowable feasibility range with respect to a nominal optimal basic feasible (BF) solution 

(Hillier, 2001). Within the feasible range, the structure of the tableau remains constants for all 

possible changes in 𝒃𝒃. Thus, within the feasible range of the tableau, variables that are basic for 

one combination of 𝑏𝑏𝑖𝑖’s are basic for another combination of 𝑏𝑏𝑖𝑖’s, and 𝑩𝑩−1 is constant. Using this 

fact, the effects of changes in 𝑏𝑏𝑖𝑖 on 𝒙𝒙𝑩𝑩 and 𝑍𝑍 can be easily calculated by using (2.16) and (2.17), 

respectively. The rate at which 𝑍𝑍 may be increased by (slightly) changes in the 𝒃𝒃 are referred to as 

a kind of shadow prices. Thus, the shadow prices, which is the partial derivative of 𝑍𝑍 with respect 

of 𝒃𝒃 in some extent, inside a feasible range of one tableau is also constant. 

It is straightforward and fast to calculate the allowable range of feasibility for changes in only one 

of the 𝑏𝑏𝑖𝑖 . From the formula (2.16), the adjusted values in 𝑩𝑩−1  for the basic variables can be 

obtained. Consequently, the solution of the allowable feasibility range consists on calculating the 

range of values of 𝑏𝑏𝑖𝑖 such that 𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎. However, analyzing the effect of simultaneous changes in 

RHS is more involved. An approximation of the allowable feasibility region can be obtained by 

using the 100 percent rule (Hillier, 2001). The idea of this method is that the shadow prices remain 

feasible for predicting the effect of simultaneously changing the RHS as long as the changes of 

𝑏𝑏𝑖𝑖’s are small enough so as to satisfy the 100% rule. The sum of the percentage changes of all 𝑏𝑏𝑖𝑖 

is used to check if the changes are small enough. When the summation of changes in 𝒃𝒃 does not 
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exceed 100 percent, the shadow prices will surely be allowed. However, this method only provides 

a necessary condition but not sufficient since it cannot provide an explicit judgement if the sum 

does exceed the 100 percent limit. 

The100 percent rule has been often used to perform sensitivity analysis with respect to changes in 

the RHS that emerge due to model uncertainty. However, the application of this method for robust 

NMPC has been found limited and computationally inefficient in the current work as will be shown 

in Chapter 4. For instance, this algorithm is found to provide small regions of feasibility in the 

neighborhood of current solutions but cannot provide an accurate description about the entire 

feasibility range. This is especially problematic when, for a given uncertainty set, many ranges of 

feasibility, i.e. many tableaus, are possible. This requires an exhaustive search of allowable 

feasibility regions around different solutions which is computationally prohibitive for problems of 

high dimensions, e.g. problems involving several energies, momentum and mass conservation 

balance equations. Further discussion about these limitations are presented in the following 

chapter. In the present work, an alternative computationally efficient approach is proposed that is 

particularly targeted to seek for the feasibility regions contained within pre-defined ranges of 

changes of the elements 𝑏𝑏𝑖𝑖’s in the RHS of the LP. 

2.5 Bioreactor Control and Optimization 

The industrial application to be considered in this work is the design of a robust NMPC controller 

for bioreactors. Modelling of biological systems is challenging in some extent, since these systems 

generally exhibit highly nonlinear behavior and the models have large dimensions due to the 

interconnected nature of the metabolic network of reactions that describe microorganism behavior.  

In addition to model complexity, bioreactors are generally operated in four different operating 

modes, batch, fed-batch, perfusion and continuous which adds further complexity to the controller 

design. Currently, the most popular mode of operation in the pharmaceutical industry is fed-batch 

mode where the substrate is gradually fed into the reactor and the product is only drawn at the end 

of the process. A key advantage of this mode is the avoidance of high initial concentrations of 

nutrients that may inhibit growth. For instance, high initial glucose concentration inhibits yeast 

growth but in fed-batch mode the gradual supplementation of substrate into the reactor can result 

in good growth while the glucose concentration is maintained at low (acceptable) levels. Another 

advantage of batch and fed-batch operations is that it is easier to maintain sterilized conditions in 
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the bioreactor since the products are only drawn out after the end of the process (Yamuna Rani & 

Ramachandra Rao, 1999) as compared to continuous or perfusion operations were products or 

media are continuously withdrawn. Following these considerations, the review below is focused 

only on fed-batch reactor operation and control since this is the operating mode that will be 

considered in this research study.  

Classical fed-batch reactors have been controlled based on simple PID controllers that are aimed 

at maintaining key operating parameters, e.g. PH, temperature or concentration of some inorganic 

composition, at their set-points by making changes in the substrate feed rate. The limitations of 

this approach is that closed loop bioreactor performance is impacted by the nonlinear dynamic 

behavior of the bioprocess as well as the difficulty to acquire online measurement of important 

metabolites (Lübbert & Jørgensen, 2001; Yamuna Rani & Ramachandra Rao, 1999). However, 

recent advances has been done in bioprocess sensor technology, such as stringent FDA guidelines 

for online bioprocess measurements (M A Henson, 2010), may improve the performance of model 

based controllers in the future. 

Due to the lack of reliable sensors, many past studies have proposed offline dynamic optimization 

of the bioprocess or online open-loop economic controllers that aim to optimize the final product 

concentration by determining a suitable substrate feeding profile. Accordingly, these past open 

loop studies have often produced conservative results since they did not exploit the feedback error 

to correct for unmeasured disturbances.  More recently a periodic online re-calculation method of 

feed-profiles have been  introduced based on infrequent measurements (Banga, Alonso, & Singh, 

1997).   

There are three main reasons for addressing robustness of model based fed-batch bioreactor 

controllers (Kuhlmann, Bogle, & Chalabi, 1998): i) although the model parameters are assumed 

to be constant, they are generally time-varying due to metabolic shifts occurring along the process 

ii) unmodeled dynamics due to incomplete knowledge about the process, and iii) large disturbances 

occurring in the process. It should be noticed that in current industrial practice offline optimization 

is often preferred over online feedback strategies for fed-bath due to the lack of sophisticated 

online-measurement techniques in the current pharmaceutical industries as well as tight limitations 

imposed by regulatory bodies such as FDA. Hence it is important to investigate the effect of plant 

model mismatch and disturbances on recipes resulting from robust optimization calculations 
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(Srinivasan, Bonvin, Visser, & Palanki, 2003). As discussed in section 2.3, in most studies about 

robust controller optimization techniques the model uncertainty is propagated with the Monte 

Carlo sampling algorithm though this method requires high computational effort. Recently, PCE’s 

has been used for uncertainty quantification and propagation in robust optimization problems in a 

bioreactor process modelled by a Dynamic Metabolic Flux Model as used in the current work 

(Kumar & Budman, 2017). In this work, uncertainty was propagated by representing the uncertain 

model parameters by PCE expansions where the coefficients of the expansions are calculated form 

the first principles equations in combination with Galerkin’s projection methods. Since the current 

work consider a similar case study to the one studied by Kumar and Budman study, the latter will 

be used for comparison purposes with the current approach presented in Chapter 4.  

2.6 Metabolic Flux Model 

To conduct either off-line robust optimization or robust predictive control of a bioreactor system, 

it is essential to formulate an appropriate dynamic process model that describes the system in a 

wide range of operating conditions. This is especially critical in batch or fed-batch operation since 

in these processes the variables evolve with time over a wide range of conditions in contrast to 

continuous operations that remain in the neighborhood of a fixed operating point.  

Dynamic models of biological systems are generally classified as unstructured and structured 

models based on the extent of the biological/metabolic detail included in the model. The 

unstructured models consist of simplistic substrate and biomass balances coupled to each other 

through the growth rate kinetic expression. However, those models often ignore the complex 

interactions among many different metabolites existent in the system. A classical dynamic 

unstructured model with enzyme kinetic that has been used extensively in past bioreactor control 

and optimization studies is as follows: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

= 𝐹𝐹,
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋,
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

= 𝐹𝐹𝑅𝑅|𝑖𝑖𝑛𝑛 −
𝜇𝜇𝑋𝑋
𝑌𝑌𝑋𝑋|𝑅𝑅

 

𝑑𝑑𝑃𝑃𝑛𝑛
𝑑𝑑𝑡𝑡

=
𝜇𝜇𝑋𝑋𝑌𝑌𝑃𝑃|𝑅𝑅

𝑌𝑌𝑋𝑋|𝑅𝑅
, 𝜇𝜇 =

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅
𝐾𝐾𝑚𝑚 + 𝑅𝑅

 

 

(2.18) 

where 𝐹𝐹 is feed rate, 𝑉𝑉 is batch volume, 𝑋𝑋 is concentration of biomass, 𝜇𝜇 is rate of cell growth, 𝑅𝑅 

is substrate concentration, 𝑃𝑃𝑛𝑛  is product concentration, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚  is maximum growth rate, 𝐾𝐾𝑚𝑚  is 

substrate saturation constant, 𝑌𝑌𝑃𝑃|𝑅𝑅 and 𝑌𝑌𝑋𝑋|𝑅𝑅 are yield coefficients. Since the structured models are 
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based on metabolic reactions that are specific to the organism under study, the unstructured models 

are simpler than structured ones while the latter can correctly describe the relations between each 

metabolite participating in the process. 

Metabolic flux analysis (MFA) modeling is a method to generate structured models based on flux 

balance of metabolites at quasi-steady state (Varma & Palsson, 1994), i.e. steady state is either 

assumed at each time interval or over a certain culture duration. MFA consists of formulating a 

stoichiometric matrix 𝓐𝓐𝑚𝑚×𝑛𝑛  with respect of the reaction fluxes vector 𝝂𝝂𝑛𝑛×1  and solving mass 

balances of extracellular metabolites as per the following equation: 

𝓐𝓐𝝂𝝂 = 𝓫𝓫  (2.19) 
where 𝓫𝓫𝑚𝑚×1 represents a vector of consumption or production rate of extracellular metabolites 

such as nutrients and by-products, 𝝂𝝂 is the vector of fluxes (mol/h/mol biomass). Since each 

metabolite generally participates in more than one reaction the resulting system of algebraic 

equations in (2.20) is generally under-determined and thus additional constraints are needed in 

order to uniquely define the fluxes. Varma and Palsson, 1994 proposed an assumption where the 

organisms are continuously trying to maximize growth and allocate resources in order to complete 

this task. This fundamental assumption is generally justified by the occurrence of naturally 

evolutionary processes by which the cells have adapted to act as an optimizer of resources. For 

example, bacteria have evolved mostly to proliferate by optimally distributing their available 

resources/nutrients. Based on this assumption, and assuming that growth 𝜇𝜇 is to be maximized, the 

MFA modelling can be represented as a Linear Programming (LP) problem, with the flux balance 

equations in (2.19) as constraints, i.e. 

max
𝜈𝜈𝑖𝑖

 𝜇𝜇 = �𝑤𝑤𝑖𝑖𝜈𝜈𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝑠𝑠. 𝑡𝑡.   𝓐𝓐𝝂𝝂 = 𝓫𝓫 

 

(2.20) 

where 𝑤𝑤𝑖𝑖 are the amounts of the growth precursors required per gram of biomass. Then, assuming 

that at every time step the growth rate is maximized by the organism the consumption or production 

of species can be calculated with time as follows: 

max
𝑚𝑚,𝝂𝝂

𝜇𝜇 

𝑠𝑠. 𝑡𝑡.   
𝑑𝑑𝒛𝒛
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝝂𝝂𝓍𝓍,
𝑑𝑑𝓍𝓍
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝓍𝓍, 𝜇𝜇 = 𝒘𝒘𝑇𝑇𝝂𝝂 

 

(2.21) 
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where 𝓍𝓍 and 𝒛𝒛 are the current biomass and metabolites’ concentrations respectively. This dynamic 

modeling approach of the cell metabolism is referred to as Dynamic Flux Balance Modeling 

(DFBM) and it has been applied successfully to explain the microbial growth of Escherichia coli 

(E.coli) in batch reactor (Mahadevan, Edwards, & Doyle, 2002). Another reported DFBM 

application described the ethanol producing yeast Saccharomyces cerevisiae (Hjersted & Henson, 

2006). Both Mahadevan’s and Henson’s studies introduced additional kinetic rate constrains to 

achieve realistic flux distribution 𝝂𝝂, metabolite concentration 𝒛𝒛 as well as biomass concentration 

𝓍𝓍. Moreover, this model has been used to accomplish robust NMPC with feedback controller 

currently (Kumar & Budman, 2017). A key advantage of the DFBM approach is its ability to fit 

data with a relatively smaller number of kinetic parameters in contrast with other structured models 

where each possible reaction is modelled by a separate kinetic term. The parsimonious nature of 

these modelling approach makes them attractive since they have the potential to avoid overfitting 

of noisy and limited amount of data. Due to these advantages, these models have received in the 

last decade significant attention from the pharmaceutical research community (Kumar & Budman, 

2017). Therefore, the robust algorithms developed in the current work are based on this modelling 

approach and they exploit its particular mathematical structure to reduce computation time.  

2.7 Summary 

Economic Model Predictive Control (EMPC) has recently received attention by both academics 

and industrial practitioners since it has the ability to simultaneously control the system while 

optimizing an economic profit functions whereas in the past control and optimization has been 

traditionally conducted by separate (independent) algorithms. Thus, EMPC has the potential to 

simplify the implementation of advanced control and optimization strategies in chemical plants. 

Beyond this advantage, the ability of EMPC for maximizing a profit function along a dynamic 

time horizon confers it with a significant advantage over strategies that separately optimize and 

control the process since in such strategies the optimization module is often based on steady state 

information only. Robustness to model error is a crucial topic in the design of NMPC or EMPC 

algorithms that must be addressed to promote its adoption in industrial settings (Findeisen et al., 

2003; Lalo Magni & Scattolini, 2010). Robustness is particularly critical for EMPC algorithms 

that do not explicitly minimize the feedback error. Though there are several robust NMPC 

algorithms that have been reported, the limitations are often related to computational demands, i.e. 
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their online implementation is often prohibitive due to the computational cost of the uncertainty 

propagation step that is based on sampling such as Monte Carlo simulations. Polynomial Chaos 

Expansions (PCE) and Power Series Expansions (PSE) representations have also been reported for 

uncertainty propagation and for designing robust controllers but when the numbers of uncertain 

parameters and states increases, e.g. more than ~10 parameters, these methods also become 

computationally demanding. These past studies motivate the need to develop efficient uncertainty 

propagation methods for which the computational effort does not increase significantly with the 

number of uncertain parameters and states. This thesis presents a novel algorithm to address 

robustness of an EMPC algorithm that is specifically applied to a process described by a dynamic 

metabolic flux model. Although the presented technique is specifically tailored to dynamic 

metabolic flux models, the problem is very relevant since such models are expected to be the 

standard modelling approach for biotechnological processes in the future. 
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Convex Cone Methodology and Case Study 

Model Predictive Control (MPC) based on linear models has become the standard multivariable 

control strategy in the process industries. However, when the process to be controlled exhibits 

highly nonlinear dynamic behavior, a nonlinear model is preferred for more accurate prediction 

that will result in improved performance. The resulting nonlinear model based predictive control 

strategy is referred to as Nonlinear Model Predictive Control (NMPC).  The typical cost function 

that is generally minimized in either linear MPC or NMPC algorithms is the sum of squared 

feedback errors between the set point and the measured values of the controlled variables. On the 

other hand, there is an alternative family of NMPC algorithms where the function to be optimized 

describes an economic profit instead of the minimization of the feedback error done in NMPC. 

Due to the nature of the economic cost function this algorithm is referred to as Economic Model 

Predictive Control (EMPC). As stated in Chapter 2 this algorithm has recently received significant 

attention by both academics and industry since it has the ability to simultaneously control the 

system while optimizing an economic profit whereas in the past the control and optimization tasks 

have been traditionally conducted by separate algorithms. Thus, EMPC has the potential to 

simplify the implementation of advanced control and optimization in chemical plants. Beyond this 

advantage, the ability of EMPC of maximizing profit along a dynamic time horizon confers it with 

a significant advantage over strategies that separately optimize and control the process since in 

such strategies the optimization module is based on steady state models. The case study in the 

current work is based on an Economic MPC (EMPC) formulation which will be presented in the 

current chapter. 

Robustness to model error remains as an essential challenge for the design of NMPC methods 

(Findeisen et al., 2003; Lalo Magni & Scattolini, 2010) and particularly for EMPC algorithms 

since the latter do not explicitly minimize the feedback error. As discussed in Chapter 2, there are 

several reasons that may contribute to the model-plant mismatch, such as disturbances arising from 

changes in operating conditions, uncertainty derived from simplifications of the model structure 

or model reduction, inaccurate understanding of physical mechanisms of the process, lack of 

knowledge of key parameters, etc. Therefore, robustness is crucial in the design of NMPC or 

EMPC algorithms to promote its adoption in industrial settings. 
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Robust NMPC is generally based on  min-max formulations, where the maximization action is 

conducted with respect to model uncertainties or bounded disturbances and then, for the worst case 

calculated by the previous maximization,  an economic cost is minimized with respect to the 

control actions (Findeisen et al., 2003; Lalo Magni & Scattolini, 2010).   

In Chapter 2, several previously reported robust NMPC algorithms, which propagate model 

uncertainties and/or disturbances by different means as well as the limitations for each of these 

methods were reviewed. For instance, Monte Carlo simulations have been used to propagate model 

uncertainties and disturbances but the online implementation of this approach is often prohibitive 

due to its computational cost (Birge & Louveaux, 2011; Kawohl et al., 2007; Niederreiter, 1978; 

Srinivasan et al., 2003).  

Polynomial Chaos Expansions (PCE) have also been used to propagate uncertainty to provide 

robustness to NMPC strategies. This approach has considerable advantages over Monte Carlo 

based algorithms in terms of computational time making it significantly more amenable for online 

implementation (Kumar & Budman, 2017). However, when the numbers of uncertain parameters 

and states is very large, e.g. more than ~10 parameters, this method also becomes computationally 

demanding.  

These past studies motivate the finding of uncertainty propagation methods for which the 

computational effort does not increase significantly with the number of uncertain parameters and 

states. This chapter presents a novel algorithm to address robustness of an EMPC that is 

specifically applied to a process that is described by a dynamic metabolic flux model. Thus, 

although the presented technique is specifically tailored to dynamic metabolic flux models, the 

problem is very relevant since such models are increasingly becoming the standard approach for 

modelling biotechnological processes. 

Dynamic metabolic models, as described in chapter 2, are given by a Linear Programming 

optimization where a biological cost is optimized with respect to reactions’ fluxes subject to kinetic 

and positivity constraints. Since some of these constraints involve parameterized kinetic 

expressions in their RHS (right hand side), addressing robustness for these models is equivalent to 

studying the sensitivity of the LP based model to uncertainties in the parameters of the RHS 

expressions. In the following section, an approach for sensitivity analysis of the RHS of the 

constraints within an EMPC formulation will be introduced. Then, a series of rigorous proofs are 
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presented to support the validity of the approach. Subsequently, two novel methods for sensitivity 

analyses with respect to changes in the RHS of the constraints within the LP problem describing 

the dynamic metabolic model will be formulated and investigated. 

3.1 Proposed Robust EMPC 

The robust EMPC algorithm proposed in this section is specifically tailored to biochemical 

processes that are described by a dynamic metabolic flux model (DMFM).  Since the DMFM is 

formulated as a constrained LP problem the uncertainty propagation approach proposed here is 

based on the sensitivity analyses of the RHS of the constraints of the LP problem.  

Although the method has been specifically tailored to DMFM problems, in principle, it could be 

also applied to any EMPC formulation where the internal model can be described by an LP.  The 

general formulation of an EMPC controller involves the minimization of an economic terminal 

cost/penalty 𝑉𝑉𝑓𝑓as follows: 

min
𝑢𝑢
𝑉𝑉𝑓𝑓�𝑥𝑥�(𝑘𝑘 + 𝑝𝑝)� 

s. t. 
(3.1) 

𝑥𝑥�(𝑖𝑖 + 1) = 𝑓𝑓𝑑𝑑(𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖),𝒅𝒅 = 0)  (3.2) 

𝑥𝑥�(𝑖𝑖 = 0) = 𝑥𝑥(𝑘𝑘)  (3.3) 

𝑓𝑓�𝑥𝑥�(𝑖𝑖),𝑢𝑢(𝑖𝑖)� = 0  𝑖𝑖 = {0,1,2, … , 𝑝𝑝},𝑘𝑘 ∈ ℕ (3.4) 

𝑥𝑥�(𝑘𝑘 + 𝑝𝑝) ∈ 𝕏𝕏𝑓𝑓  (3.5) 

where 𝑥𝑥𝑚𝑚 is measured plant states, 𝑥𝑥� is prediction of plant states, 𝑢𝑢 = {𝑢𝑢(𝑘𝑘),𝑢𝑢(𝑘𝑘 + 1), … ,𝑢𝑢(𝑘𝑘 +

𝑚𝑚)} are the decision variables and they are equal to the manipulated variables or control actions, 

𝒅𝒅 is the vector of disturbance or it may also represent the effect of model uncertainty.  At each 

time interval indexed as [𝑖𝑖, 𝑖𝑖 + 1), the future predicted states’ trajectories are calculated over a 

prediction horizon 𝑝𝑝, as a function of a sequence of manipulated variables defined over a control 

horizon 𝑚𝑚, where 𝑚𝑚 ≤ 𝑝𝑝. The nominal dynamic model defined by (3.2) is used to predict the 

future nominal evolution of the system and it is initialized with each state’s corresponding 

measurement given by equation (3.3).  Equations of (3.2) and (3.4) represents the process or system 

constrains of EMPC system. Furthermore, the constraint (3.5) is a terminal constraint, which 

ensures that at the end of horizon the predicted 𝑥𝑥� will be within a neighborhood of a terminal value 

defined by the terminal set 𝕏𝕏𝑓𝑓. If maximization of a profit is desired rather than minimization of a 
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cost, it is straightforward to convert such maximization into a minimization by considering the 

negative value of the profit that has to be maximized. 

Figure 3.1 is a schematic block diagram of the EMPC controller. The controller uses a nominal 

model for predicting future values of the states. If the model is perfect, i.e. the model is equal to 

the process and disturbances 𝒅𝒅 = 0, then the feedback signal to the EMPC controller is zero. 

However, it is clear from figure 3.1 that if either there is mismatch between the process and the 

model or there are unmeasured disturbance d entering the system, the feedback signal returned to 

the EMPC controller will not be equal to zero. Since the model is never perfect and disturbances 

may continuously enter the process this will cause the system to evolve along different time 

trajectories from the nominal dynamic internal model given by (3.2) and referred as the model in 

Figure 3.1. For the particular case treated in the current research that the process is described by a 

DMFM, equations (3.2) to (3.5) in the formulation above are substituted by an LP problem 

describing the dynamic metabolic model. Thus, the resulting control problem involves a two level 

optimization where the outer level involves minimization of cost with respect to the control actions 

in the final time 𝑡𝑡𝑓𝑓 of the process which has been shown in (3.6) and the inner level involves the 

LP problems 𝑓𝑓𝐿𝐿𝑃𝑃 as in (3.7) to (3.11). 

min
𝑢𝑢
𝑉𝑉𝑓𝑓 �𝜓𝜓�𝑜𝑜𝑏𝑏𝑖𝑖�𝑡𝑡𝑓𝑓�� 

s. t.  

𝜓𝜓�(𝑡𝑡 + 1) = 𝑓𝑓𝐿𝐿𝑃𝑃�𝜓𝜓�(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝒅𝒅� 

𝜓𝜓�(𝑡𝑡 = 0) = 𝜓𝜓𝑚𝑚(𝑡𝑡 = 𝑘𝑘) 

𝑓𝑓𝑛𝑛�𝑢𝑢(𝑡𝑡)� = 0 

(3.6) 

max
𝝂𝝂

𝜓𝜓�𝑜𝑜𝑏𝑏𝑖𝑖 = 𝒘𝒘𝝂𝝂  

s. t. 
(3.7) 

𝑨𝑨𝝂𝝂 ≤ 𝒃𝒃 (3.8) 

𝒃𝒃 = 𝑓𝑓𝑏𝑏(𝝍𝝍(𝑡𝑡),𝝂𝝂𝒎𝒎𝒂𝒂𝒙𝒙) (3.9) 

𝝍𝝍(𝑡𝑡 + 1) = 𝝍𝝍(𝑡𝑡) + � 𝑨𝑨𝝂𝝂𝜓𝜓𝑜𝑜𝑏𝑏𝑖𝑖𝑑𝑑𝑡𝑡
𝑎𝑎+1

𝑎𝑎
 (3.10) 

𝝂𝝂 ≥ 0, 𝒃𝒃 ≥ 0 (3.11) 

where a specific element from 𝝍𝝍, i.e. 𝜓𝜓𝑜𝑜𝑏𝑏𝑖𝑖 is a biological objective function such as growth rate 

or ATP production, 𝑨𝑨 is a stoichiometric matrix describing the set of reactions occurring for the 
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particular microorganism and 𝒘𝒘 is a vector of weights describing the contribution of the fluxes to 

the biological objective 𝜓𝜓𝑜𝑜𝑏𝑏𝑖𝑖, 𝝂𝝂 is the vector of optimal solutions of the inner level optimization, 

𝝍𝝍 is the vector elements are the concentrations of all metabolites, and the uncertain parameters are 

on the Right Hand Side (RHS) 𝒃𝒃. The vector 𝝂𝝂 represents, within the DMFM model, the fluxes of 

the reactions composing the metabolic network. Thus, the robust EMPC problem consists in 

solving a bi-level optimization in the presence of uncertainty in the RHS of the constraints of the 

inner level, i.e. in terms of deviations 𝛥𝛥𝒃𝒃. 

Generally, nonlinear terms arise in the original inner LP optimization in equation (3.9) when 

uncertainty is considered. For instance, if a function of 𝑏𝑏𝑖𝑖 is formulated as this form: 

𝑏𝑏𝑖𝑖 =
𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝜓𝜓𝑖𝑖
𝐾𝐾 + 𝜓𝜓𝑖𝑖

 (3.12) 

where 𝐾𝐾 is assumed to be a constant parameter while 𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 is uncertain. At the beginning of any 

sampling interval, if  𝜓𝜓𝑖𝑖 = 𝜓𝜓𝚤𝚤��� + 𝛥𝛥𝜓𝜓𝑖𝑖. The substitution of these uncertain values into a Monod type 

kinetic term, that is typically used to describe the bounds (RHS) on consumption/production rates 

of metabolites, can be easily split into a nominal term plus a perturbation as follows: 

𝑏𝑏𝚤𝚤� + 𝛥𝛥𝑏𝑏𝑖𝑖 =
𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝜓𝜓𝚤𝚤���

𝐾𝐾 + 𝜓𝜓𝚤𝚤���
+

𝜈𝜈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝛥𝛥𝜓𝜓𝑖𝑖
(𝐾𝐾 + 𝜓𝜓𝚤𝚤���)(𝐾𝐾 + 𝜓𝜓𝚤𝚤��� + 𝛥𝛥𝜓𝜓𝑖𝑖)

 (3.13) 

Although 𝛥𝛥𝑏𝑏𝑖𝑖 is nonlinear from (3.13), using the fact that 𝐾𝐾 ≥ 0, 𝝂𝝂 ≥ 0 and 𝜓𝜓𝑖𝑖 ≥ 0, it is possible 

to that the perturbation of 𝑏𝑏𝑖𝑖 is linear with respect to the uncertainty of concentration 𝜓𝜓𝑖𝑖 since the 

partial derivative of 𝛥𝛥𝑏𝑏𝑖𝑖 with respect of 𝛥𝛥𝜓𝜓𝑖𝑖 is positive: 

𝜕𝜕𝛥𝛥𝑏𝑏𝑖𝑖
𝜕𝜕𝛥𝛥𝜓𝜓𝑖𝑖

=
𝐾𝐾𝜐𝜐𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

(𝐾𝐾 + 𝜓𝜓𝑖𝑖)2
≥ 0 (3.14) 

The positivity of the derivative according to (3.14) is crucial since it implies that the extreme values 

of the metabolites 𝜓𝜓𝑖𝑖 occur at the extreme values of the perturbations 𝛥𝛥𝑏𝑏𝑖𝑖. Thus, the bounds of the 

metabolite’s concentrations can be obtained by substituting the extreme values of the deviations 

𝛥𝛥𝑏𝑏𝑖𝑖 into the linear equations valid for each tableau. This result can be extended to the entire vector 

describing the RHS of the inequality constraints in the LP problem as follows: 

 𝒃𝒃 = 𝒃𝒃� + 𝛥𝛥𝒃𝒃 (3.15) 
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d

EMPC Process

Model

 

Figure 3.1 The control process in one time interval 

A strategy is formulated in this work to solve the min-max problem in presence of uncertainty. 

This strategy requires the nonlinear terms arising from uncertainty to be approximated by 

linearized equations at each time interval.  Then the maximum and minimum states and cost of the 

DMFM in the presence of uncertainty in the RHS terms of the LP can be calculated by the 

following sequence:  

i. Calculate the uncertainty range �𝛥𝛥𝝂𝝂|𝛥𝛥𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 ,𝛥𝛥𝜓𝜓𝑜𝑜𝑏𝑏𝑖𝑖�, i.e. maximum variations in the fluxes 

and cost.  

ii. Conduct the outer optimization for the maximal variations in states obtained in step i. 

iii. Integrate the concentrations one step ahead using the minimum and maximum values of 

the states resulting from the variations in the states calculated in step ii in combination with 

the Euler integrations of the equation that defined in (3.10).  

iv. Go back to step i. 

Step i involving the propagation of the parametric uncertainty onto the states is the most 

challenging one (Findeisen et al., 2003; Lucia et al., 2013; Lalo Magni & Scattolini, 2010).  

Therefore, establishing a method for this uncertainty propagation step is the key emphasis of this 

chapter. Step 1 requires a sensitivity analysis on RHS, since the goal is to investigate the effect of 

RHS on the states. A novel convex cone method is proposed in this thesis as an efficient RHS 

sensitivity analysis that is based on the generation of a map of the optimization solutions in the 

space defined by the RHS vector of the LP problem (DMFM) as explained further below in this 

Chapter. 
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To simplify the problem the function in RHS 𝒃𝒃 are assumed to be positive linear or have been 

approximated into a linearized positive form. LP problems such as the one in the inner optimization 

in equation (3.7) are solved, as discussed in Chapter 2, by finding an active set of constraints for 

particular values of the RHS of the constraints. However, in the presence of uncertainty in the 

RHS, many solutions may arise corresponding to many possible active sets. Each active set define 

a linear problem for which the uncertainty can be easily propagated by a set of linear equations. 

Thus, although the problem for each active set of constraints is linear, in the presence of uncertainty 

the overall problem is nonlinear since it involves solutions for different active sets of constraints.  

Following the explanations given above related to the block diagram in Figure 3.1 the disturbances 

and/or uncertainty 𝒅𝒅 are lumped together since their effect is to cause a nonzero feedback signal 

back to the EMPC controller. The lumped effect due to disturbance and model uncertainty is 

denoted in the rest of the chapter by the uncertainty symbol 𝛥𝛥, if not otherwise specified. 

3.2 Sensitivity Analysis of the RHS of the LP problem (DMFM) 

As discussed in the previous section, the sensitivity analysis of the RHS is the basis for the 

propagation of uncertainty in the LP. As shown above, it is assumed that the nonlinear terms arising 

from the introduction of uncertainty are of bilinear form and can be properly bounded as shown in 

equation (3.15).  Thus the problem boils down to assess the changes in the solution of the LP to 

simultaneous changes in RHS.  

The sensitivity analysis of RHS is mainly depending on finding a set of tableaus where in each one 

of them the shadow prices remains constant and can be used for evaluation of the effect of changes 

in 𝑏𝑏𝑖𝑖 (elements of the vector defining the RHS of the LP) on 𝑍𝑍. Thus, the shadow prices, which 

are the partial derivative of 𝑍𝑍 with respect of 𝒃𝒃, remain constant within each tableau where the 

latter correspond to a specific active set of constraints. The shadow prices can be organized into a 

Jacobian matrix of 𝑍𝑍 or 𝒙𝒙 with respect to changes in 𝒃𝒃. Since the LP representing the dynamic 

metabolic flux model represents a strategy of the cell to allocate resources to optimize a particular 

biological objective, the different tableaus obtained for a particular range of uncertainty in the RHS 

can be viewed as representing different strategies adopted by the cell to optimize its biological 

objective.   
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In the following section key concepts and methods to perform sensitivity analysis of the LP 

solution with respect to changes in the RHS of the constraints will be introduced. Then, a series of 

lemmas and proofs will be given to support the proposed sensitivity analysis approaches. Finally, 

two novel methods of sensitivity analyses of RHS space will be formulated and investigated. 

3.2.1 Introduction and Motivation 

In this section some key concepts and approaches will be described intuitively with figures for 

clarity of the presentation. 

Fig. 3.2 illustrates the solution space of an LP that involves only two inequalities corresponding to 

RHS elements 𝑏𝑏1 and 𝑏𝑏2. The rectangle in Fig. 3.2 represents the region of uncertainty in the RHS 

at a particular time interval as defined by maximal deviations in 𝑏𝑏1 and 𝑏𝑏2.  

 

Figure 3.2 Uncertainty region and distribution of tableau regions in RHS space 

It is first hypothesized, and later proven in section 3.2.2, that different regions of solutions of the 

LP problem can be identified in the space described by the elements of the RHS  𝑏𝑏𝑖𝑖’s where each 

such region correspond to a specific tableau of the LP problem.  Thus, it will be shown that the 

regions of solutions, each corresponding to a tableau, can be described in the RHS space by a series 

of adjacent non-overlap cones, e.g.  𝑻𝑻𝑴𝑴𝟏𝟏  to 𝑻𝑻𝑴𝑴𝟒𝟒  in Fig. 3.2. The edges of each cones can be 

described by the equations corresponding to each of the constraints at their equality limit 𝑒𝑒1 𝑒𝑒2 and 

𝑒𝑒3. Then, since within each tableau region 𝑻𝑻𝑴𝑴𝒊𝒊 the shadow prices change linearly with respect to 

𝑒𝑒1 𝑒𝑒2 𝑻𝑻𝑴𝑴𝟏𝟏 𝑻𝑻𝑴𝑴𝟐𝟐 

𝑻𝑻𝑴𝑴𝟑𝟑 

𝑏𝑏1 

𝑏𝑏2 

𝑶𝑶 

𝓅𝓅2 

𝓟𝓟𝟏𝟏 

𝑻𝑻𝑴𝑴𝟒𝟒 

𝑒𝑒3 𝓅𝓅3 

𝓅𝓅4 
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𝓟𝓟𝟐𝟐 
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uncertainty 
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changes in the RHS and the basic solutions remain constant, the effect of changes in the RHS on 

the cost can be easily calculated. Thus, it is crucial to identify the regions corresponding to each 

tableau, , i.e. 𝓟𝓟𝟏𝟏 , 𝓟𝓟𝟐𝟐 and 𝓟𝓟𝟑𝟑  for each corresponding tableaus, within the uncertainty region 

(rectangle in Fig 3.2) since it provides and efficient way of quantifying the effect of uncertainty 

on the cost 𝑍𝑍. 

For example, in Fig. 3.2 there are 5 different vertices 𝓅𝓅1  to 𝓅𝓅5  for the uncertainty region 𝓟𝓟𝟐𝟐 

within the total uncertainty region described by the rectangle in the Figure. As shown later in the 

chapter these vertices can be efficiently calculated from the intersections of the maximal 

uncertainty region with the equations corresponding to the inequality constraints at their equality 

limit. Since the shadow prices are linear inside 𝓟𝓟𝟐𝟐, it is straightforward to obtain the maximum 

and minimum values of the cost 𝑍𝑍 as well as each of the basic solutions 𝒙𝒙 in this tableau by solving 

a set of linear equations with respect to changes in the values of the elements of 𝒃𝒃.  

After calculating extreme (maximum/minimum) values of metabolites and costs within each 

tableau it is proposed to assign a particular probability for each of the solutions to occur. If the 

possible range of parameters values defining a particular tableau is defined as 𝑷𝑷𝑻𝑻𝑴𝑴𝒊𝒊 , then, the 

possibility of any solution within 𝑻𝑻𝑴𝑴𝒊𝒊 is also can be obtained as: 

𝑃𝑃𝑇𝑇𝑅𝑅𝑖𝑖 =
𝑉𝑉𝒫𝒫𝑖𝑖

∑ 𝑉𝑉𝒫𝒫𝑖𝑖
𝒦𝒦𝑅𝑅𝑅𝑅
𝑖𝑖=1

 (3.16) 

under the assumption of uniform probability distribution of parameters, i.e. uniform distribution 

of 𝒃𝒃 in the RHS space, where the number of active tableaus in the uncertainty region is 𝒦𝒦𝑅𝑅𝑅𝑅 = 3 

in this situation. The detailed description of this procedure will be further detailed in section 3.2.4. 

It should be noticed that although the 100% rule is a well-established tool for sensitivity analysis 

with respect to changes in the RHS, it is only necessary and not sufficient. Thus, it will be shown 

by an example in section 3.2.3 that the 100% rule is inefficient for uncertainty propagation as 

required in this thesis. 

Following the above arguments, the main goal is to generate the different regions in the RHS 

variable space where each such region corresponds to a tableau.  Finding the distribution of these 

regions in the RHS space will be referred heretofore as generating an RHS map While this task is 

relatively straightforward in the two dimensional example given above, it becomes significantly 

more complex in higher dimensions.   
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(b)

(a)  

Figure 3.3 Distribution of two tableaus in a 3 dimensions RHS map 

To illustrate the complexities associated with generating an RHS map in higher dimensions, a 

problem with 3 inequality constraints is used for illustration. The axes in Fig. 3.3 correspond to 

each one of the RHS bounds, i.e. 𝑏𝑏1, 𝑏𝑏2 and 𝑏𝑏3, for each of the 3 inequalities considered in this 

illustrative problem. A main difficulty is that the cones that describe the region corresponding to 

each tableau in the RHS space are not necessarily convex in higher dimensions.  The reason that 

convexity is lost derives from the occurrence of overlaps between regions delimited by the 

constraints of the problem. It is imperative to address this overlap since counting specific regions 

more than once will introduce error in the probability calculation given by equation (3.16).  

An instance of two tableaus in a 3 dimensions RHS map is illustrated in Fig. 3.3 and corresponding 

projections in Fig. 3.4. In Fig. 3.3(a), two tableau regions are shown with different colors, the 𝑻𝑻𝑴𝑴𝟏𝟏 

is in orange and the 𝑻𝑻𝑴𝑴𝟐𝟐 is in blue. Fig. 3.3(b) is the right side view of Fig. 3.3(a); it is obvious 

that in Fig. 3.3(b) although 𝑻𝑻𝑴𝑴𝟏𝟏 is not a convex polyhedron it can be described by 3 different 

convex cones to be referred to as sub-cones in the following discussion. Fig. 3.4 describes the 

procedure for generating these sub-cones generated: 

𝑻𝑻𝑴𝑴𝟏𝟏 

𝑻𝑻𝑴𝑴𝟐𝟐 

𝑏𝑏1 

𝑏𝑏2 

𝑶𝑶 

𝑏𝑏3 

𝑻𝑻𝑴𝑴𝟏𝟏 𝑻𝑻𝑴𝑴𝟐𝟐 

𝑻𝑻𝑴𝑴𝟏𝟏 

𝑻𝑻𝑴𝑴𝟏𝟏 
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i. In Fig. 3.4(a), the two constraints 𝑒𝑒1 and 𝑒𝑒2 divide the space into two polyhedrons 𝓟𝓟𝟏𝟏 and 

𝓟𝓟𝟐𝟐. The shadow price strategy corresponding to tableau 1 (𝑻𝑻𝑴𝑴𝟏𝟏) is used to obtain a feasible 

solution for both 𝓟𝓟𝟏𝟏 and 𝓟𝓟𝟐𝟐, but the shadow price strategy corresponding to tableau 2 

(𝑻𝑻𝑴𝑴𝟐𝟐) is used to obtain a feasible solution in 𝓟𝓟𝟏𝟏 only. Thus, the region 𝓟𝓟𝟏𝟏 is an overlap 

region. Since the initial polyhedron of 𝑻𝑻𝑴𝑴𝟏𝟏 and 𝑻𝑻𝑴𝑴𝟐𝟐 will be shown by a proof in section 

3.2.2 to be convex, 𝓟𝓟𝟏𝟏  is an intersection of two convex polyhedron and thus 𝓟𝓟𝟏𝟏  is 

guaranteed to be convex. However, 𝓟𝓟𝟐𝟐  is the result of the subtraction of a convex 

polyhedron from another convex polyhedron, which cannot guarantee to be convex. 

Therefore, two different strategies need to be applied for overlap region 𝓟𝓟𝟏𝟏 and the non-

convex region 𝓟𝓟𝟐𝟐, respectively. 

ii. Fig. 3.4(b) shows the two different strategies that are applied for  𝓟𝓟𝟏𝟏 and 𝓟𝓟𝟐𝟐. For 𝓟𝓟𝟏𝟏, a 

new constraint 𝑒𝑒3  is added and then the side of this constraint that results in a better 

optimum is identified by the shadow price strategy. In this example, 𝑒𝑒3 is dividing 𝓟𝓟𝟏𝟏 into 

𝓟𝓟𝟑𝟑 and 𝓟𝓟𝟒𝟒, and the superior optimal solution strategy is identified to belong to 𝑻𝑻𝑴𝑴𝟐𝟐 for 

𝓟𝓟𝟑𝟑 and 𝑻𝑻𝑴𝑴𝟏𝟏 to 𝓟𝓟𝟒𝟒. Similarly for 𝓟𝓟𝟐𝟐, one of the edge constraints 𝑒𝑒1 is extended to obtain 

two convex polyhedrons 𝓟𝓟𝟓𝟓 and 𝓟𝓟𝟔𝟔 where both of them belong to Tableau 𝑻𝑻𝑴𝑴𝟏𝟏. 

iii. Fig. 3.4(c) shows that the overlap region and  𝓟𝓟𝟓𝟓 and 𝓟𝓟𝟔𝟔  have been allocated as follows: 

 𝑻𝑻𝑴𝑴𝟐𝟐 = {𝓟𝓟𝟑𝟑}, and 𝑻𝑻𝑴𝑴𝟏𝟏 = {𝓟𝓟𝟒𝟒,𝓟𝓟𝟓𝟓 ,𝓟𝓟𝟔𝟔} 

The theoretical basis and the detailed steps of the procedure outlined above are further described 

in 3.2.2 and 3.2.4. 

(a) (b) (c)  

Figure 3.4 Procedure of the sub-cones generating 
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3.2.2 Map of RHS 

In this section the method for generating the map of regions in the RHS space, each corresponding 

to a tableau, is presented. Using the notation presented in Chapter 2, the standard simplex form of 

an LP problem is as follows: 

𝑚𝑚𝑖𝑖𝑚𝑚 𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔�  (3.17) 

s. t.   

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃  (3.18) 

�
𝒙𝒙
𝒙𝒙𝒔𝒔� ≥ 0,   𝒃𝒃 ≥ 0    

𝒙𝒙𝒔𝒔 = �

𝑥𝑥𝑠𝑠1
𝑥𝑥𝑠𝑠2
⋮

𝑥𝑥𝑠𝑠𝑚𝑚

� = �

𝑥𝑥𝑛𝑛+1
𝑥𝑥𝑛𝑛+2
⋮

𝑥𝑥𝑛𝑛+𝑚𝑚

�  
 (3.19) 

where 𝑰𝑰 is 𝑚𝑚 × 𝑚𝑚 identity matrix, 𝒙𝒙𝒔𝒔 is a column vector of slack variables that is used to obtain 

the augmented form of the problem where inequalities are converted into equalities and 𝒃𝒃 is a 

column vector of 𝑚𝑚 dimensional inequalities. 

Definition 1. An LP sensitivity analysis function where this function mapping is the solution of 

the cost function 𝑍𝑍 is represented as 𝒵𝒵(𝒃𝒃):𝑇𝑇𝑅𝑅 → ℝ, where 𝑇𝑇𝑅𝑅 ⊆ ℝ𝑚𝑚+ is the RHS space of 𝒃𝒃, 

∀𝑏𝑏𝑖𝑖 ∈ ℝ+, 𝑖𝑖 =  1, 2, . . ., 𝑚𝑚. 

The basic solutions of a specific tableau are the solutions of the 𝑚𝑚 equations in (3.18), where 𝑚𝑚 

nonbasic variables 𝒙𝒙𝑵𝑵𝑩𝑩 from the 𝑚𝑚 + 𝑚𝑚 elements of �
𝒙𝒙
𝒙𝒙𝒔𝒔� are eliminated by equating them to zero  

which leaves a set of 𝑚𝑚 equations in 𝑚𝑚 unknowns where the latter are referred to as the basic 

variables. This set of equations that is used to solve the basic variables is represented as follows: 

𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒃𝒃   (3.20) 

where the vector of basic variables  

 𝒙𝒙𝑩𝑩 = �

𝑥𝑥𝐵𝐵1
𝑥𝑥𝐵𝐵2
⋮

𝑥𝑥𝐵𝐵𝑚𝑚

� 

is obtained by eliminating the nonbasic variables from  �
𝒙𝒙
𝒙𝒙𝒔𝒔�, and the basis matrix 
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𝑩𝑩 = �
𝐵𝐵11 ⋯ 𝐵𝐵1𝑚𝑚
⋮ ⋱ ⋮

𝐵𝐵𝑚𝑚1 ⋯ 𝐵𝐵𝑚𝑚𝑚𝑚

�  

is generated by eliminating the coefficients multiplying the nonbasic variables from the matrix 

[𝑨𝑨  𝑰𝑰] . Then, using this standard formulation, the Simplex procedure can be applied as discussed 

in Chapter 2 using the pivoting concept to obtain the basic variables.  After completing the Simplex 

procedure, the inverse matrix 𝑩𝑩−1 of the resulting matrix 𝑩𝑩 is obtained, and the solution for the 

basic variables 𝒙𝒙𝑩𝑩  and the solution 𝑍𝑍  of the cost function is computed as per the following 

equations: 

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1𝒃𝒃   (3.21) 

𝑍𝑍 = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩 = 𝒄𝒄𝑩𝑩𝑩𝑩−1𝒃𝒃  (3.22) 

where, 𝒄𝒄𝑩𝑩 is a vector which elements are the objective function coefficients, including zeros added 

to multiply the slack variables in the objective. 

However, in the presence of uncertainty in b the map from 𝑍𝑍 to 𝑇𝑇𝑅𝑅 given by Definition 1 as 

𝑍𝑍 = 𝒵𝒵(𝒃𝒃) = 𝒄𝒄𝑩𝑩𝒙𝒙𝑩𝑩  (3.23) 

 may result in more than one combination (more than one tableau), i.e. more than one 𝒙𝒙𝑩𝑩 from  

which all possible combination of 𝑿𝑿, i.e. 𝑿𝑿𝒑𝒑, can meet same 𝑍𝑍 at same 𝑇𝑇𝑅𝑅 point, where 𝑿𝑿 = �
𝒙𝒙
𝒙𝒙𝒔𝒔� 

such that �𝑥𝑥𝑖𝑖�𝑥𝑥𝑖𝑖 ∈ 𝒙𝒙𝑵𝑵𝑩𝑩� = 0  and  (𝑥𝑥𝑠𝑠𝑖𝑖|𝑥𝑥𝑠𝑠𝑖𝑖 ∈ 𝒙𝒙𝑵𝑵𝑩𝑩) = 0  (𝑖𝑖  relates  to the number of inequality 

constraint 𝑖𝑖 = 1, … ,𝑚𝑚), 𝑗𝑗 =  1, 2, . . ., 𝑚𝑚, ∀𝑿𝑿 ∈ ℝ(𝑚𝑚+𝑛𝑛)+, ∀𝑋𝑋𝑏𝑏 ∈ ℝ+, 𝑘𝑘 =  1, 2, . . ., 𝑚𝑚 + 𝑚𝑚.  

Definition 2. A matrix generating function 𝒳𝒳(𝒃𝒃):𝑇𝑇𝑅𝑅 → ℝ𝑚𝑚×𝒞𝒞+, where 𝒞𝒞 = 𝐶𝐶𝑚𝑚+𝑛𝑛
𝑚𝑚 , the result of 

this function is a (𝑚𝑚 + 𝑚𝑚) by 𝒞𝒞 matrix which column vectors are in 𝑿𝑿𝒑𝒑 (all the possible solutions)  

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = �

𝒙𝒙
𝒙𝒙𝒔𝒔� . Thus 𝑋𝑋𝑛𝑛𝑛𝑛

𝑝𝑝  is one of the possible solution vector corresponding to a point 𝒃𝒃 in 𝑇𝑇𝑅𝑅, i.e. 

∀𝑋𝑋𝑛𝑛𝑛𝑛
𝑝𝑝 ∈ 𝑿𝑿𝒑𝒑, 𝑚𝑚𝑐𝑐 = 1, 2, … ,𝒞𝒞. 

 Then, the cost corresponding to each possible solution is:  

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  

such that 𝑿𝑿𝒑𝒑 = 𝒳𝒳(𝒃𝒃), and ∀�𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 �𝒳𝒳(𝒃𝒃)� ∈ �𝑍𝑍𝑝𝑝�𝒳𝒳(𝒃𝒃)� 

 
(3.24) 

where 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝑓𝑓𝑇𝑇𝑛𝑛𝑛𝑛([−𝒄𝒄 𝟎𝟎]), i.e. 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝  is the coefficients of the vector [−𝒄𝒄 𝟎𝟎] which multiply 

nonzero 𝑥𝑥 values of a solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 . 
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Definition 3. Any possible solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  obtained for a particular element of 𝒃𝒃  from 𝑇𝑇𝑅𝑅 

corresponds to a certain tableau 𝑇𝑇𝑛𝑛𝑛𝑛, 𝑇𝑇𝑛𝑛𝑛𝑛 ∈ ℝ1×𝑚𝑚, is a row vector which elements describe the 

indices of the nonzero variables (basic variables 𝒙𝒙𝑩𝑩) in the solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 . For instance, if 𝑿𝑿 have 4 

elements, and the 𝒙𝒙𝑩𝑩 of 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  is the first and fourth elements from 𝑿𝑿, then 𝑇𝑇𝑛𝑛𝑛𝑛 = [1 4]. For this 

simple example, 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝  defined in Definition 2 is a row vector that contains the first and fourth 

element of the vector [−𝒄𝒄 𝟎𝟎]  followed by 𝑚𝑚  zeros, i.e. 𝑚𝑚  is the number of slack variables 

(inequality constraints in the problem). 

Additionally, from equation (3.18), we can easily get all possible solutions 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  for 𝓣𝓣 tableau based 

on Definition 3 as follows: 

𝑨𝑨𝒑𝒑𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒃𝒃   (3.25) 

where 𝑨𝑨𝒑𝒑 ∈ ℝ𝑚𝑚×𝑚𝑚 is the square matrix corresponding to 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , such that 𝑨𝑨𝒑𝒑 = 𝑓𝑓𝑇𝑇𝑛𝑛𝑛𝑛([𝑨𝑨 𝑰𝑰]), where 

the square matrix 𝑨𝑨𝒑𝒑 is selected by extracting the number 𝒾𝒾 columns from [𝑨𝑨 𝑰𝑰], where  𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛, 

i.,e by considering only the columns of A that are multiplying basic variables 𝒙𝒙𝑩𝑩 of the solution. 

Theorem 1. Let 𝑇𝑇𝑅𝑅 be the set of all vectors 𝒃𝒃, where 𝒃𝒃 is referred to as a specific point in space 

𝑇𝑇𝑅𝑅, i.e. a particular combination of possible 𝑏𝑏𝑖𝑖 values. Let assume that 𝑨𝑨 and  𝒄𝒄 are constant and 

that the elements in the vector 𝒃𝒃 are linearly independent. For ∀𝒃𝒃 ∈ 𝑇𝑇𝑅𝑅, at least one column vector 

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  of the 𝑿𝑿𝒑𝒑  from 𝒳𝒳(𝒃𝒃), i.e. tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , exist that satisfies the corresponding cost function 

solution 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒵𝒵(𝒃𝒃), i.e. an optimal solution.  

Proof.  Applying Cramer's Rule (Poole, 2014) to equation in (3.25) for a specific type tableau 𝑇𝑇𝑛𝑛𝑛𝑛: 

𝒙𝒙𝑖𝑖 =
det�𝑨𝑨𝒊𝒊

𝒑𝒑�
det(𝑨𝑨𝒑𝒑) 

 
(3.26) 

where 𝒙𝒙𝑖𝑖 is a column vector corresponding to one of the possible optimal solution matrix 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 =

[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ]𝑇𝑇 = ��
𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, 𝑚𝑚𝑐𝑐 = 1, 2, … ,𝒞𝒞, 𝑨𝑨𝒊𝒊
𝒑𝒑 is the matrix formed by replacing the number 𝑖𝑖 

column of 𝑨𝑨𝒑𝒑  by the column vector 𝒃𝒃. Thus, 𝑨𝑨𝒊𝒊
𝒑𝒑  is in terms of 𝑨𝑨𝒑𝒑  and 𝒃𝒃, additionally, 𝑨𝑨𝒑𝒑 =

([𝑨𝑨 𝑰𝑰])𝑇𝑇𝑛𝑛𝑛𝑛  . Since 𝑨𝑨 is constant for a specific tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , then 𝑥𝑥𝑖𝑖  and consequently 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  are 

functions of 𝒃𝒃. This function can be represented as follows: 

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = ℱ𝑛𝑛𝑛𝑛(𝒃𝒃)  (3.27) 
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Meanwhile, Definition 3 indicated that there are at a set of 𝑇𝑇𝑛𝑛𝑛𝑛 in the 𝑇𝑇𝑅𝑅 region where the latter is 

defined in Definition 1. From (3.24) and (3.27), for a specific vector 𝒃𝒃: 

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 ℱ𝑛𝑛𝑛𝑛(𝒃𝒃)  (3.28) 

Thus, there are 𝒞𝒞 potential optimal solution 𝑿𝑿𝒑𝒑 corresponding to 𝒁𝒁𝒑𝒑 in terms of 𝒃𝒃. As the goal of 

an LP program is to find a minimum value of 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝  in 𝒁𝒁𝒑𝒑 then: 

𝒵𝒵(𝒃𝒃) = min
𝓣𝓣

𝒁𝒁𝒑𝒑 

𝓣𝓣 = {𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝒞𝒞},𝒁𝒁𝒑𝒑 = �𝑍𝑍1
𝑝𝑝,𝑍𝑍2

𝑝𝑝, … ,𝑍𝑍𝒞𝒞
𝑝𝑝� 

 
(3.29) 

Thus for ∀𝒃𝒃 ∈ 𝑇𝑇𝑅𝑅, ∃𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 ∈ 𝑿𝑿𝒑𝒑 such that 𝑍𝑍𝑛𝑛𝑛𝑛

𝑝𝑝 = 𝒵𝒵(𝒃𝒃).  □ 

Theorem 1 shows that for an LP problem when the matrix 𝑨𝑨 and vector 𝒄𝒄 are constant, certain 

point 𝒃𝒃 in the space of RHS, i.e. 𝑇𝑇𝑅𝑅 region, would always result in at least one specific tableau 

𝑇𝑇𝑛𝑛𝑛𝑛, where shadows prices 𝑩𝑩−1 and basic solutions 𝒙𝒙𝑩𝑩 can be determined. If there is more than 

one tableau that satisfies the optimal solution 𝒵𝒵(𝒃𝒃) at the same point  𝒃𝒃 of the 𝑇𝑇𝑅𝑅 region, then this 

region is referred as an overlap region 

Remark: it is assumed in this work that a condition where more than one 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  satisfies a same set 

of vectors 𝒃𝒃 as well as 𝑍𝑍 in a corresponding 𝑇𝑇𝑅𝑅 region will not be occurred. If such situation is 

encountered in future studies, the condition should be identified, and procedure should be 

developed to address it.  

Definition 4. The function 𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1, 𝑐𝑐𝑉𝑉𝑚𝑚) = 𝒫𝒫2 + 𝒫𝒫3,  where 𝑐𝑐𝑉𝑉𝑚𝑚 is a constraint that may divide 

a polyhedron 𝒫𝒫1 into two sub-tableaus 𝒫𝒫2 and 𝒫𝒫3. 

Also, 𝒞𝒞𝑉𝑉𝑚𝑚(𝒫𝒫1) are the constraints that bound the polyhedron 𝒫𝒫1.  There is at most only one empty 

polyhedron in {𝒫𝒫2,𝒫𝒫3}, where an empty polyhedron is defined as one for which there is no feasible 

solution for a given set of constraints. The procedure of the function 𝒞𝒞𝒞𝒞𝒞𝒞(𝒫𝒫1, 𝑐𝑐𝑉𝑉𝑚𝑚) :for generating 

sub-tableaus (see Section 3.1.1) is as follows: 

i. Generate another constraint as the negative of the constraint 𝑐𝑐𝑉𝑉𝑚𝑚, i.e. – 𝑐𝑐𝑉𝑉𝑚𝑚. 

ii. Then 𝒫𝒫2 ≜ {𝒞𝒞𝑉𝑉𝑚𝑚(𝒫𝒫1), 𝑐𝑐𝑉𝑉𝑚𝑚}  and 𝒫𝒫3 ≜ {𝒞𝒞𝑉𝑉𝑚𝑚(𝒫𝒫1),−𝑐𝑐𝑉𝑉𝑚𝑚} . If 𝒫𝒫1  is a convex polyhedron, 

then it can be guaranteed that 𝒫𝒫2 and 𝒫𝒫3 are also convex. 
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Figure 3.5 The convex cone 𝓥𝓥 (shown shaded) of set 𝓥𝓥��⃗  

Lemma 1. If a polyhedron is defined by a set of constraints as in (3.30), where 𝜶𝜶 ∈ ℝ1×𝑚𝑚 is a row 

vector with 𝑚𝑚 coefficients, 𝒃𝒃 ∈ ℝ𝑚𝑚×1, then this polyhedron is a convex cone. 

𝜶𝜶𝒃𝒃 ≤ 0  (3.30) 

Proof.  A convex cone 𝓥𝓥 is an affine set space (a space generated by affine vectors 𝒱𝒱�⃗ 𝓀𝓀 that start 

from the origin 𝑶𝑶), which is defined by a set 𝓥𝓥��⃗  of vector 𝒱𝒱�⃗ 𝓀𝓀  (Berger, Pansu, Berry, & Saint-

Raymond, 2013), as what have been shown  in function (3.31) and the shaded pie slice in Fig. 3.5.  

�� 𝜃𝜃𝓀𝓀𝒱𝒱�⃗ 𝓀𝓀
𝓀𝓀=1

� 𝒱𝒱�⃗ 𝓀𝓀 ∈ 𝓥𝓥,𝜃𝜃𝓀𝓀 ≥ 0,𝓀𝓀 = 1,2,3, … � 
 

(3.31) 

If the polyhedron defined by (3.30) is not an affine set space, there must be at least an affine vector 

in 𝑇𝑇𝑅𝑅 passing across a point (𝑏𝑏𝑜𝑜𝑛𝑛) on the constraint and crossing through a point either inside (𝑏𝑏𝑖𝑖𝑛𝑛) 

or outside (𝑏𝑏𝑜𝑜𝑢𝑢𝑎𝑎) of the polyhedron 𝒫𝒫. Let assume the vector 𝑏𝑏𝑜𝑜𝑛𝑛������⃗  defined by 𝑏𝑏𝑜𝑜𝑛𝑛 and the vector 

𝑏𝑏𝚤𝚤𝑛𝑛�����⃗  defined by 𝑏𝑏𝑖𝑖𝑛𝑛 are collinear with each other, then is ∃𝜆𝜆 ∈ ℝ, such that: 

𝑏𝑏𝑜𝑜𝑛𝑛������⃗ = 𝜆𝜆𝑏𝑏𝚤𝚤𝑛𝑛�����⃗   (3.32) 

Since 𝑏𝑏𝑜𝑜𝑛𝑛 is on the constraints (3.30), then vector  𝑏𝑏𝑜𝑜𝑛𝑛������⃗  must satisfies:  

𝜶𝜶𝑏𝑏𝑜𝑜𝑛𝑛������⃗ = 0  (3.33) 

𝑏𝑏𝑖𝑖𝑛𝑛 

𝑏𝑏𝑜𝑜𝑛𝑛 

𝑏𝑏𝑜𝑜𝑢𝑢𝑎𝑎 

𝓥𝓥 

𝓥𝓥��⃗  
𝜃𝜃𝓀𝓀𝒱𝒱�⃗ 𝓀𝓀 

𝑶𝑶 
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Substituting (3.32) into (3.33), then 𝜆𝜆𝜶𝜶𝑏𝑏𝚤𝚤𝑛𝑛�����⃗ = 0 ⇒ 𝜶𝜶𝑏𝑏𝚤𝚤𝑛𝑛�����⃗ = 0.Thus, the point 𝑏𝑏𝑖𝑖𝑛𝑛  is also on the 

boundary of the polyhedron, which contradicts the definition of 𝑏𝑏𝑖𝑖𝑛𝑛 that was assumed to be a point 

within 𝒫𝒫. So, there is no affine vector across 𝒫𝒫, all vector 𝒱𝒱�⃗ 𝓀𝓀 would be either inside or outside of 

this cone. Therefore, the polyhedron 𝒫𝒫 bounded by the constraints in (3.30) is a convex cone. □ 

The following theorem is given to provide a theoretical basis for the generation of the map of 

tableaus 𝑇𝑇𝑛𝑛𝑛𝑛 in 𝑇𝑇𝑅𝑅.  

Theorem 2. Let 𝑇𝑇𝑅𝑅 be the set of all vectors 𝒃𝒃, where 𝒃𝒃 is referred to as an explicit point in RHS 

space 𝑇𝑇𝑅𝑅 . Let assume that 𝑨𝑨  and 𝒄𝒄  have constant elements and the elements in vector 𝒃𝒃  are 

linearly independent. For ∀𝒃𝒃 ∈ 𝑇𝑇𝑅𝑅, the distribution region of each  𝑇𝑇𝑛𝑛𝑛𝑛, i.e. 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛, is a polyhedral 

region that can be described as a set of convex cones 𝐶𝐶𝐶𝐶 and the pointwise supreme of this set is 

also convex.  

Proof.  As discussed for equation (3.28), for a specific tableau 𝑇𝑇𝑛𝑛𝑛𝑛 , a corresponding solution 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  

is a function of 𝒃𝒃. Then using (3.27), the function ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) is given as follows:  

ℱ𝑛𝑛𝑛𝑛(𝒃𝒃) = 𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 

𝜶𝜶𝒄𝒄𝒄𝒄 = �
𝛼𝛼11 ⋯ 𝛼𝛼1𝑚𝑚
⋮ ⋱ ⋮

𝛼𝛼𝑚𝑚1 ⋯ 𝛼𝛼𝑚𝑚𝑚𝑚

�  

 

(3.34) 

where 𝜶𝜶𝒄𝒄𝒄𝒄 is a set of coefficients corresponding to the tableau  𝑇𝑇𝑛𝑛𝑛𝑛. Since, 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 =  𝜶𝜶𝒃𝒃, then for 

each 𝑥𝑥𝑖𝑖 from 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 : 

𝑥𝑥𝑖𝑖 = 𝜶𝜶𝒊𝒊𝒃𝒃  (3.35) 

where 𝜶𝜶𝒊𝒊 is the 𝑖𝑖-th row vector from 𝜶𝜶𝒄𝒄𝒄𝒄, where each of the elements in 𝜶𝜶𝒊𝒊 can be calculated with 

Cramer’s rule as follows: 

(𝜶𝜶𝒊𝒊)𝒊𝒊 =
𝜕𝜕 �

det�𝑨𝑨𝒊𝒊
𝒑𝒑�

det(𝑨𝑨𝒑𝒑)�

𝜕𝜕𝑏𝑏𝑖𝑖
�

 

 
(3.36) 

Since  𝒙𝒙𝑩𝑩 > 𝟎𝟎, then ∀𝑋𝑋𝑖𝑖 ≥ 0, from (3.36), then a subset of the constraints of the 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛,  defined 

as𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ , are given as follows: 

−𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤ 0  (3.37) 

By substitute (3.34) into (3.28), 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝  of  𝑇𝑇𝑛𝑛𝑛𝑛 is obtained: 
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𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃  (3.38) 

Additionally, though many regions in 𝑇𝑇𝑅𝑅 with different 𝑇𝑇𝑛𝑛𝑛𝑛 are distinguished from each other by 

using (3.37), there still occur considerable overlap between regions. To avoid the consideration of 

regions more than once due to overlap, constraints are used that can explicitly divide the 

overlapping region into subset, and allocate each of these subsets to a one 𝑇𝑇𝑛𝑛𝑛𝑛 . These additional 

constraints that are needed to separate the overlapping regions are based on (3.28). Accordingly, 

the additional constraint/s are added so as to obtain the minimum 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝  possible among all  possible 

𝑇𝑇𝑛𝑛𝑛𝑛, i.e. 𝑇𝑇𝑖𝑖𝑛𝑛 ,𝑖𝑖𝑐𝑐 = 1,2, … ,𝒞𝒞; 𝑖𝑖𝑐𝑐 ≠ 𝑚𝑚𝑐𝑐, in each overlap region, where the overlap region is defined 

as 𝑂𝑂𝑇𝑇𝑖𝑖𝑛𝑛=𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ , the symbol ∗ means that this polyhedron has not been divided yet or tested 

yet for all possible overlaps after computing constrains in (3.37). The set of all 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗  is referred as: 

 𝓣𝓣𝒊𝒊𝒄𝒄 = {𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ |𝑖𝑖𝑐𝑐 = 1,2, … ,𝒞𝒞; 𝑖𝑖𝑐𝑐 ≠ 𝑚𝑚𝑐𝑐}  

and the set of other 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝  in terms of 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗  is referred as �𝑍𝑍𝑖𝑖𝑛𝑛

𝑝𝑝 |𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ � , thus the new necessary 

constraints that are used to separate one tableau from another tableau is emerging as follows: 

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 ≤  �𝑍𝑍𝑖𝑖𝑛𝑛

𝑝𝑝 |𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ �  (3.39) 

By substituting (3.38) in to (3.39) for only one constraint in (3.39): 

𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤  𝒄𝒄𝑖𝑖𝑛𝑛

𝑝𝑝 𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃  (3.40) 

Or: 

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄 − 𝒄𝒄𝑖𝑖𝑛𝑛

𝑝𝑝 𝜶𝜶𝒊𝒊𝒄𝒄�𝒃𝒃 ≤ 0  (3.41) 

Thus, the use of constraints (3.41) results in a region to be divided into two sub-regions, where 

one sub-region is defined as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,1 where (3.41) which constraints are as follows,  

−𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤ 0 

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄 − 𝒄𝒄𝑖𝑖𝑛𝑛

𝑝𝑝 𝜶𝜶𝒊𝒊𝒄𝒄�𝒃𝒃 ≤ 0 

−𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃 ≤ 0 

 

(3.42) 

From (3.42), it is evident that all constraints can be converted into the following form: 

𝜶𝜶𝒃𝒃 ≤ 0  (3.43) 

where 𝜶𝜶 ∈ ℝ1×𝑚𝑚 , 𝒃𝒃 ∈ ℝ𝑚𝑚×1 . Based on the discussion in Lemma 1, the polyhedron that is 

generated by constraint of the form of (3.43) is a convex cone.  
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Hence, the resulting 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗  from the division of overlap regions is also a convex cone. And 𝑂𝑂𝑇𝑇𝑖𝑖𝑛𝑛 

(𝑂𝑂𝑇𝑇𝑖𝑖𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ ) is also convex cone since it is the intersection of two convex cones.  

However, another region defined by 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗2 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗ − 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ , it is not necessarily convex, since it 

is generated by the subtraction of one convex polyhedron from another convex polyhedron. Then, 

as explained in an earlier section, the region resulting from the subtraction of two convex 

polyhedrons, must be further divided into smaller convex sub-regions (sub-tableaus): 

 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑏𝑏𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,2,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,3, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,(𝑚𝑚+1), 𝑘𝑘𝑚𝑚 = 2,3, … ,𝑚𝑚 + 1 

by cutting off 𝑚𝑚 times the region to be divided with one of the constrains given by (𝜶𝜶𝒊𝒊𝒄𝒄)𝑖𝑖𝒃𝒃 ≤ 0 

where each of these constraints is used only one time.   The division of the non-convex region into 

convex sub-regions is done by using the 𝒞𝒞𝒞𝒞𝒞𝒞 function given in definition 4: 

𝒞𝒞𝒞𝒞𝒞𝒞�𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗𝑏𝑏𝑚𝑚, (𝜶𝜶𝒊𝒊𝒄𝒄)𝑖𝑖𝒃𝒃 ≤ 0� = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,𝑏𝑏𝑚𝑚 + 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,∗(𝑏𝑏𝑚𝑚+1)  (3.44) 

where 𝑖𝑖 = 𝑘𝑘𝑚𝑚 − 1. After completing this division process, the constraints that describe any one of 

the resulting convex cones from 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑏𝑏𝑚𝑚 are given as follows: 

−𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤ 0 

𝝆𝝆𝒌𝒌𝒎𝒎 ⋅ (𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃) ≤ 0 

 
(3.45) 

where 𝝆𝝆𝒌𝒌𝒎𝒎 is the (𝑘𝑘𝑚𝑚 − 1)th column vector from 𝝆𝝆, which is an 𝑚𝑚 × 𝑚𝑚 upper triangular matrix: 

𝝆𝝆𝒌𝒌𝒎𝒎 = (𝝆𝝆)𝑏𝑏𝑚𝑚−1, 𝝆𝝆 = �
1 −𝟏𝟏

⋱
𝟎𝟎 1

� 
 

(3.46) 

Hence (3.47) implies that all the constraints for any  𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,𝑏𝑏𝑚𝑚, i.e. 𝑐𝑐𝑉𝑉𝑚𝑚�𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,𝑏𝑏𝑚𝑚�, define a set of 

convex hulls. Then, using the constraints in (3.40) defined as  𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2−1, the resulting set of sub-

regions (sub-tableaus) is obtained as  𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗𝟐𝟐 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗2,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗2,(𝑚𝑚+1)�. Thus, for each step 

of the division of a non-convex region into convex sub-regions  at most (𝑚𝑚 + 1) convex cones are 

allocated  to corresponding sub-tableaus 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈, 𝓇𝓇 = 1,2, … ,𝒞𝒞 − 1, 𝓈𝓈 = 1,2, … , (𝑚𝑚 + 1)𝓇𝓇.  

The procedure of dividing each overlap region and generating new region of sub-tableaus  𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈 

in the 𝓇𝓇-th steps of procedure 𝚷𝚷 is summarized in Table 3.1: 

a) Select basic tableau region 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗  in 𝓣𝓣𝒊𝒊𝒄𝒄 that have not been used to divide and generate new 
regions of sub-tableaus. 
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b) Manipulating inner iteration (step i. to step ii) for (𝑚𝑚 + 1)𝓇𝓇 times:  

i. Select one of the sub-tableaus 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈 that generated from former 𝓇𝓇-th steps 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝓇𝓇 and have 

not been used to test overlap region in step b). 

ii. Calculate 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗(𝓇𝓇+1),(𝓈𝓈∗2) = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗𝓇𝓇,𝓈𝓈 ∩ 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ , which generate one new convex cone region of 
sub-tableau, and 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),𝓈𝓈 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗𝓇𝓇,𝓈𝓈 − 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛∗ , which generate 𝑚𝑚 new convex cones region 

of sub-tableau. 

c) Let 𝓇𝓇 = 𝓇𝓇 + 1. Then, the set of tasting tableaus in next iteration 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗𝓻𝓻 = 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄
∗(𝓻𝓻+𝟏𝟏) 

d) Loop step a) to step c), for 𝒞𝒞 − 1 times, then let 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻 = 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄
∗(𝓻𝓻+𝟏𝟏). 

Table 3.1 Whole procedure of procedure 𝚷𝚷 

After applying one iteration from step a) to step c) of procedure 𝚷𝚷  (Table 1.) on 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗𝓻𝓻, a new set 

of sub-tableaus is obtained as follows: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄
∗(𝓻𝓻+𝟏𝟏) = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
∗(𝓇𝓇+1),2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

∗(𝓇𝓇+1),(𝑚𝑚+1)(𝓇𝓇+1)
�  (3.47) 

Continuing iteration, the resulting set of sub-tableaus after 𝓇𝓇 steps of the 𝚷𝚷 procedure is referred 

as: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝓇𝓇,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,(𝑚𝑚+1)𝓇𝓇�  (3.48) 

Thus, the constraints that define each element in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻 , i.e. 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈, are of the following form: 

−𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤ 0 

�

𝜦𝜦1 ∙ 𝜞𝜞1
𝜦𝜦2 ∙ 𝜞𝜞2

⋮
𝜦𝜦𝒞𝒞−1 ∙ 𝜞𝜞𝒞𝒞−1

� ≤ 0,  

 

(3.49) 

where: 

𝚲𝚲𝓇𝓇 = �
0
0
1
� or �

1
1
0
�, 𝜞𝜞𝓇𝓇 = �

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄 − 𝒄𝒄𝑖𝑖𝑛𝑛

𝑝𝑝 𝜶𝜶𝒊𝒊𝒄𝒄�𝒃𝒃
−𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃

𝝆𝝆𝒌𝒌𝒎𝒎 ∙ (𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃)
�, 𝑖𝑖𝑐𝑐 = 𝓇𝓇,and 𝝆𝝆𝒌𝒌𝒎𝒎 is the function with element as in 

(3.46). It is evident that all the constraints in each 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈  are of the form (3.31) and thus, the 

polyhedron that 𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,𝓈𝓈) defines is a convex cone as per Lemma 1. 

Additionally, although  𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻  cannot be guaranteed to be convex, the pointwise maximum and 

minimum of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻  is convex. Since if 𝑓𝑓1 and 𝑓𝑓2 are convex, then pointwise maximum 𝑓𝑓, which is 
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defined by 𝑓𝑓(𝑥𝑥) = max{𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥)}, is also convex (Stephen Boyd & Vandenberghe, 2004). 

That is: 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓻𝓻 = max �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝓇𝓇,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝓇𝓇,(𝑚𝑚+1)𝓇𝓇� is convex. □ 

Remark: Although this proof is based on a generic nonnegative orthant, i.e. 𝒃𝒃 ≥ 𝟎𝟎, Theorem 2 is 

still valid in each single orthant of the real number RHS space. 

A map of RHS space can be generated by Theorem 2. In this map, the RHS space can be divided 

into different set of convex cones, which correspond to different tableaus.  

The following section discusses an additional approach for generating an RHS map based on the 

100 percent rule. 

3.2.3 100 Percent Rule: Theory and Limitations 

As discussed in Chapter 2, the 100 Percent Rule is based on formula (2.16). Based on the 100% 

rule for a specific tableau, the feasible range of change of each 𝑏𝑏𝑖𝑖 can be computed by using the  

𝑩𝑩−1 that is obtained in (2.16). The 100 Percent Rule states than when the sum of the percentage 

changes of all 𝑏𝑏𝑖𝑖 is smaller than 1 (100%) the solution of the LP can be calculated with the current 

tableau. Thus, this method is generally used for analyzing the effect of simultaneous changes in 

RHS space. However, this rule is only providing a necessary condition but not sufficient one since 

it cannot provide a conclusive statement about the tableau if the sum does exceed 100 percent.  

In this section, a method is proposed that can approximates the allowable feasibility region of 𝑏𝑏𝑖𝑖 

for each tableau based on the 100 Percent Rule. In this case the allowable feasibility region refers 

to the maximal range of simultaneous changes in parameters that are allowed for the LP to be 

solved by the same tableau. In this sense, the proposed method will expand upon the original 100% 

by approximating the entire region of feasibility rather than the limited region provided by the 

necessary but not sufficient 100% rule.  

The argument and description of the original 100 Percent Rule on RHS was introduced in (Bradley, 

Hax, & Magnanti, 1977), where the Rule is formulated as: 

�
∆𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

≤ 1 
 

(3.50) 

where ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the calculated feasible range of 𝑏𝑏𝑖𝑖 when only one of the 𝑏𝑏𝑖𝑖 are allowed to change. 

For the application of the rule it is required that ∆𝑏𝑏𝑖𝑖 and ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 must have the same sign. Thus, 
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the 100 Percent Rule is actually generating a convex hull in the RHS space where the feasible 

solution is stable, i.e. it is obtained with the same tableau, with respect to changes of ∆𝑏𝑏𝑖𝑖. Then, 

this convex hull can be calculated a series of simplexes around the normal (nominal) point 𝒃𝒃�.  

Proof. To proof the mentioned property within a simple process, the changes in 𝑏𝑏𝑖𝑖 are defined in 

terms of deviations with respect to the normal point 𝒃𝒃� where the latter is moved to the origin. Thus, 

in each orthant the signs of each coefficients in  𝒃𝒃� are constant. In any one of the orthant, the 

∆𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙 defines a set of 𝑚𝑚 points along the axes as: 

𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑰𝑰 ∆𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙  (3.51) 

Each of these points is represented by row vector in 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 and it is referred as 𝓹𝓹𝒊𝒊. Then, a simplex 

𝑪𝑪𝒄𝒄𝒄𝒄𝑪𝑪𝒔𝒔  (convex hull) in this orthant is generated along with the original point 𝑶𝑶. 

𝑪𝑪𝒄𝒄𝒄𝒄𝑪𝑪𝒔𝒔 = �𝜃𝜃𝑜𝑜𝑶𝑶 + �𝜃𝜃𝑖𝑖𝓹𝓹𝒊𝒊

𝑚𝑚

𝑖𝑖=1

� 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 = 1� 
 

(3.52) 

where 𝜃𝜃 ∈ ℝ(𝑚𝑚+1)×1, 𝜃𝜃𝑖𝑖 is the fraction of point 𝓹𝓹𝒊𝒊 in the mixture convex combination of the points 

𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔. Since 𝜃𝜃𝑜𝑜𝑶𝑶 = 0, and 0 ≤ 𝜃𝜃𝑜𝑜 ≤ 1, (3.52) can be converted into: 

𝑪𝑪𝒄𝒄𝒄𝒄𝑪𝑪𝒔𝒔 = ��𝜃𝜃𝑖𝑖𝓹𝓹𝒊𝒊

𝑚𝑚

𝑖𝑖=1

� 𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1� 
 

(3.53) 

where 𝜃𝜃 ∈ ℝ𝑚𝑚×1, (3.51) is a set of the points that within the simplex generated region. Substitute 

(3.51) into one point 𝒃𝒃 of (3.53): 

𝒃𝒃 = 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔𝜃𝜃     𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1  (3.54) 

Pre-multiply (3.54) with 𝓹𝓹𝑠𝑠𝑒𝑒𝑎𝑎
−1 ,then: 

(𝑰𝑰 ∆𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙)−𝟏𝟏𝒃𝒃 = 𝓹𝓹𝑠𝑠𝑒𝑒𝑎𝑎
−1 𝒃𝒃 = 𝜃𝜃    𝜃𝜃 ≥ 0, 1𝑇𝑇𝜃𝜃 ≤ 1  (3.55) 

multiply (3.55) with 1𝑇𝑇,then: 

�
𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

= �𝜃𝜃𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 1𝑇𝑇𝜃𝜃 ≤ 1 
 

(3.56) 

Since 𝒃𝒃� has already been moved to the origin 𝑶𝑶, ∆𝒃𝒃 = 𝒃𝒃, substitute it into (3.56): 

�
∆𝑏𝑏𝑖𝑖

∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑖𝑖=1

= �𝜃𝜃𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1 
 

(3.57) 
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It is obvious from (3.57) that there is an equivalence between the definition of the orthant simplex 

in (3.52) and the 100 Percent Rule based region in the corresponding orthant as in (3.50). Thus, 

the simplex generated in each orthant by using the points 𝓹𝓹𝒔𝒔𝒔𝒔𝒔𝒔 defined with 100 Percent Rule with 

respect to the nominal point 𝒃𝒃� is actually the region of feasibility, i.e. solution is obtained with 

same tableau, when simultaneous changes in RHS space. Since all adjacent simplexes in this 

condition are sharing common vertices, the regions obtained from each single application of the 

100 % rule can be joined (connected) together to form bigger regions of feasibility of the tableau. 

Thus, the convex hull generated by all these points 𝓹𝓹 will also consist of simplexes. If a region is 

defined by the 100 Percent Rule, then this region is a convex polyhedron which belongs to a certain 

tableau. A conservative polyhedron that satisfied the 100 Percent Rule can be obtained by applying 

convhulln in MATLAB to generate a convex hull around the extreme vertices. □ 

Based on the previous discussion, the procedure of the 100 percent rule based method, which is 

referred heretofore as 100 Based Hull Method here, is as follows: 

i. Select a point 𝒃𝒃� from the RHS space (𝑇𝑇𝑅𝑅), calculate the 𝒙𝒙𝑩𝑩 and 𝑩𝑩−1 by using the Simplex 

method for Linear Programing (LP) Problem (The procedure of the Simplex algorithm was 

introduced in Section 2.4.1). 

ii. Computing the maximal feasible range of 𝑏𝑏𝑖𝑖 when only one of the 𝑏𝑏𝑖𝑖 is allowed to change, 

i.e. ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, by using the formula that obtained from (2.16) such that 𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎, which is:  

𝒙𝒙𝑩𝑩 = 𝑩𝑩−1�𝒃𝒃� + ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� 

𝑠𝑠. 𝑡𝑡. 

𝒙𝒙𝑩𝑩 ≥ 𝟎𝟎 

 

(3.58) 

iii. From (3.53), a series of allowable range of ∆𝑏𝑏𝑖𝑖  are obtained, i.e. ∆b𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 . Generating a 

matrix of corresponding point from ∆𝒃𝒃, by apply the range of ∆𝒃𝒃 on 𝒃𝒃�, which is referred 

as: 

𝓹𝓹 = �
𝓅𝓅11 𝓅𝓅12
⋮ ⋮

𝓅𝓅𝑚𝑚1 𝓅𝓅𝑚𝑚2

� 
 

(3.59) 

where 𝓅𝓅𝑖𝑖1 = 𝒃𝒃� + (∆𝑏𝑏𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛 and 𝓅𝓅𝑖𝑖2 = 𝒃𝒃� + (∆𝑏𝑏𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚. 

iv. Applying convhulln in MATLAB to generate a convex polyhedron around the extreme 

vertices 𝓹𝓹  as well as 𝒃𝒃� , an expression of each plane of this polyhedron also can be 
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obtained. This convex hull is a conservative set in a region of a specific tableau where the 

same tableau can still be used to obtain the LP solutions. 

To illustrate the method a simple example is shown as follows.  

An LP problem with 2 inequalities is defined as follows: 

𝑚𝑚𝑎𝑎𝑥𝑥  𝑍𝑍 = 𝒄𝒄𝒙𝒙 
s. t. 

𝑨𝑨𝒙𝒙 ≤ 𝒃𝒃 

𝑨𝑨 = �1 2
3 2� , 𝒄𝒄 = [3 5], 𝒃𝒃 = �𝑏𝑏1𝑏𝑏2

� ≥ 0, 𝒙𝒙 = �
𝑥𝑥1
𝑥𝑥2� ≥ 0  

 

(3.60) 

Convert (3.57) into a standard initial tableau form as follows: 

𝑚𝑚𝑖𝑖𝑚𝑚  𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔� 

s. t. 

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃 

𝑰𝑰 = �1 0
0 1� ,   𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4� ≥ 0 

 (3.61) 

Equations (3.62), also illustrated in Fig. 3.6, indicate that there are 3 different regions in the RHS 

that belongs to different tableaus and the edges 𝒔𝒔 of each tableau regions, i.e. 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 as per the 

notation used in the previous section, are marked as two dot lines 𝑒𝑒1 and 𝑒𝑒2. The sub-indexes 10, 

11, and 01 in 𝒄𝒄𝒄𝒄 of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 are used to denote the 3 different regions for which either 𝑥𝑥1, {𝑥𝑥1, 𝑥𝑥2}, 

and 𝑥𝑥2 are basic variables in each 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄, respectively. It should be noticed that the regions 𝑻𝑻𝑴𝑴 as 

well as edges 𝒔𝒔 are generated by using the method proposed in section 3.2.4 and 3.3.  

𝑒𝑒1 = {3𝑏𝑏1 − 𝑏𝑏2 = 0|𝒃𝒃 ≥ 0} 

𝑒𝑒2 = {𝑏𝑏1 − 𝑏𝑏2 = 0|𝒃𝒃 ≥ 0} 
 (3.62) 

Now apply the proposed 100% Based Hull Method, the first initial point is 𝒃𝒃�𝟏𝟏 = (12,9). After 

applying the Simplex Algorithm for this point, the final tableau is shown as: 

� 𝑨𝑨∗ 𝑹𝑹∗ 𝒃𝒃∗
𝒛𝒛∗ − 𝒄𝒄 𝒚𝒚∗ 𝑧𝑧∗� = �

−2 0 1 −1 3
1.5 1 0 0.5 4.5
4.5 0 0 2.5 22.5

�  (3.63) 

The detailed description of the Simplex Algorithm as well as the parameters in final tableau as in 

(3.63) is given elsewhere (Hillier, 2001). From the final tableau (3.60), the 𝑩𝑩−1 is given by: 
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𝑩𝑩−1 = 𝑹𝑹∗ = �1 −1
0 0.5� 

A series of inequalities can be obtained by using (3.58) (step ii of the 100 Based Hull Method 

above). 

𝑩𝑩−1�𝒃𝒃� + ∆𝑏𝑏1� = �1 −1
0 0.5� �

12 + ∆𝑏𝑏1
9 � ≥ 0 

𝑩𝑩−1�𝒃𝒃� + ∆𝑏𝑏2� = �1 −1
0 0.5� �

12
9 + ∆𝑏𝑏2

� ≥ 0 

 

(3.64) 

Then, obtaining the range of each ∆𝑏𝑏𝑖𝑖 by computing (3.64) and the results are as following: 

−3 ≤ ∆𝑏𝑏1 

−9 ≤ ∆𝑏𝑏2 ≤ 3 

 
(3.65) 

By substitute (3.65) into (3.59) in step iii. a series of points will be generated as (since (∆𝑏𝑏1)𝑚𝑚𝑚𝑚𝑚𝑚 

does not exist the point 𝓅𝓅12 will be eliminated): 

𝓅𝓅11 = (9,9), 𝓅𝓅21 = (12,0), 𝓅𝓅22 = (12,12)  (3.66) 

Then a convex hull 𝓟𝓟𝟏𝟏  can be generated around �𝒃𝒃�𝟏𝟏,𝓅𝓅11,𝓅𝓅21,𝓅𝓅22�  by using convhulln in 

MATLAB, and the edge of this polyhedron can also be obtained as the bold line around  𝒃𝒃�𝟏𝟏in Fig. 

3.6. 

Following the same procedure, another conservative polyhedron 𝓟𝓟𝟐𝟐 in tableau range 𝑻𝑻𝑴𝑴𝟏𝟏𝟏𝟏 can 

also be obtained by applying  𝒃𝒃�𝟏𝟏 = (6,8) into 100 Based Hull Method and the set of 𝓅𝓅 is: 

𝓅𝓅11 = (2.67,8), 𝓅𝓅12 = (8,8), 𝓅𝓅21 = (6,6), 𝓅𝓅22 = (6,18)  (3.67) 

And the edge of polyhedron 𝓟𝓟𝟐𝟐 is also marked as the bold line around  𝒃𝒃�𝟐𝟐 in Fig. 3.6. 

The limitations of 100 % Based Hull Method are obvious for this example as shown in Fig. 3.6 

since it can only provide a necessary condition but not sufficient. Hence, it cannot give an explicit 

judgement if the sum does exceed 100 percent. Thus, uncertainty propagation cannot be efficiently 

accomplished by using this single algorithm only as compared to the algorithm presented in section 

3.2.1. It is worth noticing that while in 2 dimensional cases, i.e. 2 inequalities as in the example 

discussed here this method can generate some edges of the conservative polyhedrons that can cover 

the edges of the corresponding tableaus, such as the line generated by 𝓅𝓅11 and 𝓅𝓅22 is equal to 𝑒𝑒2, 

in higher dimensions of the RHS space this method is found to be very inefficient. 
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Figure 3.6 An example of RHS space by using 100 Based Hull Method 

3.2.4 Convex Cone Method 

Based on the discussion in 3.2.2, the main purpose of the RHS map generation algorithm is to find 

a set 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 where all of the convex cones 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝓇𝓇  belongs to a specified tableau. However, in 3.2.3, 

the 100 Based Hull Method has been shown to be incapable of providing a complete description 

of the tableau distribution in RHS map in finite time. Therefore, an approach that addresses the 

limitations of 100 Based Hull Method is proposed in this section. 

Since this method is based on the segmentation and allocation of the convex cones in RHS space, 

this method will be referred heretofore in this thesis as Convex Cone Method (CCM).  The key 

ideas and basic procedures of CCM algorithm have already presented in 3.2.1 and 3.2.2, such as 

the dividing process of overlap regions in Fig. 3.4. Thus, this algorithm will be described with the 

same symbols and defined functions which have been introduced in the previous sections: 

i. Compute a set 𝓣𝓣 where consist all possible 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 ’s combinations of tableaus 𝑇𝑇𝑛𝑛𝑛𝑛 by using 

function 𝑓𝑓𝑛𝑛𝑛𝑛𝑏𝑏, 𝑚𝑚𝑐𝑐 = 1, 2, … ,𝒞𝒞, 𝒞𝒞 = 𝐶𝐶𝑚𝑚+𝑛𝑛
𝑚𝑚 . This function can be formulated as following 

form: 

𝑇𝑇𝑛𝑛𝑛𝑛 = (𝓣𝓣)𝑛𝑛𝑛𝑛 = �𝑓𝑓𝑛𝑛𝑛𝑛𝑏𝑏(𝑚𝑚,𝒌𝒌)�
𝑛𝑛𝑛𝑛

  (3.68) 

𝑒𝑒1 𝑒𝑒2 
𝑻𝑻𝑴𝑴𝟏𝟏𝟎𝟎 

𝑻𝑻𝑴𝑴𝟏𝟏𝟏𝟏 

𝑻𝑻𝑴𝑴𝟎𝟎𝟏𝟏 

𝑏𝑏1 

𝑏𝑏2 

𝑶𝑶 

𝒃𝒃�𝟏𝟏 
𝒃𝒃�𝟐𝟐 

𝓅𝓅11 
𝓅𝓅22 

𝓅𝓅21 

𝓟𝓟𝟏𝟏 

𝓟𝓟𝟐𝟐 
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where 𝑓𝑓𝑛𝑛𝑛𝑛𝑏𝑏 is a function that can generate a set 𝓣𝓣  where consists all of the possible 

combinations (𝑇𝑇𝑛𝑛𝑛𝑛 ) by choosing 𝑚𝑚 elements from vector 𝒌𝒌, 𝒌𝒌 = 1,2, … , (𝑚𝑚 + 𝑚𝑚). This 

function can be accomplished by applying the function nchoosek in MATLAB. 

ii. Calculate the basic solution vector  𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  corresponding to each 𝑇𝑇𝑛𝑛𝑛𝑛  by using 𝒙𝒙𝑛𝑛𝑛𝑛

𝑝𝑝 =

��
𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, where 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  is the number 𝒾𝒾 element from  �

𝒙𝒙
𝒙𝒙𝒔𝒔�, where  𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛. 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 ∈ ℝ𝑚𝑚×𝑚𝑚 is 

the square matrix corresponding to 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , such that 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 = ([𝑨𝑨 𝑰𝑰])𝑇𝑇𝑛𝑛𝑛𝑛, where the subscript 

𝑇𝑇𝑛𝑛𝑛𝑛  indicates the number 𝒾𝒾 columns from [𝑨𝑨 𝑰𝑰], where  𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛 . 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 = ([−𝒄𝒄 𝟎𝟎])𝑇𝑇𝑛𝑛𝑛𝑛 , 

where the subscript 𝑇𝑇𝑛𝑛𝑛𝑛 indicates the number 𝒾𝒾 element from  [−𝒄𝒄 𝟎𝟎], where  𝒾𝒾 ∈ 𝑇𝑇𝑛𝑛𝑛𝑛.  

iii. Obtain each element 𝑥𝑥𝑖𝑖  of the solution vector 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝  with respects to 𝒃𝒃  by using (3.26) 

(Cramer’s rule).  

𝑥𝑥𝑖𝑖 =
det�𝑨𝑨𝒄𝒄𝒄𝒄,𝒊𝒊

𝒑𝒑 �
det�𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝 �
 

 
(3.26) 

where 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ]𝑇𝑇 = ��

𝒙𝒙
𝒙𝒙𝒔𝒔��𝑇𝑇𝑛𝑛𝑛𝑛

, 𝑨𝑨𝒄𝒄𝒄𝒄,𝒊𝒊
𝒑𝒑  is the matrix formed by replacing the 

number 𝑖𝑖 column of 𝑨𝑨𝑛𝑛𝑛𝑛
𝑝𝑝  by the column vector 𝒃𝒃. Thus, 𝑨𝑨𝒄𝒄𝒄𝒄,𝒊𝒊

𝒑𝒑  is a function of 𝑨𝑨𝑛𝑛𝑛𝑛
𝑝𝑝  and 𝒃𝒃. 

Then the matrix 𝜶𝜶𝒄𝒄𝒄𝒄 is defined as follows: 

𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 =  𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 

𝜶𝜶𝒄𝒄𝒄𝒄 = �
𝛼𝛼11 ⋯ 𝛼𝛼1𝑚𝑚
⋮ ⋱ ⋮

𝛼𝛼𝑚𝑚1 ⋯ 𝛼𝛼𝑚𝑚𝑚𝑚

� =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏2

⋯
𝜕𝜕𝑥𝑥1
𝜕𝜕𝑏𝑏𝑚𝑚

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏2

⋯
𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝑏𝑏𝑚𝑚⎦

⎥
⎥
⎥
⎤

 

 

(3.69) 

Since 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 =  𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃, and 𝒙𝒙𝑛𝑛𝑛𝑛

𝑝𝑝 ≥ 0, the possible edges of tableau 𝑇𝑇𝑛𝑛𝑛𝑛 can be described as in 

(3.37). 

−𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 ≤ 0  (3.37) 

Meanwhile the cost function of 𝑇𝑇𝑛𝑛𝑛𝑛 is represent as in (3.38). 

𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃  (3.38) 
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From this step polynomial expression of edges and cost function with respect to 𝒃𝒃 for every 

𝑇𝑇𝑛𝑛𝑛𝑛 in 𝓣𝓣 are obtained. The region in defined by (3.37) is referred as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛0 , and the resulting 

polyhedrons are convex cones (the proof of this is in 3.2.2). 

iv. Select tableau 𝑇𝑇𝑛𝑛𝑛𝑛 from 𝓣𝓣, where the set of remaining tableaus are referred to as 𝓣𝓣𝒊𝒊𝒄𝒄, 𝑖𝑖𝑐𝑐 =

1,2, … ,𝒞𝒞; 𝑖𝑖𝑐𝑐 ≠ 𝑚𝑚𝑐𝑐. At this stage if there are tableaus for which is known a priori that they 

cannot be possible in the RHS space (𝑇𝑇𝑅𝑅) , then these tableaus can be eliminated from 𝓣𝓣 

in advance. For example, in some case the tableau 𝑇𝑇𝑛𝑛𝑛𝑛 where the basic solutions are 𝒙𝒙𝑩𝑩 =

�𝟎𝟎𝟏𝟏� ∙  �
𝒙𝒙
𝒙𝒙𝒔𝒔� would only contribute the cost function 𝑍𝑍𝑛𝑛𝑛𝑛

𝑝𝑝 = 0 since ∀𝒙𝒙 = 𝟎𝟎. It is generally 

impossible for this type of tableaus to produce a competitive cost function solution than 

other tableaus where the cost functions 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 ≤ 0. 

v. Select a tableau 𝑇𝑇𝑖𝑖𝑛𝑛 from 𝓣𝓣𝒊𝒊𝒄𝒄. Define a set of the convex cones that compose the region of 

𝑇𝑇𝑛𝑛𝑛𝑛  ( 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ ) as 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝒦𝒦} , where  symbol ∗  means that this 

polyhedron has not been divided or further processed by further iterations,  𝒦𝒦 ∈ ℕ.  At the 

start of these iterations, 𝒦𝒦 = 1, 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1} = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛0 . For each convex cone 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑏𝑏 (𝑘𝑘 =

1,2, … ,𝒦𝒦) in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ , a subset 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝒌𝒌  is generated by adding a series of constrains, and each 

element in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝒌𝒌  generated in each iteration are referred as 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,𝑏𝑏𝑚𝑚: 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,𝑏𝑏𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧

  

   �
𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑏𝑏)

�𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄 − 𝒄𝒄𝑖𝑖𝑛𝑛

𝑝𝑝 𝜶𝜶𝒊𝒊𝒄𝒄�𝒃𝒃
−𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃

� ≤ 0, 𝑘𝑘𝑚𝑚 = 1

  � 𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝑏𝑏)
𝝆𝝆𝒌𝒌𝒎𝒎 ⋅ (𝜶𝜶𝒊𝒊𝒄𝒄𝒃𝒃)� ≤ 0, 2 ≤ 𝑘𝑘𝑚𝑚 ≤ 𝑚𝑚 + 1

  

   

 

 

(3.70) 

where 𝑘𝑘𝑚𝑚 = 1,2, … ,𝑚𝑚 + 1, 𝝆𝝆𝒌𝒌𝒎𝒎 is a column vector defined in (3.46): 

𝝆𝝆𝒌𝒌𝒎𝒎 = (𝝆𝝆)𝑏𝑏𝑚𝑚−1, 𝝆𝝆 = �
1 −𝟏𝟏

⋱
𝟎𝟎 1

� (3.46) 

𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇) means all of the constraints that may contribute to define the edge of 𝑇𝑇𝑇𝑇 and 

these constraints can be extracted as a property belonging to the corresponding objects 𝑇𝑇𝑇𝑇. 

After the calculation in (3.65), the subset 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝒌𝒌  is obtained: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝒌𝒌 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝑏𝑏,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,𝑚𝑚+1�  (3.71) 

After all of the 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝒌𝒌  have been manipulated by (3.70), the set of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗  is obtained as: 
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𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ =

⎩
⎨

⎧𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄
𝟏𝟏  ,

 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝟐𝟐  ,
… ,
𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄𝓚𝓚 ⎭

⎬

⎫
=

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

1,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
1,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

1,𝑚𝑚+1,
𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

2,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
2,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

2,𝑚𝑚+1,
… ,

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦,1,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛

𝒦𝒦,2, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦,𝑚𝑚+1

⎭
⎪
⎬

⎪
⎫

 

 

(3.72) 

Renumber the convex cone elements 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,𝑏𝑏𝑚𝑚 in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗  such that: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
(𝒦𝒦−1)(𝑚𝑚+1)+𝑏𝑏𝑚𝑚� 

𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝑏𝑏,𝑏𝑏𝑚𝑚, 𝑘𝑘𝑚𝑚 = (𝑘𝑘 − 1)(𝑚𝑚 + 1) + 𝑘𝑘𝑚𝑚 

 
(3.73) 

Save the set in (3.73) as a property belonging to the corresponding object 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗  and the 𝒦𝒦 

in this set is reassigned such that 𝒦𝒦 = (𝒦𝒦 − 1)(𝑚𝑚 + 1) + 𝑘𝑘𝑚𝑚  as well as 𝑘𝑘 = 𝑘𝑘𝑚𝑚 =

1,2, … ,𝒦𝒦. 

vi. Eliminate empty 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏  as well as the redundant constraints in each convex cone 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏  from 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ . This procedure can be accomplished by using the noredund algorithm from 

lcon2vert package in MATLAB (Matt, 2017). Avoiding the inclusion of the origin is 

important when eliminating redundant constraints by using these mentioned methods. 

Since all of the tableau region 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏  have a vertex on the origin, then all the constrains are 

weakly redundant at that point. Thus, it is impossible to distinguish the redundant 

constraints from the no redundant constrains when the origin is included. Therefore, some 

additional constraints should be initially added in the constraints set of every 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏 , such 

that: 

(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏 )𝑛𝑛𝑟𝑟 = �
𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏 )
−1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛
1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 𝟎𝟎, 0 < 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 < 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 
 

(3.74) 

where 𝛷𝛷 ∈ ℝ. The function −1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 0 ensures that the neighborhood of the origin 

is not considered when assessing redundancy and the function 1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ensures 

that the polyhedron of (𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏 )𝑛𝑛𝑟𝑟  exists in a finite space thus can be recognized and 

eliminated by most redundant constraints eliminating algorithms. These additional 

constraints that related with 𝛷𝛷 are referred as 𝒇𝒇𝒂𝒂𝒄𝒄. 

vii. Renumber the 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑏𝑏  that still remain after the elimination of non-redundant constraints 

(step vi) and let the number 𝒦𝒦 equals to the amount of the existing convex cones. Thus, 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ = {𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛∗𝒦𝒦} . Then, select another tableau region 𝑇𝑇𝑖𝑖𝑛𝑛  from 𝓣𝓣𝒊𝒊𝒄𝒄  that 



   

 58 

have not been manipulated yet, return to step v and iteration step v. vi. vii. until all of the 

𝑇𝑇𝑖𝑖𝑛𝑛 have been used for checking the edge of the tableau region set 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗ . 

viii. After all the 𝑇𝑇𝑖𝑖𝑛𝑛 have been used for checking the edge of the tableau region set 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄∗  the 

final set of a certain tableau 𝑇𝑇𝑛𝑛𝑛𝑛’s region 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 that consist of a series of convex cones is 

obtained, such that: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 , … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛�  (3.75) 

where 𝒦𝒦𝑛𝑛𝑛𝑛 is the number of convex cones that contains in the final tableau region  𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄. 

ix. Select another tableau 𝑇𝑇𝑛𝑛𝑛𝑛  from 𝓣𝓣 and iterate step v. to step viii. until the final tableau 

region  𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 is computed. 

x. The profile of RHS map, i.e. 𝑇𝑇𝑅𝑅, is obtained once all of the final tableau region 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 in 

terms of 𝑇𝑇𝑛𝑛𝑛𝑛 in 𝓣𝓣 have been generated as follows: 

𝑇𝑇𝑅𝑅 = �

𝑻𝑻𝑴𝑴𝟏𝟏 ,
 𝑻𝑻𝑴𝑴𝟐𝟐 ,

… ,
𝑻𝑻𝑴𝑴𝒦𝒦𝑅𝑅𝑅𝑅

� =

⎩
⎪
⎨

⎪
⎧ 𝑇𝑇𝑇𝑇11,𝑇𝑇𝑇𝑇12, … ,𝑇𝑇𝑇𝑇1

𝒦𝒦1 ,
𝑇𝑇𝑇𝑇21,𝑇𝑇𝑇𝑇22, … ,𝑇𝑇𝑇𝑇2

𝒦𝒦2 ,
… ,

𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅
1 ,𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅

2 , … ,𝑇𝑇𝑇𝑇𝒦𝒦𝑅𝑅𝑅𝑅

𝒦𝒦𝒦𝒦𝑅𝑅𝑅𝑅
⎭
⎪
⎬

⎪
⎫

 

 

(3.76) 

Since a considerable number of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄  may have already eliminated during the previous 

procedures 𝒦𝒦𝑅𝑅𝑅𝑅, the 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 that still exist in the 𝑇𝑇𝑅𝑅, might be much smaller than 𝒞𝒞, such 

that 𝑚𝑚𝑐𝑐 = 1,2, … ,𝒦𝒦𝑅𝑅𝑅𝑅, 𝒦𝒦𝑅𝑅𝑅𝑅 ≤ 𝒞𝒞. 

The step i. to step x. is the main procedure of generating an RHS map part of the CCM algorithm. 

It should be noticed that in some cases a tableau does not involve any slack value 𝒙𝒙𝒔𝒔. In those 

cases, it is necessary to assess whether the basic solution 𝒙𝒙𝑩𝑩 is identical in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 to another one 

without accounting for the slack values 𝒙𝒙𝒔𝒔 part.  

3.2.5 Sensitivity Analysis Based on CCM Algorithm 

Two levels of tableaus are considered, main tableaus and sub-tableaus. 

 Main-tableaus, are referred to as 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄 where 𝑚𝑚𝑐𝑐 = 1,2, … ,𝒦𝒦𝑀𝑀𝑀𝑀, 𝒦𝒦𝑀𝑀𝑀𝑀 is the amount of the main 

tableaus that are active in 𝑇𝑇𝑅𝑅. A main tableau is a one for which the basic and non-basic variables 

of the non-slack value part 𝒙𝒙 remain the same, however the 𝒙𝒙𝒔𝒔 is not.  
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The second level is the sub-tableaus level. These sub-tableaus are the tableaus that are discussed 

in the previous sections and referred as 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 . Thus, each 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄  may contains several 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 

regions.  

The sensitivity analysis procedure of CCM algorithm is straightforward based on the RHS map as 

follows: 

i. Compute the uncertainty range of 𝒃𝒃, such that: 

∆𝒃𝒃 = �

∆𝒃𝒃𝟏𝟏
 ∆𝒃𝒃𝟐𝟐
⋮

∆𝒃𝒃𝒎𝒎

� = [𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙] =

⎣
⎢
⎢
⎡𝑏𝑏1

𝑚𝑚𝑖𝑖𝑛𝑛 𝑏𝑏1𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏2𝑚𝑚𝑖𝑖𝑛𝑛 𝑏𝑏2𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑏𝑏𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⎦

⎥
⎥
⎤
 

 

(3.77) 

𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙

� ≤ 𝟎𝟎  (3.78) 

The expressions in the RHS in the current thesis are assumed to be linear.  

ii. Choose one sub-tableau region 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 from 𝑇𝑇𝑅𝑅, calculate the region 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 as well as the 

vertices 𝑉𝑉𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 of the convex cones 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦  in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 that may satisfy constraints from ∆𝒃𝒃 

(3.78) by using lcon2vert algorithm (𝑐𝑐2𝑣𝑣) in MATLAB. The result 𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 is shown as 

follows: 

𝑉𝑉𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃 = 𝑐𝑐2𝑣𝑣 �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 �∆𝒃𝒃� = 𝑐𝑐2𝑣𝑣 ��𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝒦𝒦 )
𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) � ≤ 𝟎𝟎�  (3.79) 

After computing all of the convex cone regions that contained in 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃, and the vertices 

set 𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 also have been obtained as: 

𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 = �𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛1 |∆𝒃𝒃,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛2 |∆𝒃𝒃, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛�

∆𝒃𝒃
�  (3.80) 

𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 = �𝑉𝑉𝑇𝑇𝑛𝑛𝑛𝑛1 |∆𝒃𝒃,𝑉𝑉𝑇𝑇𝑛𝑛𝑛𝑛2 |∆𝒃𝒃, … ,𝑉𝑉𝑇𝑇𝑛𝑛𝑛𝑛
𝒦𝒦𝑛𝑛𝑛𝑛�

∆𝒃𝒃
�  (3.81) 

iii. A series of 𝒙𝒙𝑛𝑛𝑛𝑛 will be calculated by substituting 𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 into (3.69), similarly a series of 

𝑍𝑍𝑛𝑛𝑛𝑛  will be obtained by substituting 𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃  into (3.38). Select the maximum and 

minimum values from𝒙𝒙𝑛𝑛𝑛𝑛 and 𝑍𝑍𝑛𝑛𝑛𝑛, resulting in sensitivity ranges of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 with uncertainty 

range of ∆𝒃𝒃 to be: 
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𝑹𝑹𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 = �∆𝑍𝑍𝑛𝑛𝑛𝑛 ∆𝒙𝒙𝑛𝑛𝑛𝑛
�
∆𝒃𝒃

= �𝑍𝑍𝑛𝑛𝑛𝑛
𝑚𝑚𝑖𝑖𝑛𝑛 𝑍𝑍𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝒙𝒙𝑛𝑛𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛 𝒙𝒙𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚�
∆𝒃𝒃

=

⎣
⎢
⎢
⎢
⎡𝑍𝑍𝑛𝑛𝑛𝑛

𝑚𝑚𝑖𝑖𝑛𝑛 𝑍𝑍𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑛𝑛𝑛𝑛,1
𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥𝑛𝑛𝑛𝑛,1

𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑥𝑥𝑛𝑛𝑛𝑛,𝑚𝑚
𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥𝑛𝑛𝑛𝑛,𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚⎦
⎥
⎥
⎥
⎤

∆𝒃𝒃

 

 

(3.82) 

iv. Calculate the volume of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 by substituting all vertices of 𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 into convhulln in 

MATLAB. Then the volume is: 

𝑉𝑉𝑉𝑉𝑙𝑙𝑛𝑛𝑛𝑛|∆𝒃𝒃 = 𝑐𝑐𝑉𝑉𝑚𝑚𝑣𝑣ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑚𝑚(𝑽𝑽𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃)  (3.83) 

v. Chose another sub-tableau region 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 from 𝑇𝑇𝑅𝑅 and start repeat again from step ii. to step 

iv. Then the region 𝑇𝑇𝑅𝑅 with respect of ∆𝒃𝒃, i.e. 𝑇𝑇𝑅𝑅|∆𝒃𝒃, the overall sensitivity range of 𝑇𝑇𝑅𝑅|∆𝒃𝒃, 

𝑅𝑅𝑇𝑇𝑅𝑅|∆𝒃𝒃, as well as the volumes of every sub-tableau in this region 𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃 are given as 

follows: 

𝑇𝑇𝑅𝑅|∆𝒃𝒃 = �𝑻𝑻𝑴𝑴𝟏𝟏|∆𝒃𝒃,𝑻𝑻𝑴𝑴𝟐𝟐|∆𝒃𝒃, … ,𝑻𝑻𝑴𝑴𝒦𝒦𝑅𝑅𝑅𝑅�∆𝒃𝒃� (3.84) 

𝑅𝑅𝑇𝑇𝑅𝑅|∆𝒃𝒃 = �∆𝑍𝑍 ∆𝑋𝑋�∆𝒃𝒃
= �𝑍𝑍

𝑚𝑚𝑖𝑖𝑛𝑛 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚�
∆𝒃𝒃

= �

𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋1𝑚𝑚𝑖𝑖𝑛𝑛 𝑋𝑋1𝑚𝑚𝑚𝑚𝑚𝑚

⋮ ⋮
𝑋𝑋𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�

∆𝒃𝒃

= �

𝑹𝑹𝑴𝑴𝟏𝟏 ,
 𝑹𝑹𝑴𝑴𝟐𝟐 ,

… ,
𝑹𝑹𝑴𝑴𝒦𝒦𝑅𝑅𝑅𝑅

�

∆𝒃𝒃

 (3.85) 

𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃 = 𝑠𝑠𝑢𝑢𝑚𝑚��𝑉𝑉𝑉𝑉𝑙𝑙1|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑙𝑙2|∆𝒃𝒃 , … ,𝑉𝑉𝑉𝑉𝑙𝑙𝒦𝒦𝑅𝑅𝑅𝑅�∆𝒃𝒃�� = �∆𝑏𝑏𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= ��𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�
𝑚𝑚

𝑖𝑖=1

 
(3.86) 

It is worth to note that the 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄|∆𝒃𝒃 might be non-feasible solution in the region of ∆𝒃𝒃 and such 

regions can be eliminated from 𝑇𝑇𝑅𝑅|∆𝒃𝒃 during this process. Additionally, the vertices 𝑉𝑉𝑀𝑀𝑇𝑇𝑚𝑚𝑛𝑛|∆𝒃𝒃,  

sensitivity range 𝑅𝑅𝑀𝑀𝑇𝑇𝑚𝑚𝑛𝑛|∆𝒃𝒃 and volume  𝑉𝑉𝑉𝑉𝑙𝑙𝑀𝑀𝑚𝑚𝑛𝑛|∆𝒃𝒃of main tableau region 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄 with respect of 

∆𝒃𝒃 also can be obtained by using the same method as in (3.84) to (3.86). 

Another conclusion can be derivate from this section is that: In RHS space for same parameter 𝑏𝑏�𝑖𝑖 

if 𝑏𝑏�𝑖𝑖,𝑠𝑠 ≪ 𝑏𝑏�𝑖𝑖,𝑔𝑔, where 𝑏𝑏�𝑖𝑖,𝑠𝑠 and 𝑏𝑏�𝑖𝑖,𝑔𝑔 are two nominal conditions of a same tableau, then for the same 

amount of change, 𝑏𝑏𝑖𝑖,𝑠𝑠 will be more sensitive than 𝑏𝑏𝑖𝑖,𝑔𝑔, however, if the ratio of change is same, 

then they are same sensitive. A more general description of this conclusion is: for an explicit given 

uncertainty range of RHS 𝑇𝑇𝑅𝑅|∆𝒃𝒃, if the nominal condition of 𝒃𝒃�𝒔𝒔 is much closer to original point 

than the nominal condition 𝒃𝒃�𝒈𝒈. Then, in most case, the number of tableaus in the uncertainty region 

of 𝒃𝒃�𝒔𝒔 is larger than which in the uncertainty region of 𝒃𝒃�𝒈𝒈. Since the conic cones’ distribution of 
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the sub-tableaus with respect to finite edges that are more compact in the region that close to 

original point. What can be found from this conclusion is that if some of the nominal parameters 

in RHS space is big enough, then they are negligible for some sensitivity analysis. And if they are 

too small, they might be very sensitive and generally hard to be investigated. This conclusion is 

useful when manipulating CCM algorithm in higher dimensional RHS space, since it provides a 

method to reduce the computation demanding by eliminate the negligible dimensions of the RHS 

space. 

3.3 Case Study 

Generally, in CCM algorithm, the RHS map are obtained from offline calculation, and the 

sensitivity analysis is used for generating the online uncertainty range. Therefore, the case study 

will also be based on this sequence.  

3.3.1 2D RHS Map Generator 

The example is the same as shown (3.60) and (3.61) in section 3.2.3. The example involves two 

inequalities and thus the RHS space is two-dimensional with respect to variables 𝑏𝑏1 and 𝑏𝑏2.  The 

standard form of this LP problem is as following: 

𝑚𝑚𝑖𝑖𝑚𝑚  𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔� 

s. t. 

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃 

𝑨𝑨 = �1 2
3 2� , 𝑰𝑰 = �1 0

0 1� , 𝒄𝒄 = [3 5], 

𝒃𝒃 = �𝑏𝑏1𝑏𝑏2
� ≥ 0, 𝒙𝒙 = �

𝑥𝑥1
𝑥𝑥2� ≥ 0, 𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4� ≥ 0 

 (3.61) 

Step i: As discussed in section 3.2.4 of the CCM method is to compute the set 𝓣𝓣 by using nchoosek 

in MATLAB. In this problem, the amount of constraints 𝑚𝑚 = 2, the amount of unknowns 𝑚𝑚 = 2,  

𝒞𝒞 = 𝐶𝐶(𝑚𝑚,𝑚𝑚 + 𝑚𝑚) = 6, which means that this problem have 6 possible combinations of 𝑋𝑋𝑛𝑛𝑛𝑛
𝑝𝑝  with 

respect of each tableau 𝑇𝑇𝑛𝑛𝑛𝑛 . For instance, 𝑇𝑇1 = [1 2]  means that 𝑥𝑥1  and 𝑥𝑥2  are both basic 

variables for this tableau. Thus, using this notation, the entire set 𝓣𝓣 is as following: 

𝓣𝓣 = �
 

𝑇𝑇1,𝑇𝑇2,𝑇𝑇3
𝑇𝑇4,𝑇𝑇5,𝑇𝑇6

� = �[1 2], [1 3], [1 4]
[2 3], [2 4], [3 4]� 

 
(3.87) 
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Step ii: After obtaining the set 𝓣𝓣, the parameters of each objective tableaus 𝑇𝑇𝑛𝑛𝑛𝑛: 𝒙𝒙𝑛𝑛𝑛𝑛
𝑝𝑝 , 𝑨𝑨𝑛𝑛𝑛𝑛

𝑝𝑝  and 𝒄𝒄𝑛𝑛𝑛𝑛
𝑝𝑝  

are calculated. 𝑇𝑇1 is used as an example to illustrate the following several steps, and these steps 

are also applied on the other tableaus. Following (3.88), the 𝒙𝒙1
𝑝𝑝, 𝑨𝑨1

𝑝𝑝 and 𝒄𝒄1
𝑝𝑝 corresponding to 𝑇𝑇1 

are: 

𝒙𝒙1
𝑝𝑝 = �

𝑥𝑥1
𝑥𝑥2� , 𝑨𝑨1

𝑝𝑝 = �1 2
3 2� , 𝒄𝒄1

𝑝𝑝 = −[3 5]  (3.88) 

In 𝑇𝑇1 each basic variable is calculated as follows: 

𝑥𝑥1 =
det�𝑨𝑨𝟏𝟏,𝟏𝟏

𝒑𝒑 �
det�𝑨𝑨1

𝑝𝑝�
=

det ��𝑏𝑏1 2
𝑏𝑏2 2��

det ��1 2
3 2��

=
1
2
𝑏𝑏2 −

1
2
𝑏𝑏1 

𝑥𝑥2 =
det�𝑨𝑨𝟏𝟏,𝟐𝟐

𝒑𝒑 �
det�𝑨𝑨1

𝑝𝑝�
=

det ��1 𝑏𝑏1
3 𝑏𝑏2

��

det ��1 2
3 2��

=
3
4
𝑏𝑏1 −

1
4
𝑏𝑏2 

 

(3.89) 

Step iii:  𝜶𝜶𝟏𝟏 can be represented as: 

𝜶𝜶𝟏𝟏 = �
𝛼𝛼11 𝛼𝛼12
𝛼𝛼21 𝛼𝛼22� =

⎣
⎢
⎢
⎡
𝜕𝜕𝑋𝑋1
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑋𝑋1
𝜕𝜕𝑏𝑏2

𝜕𝜕𝑋𝑋2
𝜕𝜕𝑏𝑏1

𝜕𝜕𝑋𝑋2
𝜕𝜕𝑏𝑏2⎦

⎥
⎥
⎤

= �
−

1
2

1
2

3
4

−
1
4

� 

 

(3.90) 

Since, 𝑥𝑥𝑖𝑖 ≥ 0  and 𝑍𝑍𝑛𝑛𝑛𝑛
𝑝𝑝 = 𝒄𝒄𝑛𝑛𝑛𝑛

𝑝𝑝 𝜶𝜶𝒄𝒄𝒄𝒄𝒃𝒃 , applying (3.37) and (3.38), the initial edge 𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1) =

−𝜶𝜶𝟏𝟏𝒃𝒃 as well as the cost function 𝑍𝑍1
𝑝𝑝 of 𝑇𝑇1 are: 

−𝜶𝜶𝟏𝟏𝒃𝒃 = −�
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎 

𝑍𝑍1
𝑝𝑝 = 𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏𝒃𝒃 = [−3 −5] �
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� = −

9
4
𝑏𝑏1 −

1
4
𝑏𝑏2 

 

(3.91) 

Step iv – v: The (3.91) is an initial property of objective tableau 𝑇𝑇1 as well as an initial property of 

tableau region 𝑻𝑻𝑴𝑴𝟏𝟏∗ , which is defined by the initial edges as well as the constrains of 𝒃𝒃 ≥ 𝟎𝟎, such 

that: 

1
2
𝑏𝑏1 −

1
2
𝑏𝑏2 ≤ 0  (3.92) 
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−𝑏𝑏1 +
1
3
𝑏𝑏2 ≤ 0 

𝑏𝑏1 ≥ 0, 𝑏𝑏2 ≥ 0 

Fig. 3.7 illustrates the initial region of 𝑻𝑻𝑴𝑴𝟏𝟏∗ , which is enclosed in the red lines as well as a property 

of objective tableau 𝑇𝑇1 with the additional constraints 𝒇𝒇𝒂𝒂𝒄𝒄 as in (3.93).  

Step vi: The additional constraints 𝒇𝒇𝒂𝒂𝒄𝒄 in this example are: 

𝒇𝒇𝒂𝒂𝒄𝒄 = �
−1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛
𝑏𝑏1 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏2 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 𝟎𝟎, 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 = 10−6, 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20 
 

(3.93) 

 

Figure 3.7 The initial region of 𝑻𝑻𝑴𝑴𝟏𝟏∗  

Another tableau is introduced here, the tableau 𝑇𝑇5, with the similar steps of generating 𝑻𝑻𝑴𝑴𝟏𝟏∗ . The 

initial property for 𝑇𝑇5 are: 

𝒙𝒙5
𝑝𝑝 = �

𝑥𝑥2
𝑥𝑥4� = �𝑋𝑋2𝑋𝑋4

� , 𝑨𝑨5
𝑝𝑝 = �2 0

2 1� , 𝒄𝒄5
𝑝𝑝 = −[5 0] 

−𝜶𝜶𝟓𝟓𝒃𝒃 = −�
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎 

𝑍𝑍5
𝑝𝑝 = 𝒄𝒄5

𝑝𝑝𝜶𝜶𝟓𝟓𝒃𝒃 = [−5 0] �
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
� = −

5
2
𝑏𝑏1 

 

(3.94) 
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Therefore, the initial regions of 𝑇𝑇5, i.e. 𝑻𝑻𝑴𝑴𝟓𝟓∗ , with constraints of 𝒃𝒃 ≥ 𝟎𝟎 and 𝒇𝒇𝒂𝒂𝒄𝒄 have been shown 

by the region enclosed within the red lines plane in Fig. 3.8. It is obvious that there is an overlap 

region of 𝑻𝑻𝑴𝑴𝟏𝟏∗  and 𝑻𝑻𝑴𝑴𝟓𝟓∗ . Step v. in section 3.2.4 can be used to solve this overlap. 

 

Figure 3.8 The initial region of 𝑻𝑻𝑴𝑴𝟓𝟓∗  

Applying (3.70) for 𝑻𝑻𝑴𝑴𝟏𝟏∗  and 𝑻𝑻𝑴𝑴𝟓𝟓∗ , since in the condition of this example, 𝑻𝑻𝑴𝑴𝟏𝟏∗ = {𝑇𝑇𝑇𝑇1∗1}, 𝒦𝒦 = 1, 

𝑘𝑘𝑚𝑚 = 1: 

𝑇𝑇𝑇𝑇1
1,1 = �

𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)
�𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏 − 𝒄𝒄5
𝑝𝑝𝜶𝜶𝟓𝟓�𝒃𝒃

−𝜶𝜶𝟓𝟓𝒃𝒃
� = �

𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)
1
4
𝑏𝑏1 −

1
4
𝑏𝑏2

−𝜶𝜶𝟓𝟓𝒃𝒃

� ≤ 0 

𝑇𝑇𝑇𝑇1
1,2 = �𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)

𝝆𝝆1 ⋅ (𝜶𝜶𝟓𝟓𝒃𝒃)� = �

𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)

�10� ⋅ �
1
2

0
−1 1

� �𝑏𝑏1𝑏𝑏2
�
� ≤ 0 

𝑇𝑇𝑇𝑇1
1,3 = �𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)

𝝆𝝆2 ⋅ (𝜶𝜶𝟓𝟓𝒃𝒃)� = �

𝑐𝑐𝑉𝑉𝑚𝑚(𝑇𝑇𝑇𝑇1∗1)

�−1
1 � ⋅ �

1
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0
−1 1

� �𝑏𝑏1𝑏𝑏2
�
� ≤ 0 

 

(3.95) 

Thus 𝑻𝑻𝑴𝑴𝟏𝟏∗  has been divided into 3 convex cones: 𝑻𝑻𝑴𝑴𝟏𝟏∗ = �𝑇𝑇𝑇𝑇1
1,1,𝑇𝑇𝑇𝑇1

1,2,𝑇𝑇𝑇𝑇1
1,3� . Then these 3 

convex cones are checked for feasibility and redundancy of constraints by using noredund 

algorithm from lcon2vert package in MATLAB (Matt, 2017) along with additional constrains 𝒇𝒇𝒂𝒂𝒄𝒄. 
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The result of this test is that only 𝑇𝑇𝑇𝑇1
1,1 has a feasible solution and 1

4
𝑏𝑏1 −

1
4
𝑏𝑏2 ≤ 0 as well as 

−𝜶𝜶𝟓𝟓𝒃𝒃 ≤ 𝟎𝟎 are redundant constrains. After eliminating the constraints, 𝑻𝑻𝑴𝑴𝟏𝟏 = �𝑇𝑇𝑇𝑇1
1,1�. Similar 

procedure has to be applied between Tableau 𝑇𝑇1 and the remaining tableaus in 𝓣𝓣. In the end of this 

iteration, the result of the tableau 𝑇𝑇1 is still  𝑇𝑇𝑇𝑇1
1,1. 

Similar procedure will be applied as done above for tableau 𝑇𝑇1 has to be applied to the other 

tableaus. After checking all of the 6 tableaus, the final results are only 3 tableaus are active in the 

RHS map space (RS), they are: 𝑇𝑇1, 𝑇𝑇3 and 𝑇𝑇4. The region of each tableau are 𝑻𝑻𝑴𝑴𝟏𝟏, 𝑻𝑻𝑴𝑴𝟑𝟑 and 𝑻𝑻𝑴𝑴𝟒𝟒, 

respectively. The tableau distribution of this RHS map is illustrated in Fig. 3.9. 

 

Figure 3.9 The tableau distribution and main edges of the mentioned RHS space 

3.3.2 Sensitivity Analysis in 2D RHS Space 

After obtaining the RHS map in Fig. 3.9, the properties of every active tableau region are 

calculated. For instance, the parameters of 𝑇𝑇𝑇𝑇1 are: 

−𝜶𝜶𝟏𝟏𝒃𝒃 = −�
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� ≤ 𝟎𝟎 

 

(3.96) 

𝑻𝑻𝑴𝑴𝟏𝟏 

𝑻𝑻𝑴𝑴𝟑𝟑 

𝑻𝑻𝑴𝑴𝟒𝟒 

3𝑏𝑏1 = 𝑏𝑏2 

𝑏𝑏1 = 𝑏𝑏2 
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𝑍𝑍1
𝑝𝑝 = 𝒄𝒄1

𝑝𝑝𝜶𝜶𝟏𝟏𝒃𝒃 = [−3 −5] �
−

1
2

1
2

3
4

−
1
4

� �𝑏𝑏1𝑏𝑏2
� = −

9
4
𝑏𝑏1 −

1
4
𝑏𝑏2 

𝒔𝒔𝟏𝟏 ≜ �−3𝑏𝑏1 + 𝑏𝑏2 ≤ 0
 𝑏𝑏1 − 𝑏𝑏2 ≤ 0 � 

If the uncertainty ranges of the RHS are ∆𝒃𝒃, and the nominal condition of RHS is 𝒃𝒃�, then the 

constraints of the uncertainty region can be generated by using (3.77) and (3.78). For instance, for 

particular numerical values of 𝒃𝒃� and ∆𝒃𝒃, the 𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) is represented as: 

𝒃𝒃� + ∆𝒃𝒃 = �68� + �−4 2
−6 6� = [𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙] = �2 8

2 14� 

𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙

� = �

2 − 𝑏𝑏1
2 − 𝑏𝑏2
𝑏𝑏1 − 8
𝑏𝑏2 − 14

� ≤ 𝟎𝟎 

 

(3.97) 

 

Figure 3.10 The region of uncertainty in RHS space 

The region described by 𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) is illustrated in Fig. 3.10. It is obvious that the uncertainty 

region, i.e. 𝑇𝑇𝑅𝑅|∆𝒃𝒃, enclosed within the dotted lines in the figure, can be divided into 3 regions 

corresponding to the 3 different tableaus. For example,  𝑇𝑇𝑇𝑇1|∆𝑏𝑏 is used to describe the procedure 

of sensitivity analysis in the CCM algorithm. 

𝑻𝑻𝑴𝑴𝟏𝟏 

𝑻𝑻𝑴𝑴𝟑𝟑 

𝑻𝑻𝑴𝑴𝟒𝟒 

3𝑏𝑏1 = 𝑏𝑏2 

𝑏𝑏1 = 𝑏𝑏2 

𝑻𝑻𝑴𝑴𝟏𝟏|∆𝒃𝒃 

𝑻𝑻𝑴𝑴𝟒𝟒|∆𝒃𝒃 

𝑻𝑻𝑴𝑴𝟑𝟑|∆𝒃𝒃 ↓ 
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The vertices of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 can be computed by using lcon2vert in MATLAB (Matt, 2017) following 

(3.79) such that: 

𝑉𝑉𝑇𝑇1|∆𝒃𝒃 = 𝑐𝑐2𝑣𝑣(𝑇𝑇𝑇𝑇1|∆𝑏𝑏) = 𝑐𝑐2𝑣𝑣 ��𝑐𝑐𝑉𝑉𝑚𝑚
(𝑇𝑇𝑇𝑇1|∆𝑏𝑏)

𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) � ≤ 𝟎𝟎� = 𝑐𝑐2𝑣𝑣 ��
𝒔𝒔𝟏𝟏

𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃)� ≤ 𝟎𝟎�  (3.98) 

The resulting vertices, shown as red dots in Fig. 3.10, are: 

𝑉𝑉𝑇𝑇1|∆𝒃𝒃 = {(4.67,14) (8,14) (8,8) (2,2) (2,6)} 

Then by applying (3.82) with 𝑉𝑉𝑇𝑇1|∆𝒃𝒃, the maximum and minimum values of each parameter can 

be obtained. It should be noticed that if the dimensions of RHS space are too large, there may be 

too many vertices that need to be calculated. In that case, in order to decrease the calculation effort, 

the function linprog in MATLAB can be applied to (3.98) to reduce the computation load. For 

each point in 𝑉𝑉𝑇𝑇1|∆𝒃𝒃 the results of for each variable are: 

�
𝑍𝑍1
𝑥𝑥1
𝑥𝑥2
�
∆𝒃𝒃

= �
−14 −21.5 −20 −5 −6
 4.67 3 0 0 2

0 2.5 4 1 0
� 

 
(3.99) 

After selecting the maximum and minimum values of each variable in (3.99), the corresponding 

sensitivity range of 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 under uncertainty of ∆𝒃𝒃, i.e. 𝑹𝑹𝑴𝑴𝟏𝟏|∆𝒃𝒃, can be summarized as follows: 

𝑹𝑹𝑴𝑴𝟏𝟏|∆𝒃𝒃 = �∆𝑍𝑍1 ∆𝒙𝒙1
�
∆𝒃𝒃

= �
−𝑍𝑍1𝑚𝑚𝑖𝑖𝑛𝑛 −𝑍𝑍1𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥1,1
𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥1,1

𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥1,2
𝑚𝑚𝑖𝑖𝑛𝑛 𝑥𝑥1,2

𝑚𝑚𝑚𝑚𝑚𝑚
�

∆𝒃𝒃

= �
5 21.5
0 4.67
0 4

�
∆𝒃𝒃

 
 

 

The volume of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 can be obtained by using convhulln in MATLAB as shown in (3.83): 

𝑉𝑉𝑉𝑉𝑙𝑙1|∆𝒃𝒃 = 𝑐𝑐𝑉𝑉𝑚𝑚𝑣𝑣ℎ𝑢𝑢𝑙𝑙𝑙𝑙𝑚𝑚(𝑉𝑉𝑇𝑇1|∆𝒃𝒃) = 43.32 

Following the same approach, the sensitivity range of the other 2 tableaus can also be computed 

by using the previous methods. Since the whole volume of uncertainty region 𝑇𝑇𝑅𝑅|∆𝒃𝒃 is: 

𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃 = 𝑠𝑠𝑢𝑢𝑚𝑚({𝑉𝑉𝑉𝑉𝑙𝑙1|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑙𝑙3|∆𝒃𝒃 ,𝑉𝑉𝑉𝑉𝑙𝑙4|∆𝒃𝒃}) = �∆𝑏𝑏𝑖𝑖

2

𝑖𝑖=1

= 72 

Therefore, if the probability distribution of occurrence of parameters RHS are assumed to be 

uniform, then the possibility of 𝑇𝑇𝑇𝑇1|∆𝑏𝑏 region to be active under the uncertainty range of ∆𝒃𝒃 is: 

𝑃𝑃(𝑇𝑇𝑇𝑇1|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙1|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

=
43.32

72
= 60.17% 
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The possibility of the other 2 tableaus also can obtained along with this method and are: 

𝑃𝑃(𝑇𝑇𝑇𝑇3|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙3|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

=
10.68

72
= 14.83% 

𝑃𝑃(𝑇𝑇𝑇𝑇4|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙4|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

=
18
72

= 25% 

The mathematical complexity of the approach obviously increases with the dimensions as shown 

for a 3D case study in Chapter 4. 

3.4 Conclusions 

In this chapter, two algorithms referred to as the 100 Percent Rule Based Method and the Convex 

Cone Method (CCM) were proposed in order to propagate uncertainty into the solutions of an LP 

problem. It was shown that the 100 Percent Rule Based Method can provide a necessary but not 

sufficient polyhedron region based bounds around a nominal point but it cannot generate the entire 

region of uncertainty. To address this problem, the CCM algorithm is proposed that it is able to 

generate the entire uncertainty regions. A series of lemmas and theorems were proved and served 

as the basis of the proposed CCM algorithm.  

There are two main layers in the CCM algorithm, as shown in Fig. 3.11. The first layer is focusing 

on generating the RHS map. This layer is highly computationally demanding but it has to be 

performed only once for any values of the RHS of the inequalities of the LP problem. In this layer, 

after generating every possible combination of solutions, the feasible region of every possible 

tableau can be obtained. Then these tableaus will be divided and bounded by comparing with the 

intersection tableaus that have an overlap region with each other. The final feasible region of each 

tableau can be computed by using a series of overlap region allocation steps and by dividing the 

remaining polyhedron part of this tableau into many smaller convex cones. The final RHS map is 

then generated by gathering together all of these active tableaus. The second layer of this 

uncertainty propagation algorithm involves an on-line sensitivity analysis. By using the RHS map 

that is computed in the previous layer and based on the uncertainty region, which is assumed in 

this layer, the sensitivity ranges of each variable of the LP problem with respect to each of the 

tableaus can be calculated. Though this layer needs to be executed whenever the uncertainty 

bounds of the RHS changes, the computational effort is not as high as for the first layer. This fact 

makes the CCM an attractive approach for uncertainty propagation in an LP problem. 
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Figure 3.11 The basic structure of the CCM algorithm 
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Robust Nonlinear MPC based on Convex Cone Method and Its 

Applications in Control of Bioreactors Based on Dynamic Metabolic 
Flux Balance Models 

In this chapter, the controller algorithm based on the Convex Cone Method (CCM) proposed in 

Chapter 3 is applied to a bioreactor culture described by a Dynamic Flux Balance Model (DFBM). 

As shown in Chapter 3 the proposed CCM algorithm is significantly more efficient for generating 

the uncertainty regions, each corresponding to a different active set of basic solutions, as compared 

with the 100 Percent Rule Based Method. Thus, the CCM algorithm is adopted in this chapter for 

propagating the uncertainty along with the prediction horizon of the controller. The tree structure 

framework (Lucia et al., 2013) is applied in this work for implementing a robust Economic Model 

Predictive Control (EMPC) where the branches of the tree correspond to different uncertainty 

regions identified by the CCM method. It will be shown with simple calculations that the resulting 

EMPC controller is computationally more efficient for estimating control actions as compared to 

the currently used uncertainty propagation methods, such as Monte Carlo sampling (Kawohl et al., 

2007) and Polynomial Chaos Expansions (PCE) (Ghanem & Spanos, 1990), in the presence of a 

large amount of model uncertainty parameters, e.g. more than 10 parameters.  

The dynamic metabolic flux model (DMFM) that is used as internal models in the proposed EMPC 

algorithm of this Chapter is formulated as Linear Programming (LP) optimization. As discussed 

in Chapter 2, both academia and industrial practitioners are increasingly adopting DMFM to model 

numerous biotechnological processes models; hence, the DMFM based controller proposed in the 

current chapter is expected to have wide applicability. Moreover, although the presented 

application is specifically targeted to dynamic metabolic flux models, the controller with the novel 

uncertainty propagation method proposed in this chapter is applicable for not only 

biotechnological processes but also for other processes that may be modeled as LP’s in the future. 

This chapter is organized as follows. Section 4.1 proposes a preliminary illustration of the 

application procedure for CCM algorithm using a 3D case study method. The discussion of the 

prediction model development based on CCM and a tree structure algorithm as well as the 

propagation of the uncertainty onto the outputs’ predictions based on robust NMPC are presented 
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in section 4.2. A comparison of this approach with other algorithms is also discussed in this section. 

In section 4.3, the algorithm described in section 4.2 will be used to develop the robust-model 

predictive controller based on DFBM; this controller is then used to formulate a robust bioreactor 

control framework. The results from such implementation are presented in section 4.4. Concluding 

remarks are presented at the end. 

4.1 Illustrative Case Study: CCM Algorithm 

4.1.1 Introduction 

In this section, the CCM algorithm is illustrated for a 3D case study to facilitate visualization of 

the method. This application reveals that when the size of the uncertain inequality constraints 

grows, which is generally referred as the growing of the dimension of the RHS space in this 

section, the number of convex cones as well as the computational complexity of the RHS space 

may tend to increase exponentially. 

There are two main layers in the CCM algorithm, as shown in Fig. 3.11. The first layer focus on 

generating the RHS map. This layer is computationally demanding but it has to be performed only 

once for any values of the RHS of the inequalities of the LP problem. Thus, for the case of a 

controller application it can be executed off-line. In this layer, after generating every possible 

combination of solutions, the feasible region for every possible tableau can be obtained. Note that 

each tableau corresponds to a particular set of basic solutions. When overlap between tableaus 

occurs, they will be divided and bounded by comparing with the intersection tableaus that have an 

overlap region with each other. The final feasible region of each tableau can be computed by using 

a series of overlap region allocation steps and by ultimately dividing the remaining polyhedron 

part of this tableau into many smaller convex cones. The final RHS map is then generated by 

gathering together all the active tableaus.  

The second layer of this uncertainty propagation algorithm involves an on-line sensitivity analysis 

calculation. By using the RHS map that is computed in the previous layer and based on the 

uncertainty region which is defined a priori in this layer, the sensitivity ranges of each variable of 

the LP problem with respect to each of the tableaus can be calculated. However, this layer needs 

to be executed only when the uncertainty bounds of the RHS changes; hence, the computational 
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effort for the execution of this second layer is not as high as for the first layer. This fact makes the 

CCM an attractive approach for uncertainty propagation. 

It will be shown that the computational complexity increases considerably in the 3D case as 

compared to the 2D case presented in Chapter 3, but the algorithm is still computationally attractive 

as compared to the Monte Carlo sampling. 

4.1.2 A 3D Case Study 

A 3 dimensional example is presented here to illustrate the application of the CCM method 

proposed in Chapter 3. The objective is to show how the methodology scales with an increase in 

the number of dimensions, i.e. the number of uncertain inequalities considered in the example. In 

particular, a comparison between the current 3D case with the 2D case presented in Chapter 3 will 

be conducted to evaluate the complexity of the proposed approach.  

The LP problem under consideration is defined as follows: 

𝑚𝑚𝑖𝑖𝑚𝑚  𝑍𝑍 = [−𝒄𝒄 𝟎𝟎] �
𝒙𝒙
𝒙𝒙𝒔𝒔� 

s. t. 

[𝑨𝑨 𝑰𝑰] �
𝒙𝒙
𝒙𝒙𝒔𝒔� = 𝒃𝒃 

𝑨𝑨 = �
1 2
1 1
4 1

� , 𝑰𝑰 = �
1 0 0
0 1 0
0 0 1

� , 𝒄𝒄 = [2 1], 

𝒃𝒃 = �
𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� ≥ 0, 𝒙𝒙 = �

𝑥𝑥1
𝑥𝑥2� ≥ 0, 𝒙𝒙𝒔𝒔 = �

𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
� ≥ 0 

 (4.1) 

The CCM algorithm proposed in Chapter 3 is applied here to calculate the 3D RHS map for this 

problem. The space is divided into 3 different main tableaus: 

𝓣𝓣 = �
 

𝑴𝑴𝑴𝑴𝟏𝟏,𝑴𝑴𝑴𝑴𝟐𝟐,𝑴𝑴𝑴𝑴𝟑𝟑�  (4.2) 

where 𝑴𝑴𝑴𝑴𝟏𝟏 includes all tableaus where 𝑥𝑥1 is basic and 𝑥𝑥2 is non-basic; 𝑴𝑴𝑴𝑴𝟐𝟐 includes all tableaus 

where both 𝑥𝑥1 and 𝑥𝑥2 are basic; 𝑴𝑴𝑴𝑴𝟑𝟑 contains all tableaus where 𝑥𝑥2 is basic and 𝑥𝑥1 is non-basic. 

For example, as illustrated in Fig. 4.1, tableau 𝑴𝑴𝑴𝑴𝟏𝟏 contains 3 convex cones shown in different 

colors with 2 additional constrains 𝒇𝒇𝒂𝒂𝒄𝒄 where 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 = 10 and 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20 as in function (3.71). 

The relationship among these tableaus can be represented as follows: 
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𝑴𝑴𝑴𝑴𝟏𝟏 = {𝑻𝑻𝑴𝑴𝟓𝟓,𝑻𝑻𝑴𝑴𝟔𝟔} 

𝑻𝑻𝑴𝑴𝟓𝟓 = {𝑇𝑇𝑇𝑇51,𝑇𝑇𝑇𝑇52}, 𝑻𝑻𝑴𝑴𝟔𝟔 = {𝑇𝑇𝑇𝑇61} 

 
(4.3) 

where the convex cones in 𝑻𝑻𝑴𝑴𝟓𝟓 are in terms of 𝑇𝑇5 = [1 3 5] for which the corresponding basic 

variables are 𝒙𝒙𝑩𝑩 = [𝑥𝑥1 𝑥𝑥3 𝑥𝑥5]𝑇𝑇; the convex cones in 𝑻𝑻𝑴𝑴𝟔𝟔 are in terms of 𝑇𝑇6 = [1 4 5] with 

the corresponding basic variables 𝒙𝒙𝑩𝑩 = [𝑥𝑥1 𝑥𝑥4 𝑥𝑥5]𝑇𝑇. The polyhedron of 𝑇𝑇𝑇𝑇51, 𝑇𝑇𝑇𝑇52 and 𝑇𝑇𝑇𝑇61 are 

colored in Figure 4.1 in red, green and blue, respectively. It is evident from Fig. 4.1 that the 

polyhedron of 𝑴𝑴𝑴𝑴𝟏𝟏 is nonconvex. Other regions of 𝑴𝑴𝑴𝑴𝟐𝟐 and 𝑴𝑴𝑴𝑴𝟑𝟑 as well as their convex cones 

can also obtained by using CCM algorithm as illustrated in Fig. 4.2 where each main tableau is 

shown in different color. 

  

Figure 4.1 Tableaus distribution of 𝑴𝑴𝑴𝑴𝟏𝟏 in RHS map 

Once the 3D RHS map has been identified, the sensitivity analysis also can be performed with the 

method introduced in section 3.3.2. The uncertainty range in this case is defined as follows: 

𝒃𝒃� = �
3
4

12
� ,   ∆𝒃𝒃 = [𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙] = [0.5 2] ∙ 𝒃𝒃� = �

1.5 6
2 8
6 24

� 
 

 

𝒇𝒇𝒂𝒂𝒄𝒄: 1𝑇𝑇𝒃𝒃 − 𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 

𝒇𝒇𝒂𝒂𝒄𝒄: −1𝑇𝑇𝒃𝒃 + 𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 0 

𝛷𝛷𝑚𝑚𝑖𝑖𝑛𝑛 = 10 

𝛷𝛷𝑚𝑚𝑚𝑚𝑚𝑚 = 20 
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Thus, the constraints describing the uncertain ranges of all parameters 𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) can be represented 

as follows: 

𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) = �𝒃𝒃𝒎𝒎𝒊𝒊𝒄𝒄 − 𝒃𝒃
𝒃𝒃 − 𝒃𝒃𝒎𝒎𝒂𝒂𝒙𝒙

� =

⎣
⎢
⎢
⎢
⎢
⎡
1.5 − 𝑏𝑏1
2 − 𝑏𝑏2
2 − 𝑏𝑏3
𝑏𝑏1 − 6
𝑏𝑏2 − 8
𝑏𝑏3 − 24⎦

⎥
⎥
⎥
⎥
⎤

≤ 𝟎𝟎 

 

 

  

Figure 4.2 Tableaus distribution of 𝑴𝑴𝑴𝑴𝟏𝟏, 𝑴𝑴𝑴𝑴𝟐𝟐 and 𝑴𝑴𝑴𝑴𝟑𝟑 in RHS map 

After intersecting the regions of 𝑐𝑐𝑉𝑉𝑚𝑚(∆𝒃𝒃) with the main tableaus calculated in the RHS map by 

eliminating the redundant constraints, the sensitivity region for each of the uncertain model 

parameters for each main tableau can be obtained. After this procedure, it was found that 2 main 

tableaus,𝑴𝑴𝑴𝑴𝟏𝟏 and 𝑴𝑴𝑴𝑴𝟐𝟐 , have active tableaus in the uncertainty region. For instance, the region 

𝑴𝑴𝑴𝑴𝟏𝟏 maintains 2 different tableaus {𝑻𝑻𝑴𝑴𝟓𝟓,𝑻𝑻𝑴𝑴𝟔𝟔}, i.e. 3 polyhedrons {𝑇𝑇𝑇𝑇51,𝑇𝑇𝑇𝑇52,𝑇𝑇𝑇𝑇61}, in this region 

which are indicated as bounded by the dash-dotted line in Fig. 4.3. The sensitivity region of 𝑴𝑴𝑴𝑴𝟏𝟏 

(𝑹𝑹𝑴𝑴𝑴𝑴𝟏𝟏) can be obtained by analyzing the sensitivity region of each of the polyhedrons and select 

the maximum and minimum values of each parameter within each polyhedron. 

𝑴𝑴𝑴𝑴𝟏𝟏 

𝒇𝒇𝒂𝒂𝒄𝒄 

𝒇𝒇𝒂𝒂𝒄𝒄 

𝑴𝑴𝑴𝑴𝟐𝟐 

𝑴𝑴𝑴𝑴𝟑𝟑 
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Then, the cost function values, referred to as sensitivity ranges, for each polyhedron are as follows: 

𝑍𝑍51|∆𝒃𝒃 = [4 12]∆𝒃𝒃, 𝑍𝑍52|∆𝒃𝒃 = [4 6]∆𝒃𝒃, 𝑍𝑍61|∆𝒃𝒃 = [3 12]∆𝒃𝒃   

accordingly, the sensitivity ranges of the cost function in 𝑹𝑹𝑴𝑴𝑴𝑴𝟏𝟏 is as follows: 

𝑍𝑍𝑹𝑹𝑴𝑴𝑴𝑴𝟏𝟏�∆𝒃𝒃 = [min{𝑍𝑍51|∆𝒃𝒃,𝑍𝑍52|∆𝒃𝒃,𝑍𝑍61|∆𝒃𝒃} max{𝑍𝑍51|∆𝒃𝒃,𝑍𝑍52|∆𝒃𝒃,𝑍𝑍61|∆𝒃𝒃}] = [3 12]∆𝒃𝒃   

The volume of each polyhedron in 𝑴𝑴𝑴𝑴𝟏𝟏 are: 

𝑉𝑉𝑉𝑉𝑙𝑙51|∆𝒃𝒃 = 70.67, 𝑉𝑉𝑉𝑉𝑙𝑙52|∆𝒃𝒃 = 14.67, 𝑉𝑉𝑉𝑉𝑙𝑙61|∆𝒃𝒃 = 200.33   

hence, the complete volume of 𝑇𝑇𝑅𝑅|∆𝒃𝒃, which is the sum of each polyhedron in 𝑴𝑴𝑴𝑴𝟏𝟏, is as follows: 

𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃 = �∆𝑏𝑏𝑖𝑖

3

𝑖𝑖=1

= 486 
 

 

Thus, the probability of occurrence of each tableau in the uncertainty region under consideration 

can be determined as follows:  

𝑃𝑃(𝑻𝑻𝑴𝑴𝟓𝟓|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙51|∆𝒃𝒃 + 𝑉𝑉𝑉𝑉𝑙𝑙52|∆𝒃𝒃

𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃
= 17.56% 

𝑃𝑃(𝑻𝑻𝑴𝑴𝟔𝟔|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙61|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

= 41.22% 

 

 

The possibility of 𝑴𝑴𝑴𝑴𝟏𝟏 can also be obtained as follows: 

𝑃𝑃(𝑴𝑴𝑴𝑴𝟏𝟏|∆𝑏𝑏) = 𝑃𝑃(𝑻𝑻𝑴𝑴𝟓𝟓|∆𝑏𝑏) + 𝑃𝑃(𝑻𝑻𝑴𝑴𝟔𝟔|∆𝑏𝑏) = 58.78%   

The sensitivity range for another main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 that is active in the overall uncertainty region 

also can be computed using the CCM algorithm. The results for 𝑴𝑴𝑴𝑴𝟐𝟐 are illustrated in Fig. 4.4 

with different colors for the different polyhedrons. In this graph, the 𝑴𝑴𝑴𝑴𝟐𝟐 maintains 2 different 

tableaus {𝑻𝑻𝑴𝑴𝟏𝟏,𝑻𝑻𝑴𝑴𝟐𝟐}, i.e. 3 polyhedrons {𝑇𝑇𝑇𝑇11,𝑇𝑇𝑇𝑇12,𝑇𝑇𝑇𝑇21}, in the uncertainty region shown in Fig. 

4.4 as the regions bounded by the dash-dotted lines.The volume of each polyhedron composing 

𝑴𝑴𝑴𝑴𝟐𝟐 are: 

𝑉𝑉𝑉𝑉𝑙𝑙11|∆𝒃𝒃 = 3.33, 𝑉𝑉𝑉𝑉𝑙𝑙12|∆𝒃𝒃 = 20.73, 𝑉𝑉𝑉𝑉𝑙𝑙21|∆𝒃𝒃 = 176.27   

Thus, the probability of occurrence of each tableau in the uncertainty region under consideration 

with the assumption that the probability distribution of this RHS space are uniform is as follows:  

𝑃𝑃(𝑻𝑻𝑴𝑴𝟏𝟏|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙11|∆𝒃𝒃 + 𝑉𝑉𝑉𝑉𝑙𝑙12|∆𝒃𝒃

𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃
= 4.95% 
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𝑃𝑃(𝑻𝑻𝑴𝑴𝟐𝟐|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙21|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

= 36.27% 

The probabilities for 𝑴𝑴𝑴𝑴𝟐𝟐 can also be obtained as follows: 

𝑃𝑃(𝑴𝑴𝑴𝑴𝟐𝟐|∆𝑏𝑏) = 𝑃𝑃(𝑻𝑻𝑴𝑴𝟏𝟏|∆𝑏𝑏) + 𝑃𝑃(𝑻𝑻𝑴𝑴𝟐𝟐|∆𝑏𝑏) = 41.22%   

 

Figure 4.3 Region of 𝐌𝐌𝐌𝐌𝟏𝟏 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄(∆𝒃𝒃) 

Note that the sum of 𝑃𝑃(𝑴𝑴𝑴𝑴𝟏𝟏|∆𝑏𝑏) and 𝑃𝑃(𝑴𝑴𝑴𝑴𝟐𝟐|∆𝑏𝑏) is 100% as expected. To assess the progressive 

increase in computational complexity as the number of uncertain parameters increases, the 3D case 

study discussed above is compared to the 2D case study presented in Chapter 3 (see section 3.3). 

It is evident from the comparison that for the 3D case, the main tableaus are generally containing 

more sub-tableaus as well as convex cones that compose each of them. Thus, the tableaus are less 

likely to be convex in 3D RHS space. In most cases, as the dimension of the RHS increases, the 

complexity of the tableau distribution also increases with respect to both the number of different 

active tableaus and the convex cones composing each one of them. However, this increase in 

complexity is mitigated to some extent, since generally only few of the tableaus are active in a 

certain RHS space. A typical example of higher dimension sensitivity analysis (6D RHS space 

𝑇𝑇𝑇𝑇51�∆𝑏𝑏 

𝑇𝑇𝑇𝑇52�∆𝑏𝑏 

𝑇𝑇𝑇𝑇61�∆𝑏𝑏 
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case study) will be discussed below in a case study of a robust EMPC controller algorithm for a 

bioreactor which is the main focus of this thesis. 

  

Figure 4.4 Region of 𝑴𝑴𝑴𝑴𝟐𝟐 that enclosed within the uncertainty region 𝒄𝒄𝒄𝒄𝒄𝒄(∆𝒃𝒃) 

4.2 Robust NMPC Controller Formulation 

As discussed in Chapter 3, the purpose of this novel algorithm is to propagate the uncertainty in 

model parameters onto a cost of an LP problem. An EMPC algorithm is proposed in this section 

which is made robust by using the CCM for uncertainty propagation along the prediction horizon. 

More specifically, the CCM algorithm in this work is tailored to the robust EMPC procedure where 

the biochemical processes are described by a dynamic metabolic flux model (DMFM) that is based 

on the solution of an LP problem at each time step. The DMFM is used to describe a batch 

bioreactor process and the objective is to maximize a cost at the end of the batch.  

The general formulation of an EMPC controller involves the minimization or maximization of an 

economic terminal cost/penalty 𝑉𝑉𝑓𝑓 function as earlier presented in equations (3.1) to (3.5). The bi-

level optimization to be solved for the EMPC was introduced in (3.6) to (3.11). Additionally, the 

𝑇𝑇𝑇𝑇11�∆𝑏𝑏 

𝑇𝑇𝑇𝑇12�∆𝑏𝑏 

𝑇𝑇𝑇𝑇21�∆𝑏𝑏 
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uncertain parameters on the Right Hand Side (RHS) 𝒃𝒃 as well as the linearly supremum bounding 

procedure with respect to the uncertain parameters of the RHS were discussed in equations (3.12) 

to (3.15). The robust controller formulation of the current chapter is based on these earlier 

definitions. 

Another important theoretical basis of the Tree (scenario) based structure of NMPC was discussed 

in section 2.3.4. As shown schematically in Fig. 4.5, the main idea of this method as reported in 

the recent literature is that the time trajectories corresponding to different parameter uncertainty 

or disturbance realizations can be represented by a tree composed of discrete scenarios. Each node 

of the branches in this tree structure is generated by uncertainty, i.e. parameter or disturbance 

related uncertainty. To avoid the increased computational cost expected with the exponential 

growth nature of the tree structure, branching with respect to different uncertainty realizations is 

only done for the initial time intervals of the prediction horizon (2 first intervals in Fig. 4.5) and 

then the uncertainty realization in each trajectory is assumed to remain constant until the end of 

the horizon (intervals 3 and 4 in Fig. 4.5). 

Prediction Horizon = 4

Robust Horizon = 2

1(0)

Time Interval (stages)

2(1) 3(2) 4(3)

 

Figure 4.5 Uncertainty evolution with robust horizon represented by scenario tree structure 

The most challenging problem of the scenario tree structure is how to generate a reasonable tree 

structure that maintains a balance between an accurate estimation of uncertainty and an acceptable 
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size of the robust horizon. Many methods have been proposed to address this issue, such as the 

Monte Carlo simulations (Shapiro, 2003), the deterministic moment matching method (Høyland 

et al., 2003) of a probability distribution, the minimization of a certain probability matrix (de 

Oliveira et al., 2010) or machine learning techniques (Defourny, 2010). Several versions of the 

tree structure based MPC have been reported (Lucia, Finkler and Engell, 2013; Lindhorst et al., 

2016). However, those frameworks are only acceptable for online implementation with a short 

prediction horizon or a limited number of uncertainties of the dynamic enzyme-cost Flux Balance 

Analysis (deFBA) model.  

Considering these limitations, a novel tree structure based algorithm is proposed here in order to 

exploit the particular nature of the dynamic metabolic flux model describing the system, i.e. linear 

programming based model. The expectation is that the proposed approach would reduce the 

computational effort to estimate control actions in the presence of model uncertainty.  

4.2.1 Tree Structure of Different Tableaus 

The main assumption of the proposed EMPC algorithm is that the space of the outputs that are 

generated from the uncertainty parameters can be divided into a series of polyhedrons; for each 

polyhedron, max-min of outputs can be easily obtained based on linearity. The CCM procedure is 

used to find ranges of output values for each one of the Tableaus identified at each time step along 

the prediction horizon. Using the minimum and maximum values calculated at each time interval 

𝑘𝑘, the ranges of outputs in a following time interval 𝑘𝑘 + 1 can be calculated using the CCM 

method together with the differential equations describing the mass balances in the DMFM model, 

the distribution of these time intervals has been shown as in Fig. 4.6 (b). Therefore, a tree structure 

uncertainty propagating method can be obtained by this approach where the tree expands along 

the prediction horizon from the current time interval, k. Thus, the novel controller algorithm 

proposed here will be referred to as a Tableau Based Tree (TBT) method. The schematic structure 

of the TBT algorithm is shown in Fig. 4.6 and Fig. 4.7. Each branch originating from a node 

represents a specific tableau corresponding to a particular range of uncertainty and for a particular 

input (control action or manipulated variable). In this structure, the path from the root node (initial 

state) 𝑥𝑥0 to a leaf node is referred to as a scenario. The tree may branch at each stage where the 

branches originating from each node depends on the numbers of tableaus that are generated from 

the uncertain parameters. There are three different layers of sampling time interval in this 
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prediction system, the basic sampling time interval is ∆𝑡𝑡, the instant where the new branches can 

be generated is referred as a new stage 𝑠𝑠 and the time interval of each stage is ∆𝑠𝑠, the interval of 

the time where each controller inputs 𝑢𝑢 can be manipulated is ∆𝑙𝑙. Generally, ∆𝑠𝑠 can be equal or 

longer than ∆𝑡𝑡 and ∆𝑙𝑙 can be equal or longer than ∆𝑠𝑠, while the larger one of these values are 

generally be multiple times of the less one. For instance, as it has been shown in Fig. 4.6 (b), if the 

∆𝑙𝑙 is 2 times longer than ∆𝑠𝑠: 

∆𝑙𝑙 = 2∆𝑠𝑠 

The control inputs of this tree structure are equal to each other every two stages, such as: 

𝑢𝑢01 = 𝑢𝑢11, 𝑢𝑢21 = 𝑢𝑢31 

(a) (b)

k0 5 10

s = 0
s = 1

 
Figure 4.6 (a) Uncertainty evolution with robust horizon represented by scenario tree structure in 

TBT; (b) Uncertainty evolution of a specific parameter 𝝍𝝍𝒊𝒊  in the first and second stages of an 

individual TBT scenario (the red bold line when 𝒌𝒌 = 𝟎𝟎,𝟓𝟓,𝟏𝟏𝟎𝟎  is the range of 𝝍𝝍𝟎𝟎,𝒊𝒊 , 𝝍𝝍𝟏𝟏,𝒊𝒊
𝟏𝟏  and 𝝍𝝍𝟐𝟐,𝒊𝒊

𝟐𝟐  

corresponding to the nodes in the red scenario of figure 4.6 (a), respectively) 

Additionally, from the CCM algorithm, the probability for each tableau to occur relative to the 

other tableaus can be calculated and thus, with this information, some of the leaves can be 

eliminated if the probability for them to occur is smaller than a certain user-defined threshold. 

Although some parameters, such as controller inputs, plants states and fluxes etc., may remain 

constant along different stages, they are denoted by different stage number 𝑠𝑠. For example, the 

values of uncertain parameters might remain constant during a certain scenario; however, they are 

marked as different superscripts in order to clearly identify their relative positions in the tree 

structure. Furthermore, the probability distribution of occurrence of parameters of the RHS of the 

constraints of the LP problem solved at each stage are assumed to be uniform in this work in order 
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to simplify the problem, if not otherwise specified. Also, it is assumed that all of the possible states 

𝑹𝑹𝝍𝝍𝑠𝑠𝑟𝑟 that are generated from each node 𝝍𝝍𝑠𝑠
𝑟𝑟 with the possibility 𝑃𝑃𝑠𝑠+1

∗𝑟𝑟(𝑞𝑞) of each states 𝝍𝝍𝑠𝑠+1
𝑟𝑟(𝑞𝑞) to occur 

within the tree scenario can be calculated from an uncertain nonlinear system that is represented 

as follows: 

𝑹𝑹𝝍𝝍𝑠𝑠𝑟𝑟 =

⎣
⎢
⎢
⎢
⎢
⎡�𝝍𝝍𝑠𝑠+1

𝑟𝑟1(1)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(1)

�𝝍𝝍𝑠𝑠+1
𝑟𝑟(2)�

𝑇𝑇
𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(2)

⋮ ⋮
�𝝍𝝍𝑠𝑠+1

𝑟𝑟(𝑏𝑏𝑇𝑇)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(𝑏𝑏𝑇𝑇)

⎦
⎥
⎥
⎥
⎥
⎤

= 𝑓𝑓𝑛𝑛𝑠𝑠(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)  

 

(4.4) 

where 𝑠𝑠 is the identifier of different stages, 𝑟𝑟 and 𝑟𝑟(𝑞𝑞) is the identifier of the leaves in one specific 

stage with 𝑟𝑟 ∈ [1,2, … , 𝑘𝑘𝑠𝑠] and 𝑞𝑞 ∈ [1,2, … , 𝑘𝑘𝑇𝑇], 𝑘𝑘𝑠𝑠 is the amount of scenario in the stage 𝑠𝑠, 𝑘𝑘𝑇𝑇 is 

the amount of the branches/tableaus that can be generated from node 𝝍𝝍𝑠𝑠
𝑟𝑟 with the controller inputs 

𝑢𝑢𝑠𝑠𝑟𝑟 and the uncertainty region 𝒅𝒅𝑠𝑠𝑟𝑟, 𝝍𝝍𝑠𝑠
𝑟𝑟 is a matrix that contains two column vectors that illustrate 

the maximum and minimum states of the corresponding tableaus respectively: 

𝝍𝝍𝑠𝑠
𝑟𝑟 = �𝝍𝝍𝑠𝑠

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 𝝍𝝍𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�   (4.5) 

the uncertainty region is defined as follows: 

𝒅𝒅𝑠𝑠𝑟𝑟 = �𝒅𝒅𝑠𝑠
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 𝒅𝒅𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�   (4.6) 
It is worth to note that the probability that obtained form (4.4) is not the actual probability 𝑃𝑃𝑠𝑠+1𝑟𝑟  of 

each tableaus (𝑇𝑇|𝝍𝝍𝑠𝑠+1
𝑟𝑟 ) for each of the states 𝝍𝝍𝑠𝑠+1

𝑟𝑟 , a ∗ sign is used in the superscript of such 

probability symbols such as 𝑃𝑃𝑠𝑠+1∗𝑟𝑟  for avoiding the confusion of these two probabilities. The actual 

probability 𝑃𝑃𝑠𝑠+1𝑟𝑟  can be computed by using the probability 𝑃𝑃𝑠𝑠+1∗𝑟𝑟  in (4.4) and the concept of 

conditional probability as follows: 

𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑃𝑃𝑠𝑠+1∗𝑟𝑟 𝑃𝑃𝑠𝑠𝑟𝑟   (4.7) 

In this work 𝑓𝑓𝑛𝑛𝑠𝑠 is an uncertain nonlinear system that is formulated by using the CCM algorithm 

combined with Euler integrations of the equation defined in (3.10). Therefore, each of the states 

𝝍𝝍𝑠𝑠+1
𝑟𝑟(𝑞𝑞) and their corresponding probability 𝑃𝑃𝑠𝑠+1

∗𝑟𝑟(𝑞𝑞) in (4.4) are dependent on the current vector of 

states 𝝍𝝍𝑠𝑠
𝑟𝑟 , the corresponding probability 𝑃𝑃𝑠𝑠𝑟𝑟 , the corresponding control input 𝑢𝑢𝑠𝑠𝑟𝑟  and the 

corresponding uncertainty region 𝒅𝒅𝑠𝑠𝑟𝑟 at stage 𝑠𝑠 and realization (scenario) 𝑟𝑟. For example, using 

Fig. 4.7, all the states 𝑹𝑹𝝍𝝍23 that are generated from 𝝍𝝍2
3 can be represented as: 
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𝑹𝑹𝝍𝝍23 = �𝝍𝝍3
5 𝑃𝑃3∗5

𝝍𝝍3
6 𝑃𝑃3∗6

� = 𝑓𝑓𝑛𝑛𝑠𝑠(𝝍𝝍2
3,𝑃𝑃23,𝑢𝑢23,𝒅𝒅23) 

where in this particular case, the previous stage is 𝑠𝑠 = 2, the previous state identifier 𝑟𝑟 = 3 and 

the two new generating branches are the 5th and 6th scenario of current stage, thus 𝑟𝑟(1) = 5 and 

𝑟𝑟(2) = 6. Using CCM algorithm, the number of active tableaus within the uncertain region 𝒅𝒅𝑠𝑠𝑟𝑟 is 

obtained as 𝒦𝒦𝑅𝑅𝑅𝑅 = 2; thus, the number of branches 𝑘𝑘𝑇𝑇 of the node 𝝍𝝍2
3 is: 

𝑘𝑘𝑇𝑇 = 𝒦𝒦𝑅𝑅𝑅𝑅 = 2  (4.8) 

 
Figure 4.7 A typical uncertainty evolution represented by scenario tree structure in TBT 

For simplicity, the set of possible indices of branches 𝑰𝑰𝐵𝐵(𝑠𝑠, 𝑟𝑟) in the scenario tree is referred to as 

𝑰𝑰𝐵𝐵. Additionally,  if the probability 𝑃𝑃𝑠𝑠+1∗𝑟𝑟  of a new branch is less than a criterion 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
∗  that is defined 

a priori, then this branch is set as a non-active branch 𝑰𝑰𝐵𝐵𝑛𝑛𝑚𝑚(𝑠𝑠 + 1, 𝑟𝑟). Thus, this branch will be 

eliminated from the scenario tree 𝑰𝑰𝐵𝐵 and will not be used as a node in the branch generating process 

in the next stage. The set of non-active branches is denoted as 𝑰𝑰𝐵𝐵𝑛𝑛𝑚𝑚 and are determined as per the 

following criterion: 

𝑃𝑃𝑠𝑠+1∗𝑟𝑟 ≤ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
∗   (4.9) 

Robust Horizon = 3

Prediction Horizon = 5
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where 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
∗  is the largest probability that determines one branch from the possible states set 𝑹𝑹𝝍𝝍𝑠𝑠𝑟𝑟 

can be eliminated. Meanwhile, the number of active branches from the parent node, which means 

the node that has generated these branches, is denoted as 𝑟𝑟𝑚𝑚𝑛𝑛𝑎𝑎. The set of active branches is denoted 

as 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎. Therefore, the probability 𝑃𝑃𝑠𝑠+1𝑟𝑟  of active branch  𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟) will be re-normalized by 

using (4.10) to compensate for the inactive branches that were eliminated: 

𝑃𝑃𝑠𝑠+1𝑟𝑟 =
𝑃𝑃𝑠𝑠+1∗𝑟𝑟 𝑃𝑃𝑠𝑠𝑟𝑟

∑�𝑃𝑃∗|𝑰𝑰𝐵𝐵(𝑠𝑠 + 1, 𝑟𝑟)�
  (𝑰𝑰𝐵𝐵 ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎) 

 
(4.10) 

where 𝑃𝑃𝑠𝑠+1∗𝑟𝑟  and �𝑃𝑃∗|𝑰𝑰𝐵𝐵(𝑠𝑠 + 1, 𝑟𝑟)�  means the corresponding probability of the tableau that is 

obtained from (4.4), i.e. the branch 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟). For instance, in Fig. 4.7 if the 𝑰𝑰𝐵𝐵(2,4) is a non-

active branch, the state of this node 𝝍𝝍2
4 is denoted by a white dot, and the probability of the branch 

that originates from the same parent node 𝑰𝑰𝐵𝐵(1,2) with (4.4) are 𝑃𝑃2∗3 and 𝑃𝑃2∗5. Then by using (4.10) 

the probability of the node 𝑰𝑰𝐵𝐵(2,3) that will be further used in the tree scenario is: 

𝑃𝑃23 =
𝑃𝑃2∗3𝑃𝑃12

𝑃𝑃2∗3 + 𝑃𝑃2∗5
    (𝑰𝑰𝐵𝐵(2,3) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 , 𝑰𝑰𝐵𝐵(2,5) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎) 

Similarly, the probability of the node 𝑰𝑰𝐵𝐵(2,5) is: 

𝑃𝑃25 =
𝑃𝑃2∗5𝑃𝑃12

𝑃𝑃2∗3 + 𝑃𝑃2∗5
    (𝑰𝑰𝐵𝐵(2,3) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 , 𝑰𝑰𝐵𝐵(2,5) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎) 

Similar to the tree scenario work previously reported in the literature (Lindhorst et al., 2016; Lucia 

et al., 2014), for simplicity, the branching with respect to different tableaus is only done for the 

initial 3 first time intervals as shown in Fig. 4.7 corresponding to the last scenario 𝑰𝑰𝐵𝐵(5,5). Then 

the tableaus in each trajectory are assumed to remain constant at the tableau (branch) that has the 

largest probability among the possible branches (generally this branch is at the nominal value) 

until the end of the horizon (intervals 4 and 5 in Fig. 4.7 for the last scenario 𝑰𝑰𝐵𝐵(5,5)). This 

approach can be justified as follows: as the branching procedure progresses over the prediction 

horizon, it is expected that the sum of the probabilities ∑�𝑃𝑃𝑠𝑠+1𝑟𝑟 |𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟)� of all tableaus that 

are generated from the same parent node is smaller than the threshold 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 as defined in (4.11). 

Then, the number of branches in the rest of time intervals will remaining constant as shown by 

condition (4.12). Furthermore, the probability of each of the remaining branches in the rest of time 

intervals until the end of the prediction horizon 𝑙𝑙𝑃𝑃 is assigned the last calculated probability for 
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that branch calculated at the end of the robust horizon 𝑙𝑙𝑅𝑅 as shown by condition (4.13). Therefore, 

the resulting lengths of the robust horizon 𝑙𝑙𝑅𝑅, which is defined in (4.14) by substituting (4.10) into 

(4.11), are different with respect to different scenario in this tree structure, where 𝑃𝑃𝑠𝑠−1𝑟𝑟  is the 

probability of the parent node of 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠, 𝑟𝑟). Additionally, the prediction horizon is fixed in every 

tree structure, as 𝑙𝑙𝑃𝑃 = 5 in the example shown in Fig. 4.7. As a merit of this method, the scenario 

with lager probability maintains longer robust horizon, which can provide a reasonable allocation 

for the computation effort. 

��𝑃𝑃𝑠𝑠+1𝑟𝑟 |𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠 + 1, 𝑟𝑟)� ≤ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛  
(4.11) 

𝝍𝝍𝑠𝑠+1
𝑟𝑟 = (𝝍𝝍𝑠𝑠+1

𝑟𝑟 |𝑃𝑃𝑠𝑠+1∗𝑟𝑟 ≥ ∀𝑃𝑃𝑠𝑠+1∗𝑟𝑟 )  (4.12) 

𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑃𝑃𝑙𝑙𝑅𝑅
𝑟𝑟   (4.13) 

�𝑙𝑙𝑅𝑅 = 𝑠𝑠|��𝑃𝑃𝑠𝑠𝑟𝑟|𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎(𝑠𝑠, 𝑟𝑟)� ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛, ∀𝑃𝑃𝑠𝑠𝑟𝑟 ≤ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛,𝑃𝑃𝑠𝑠−1𝑟𝑟 ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛�  
(4.14) 

For instance, based on Fig. 4.7, if the sum of the probability of the active branches originating 

from parent node 𝑰𝑰𝐵𝐵(1,2) are: 

(𝑃𝑃23 + 𝑃𝑃25) ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 

and the probability of 𝑰𝑰𝐵𝐵(2,3) is less than 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛, then the length of the robust horizon 𝑙𝑙𝑅𝑅 = 3 for 

scenario 𝑰𝑰𝐵𝐵(3,5). If there are 2 tableaus that can be generated from 𝑰𝑰𝐵𝐵(2,3), which are 𝑰𝑰𝐵𝐵(3,5) 

and 𝑰𝑰𝐵𝐵(3,6), the probability of 𝑰𝑰𝐵𝐵(3,5) is larger than 𝑰𝑰𝐵𝐵(3,6), then by using (4.12): 

𝝍𝝍3
5 = (𝝍𝝍3

5|𝑃𝑃3∗5 ≥ 𝑃𝑃3∗6) 

and the probability of this tableau/scenario 𝑰𝑰𝐵𝐵(3,5) is 𝑃𝑃35 = 𝑃𝑃23 and remains at that value beyond 

the end of the robut horizon until the end of the prediction horizon. 

4.2.2 Mathematical Formulation 

A tree based scenario optimization problem to accomplish economic predictive control can be 

formulated using the Tableau Based Tree (TBT) branch-pruning strategy presented in the previous 

section as follows:   

min
𝑢𝑢𝑠𝑠𝑟𝑟,∀(𝑠𝑠,𝑟𝑟)∈𝑰𝑰𝐵𝐵

𝑎𝑎𝑛𝑛𝑎𝑎
  𝐽𝐽  (4.15) 

s. t.   
𝝍𝝍𝑠𝑠+1
𝑟𝑟 = 𝑓𝑓(𝝍𝝍𝑠𝑠

𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.16) 
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𝑃𝑃𝑠𝑠+1𝑟𝑟 = 𝑔𝑔(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.17) 

𝝍𝝍𝑠𝑠
𝑟𝑟 ∈ 𝚿𝚿𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.18) 

𝑢𝑢𝑠𝑠𝑟𝑟 ∈ 𝕌𝕌𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.19) 

where 𝐽𝐽 is defined as follows: 

𝐽𝐽 = 𝑉𝑉𝑓𝑓 �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝐽𝐽𝑠𝑠𝑓𝑓

𝑟𝑟
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 

 
(4.20) 

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟  is the cost function of each one of the scenario 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎�𝑠𝑠𝑓𝑓, 𝑟𝑟� at the final stage 𝑠𝑠𝑓𝑓 , 𝑃𝑃𝑠𝑠𝑓𝑓

𝑟𝑟  is the 

probability of 𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 . 𝑁𝑁𝑠𝑠  is the total number of branches in the 𝑠𝑠  stage. 𝑉𝑉𝑓𝑓  is the function that 

quantifies the economic terminal cost/penalty. The states 𝝍𝝍𝑠𝑠
𝑟𝑟  and controller actions 𝑢𝑢𝑠𝑠𝑟𝑟  must be 

within their pre-specified constraints’ sets 𝚿𝚿𝒇𝒇 and 𝕌𝕌𝒇𝒇 as defined in (4.18) and (4.19), respectively. 

To achieve robustness, the cost function 𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟  of each one of 𝑟𝑟 scenarios can be defined as follows: 

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 = 𝐿𝐿𝑓𝑓𝝍𝝍𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛, ∀𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 ∈ 𝝍𝝍𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛,∀𝑖𝑖 ∈ ℕ𝑜𝑜𝑏𝑏𝑖𝑖 ,∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.21) 

where 𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum value of the 𝑖𝑖-th element in terminal branch 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎�𝑠𝑠𝑓𝑓, 𝑟𝑟�, which can 

be obtained by using (4.5), and the set ℕ𝑜𝑜𝑏𝑏𝑖𝑖 is the identifier of the elements in 𝝍𝝍 that are being 

optimized. 𝐿𝐿𝑓𝑓 is a function that reflect the significance of each 𝜓𝜓𝑠𝑠𝑓𝑓,𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 into the cost function in 

(4.21). In the current work, for our particular bioreactor study only one of the elements in 𝝍𝝍 needs 

to be optimized, i.e. the one corresponding to the growth rate. In this case, this specific element is 

denoted as 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑏𝑏𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 ; thus, the cost function can be defined as in (4.22). 

𝐽𝐽𝑠𝑠𝑓𝑓
𝑟𝑟 = 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑏𝑏𝑖𝑖

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.22) 
It is necessary to establish a time-discrete model since discretization is the nature of the scenario 

tree structure model. However, most of the process models are formulated by using a continuous 

time domain since they describe continuous balances by sets of ODE’s, i.e. 

�̇�𝜓 = 𝛺𝛺(𝜓𝜓,𝑢𝑢,𝑑𝑑)  (4.23) 

Additionally, the NMPC algorithm that is applied in the current work involves both the control 

actions as well as the model states as decision variables of the optimization problem. Hence, the 

states described by ODEs need to be discretized thus resulting in a nonlinear optimization (NLP) 

problem. To address this problem, the ODE’s are discretized and calculated over time by using the 
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Euler discrete integrations of the DMFM model (equation 3.10). The resulting discretized model 

can be written as follows: 

𝝍𝝍𝑠𝑠
𝑟𝑟(𝑡𝑡 + 1) = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡) + ∆𝑡𝑡�𝛺𝛺(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.24) 

where ∆𝑡𝑡  is the duration of each time interval and each of the stages 𝑠𝑠  may contain several 

sampling time intervals 𝑡𝑡 and generally ∆𝑠𝑠 needs to be multiple times of ∆𝑡𝑡. Two main options 

can be implemented to improve the accuracy of (4.24): i) reduce the time intervals of ∆𝑡𝑡 and ∆𝑠𝑠 

and ii) use a different algorithm from Euler integrations for time integration of the differential 

equations of the model. For instance, the forward differentiation formula (FDF) of 1st order was 

used in the current study to integrate eq. (4.24). To further improve the accuracy of the integration, 

higher order methods explicit Runge-Kutta methods such as ode45 in MATLAB can be adopted. 

It is worth noticing that the control inputs 𝑢𝑢𝑠𝑠𝑟𝑟 should be changed every 𝛼𝛼𝑢𝑢 (𝛼𝛼𝑢𝑢 ∈ ℤ) times for each 

stage, the actual time interval between each time of manipulation 𝑙𝑙 is ∆𝑙𝑙. Also, the uncertainty 

range 𝒅𝒅𝑠𝑠𝑟𝑟 is always assumed to involve percentages of the region 𝜹𝜹𝒅𝒅 with respect to the nominal 

parameters 𝒅𝒅�  that result in feasible solutions of the optimization problem. Thus, to ensure 

feasibility two additional constraints are added to the optimization problem as follows: 

𝑢𝑢𝑠𝑠𝑟𝑟 = 𝑢𝑢𝑙𝑙𝑟𝑟 , 𝑰𝑰(𝑠𝑠 − 1, 𝑟𝑟) → 𝑰𝑰(𝑠𝑠, 𝑟𝑟), 𝑠𝑠 ≤ 𝑙𝑙𝛼𝛼𝑢𝑢 < 𝑠𝑠 + 𝛼𝛼𝑢𝑢,∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎,∀𝑢𝑢𝑙𝑙𝑟𝑟 ∈ 𝑼𝑼𝐿𝐿  (4.25) 

𝒅𝒅𝑠𝑠𝑟𝑟 = 𝜹𝜹𝒅𝒅 ∙ 𝒅𝒅�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.26) 

where 𝑼𝑼𝐿𝐿 is the set of the input values 𝑢𝑢 of this model and 𝑙𝑙 is a subscript identifying each of the 

elements 𝑢𝑢𝑙𝑙𝑟𝑟 in 𝑼𝑼𝐿𝐿. The constrains in (4.25) are also introduced to ensure that decisions (control 

inputs) anticipating the future are avoided. These are generally referred as the non-anticipatively 

constraints. That is, the branches generated from same parents nodes share same control inputs in 

every 𝛼𝛼𝑢𝑢  stage, just as what has been shown in Fig. 4.7 where 𝛼𝛼𝑢𝑢 = 1, 𝑰𝑰(1,1) and 𝑰𝑰(1,2) are 

computed by using same control inputs 𝑢𝑢01. Thus, different scenario in TBT method maintains 

different profiles of control inputs. In some cases, the size of the set 𝑼𝑼𝐿𝐿 might be unstable during 

optimization. This problem can be partially addressed by introducing a fixed number of active 

scenarios 𝛼𝛼𝐼𝐼,𝑠𝑠 for each stage 𝑠𝑠. For example, in Fig. 4.7, for the 0-2 stages: 

𝑼𝑼𝐿𝐿 = {𝑢𝑢01,𝑢𝑢11,𝑢𝑢12,𝑢𝑢21,𝑢𝑢22,𝑢𝑢23,𝑢𝑢25} 

the 𝑢𝑢24 is not in this set since the corresponding scenario 𝑰𝑰(2,4) has been eliminated with 𝑃𝑃24 ≤

𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛. However, if the value’s changing of 𝑢𝑢01 during optimization result in 𝑃𝑃24 > 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛, the 𝑢𝑢24 
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should be introduced in 𝑼𝑼𝐿𝐿 and thus the size of 𝑼𝑼𝐿𝐿 is unstable. If 𝛼𝛼𝐼𝐼 is available in this stage as 

𝛼𝛼𝐼𝐼,2 = 4, which means the active amount of scenario of the 2nd stage is fixed to 4, and: 

𝑃𝑃24 ≤ ∀𝑃𝑃2𝑟𝑟 

then the scenario 𝑰𝑰(2,4) still not be active thus the size of 𝑼𝑼𝐿𝐿 is maintained stable. Generally, the 

𝛼𝛼𝐼𝐼,𝑠𝑠 of each stage 𝑠𝑠 are different according to different models and can be obtained by analyzing 

the normal condition of the TBT branching structure. 

Based on the above, the overall NLP optimization problem to be solved for calculating control 

actions is based on a two layers’ optimization that has been previously partially introduced in 

(3.6) − (3.11). This problem is now re-formulated as an EMPC (Economic Model Predictive 

Control Problem) by using the proposed tree structure as follows: 

min
𝑼𝑼𝐿𝐿

  𝑉𝑉𝑓𝑓 �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑏𝑏𝑖𝑖

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛�𝑡𝑡𝑓𝑓�
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 

 
(4.27) 

s. t.   
𝐸𝐸𝑞𝑞𝑠𝑠. (4.4) − (4.14)   

𝝍𝝍𝑠𝑠
𝑟𝑟(𝑡𝑡 + 1) = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡) + ∆𝑡𝑡�𝛺𝛺(𝝍𝝍𝑠𝑠
𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝒅𝒅𝑠𝑠𝑟𝑟)�, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.28) 

𝝍𝝍𝑠𝑠+1
𝑟𝑟 = 𝝍𝝍𝑠𝑠

𝑟𝑟(𝑡𝑡 + ∆𝑠𝑠), ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.29) 

𝝍𝝍𝑠𝑠
𝑟𝑟 ∈ 𝚿𝚿𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.30) 

𝑢𝑢𝑠𝑠𝑟𝑟 ∈ 𝕌𝕌𝒇𝒇, ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  (4.31) 

𝐸𝐸𝑞𝑞𝑠𝑠. (4.25) − (4.26)   

where the economic terminal cost/penalty 𝑉𝑉𝑓𝑓 in (4.27) includes the sum of the minimum condition 

at the end of each scenario, in which the objective function is 𝜓𝜓𝑠𝑠𝑓𝑓,𝑜𝑜𝑏𝑏𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛  at the terminal time 𝑡𝑡𝑓𝑓 of the 

final stage 𝑠𝑠𝑓𝑓, multiplied by its corresponding probability 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 . The probability of each node 𝑃𝑃𝑠𝑠𝑟𝑟 at 

each time interval can be obtained by using 𝐸𝐸𝑞𝑞𝑠𝑠. (4.4) − (4.14), i.e. the equations defining the 

TBT strategy outlined before for creating the tree structure and for pruning the branches with low 

probability. The function 𝛺𝛺 represents the discretized dynamics (4.28). This function is formulated 

via the CCM algorithm that was introduced in section 3.2.5 and the uncertainty propagation 

procedure that was presented in 3.1. The initial states 𝝍𝝍𝑠𝑠+1
𝑟𝑟  of each stage is equal to the final states 

𝝍𝝍𝑠𝑠
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡 + ∆𝑠𝑠) of the previous stage. Additional constraints for this model are bounds on the 
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states (4.30) and the inputs (4.31). Equations (4.25) − (4.26)  provide the non-anticipatively 

constraints and the uncertainty constraints, respectively. 

4.2.3 Theoretical Comparison of Computation Effort for the TBT Approach and the Monte 
Carlo Based Approach for Uncertainty Propagation 

In this section, the TBT method that forms the basis of the EMPC algorithm is compared on a 

theoretical basis with other methods such as Monte Carlo sampling and PCEs. 

Generally, the computational costs of Monte Carlo simulation and PCEs highly depends on the 

number of uncertain parameters that are being considered. For instance, for Monte Carlo 

simulation, if the number of uncertain parameters in the system is 𝜁𝜁, then the number 𝑁𝑁𝑀𝑀 of the 

repeating random sampling in each time interval is as in (4.32) needs to be large enough so as to 

let the distribution of the sample points approaching to become uniform. 

𝑁𝑁𝑀𝑀 = ℰ𝜁𝜁   (4.32) 
where ℰ is a tuning parameter that is generally related to the sampling size of the input space. For 

instance, when ℰ is increasing, the accuracy of the Monte Carlo algorithm is also increasing. Thus, 

ℰ cannot be very small so as to avoid prohibitive computational effort. For a simple comparison, 

let the Monte Carlo simulation be applied in the tree scenario structure method illustrated 

schematically in Fig. 2.4. If the robust horizon of this model is 𝑟𝑟𝜇𝜇, then the number of calculations 

for sampled values 𝑘𝑘𝑇𝑇𝑀𝑀 for this particular scenario in this tree structure can be calculated. Since 

each sample of 𝑁𝑁𝑀𝑀 would generate 𝑁𝑁𝑀𝑀 samples in the next time interval then the corresponding 

number of sampled values is determined as follows: 

𝑘𝑘𝑇𝑇𝑀𝑀 = ℰ𝑟𝑟𝜇𝜇𝜁𝜁  (4.33) 

If the time required for each scenario is 𝜏𝜏𝑛𝑛, then time 𝑇𝑇𝑀𝑀 that is required for the procedure can be 

calculated as follows: 

𝑇𝑇𝑀𝑀 = 𝑘𝑘𝑇𝑇𝑀𝑀𝜏𝜏𝑛𝑛  (4.34) 

For comparison, for the TBT approach, let assume that the space of the nonlinear system is divided 

into 𝑁𝑁𝑇𝑇  polyhedrons. Since the model for each polyhedrons of the process are linear, then the 

maximum and minimum of the variable of interest within each of these polyhedrons can be 

obtained by two calculations, i.e. minimum and maximum bounds, for each 𝑁𝑁𝑇𝑇. Thus, the amount 

𝑘𝑘𝑇𝑇 of braches that are generated in every time interval for each node is as follows: 
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𝑘𝑘𝑇𝑇 = 2𝑁𝑁𝑇𝑇  (4.35) 

Without initial consideration of the probability of each branch, the robust horizon of this model is 

𝑟𝑟𝜇𝜇 , the number of 𝑘𝑘𝑇𝑇𝑇𝑇 calculations of this scenario in this tree structure is: 

𝑘𝑘𝑇𝑇𝑇𝑇 = (2𝑁𝑁𝑇𝑇)𝑟𝑟𝜇𝜇  (4.36) 

In this case, if the computational time consumed for each scenario is 𝜏𝜏𝑛𝑛, then the total time 𝑇𝑇𝑇𝑇 that 

consumed for the TBT procedure will be as follows: 

𝑇𝑇𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑇𝑇𝜏𝜏𝑛𝑛  (4.37) 

Without consideration of other details of the algorithm that might further affect the computational 

effort of either the MC approach or our proposed TBT approach, such as the calculation of the 

vertices generating algorithm and the volume obtaining algorithm of each polyhedron, substituting 

(4.33) and (4.36) into (4.34) and (4.37) provides a ratio of the computational costs of the two 

methods, i.e. 

𝑇𝑇𝑀𝑀
𝑇𝑇𝑇𝑇

=
ℰ𝑟𝑟𝜇𝜇𝜁𝜁

(2𝑁𝑁𝑇𝑇)𝑟𝑟𝜇𝜇 
 

(4.38) 

Generally, ℰ and 𝑁𝑁𝑇𝑇 are of the same order of magnitude, and each symbol in (4.38) are positive 

integers, thus, the time required by the Monte Carlo based method is approximately (ℰ𝑟𝑟𝜇𝜇)𝜁𝜁−1 times 

of that required by the present TBT method. For instance, for ℰ = 10, 𝑟𝑟𝜇𝜇 = 3 and 𝜁𝜁 = 7, the 

computational time of the Monte Carlo based method is expected to be 1 × 1018  times the 

computational time of the TBT method. 

From this comparison, it can be concluded that the TBT method have the potential to save 

considerable computational costs. The explanations for this computational advantage are: i) the 

computational time in the TBT method is cubic, for a robust horizon of 3 time intervals, with 

respect to the number of polyhedrons 𝑁𝑁𝑇𝑇, created by the intersection of the constraints of the LP 

problem whereas for the computation in MC is exponential with respect to the number of uncertain 

parameters 𝜁𝜁 , as shown in (4.38); ii) the TBT method also offers an efficient approach for 

calculating probability for each node of the tree structure; thus, the scenario with less probability 

will be eliminated in time thus reducing the computational costs.  

On the one hand, it should be pointed out that the ability to save computational cost by pruning 

branches of low associated probability depends on the simplifying assumption that the probability 

distribution of occurrence of parameters in each polyhedron is uniform. In principle, the 
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probability distribution of each node could be identified from experimental data and assuming that 

the data would be corrupted by sensor noise, the resulting probability distribution of each node 

would obey the central limit theorem as generally assumed in the Monte Carlo method. On the 

other hand, it can be shown that due to the propagation of uncertainty along the robust horizon, 

the assumption of uniform probability may not be very restrictive since the probability distribution 

of each node results from the concatenation of probabilities of previous branches to that node. For 

example, for any one of the parameters from the system states 𝜓𝜓𝑖𝑖, if the probability distribution in 

a parent node of 𝜓𝜓𝑖𝑖 is denoted as 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖), and the probability distribution in current node of 𝜓𝜓𝑖𝑖 is 

referred to as 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) . Assuming that 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) is uniform, the function 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) is represented as 

follows: 

𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) = �𝑃𝑃𝑠𝑠
𝑟𝑟�𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜓𝜓𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�

−1
𝜓𝜓𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜓𝜓𝑖𝑖 ≤ 𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

0 𝜓𝜓𝑖𝑖 ≤ 𝜓𝜓𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛,𝜓𝜓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜓𝜓𝑖𝑖
        ∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 

 
(4.39) 

Then, the 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) can be calculated via the convolution of 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) and 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) as follows: 

𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) = � 𝑓𝑓𝑝𝑝(𝜓𝜓)𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖 − 𝜓𝜓)𝑑𝑑𝜓𝜓
∞

−∞
 

 
(4.40) 

In the first stage, the 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖) is only an initial point, thus the distribution of 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) via (4.40) is a 

rectangular function as shown in Fig. 4.8(a). However, in the second stage, following (4.40) the 

distribution of 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) is a convolution of several rectangular functions thus resulting in a non-

rectangular distribution of 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) as shown in Fig. 4.8(b). If uncertainty in 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎  is propagated 

through several stages, it is expected that the distribution of 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖)  will approach a normal 

distribution as Fig. 4.8(c) in some extent by using the convolution operation represented by (4.40).  

However, the differences between the probability distributions occurring between the nodes can 

impose additional demand for extra sampling if accurate calculations of the distribution are 

required. For instance, if the range of rectangular functions 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖), which are generated from the 

probability distribution in the parent node 𝑓𝑓𝑝𝑝(𝜓𝜓𝑖𝑖), are not much different from each other the 

probability distribution in the current node 𝑓𝑓𝑛𝑛(𝜓𝜓𝑖𝑖) can be obtained without extra sampling. On the 

other hand, if 𝑓𝑓𝑟𝑟(𝜓𝜓𝑖𝑖) from the same parent node are very different from each other, additional 

sampling would be necessary. These distributions are not taken explicitly into account in the TBT 

method, since this method is mainly focused on the marginal property of each node/tableau, such 

as the maximum and minimum condition of the distribution set. However, if non-uniform 
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probability assumption is made or if it is desired to calculate accurate probability distributions at 

each stage, further sampling is needed thus potentially increasing the computational effort. A study 

on these topics is left for future research studies. 

 

 Figure 4.8 Probability distribution of one parameter at different stages 

Finally, it is worth noticing that, just as for the parameter ℰ in the Monte Carlo based method, the 

number of linearly polyhedrons 𝑁𝑁𝑇𝑇 in solution space also can be adjusted in order to maintain a 

balance between the computational effort and the accuracy of the algorithm. In some cases, the 

polyhedrons with similar inherent linear coefficients can be considered as one linear polyhedron. 

Thus, the number of polyhedrons 𝑁𝑁𝑇𝑇 can be controlled thus saving additional computational costs. 

One additional opportunity in this study for computational savings is by taking advantage of the 

use of the two levels of tableaus (main tableaus and sub-tableaus) that were discussed in section 

3.2.5. If the differences between main tableaus is much larger than the differences among the sub-

tableaus contained within each of them, then only the main tableaus could be considered for 

uncertainty propagation. 

4.3 Robust Control Based on DFBM (Case Study) 

In section 4.2, the TBT method and its advantages for propagating uncertainty were outlined. In 

this section, a robust controller based on the idea of Economic Model Predictive Controller that 

uses a DFBM as internal model is proposed. The robustness of the proposed algorithm is provided 

by using the TBT uncertainty propagation approach.  

(a) (b) (c)
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4.3.1 Dynamic Flux Balance Model (DFBM) 

Dynamic Flux Balance Model (DFBM) is based on an a priori known network of 𝑚𝑚 metabolites 

participating in 𝑚𝑚  different reactions where the vector of metabolites’ concentrations is 

represented by 𝒛𝒛𝒄𝒄×𝟏𝟏. Each reaction in this model is associated to a flux, 𝝂𝝂𝒄𝒄×𝟏𝟏 given in units of 

metabolite/hr/mM of cell. A stoichiometric matrix 𝓐𝓐𝑚𝑚×𝑛𝑛  is formulated to describe the 

stoichiometric relations between all metabolites according to the reactions considered in the 

metabolic network. As discussed in Section 2.6, the model assumes that the organism is optimal 

by allocating resources to maximize the growth rate at all time. This fundamental assumption 

indicates that the cells have adapted through natural evolution to act as an optimizer of resources. 

Based on this assumption, the DFBM model can be formulated as a Linear Programming (LP) 

problem, based on the flux balance equations and the defined stoichiometric matrix as follows: 

max
𝑋𝑋,𝝂𝝂

 𝜇𝜇 = 𝒘𝒘𝑻𝑻𝝂𝝂 

𝑠𝑠. 𝑡𝑡.   𝓐𝓐𝝂𝝂 ≤ 𝒃𝒃,
𝑑𝑑𝒛𝒛
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝝂𝝂𝑋𝑋,
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋 

|�̇�𝝂| ≤ �̇�𝝂𝑚𝑚𝑚𝑚𝑚𝑚, 𝝂𝝂, 𝒛𝒛 ≥ 0 

 

(4.41) 

where 𝒃𝒃𝑚𝑚×1 represents a vector of consumption or production rate of extracellular metabolites 

such as nutrients and by-products, 𝑋𝑋 is concentration of biomass, 𝒛𝒛 is the current metabolites’ 

concentrations, 𝒘𝒘 is a vector that indicates the amounts of the growth precursors required per gram 

of biomass (Mahadevan et al., 2002). This dynamic flux model have been previously used by our 

research group for predictive control by (Kumar & Budman, 2017) based on a PCEs (Polynomial 

Chaos Expansion) method. Implementation of this technique resulted in computational demands 

that increased exponentially as a function of the uncertainty parameters of the model and 

consequently it was applied in that earlier study for a case study with only two uncertain 

parameters. In the current work, the TBT method is adopted to address this computational problem 

when considering a larger number of uncertain parameters. 

4.3.2 Modeling with Uncertainty 

The bioreactor study in the current work involves the development of a robust-EMPC based on a 

DFBM given in (4.41). The objective of the EMPC is to maximize the biomass at the end of the 

culture by manipulating the feeding rate of fresh media and the perfusion rate of supernatant. A 

schematic process flowsheet of this process has been shown in Fig. 4.9 with the indication of the 
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main inputs and outputs. As for the perfusion operation it is assumed that only supernatant is 

perfused while all the cells are returned back to the bioreactor vessel. Accordingly, the dynamic 

mass balances that account for the feeding rate 𝑟𝑟𝐹𝐹, the perfusion rate 𝑟𝑟𝑃𝑃 and the resulting changing 

reactor contents’ volume 𝑉𝑉 are formulated in terms of the fluxes 𝝂𝝂, as per equations (4.42) -(4.44). 

Perfusion is implemented in the current work to ensure that the negative impact on growth by 

accumulation of high levels of some metabolites, such as acetate and glucose, is avoided 

(Mahadevan et al., 2002). 

 

Figure 4.9 A schematic process flowsheet of the bioreactor with the feed and perfusion system 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃 
 

(4.42) 

𝑑𝑑𝒛𝒛
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝝂𝝂𝑋𝑋 +
𝑟𝑟𝐹𝐹�𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅 − 𝒛𝒛�

𝑉𝑉
= 𝑓𝑓�𝓐𝓐, 𝑟𝑟𝐹𝐹 ,𝑉𝑉, 𝑟𝑟𝑃𝑃,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂,𝑋𝑋, 𝒛𝒛� 

 
(4.43) 

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋 −
𝑋𝑋(𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃)

𝑉𝑉
= 𝑔𝑔�𝓐𝓐, 𝑟𝑟𝐹𝐹 ,𝑉𝑉, 𝑟𝑟𝑃𝑃,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂,𝑋𝑋, 𝒛𝒛� 

 
(4.44) 

where 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅 is the concentration of metabolites in the feed and functions 𝑓𝑓 and 𝑔𝑔 represent the 

RHS of ODE’s for the metabolites, i.e. 𝒛𝒛 in (4.43), and biomass, i.e. 𝑋𝑋 in (4.44). The DFBM model 

is then formulated as an LP that is solved at each time interval 𝑘𝑘 as follows: 

max
𝝂𝝂

 𝜇𝜇(𝑘𝑘) = 𝒘𝒘𝑻𝑻𝝂𝝂(𝑘𝑘) 

𝑠𝑠. 𝑡𝑡.  𝓐𝓐𝝂𝝂(𝑘𝑘) ≤ 𝒃𝒃(𝒛𝒛(𝑘𝑘 − 1),𝜷𝜷) 

�
𝝂𝝂(𝑘𝑘) − 𝝂𝝂(𝑘𝑘 − 1)

𝛥𝛥𝑡𝑡
� ≤ �̇�𝝂𝑚𝑚𝑚𝑚𝑚𝑚 

𝝂𝝂(𝑘𝑘), 𝒛𝒛(𝑘𝑘),𝑋𝑋(𝑘𝑘) ≥ 0 

 

(4.45) 

where the vector of uncertainty parameters 𝜷𝜷 in this model is assumed as the main source of 

uncertainty 𝒅𝒅, 𝛥𝛥𝑡𝑡 is the time step, 𝑘𝑘 used for discretization of the mass balances. The constraints 

𝑟𝑟𝐹𝐹 
𝑟𝑟𝑃𝑃 
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in (4.45) consist of kinetic based bounds on flux rates and positivity constraints on fluxes and 

metabolites’ concentrations; 𝒛𝒛  and 𝑋𝑋  are calculated from the discretized form of the process 

equations as given in (4.42) – (4.44). 𝒃𝒃 is formulated as a function of a particular metabolite 

concentration. If there is no bound for the accumulation or depletion rates of a specific metabolite, 

then the corresponding 𝒃𝒃 for this metabolite is equal to zero. The material balances of 𝒛𝒛 and 𝑋𝑋 

(4.42) – (4.44) are discretized using an Euler discretization scheme and the resulting discrete 

equations are then used for the prediction until the batch end time 𝑡𝑡𝑓𝑓.  

Since the EMPC method is adopted in the current work, the economic objective is to maximize 

the amount of biomass 𝑋𝑋 at the end of the fed-batch 𝑋𝑋𝑉𝑉�𝑡𝑡𝑓𝑓�. It is also assumed that the biomass 

𝑋𝑋(𝑘𝑘) and the main metabolite, glucose, can be measured online and can be used for the purpose 

of feedback. Therefore, the biomass 𝑋𝑋�𝑡𝑡𝑓𝑓� at the end of the batch can be predicted in 2 steps: i) 

solution of the LP in (4.45) at every time interval to obtain the fluxes 𝝂𝝂(𝑘𝑘); and ii) calculation of 

output predictions of the ODE’s in (4.42) – (4.44) by using the ode45 solver in MATLAB. These 

two steps constitute the inner problem of the EMPC controller as discussed in (3.7) – (3.11). 

Robust 
NMPC

Linearly 
polyhedron  map 

generation (off-line)

Sensitivity
analysis

RHS map 
generation 

based on LP
CCM

TBT based
EMPC model

(on-line)

Tree structural 
based uncertainty 

propagation Determine 
ODEs’ 

supremum

Multistage 
economic 

optimization

Feedback 
corrections

  

Figure 4.10 The basic structure of the Robust NMPC formulation in this study 
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The uncertainty propagation TBT procedure is also based on the inner level problem given by 

(4.42) – (4.45). Accordingly, the effect of uncertain parameters 𝜷𝜷  on the model predictions 

obtained with the discretized ODE’s (4.42) – (4.44) coupled to the LP (4.45) is calculated using 

the TBT algorithm based on the following two steps: i) partition of the LP into many polyhedrons 

corresponding to different tableaus where for each polyhedron the maximal and minimal reaction 

fluxes 𝝂𝝂  can be determined by using the sensitivity analysis of the CCM algorithm; and ii) 

propagation of the maximal and minimal bounds of the fluxes into corresponding the predictions 

of 𝒛𝒛 and 𝑋𝑋 as given by the discretized ODE’s in (4.42) – (4.44). A schematic flowchart of the 

EMPC controller based on the TBT algorithm is shown in Fig. 4.10. 

4.3.3 DFBM on the Growth of E. coli 

A simplified DFBM model that is developed by Mahadevan et al., 2002 for illustrating the growth 

of E. coli on glucose is used in this work as a case study. Fig. 4.11 demonstrates the DFBM 

metabolic network with glucose (𝐺𝐺𝑙𝑙𝑐𝑐𝑥𝑥𝑡𝑡), acetate (𝐴𝐴𝑐𝑐) and oxygen (𝑂𝑂2) as input and the biomass 

(𝑋𝑋) as the output. 

 

𝜈𝜈1 39.43 𝐴𝐴𝑐𝑐 + 35 𝑂𝑂2 → 𝑋𝑋 

𝜈𝜈2 9.46 𝐺𝐺𝑙𝑙𝑐𝑐𝑥𝑥𝑡𝑡 + 12.92 𝑂𝑂2 → 𝑋𝑋 

𝜈𝜈3 9.84 𝐺𝐺𝑙𝑙𝑐𝑐𝑥𝑥𝑡𝑡 + 12.73 𝑂𝑂2 → 1.24 𝐴𝐴𝑐𝑐 + 𝑋𝑋 

𝜈𝜈4 19.23 𝐺𝐺𝑙𝑙𝑐𝑐𝑥𝑥𝑡𝑡 → 12.12 𝐴𝐴𝑐𝑐 + 𝑋𝑋 

Figure 4.11 Simplified Metabolic Network for E.coli growth on Glucose: Flux balances and 

stoichiometric coefficients (Mahadevan et al., 2002) 

This network contains 4 fluxes given by the vector 𝝂𝝂 = [𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3, 𝜈𝜈4]𝑇𝑇 and 3 metabolites denoted 

by vector 𝒛𝒛 = �𝑧𝑧𝐺𝐺𝑙𝑙 , 𝑧𝑧𝐴𝐴𝑛𝑛 , 𝑧𝑧𝑂𝑂2�, the growth rate 𝜇𝜇 and the stoichiometric matrix 𝓐𝓐𝟑𝟑×𝟒𝟒 that describes 

the stoichiometric relations among the 3 metabolites and the growth rate are as follows: 

𝓐𝓐 = �
0 −9.46 −9.84 −19.23

−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

� 

𝜇𝜇 = � 𝜈𝜈𝑖𝑖
4

𝑖𝑖=1
 

 

(4.46) 
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The dynamic mass balances of metabolites are given by (4.47) while problem (4.48) generates at 

each time interval the optimized fluxes 𝝂𝝂 that are used in (4.47) at each instant. There are 3 

distinct metabolic phases in the growth process of E.coli described by  (4.48): i) Aerobic growth 

on Glucose, ii) Anaerobic growth on Glucose, and iii) Anaerobic growth on a second metabolite, 

acetate. These 3 phases can occur at the same time, but their occurrence is dependent on the 

concentration of 𝑂𝑂2 . The RHS map 𝑴𝑴𝑴𝑴𝑹𝑹𝑹𝑹  of  (4.48)  is first generated with the procedure 

introduced in 3.2.4. Only 2 main active tableaus 𝑴𝑴𝑴𝑴𝟏𝟏 and 𝑴𝑴𝑴𝑴𝟐𝟐 were found which correspond to 

the basic fluxes {𝜈𝜈1, 𝜈𝜈2}  or {𝜈𝜈2, 𝜈𝜈4} . The detailed information of these two tableaus and the 

procedure and proofs are presented in Appendix A. Correspondingly, 2 different regions in RHS 

map, i.e. 𝑴𝑴𝑴𝑴𝟏𝟏  and 𝑴𝑴𝑴𝑴𝟐𝟐 , can be considered where each region represents a distinct nutrient 

allocation strategy that the cell can adopt during the batch. 

Equations  (4.47) and (4.48) are first used to formulate a nominal controller with the function 

proposed in 4.3.5. The uncertainty range of RHS 𝜷𝜷 that is used in this model is assumed as in 

(4.26), i.e. 𝜷𝜷 = 𝒅𝒅, where 𝒅𝒅 is the uncertainty of the entire system, and thus 𝜷𝜷 = 𝜹𝜹𝒅𝒅 ∙ 𝒅𝒅� where the 

vector of nominal parameters is 𝒅𝒅�. In this work, the maximum uptake rate constraints 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, 

𝑑𝑑𝑧𝑧𝐺𝐺𝑙𝑙
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝐺𝐺𝑙𝑙𝝂𝝂𝑋𝑋 +
𝑟𝑟𝐹𝐹�𝑧𝑧𝐺𝐺𝑙𝑙,𝑖𝑖𝑛𝑛 − 𝑧𝑧𝐺𝐺𝑙𝑙�

𝑉𝑉
 

𝑑𝑑𝑧𝑧𝑂𝑂2
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝑂𝑂2𝝂𝝂𝑋𝑋 −
𝑟𝑟𝐹𝐹𝑧𝑧𝑂𝑂2
𝑉𝑉

+ 𝑘𝑘𝐿𝐿𝑎𝑎�0.21 − 𝑧𝑧𝑂𝑂2� 

𝑑𝑑𝑧𝑧𝐴𝐴𝑛𝑛
𝑑𝑑𝑡𝑡

= 𝓐𝓐𝐴𝐴𝑛𝑛𝝂𝝂𝑋𝑋 −
𝑟𝑟𝐹𝐹𝑧𝑧𝐴𝐴𝑛𝑛
𝑉𝑉

  

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋 −
𝑋𝑋(𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃)

𝑉𝑉
  

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝐹𝐹 − 𝑟𝑟𝑃𝑃 

 (4.47) 

𝑚𝑚𝑎𝑎𝑥𝑥
𝑋𝑋,𝝂𝝂𝑖𝑖

 𝜇𝜇 = � 𝜈𝜈𝑖𝑖
4

𝑖𝑖=1
 

 
(4.48) 

s. t.    𝑧𝑧𝑖𝑖 ≥ 0,  ∀𝑖𝑖 ∈ [1,3],  𝜈𝜈𝑖𝑖 ≥ 0,  ∀𝑖𝑖 ∈ [1,4] 

|𝓐𝓐𝐺𝐺𝑙𝑙𝝂𝝂| ≤
𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝐺𝐺𝑙𝑙
𝐾𝐾𝑚𝑚 + 𝑧𝑧𝐺𝐺𝑙𝑙

𝑚𝑚𝑚𝑚𝑉𝑉𝑙𝑙
𝑔𝑔𝑑𝑑𝑤𝑤 − ℎ𝑟𝑟

 

−𝓐𝓐𝑂𝑂2𝝂𝝂 ≤ 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

𝓐𝓐𝐴𝐴𝑛𝑛𝝂𝝂 ≤ 100 
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the maximum rate of oxygen uptake reaction 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and the oxygen mass transfer coefficient 

𝑘𝑘𝐿𝐿𝑎𝑎 are chosen as the uncertain parameters. Therefore,  

𝒅𝒅� = [𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘𝐿𝐿𝑎𝑎]𝑻𝑻  

is the vector of nominal values of these parameters that is used in (4.26) to generate the uncertainty 

range 𝜷𝜷. Finally, based on the nominal condition that have been developed and the uncertainty 

range 𝜷𝜷, the robust controller can be designed based on the uncertainty propagation procedure 

(TBT) outlined in section 4.3.6.  

4.3.4 Uncertainty Propagation 

The detailed steps of the uncertainty propagation procedure for this case study are described below. 

4.3.4.1 Generation of RHS Map based on the LP in (4.45) offline using the CCM in 3.2.4 

The uncertainty parameter space of the LP (4.45), described by the uncertainty in the parameters 

of the LP model, has to be divided into a set of polyhedrons for the purpose of uncertainty 

propagation to be done with the TBT method. Thus, the CCM method is applied to generate the 

RHS map of the LP in (4.45) by following the procedure described in section 3.2.4. Since this 

process is often found to be computational demanding, part of the constraints that do not involve 

uncertainty can be eliminated from LP (4.45) during the RHS map generation process so that the 

computational effort is reduced. For instance, the constraints of 𝝂𝝂(𝑘𝑘) ≥ 0 in LP (4.45) are not 

necessary in the current work. This is because the CCM method is based on the tableau analyses 

of the Simplex method, where the optimal solutions are forced to be positive. Also, following the 

outcomes established in section 3.2.5, if one of the coefficient  𝒃𝒃�𝒊𝒊 in the RHS is large enough so 

as the corresponding constraint will never become active during the duration of the culture, then 

this constraint can also be eliminated from the CCM search procedure. The generated map of RHS 

with respect to the LP (4.45) is denoted as 𝑴𝑴𝑴𝑴𝑹𝑹𝑹𝑹 in this work. 

4.3.4.2 Propagation of uncertainty onto fluxes (Sensitivity Analysis of CCM approach) using LP 

in (4.45) 

Once the RHS map of LP (4.45 worst case for the LP) have been obtained, the robust NMPC based 

on TBT method can be formulated following the procedure outlined in 4.2.1. In this work, a 

scenario tree structure is generated along with the prediction horizon as illustrated in Fig. 4.12. For 
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simplicity, most of the branches in this tree are eliminated in advance while only the nominal 

scenario (the green branch in Fig 4.12) and the worst case scenario (the red one in Fig 4.12) are 

left. Note that even though a worst-case scenario that is used in this tree structure represents the 

condition of the scenario that generated the worst case branch, it does not imply that only the worst 

case scenario is considered in this case study. Actually, this research is based on the computation 

of probability that the worst case of each scenario/branch may occur. The elimination can reduce 

the computational effort considerably while calculating the worst case of the current study. The 

reason of the application of this elimination is that only two main-tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄  which 

interestingly correspond to two alternative cell strategies for its survival, i.e. either an aerobic or 

anaerobic respiration modes, can be active in the current work while the sub-tableaus 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 of each 

one of these two main-tableaus are not significantly different in terms of fluxes from the results 

obtained with the main tableaus. The detailed properties of the set of main tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄 

developed in this work is discussed in Appendix A. Thus, the RHS map is divided into 2 different 

polyhedrons in terms of 2 different main-tableaus’ region 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄. Since the production of biomass 

resulting from anaerobic respiration must be smaller than the rate under aerobic respiration, as 

long as the survival strategy of cells stay in the tableau region of the anaerobic respiration 

corresponding to one specific branch during the propagation process, then this branch consistently 

results in the minimum production of biomass which corresponds to the worst case. Thus, in this 

instance, the number of active scenarios 𝛼𝛼𝐼𝐼,𝑠𝑠 for each stage 𝑠𝑠 is 𝛼𝛼𝐼𝐼,1 = 1, 𝛼𝛼𝐼𝐼,𝑖𝑖 = 2, 𝑖𝑖 ∈ [2,3, … ]. 

Therefore, the nominal branch and the worst case branch can be obtained based on (4.49) as 

follows: 

𝑹𝑹𝒛𝒛𝑠𝑠𝑟𝑟 = �
�𝝂𝝂𝑠𝑠+1

𝑟𝑟(1)�
𝑇𝑇

𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(1)

�𝝂𝝂𝑠𝑠+1
𝑟𝑟(2)�

𝑇𝑇
𝑃𝑃𝑠𝑠+1
∗𝑟𝑟(2)

� = 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟 ,𝑴𝑴𝑴𝑴𝑹𝑹𝑹𝑹)  
 

(4.49) 

where the 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 is the function that calculates the minimal and maximal values of the fluxes as per 

the CCM algorithm, which have been introduced in section 3.2.5, using the lcon2vert algorithm in 

MATLAB. The elements in 𝒛𝒛𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 and 𝜷𝜷𝑠𝑠𝑟𝑟 are the corresponding maximum and minimum values 

as follows: 

𝒛𝒛𝑠𝑠𝑟𝑟 = �𝒛𝒛𝑠𝑠
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 𝒛𝒛𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�   (4.50) 
𝑋𝑋𝑠𝑠𝑟𝑟 = �𝑋𝑋𝑠𝑠

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 𝑋𝑋𝑠𝑠
𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�  (4.51) 
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where the uncertainty region is defined by: 

𝜷𝜷𝑠𝑠𝑟𝑟 = �𝜷𝜷𝑠𝑠
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 𝜷𝜷𝑠𝑠

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�   (4.52) 

 
Figure 4.12 Uncertainty evolution with prediction horizon represented by scenario tree structure 

Additionally, the ∆𝒃𝒃 which are the variations in the RHS of the constraints of the LP problem that 

are used in  𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 as in (3.77) with its constraints in (3.78) are obtained from (4.53). The supreme 

of 𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟) can also be calculated as per equations (3.12) – (3.15) in section 3.1. 

∆𝒃𝒃 = [𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟)𝒎𝒎𝒊𝒊𝒄𝒄 𝒃𝒃(𝒛𝒛𝑠𝑠𝑟𝑟 ,𝜷𝜷𝑠𝑠𝑟𝑟)𝒎𝒎𝒂𝒂𝒙𝒙]   (4.53) 
The probability of each sub-tableau is derived by substituting (3.83) and (3.86) into (3.16): 

𝑃𝑃(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛|∆𝑏𝑏) =
𝑉𝑉𝑉𝑉𝑙𝑙𝑛𝑛𝑛𝑛|∆𝒃𝒃
𝑉𝑉𝑉𝑉𝑙𝑙|∆𝒃𝒃

 
 

(4.54) 

the probability of the 2 main-tableaus can be obtained as follows: 

𝑃𝑃𝑠𝑠
∗𝑟𝑟(𝑚𝑚𝑛𝑛) = � 𝑃𝑃(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛|∆𝑏𝑏)

𝑇𝑇𝑅𝑅𝑛𝑛𝑛𝑛∈𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄

, 𝑚𝑚𝑐𝑐 ∈ [1,2]  
(4.55) 

where 𝑚𝑚𝑐𝑐 ∈ [1,2] for current 𝑴𝑴𝑴𝑴𝑹𝑹𝑹𝑹 . Meanwhile, the optimized flux 𝜇𝜇𝑠𝑠𝑟𝑟  of biomass 𝑋𝑋𝑠𝑠𝑟𝑟  can be 

calculated by substituting 𝝂𝝂𝑠𝑠𝑟𝑟 into (4.45) as follows: 

Robust Horizon = 3

Prediction Horizon = 5

𝒛𝒛11𝑋𝑋11𝑃𝑃11 

𝑢𝑢01 
𝜷𝜷01 

𝑢𝑢01 
𝜷𝜷01 

𝑢𝑢11𝜷𝜷11 

𝑢𝑢12𝜷𝜷12 

𝒛𝒛12𝑋𝑋11𝑃𝑃12 

𝒛𝒛21𝑋𝑋11𝑃𝑃21 

𝒛𝒛22𝑋𝑋11𝑃𝑃22 

     

     

𝒛𝒛31𝑋𝑋11𝑃𝑃31 𝑢𝑢31𝜷𝜷31 𝒛𝒛41𝑋𝑋11𝑃𝑃31 𝑢𝑢41𝜷𝜷41 𝒛𝒛51𝑋𝑋11𝑃𝑃31 

     

     

     

     

     

𝒛𝒛32𝑋𝑋11𝑃𝑃32 𝑢𝑢32𝜷𝜷32 𝒛𝒛42𝑋𝑋11𝑃𝑃32 𝑢𝑢42𝜷𝜷42 𝒛𝒛52𝑋𝑋11𝑃𝑃32 

𝑢𝑢21𝜷𝜷2
1 

𝑢𝑢22𝜷𝜷2
2 

𝒛𝒛0𝑋𝑋0𝑃𝑃0 



   

 100 

𝜇𝜇𝑠𝑠𝑟𝑟 = 𝒘𝒘𝑻𝑻𝝂𝝂𝑠𝑠𝑟𝑟   (4.56) 

4.3.4.3 Propagation of uncertainty in fluxes of two scenarios in the TBT’s tree structure into the 

predictions of 𝒛𝒛 and 𝑋𝑋 

As shown above,  there are only two active scenarios 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 in the TBT’s tree structure of this work, 

which are the nominal scenario 𝑰𝑰𝐵𝐵𝑛𝑛  and the worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 , respectively. Thus the 

probability 𝑃𝑃𝑠𝑠𝑤𝑤 of worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 can be obtained at each stage with the functions of (4.9)–

(4.14) while the probability 𝑃𝑃𝑠𝑠𝑛𝑛 of the nominal scenario 𝑰𝑰𝐵𝐵𝑛𝑛  can be obtained by using (4.57) for 

simplicity.  

𝑃𝑃𝑠𝑠𝑛𝑛 = 1 − 𝑃𝑃𝑠𝑠𝑤𝑤   (4.57) 
Correspondingly, the predictions of 𝒛𝒛 and 𝑋𝑋 at each stages can be obtained by using the functions 

(4.58)– (4.59) that were developed from (4.42)–(4.44).  

𝑑𝑑𝒛𝒛𝑠𝑠+1𝑟𝑟

𝑑𝑑𝑡𝑡
= 𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� 

 
(4.58) 

𝑑𝑑𝑋𝑋𝑠𝑠+1𝑟𝑟

𝑑𝑑𝑡𝑡
= 𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� 

 
(4.59) 

where the controller inputs 𝒖𝒖𝑠𝑠𝑟𝑟  are the feeding rate [𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟  and the perfusion rate [𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟  of the 

corresponding stages: 

𝒖𝒖𝑠𝑠𝑟𝑟 = [ [𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟 [𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟 ], ∀[𝑟𝑟𝐹𝐹]𝑠𝑠𝑟𝑟 ∈ 𝒓𝒓𝑭𝑭, ∀[𝑟𝑟𝑃𝑃]𝑠𝑠𝑟𝑟 ∈ 𝒓𝒓𝑷𝑷  (4.60) 
Then, the vectors which elements are the control actions during the entire process are defined as 

follows: 

𝒖𝒖𝒍𝒍𝒓𝒓 = [𝒓𝒓𝑭𝑭 𝒓𝒓𝑷𝑷]𝑟𝑟 , ∀𝒖𝒖𝒍𝒍𝒓𝒓 ∈ 𝑼𝑼𝐿𝐿  (4.61) 
The functions 𝑓𝑓𝑟𝑟 and 𝑔𝑔𝑟𝑟 are formulated as follows: 

𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� = �
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

�
𝑇𝑇

 
 

(4.62) 

𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟� = �
𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�

�
𝑇𝑇

 
 

(4.63) 

It is assumed that in each time interval, the maximum and minimum of function 𝑓𝑓 and 𝑔𝑔 can be 

obtained by calculating the partial derivatives or the Jacobian Matrix for each function and then 
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using the maximum and minimum values of each parameter. For instance, within a specific time 

interval, if the partial derivative of 𝑓𝑓 is expressed as: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

≤ 0,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

≥ 0,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥3

≤ 0 

then the maximum value of this function at this instant is: 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓�𝑥𝑥1𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥3𝑚𝑚𝑖𝑖𝑛𝑛�  

Meanwhile, it is also assumed that the initial condition is known since it can be measured; thus, 

the uncertainty of the first stage is propagated from the uncertainty range of 𝝂𝝂𝑠𝑠𝑟𝑟 from (4.49). 

4.3.4.4 Prediction with uncertainty until the end of the batch by combining step 2 and step 3 

above 

At a given time interval 𝑘𝑘, 𝑘𝑘 ∈ ℕ, when the vector of the manipulated variables 𝑼𝑼𝐿𝐿 is available, 

then the feed 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘)  and perfusion 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘)  for each stage 𝑠𝑠  are available, ∀𝑙𝑙 ∈

�1,2,3, … , 𝑙𝑙𝑓𝑓�. The end time 𝑡𝑡𝑓𝑓 of the batch operation 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + ∆𝑙𝑙�𝑙𝑙𝑓𝑓� is also defined as a function 

of the sampling intervals for each of the stages as 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + ∆𝑠𝑠�𝑠𝑠𝑓𝑓�, all of the different scale of 

time intervals, i.e. ∆𝑙𝑙,∆𝑠𝑠 and ∆𝑡𝑡, are illustrated as in Fig. 4.6(b), 𝜏𝜏 = {0,1,2, … , 𝑝𝑝}, 𝑡𝑡𝑓𝑓 = 𝑘𝑘 + 𝑝𝑝. 

Thus, the procedure for propagating uncertainty along the prediction horizon 𝑝𝑝 is as follows: 

1. Set the initial conditions, 𝑖𝑖 = 0, 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) are known form 𝑼𝑼𝐿𝐿, so are 

the 𝜷𝜷0, 𝝂𝝂0, 𝒛𝒛0, 𝑋𝑋0, 𝑉𝑉0. Let 𝑙𝑙 = 1, 𝑠𝑠 = 0, 𝝂𝝂(𝑘𝑘 − 1) = 𝝂𝝂0, 𝒛𝒛(𝑘𝑘 − 1) = 𝒛𝒛0, 𝑋𝑋(𝑘𝑘 − 1) = 𝑋𝑋0. 

2. 𝑖𝑖 = 𝑖𝑖 + 1, calculate 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏) and other relevant parameters by 

following the procedure in 4.3.4.2. 

3. Determine 𝒛𝒛𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑋𝑋𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑃𝑃𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏)  using 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) , 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏) 

from step 2 and 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) as well as 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) based on the instructions in 4.3.4.3. 

4. If ∃𝛼𝛼 ∈ ℕ, 𝜏𝜏 = 𝛼𝛼∆𝑙𝑙, then 𝑙𝑙 = 𝑙𝑙 + 1, update 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) form 𝑼𝑼𝐿𝐿; if ∃𝛼𝛼 ∈

ℕ, 𝜏𝜏 = 𝛼𝛼∆𝑠𝑠, then 𝑠𝑠 = 𝑠𝑠 + 1; if 𝜏𝜏 = 𝑝𝑝, then break this uncertainty propagation procedure; 

else go to Step 2 and 3. 

A flowchart of this section is demonstrated in Fig. 4.13. 
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Figure 4.13 Flowchart of the procedure for propagating uncertainty along the prediction horizon 𝒑𝒑 

Start 

 

Set the initial conditions of 𝑼𝑼𝐿𝐿, 𝜷𝜷0, 𝝂𝝂0, 

𝒛𝒛0, 𝑋𝑋0, 𝑉𝑉0. Let 𝑖𝑖 = 0, 𝑙𝑙 = 1, 𝑠𝑠 = 0 

Calculate 𝝂𝝂𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝜇𝜇𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠∗𝑟𝑟(𝑘𝑘 + 𝜏𝜏) 

𝑖𝑖 = 𝑖𝑖 + 1 
 

Determine 𝒛𝒛𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑋𝑋𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏), 𝑃𝑃𝑠𝑠𝑟𝑟(𝑘𝑘 + 𝜏𝜏) 

𝜏𝜏 = 𝑝𝑝? 
 

∃𝛼𝛼 ∈ ℕ 
𝜏𝜏 = 𝛼𝛼∆𝑠𝑠? 

 

∃𝛼𝛼 ∈ ℕ 
𝜏𝜏 = 𝛼𝛼∆𝑙𝑙? 

 

Update 𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) and 

𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) form 𝑼𝑼𝐿𝐿 

 

𝑙𝑙 = 𝑙𝑙 + 1 
 

𝑠𝑠 = 𝑠𝑠 + 1 
 

Stop 

 

Obtain 𝒛𝒛𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�, 

𝑋𝑋𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�, 𝑃𝑃𝑠𝑠𝑟𝑟�𝑘𝑘 + 𝑡𝑡𝑓𝑓�, 

𝑉𝑉�𝑘𝑘 + 𝑡𝑡𝑓𝑓� 
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4.3.5 Nominal Controller Formulation 

The nominal controller of the current study is used for comparison with the robust controller. Since 

the strategy of the controller here is EMPC, an economic objective function is chosen as the 

biomass at the end of the batch 𝑋𝑋�𝑡𝑡𝑓𝑓 = 𝑘𝑘 + 𝑝𝑝�𝑉𝑉�𝑡𝑡𝑓𝑓�, which represents the amount of the biomass 

at the end of the batch. Meanwhile, it is assumed that the biomass 𝑋𝑋0 = 𝑋𝑋(𝑘𝑘) and the nutrient 𝒛𝒛0 =

𝒛𝒛(𝑘𝑘) can be measured as 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) and 𝒛𝒛𝑚𝑚𝑠𝑠(𝑘𝑘) at the current sampling interval. The measured data 

is used to reinitialize the prediction procedure by using 𝑋𝑋0 = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) and 𝒛𝒛0 = 𝒛𝒛𝑚𝑚𝑠𝑠(𝑘𝑘). Thus, the 

open-loop prediction model can be updated with the feedback: 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) by 

using 𝑋𝑋(𝑘𝑘 + 𝑝𝑝) = 𝑔𝑔(𝑘𝑘 + 𝑝𝑝) + 𝑓𝑓𝑏𝑏𝑏𝑏. Therefore, the nominal control problem, that is, the controller 

that does not consider the model uncertainty, can be formulated as in (4.64) by a two-level 

optimization problem. The inner level (Problem (4.45)) involves the calculation of fluxes in order 

to maximize growth rate at each instant. Then, the outer optimization calculates the control actions 

𝑼𝑼𝐿𝐿, i.e. the optimal feeding and perfusion rates, needed to maximize the biomass amount at the 

end of the batch. In the current work, the outer level is solved using interior point methods within 

fmincon in MATLAB, and the inner level  (Problem (4.45)) is generally solved with dual simplex 

method in linprog in MATLAB (Kumar & Budman, 2017). 

max
𝑼𝑼𝐿𝐿

  𝑋𝑋�𝑡𝑡𝑓𝑓|𝑘𝑘�𝑉𝑉�𝑡𝑡𝑓𝑓|𝑘𝑘�  (4.64) 

s. t.   𝐸𝐸𝑞𝑞𝑠𝑠. (4.42) − (4.45) 

𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) 

𝑋𝑋�𝑡𝑡𝑓𝑓|𝑘𝑘� = 𝑔𝑔�𝑡𝑡𝑓𝑓|𝑘𝑘� + 𝑓𝑓𝑏𝑏𝑏𝑏 

𝒛𝒛(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑠𝑠(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ, 𝑘𝑘 = 𝛼𝛼∆𝑙𝑙 

𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ, 𝑘𝑘 = 𝛼𝛼∆𝑙𝑙 

𝒖𝒖𝒍𝒍 = [𝑟𝑟𝐹𝐹(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) 𝑟𝑟𝑃𝑃(𝑘𝑘 + 𝑙𝑙|𝑘𝑘) ], ∀𝒖𝒖𝒍𝒍 ∈ 𝑼𝑼𝐿𝐿 

 

 

4.3.6 Robust Controller Formulation 

Once the uncertainty propagation procedure as described in section 4.2 has been implemented, the 

robust EMPC model of current work can be formulated based on the Problem (4.27) and the 

relevant constraints that have been discussed in section 4.2.2. To propagate uncertainty, first the 

offline procedure in 4.3.4.1 is used to generate the RHS map 𝑴𝑴𝑴𝑴𝑹𝑹𝑹𝑹 as per problem  (4.45). Then, 

the online EMPC calculations are done as per problem (4.65). Similar to the feedback corrections 

that are used in problem (4.64) of the nominal controller EMPC formulation, feedback corrections 
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in the robust controller are used 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) − 𝑋𝑋(𝑘𝑘|𝑘𝑘 − 1) for updating the concentration of the 

biomass prediction, such as 𝑋𝑋(𝑘𝑘 + 𝑝𝑝) = 𝑔𝑔(𝑘𝑘 + 𝑝𝑝) + 𝑓𝑓𝑏𝑏𝑏𝑏. Meanwhile, the current concentration of 

each nutrient at the root node (current time interval) are also updated by using the measurements, 

such as 𝒛𝒛0(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑠𝑠(𝑘𝑘), 𝑋𝑋0(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙. Additionally, since 

there are only two scenarios in the tree structure of the current work, i.e. the nominal scenario and 

the worst case scenario, the number of active scenarios is 𝑁𝑁𝑠𝑠 = 2 for problem (4.65). Finally, as 

for the nominal controller case, problem (4.65) is also solved using fmincon and linprog in 

MATLAB for solving the bi-level optimization. 

4.4 Results 

This section aims to compare the performance of the nominal and robust optimization formulations 

in terms of robustness to uncertainty. In the first part (section 4.4.1), a simple case study is 

presented to illustrate the uncertainty propagation in a pure batch operation, i.e. without feed and 

perfusion, and the predictions with the nominal and robust model predictions are compared. In a 

second case study, 8 combinations of 2 different mean values for 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 are 

used to generate different disturbance conditions as in Table 4.2 and the results of the robust and 

nominal controller are compared in section 4.4.2. Finally, the detailed performance of one specific 

simulated controller in Section 4.4.2 is analyzed in Section 4.4.3. 

max
𝑼𝑼𝐿𝐿

 𝑉𝑉𝑠𝑠𝑓𝑓�𝑡𝑡𝑓𝑓|𝑘𝑘� �� 𝑃𝑃𝑠𝑠𝑓𝑓
𝑟𝑟 𝑋𝑋𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛�𝑡𝑡𝑓𝑓|𝑘𝑘�
𝑁𝑁𝑠𝑠

𝑟𝑟=1
� , ∀�𝑠𝑠𝑓𝑓 , 𝑟𝑟� ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎 

 (4.65) 

s. t.   𝐸𝐸𝑞𝑞𝑠𝑠. (4.49) − (4.63)   

𝒛𝒛𝑠𝑠𝑟𝑟(𝜏𝜏 + 1|𝑘𝑘) = 𝒛𝒛𝑠𝑠𝑟𝑟(𝜏𝜏|𝑘𝑘) + ∆𝑡𝑡 �𝑓𝑓𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�� 

𝑋𝑋𝑠𝑠𝑟𝑟(𝜏𝜏 + 1|𝑘𝑘) = 𝑋𝑋𝑠𝑠𝑟𝑟(𝜏𝜏|𝑘𝑘) + ∆𝑡𝑡 �𝑔𝑔𝑟𝑟�𝓐𝓐,𝒖𝒖𝑠𝑠𝑟𝑟 ,𝑉𝑉𝑠𝑠𝑟𝑟 ,𝒘𝒘, 𝒛𝒛𝒇𝒇𝒔𝒔𝒔𝒔𝒅𝒅,𝝂𝝂𝑠𝑠𝑟𝑟 ,𝑋𝑋𝑠𝑠𝑟𝑟 , 𝒛𝒛𝑠𝑠𝑟𝑟�� 

∀(𝑠𝑠, 𝑟𝑟) ∈ 𝑰𝑰𝐵𝐵𝑚𝑚𝑛𝑛𝑎𝑎, 𝜏𝜏 ∈ [0,1,2, … , 𝑝𝑝] 

𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘) − 𝑋𝑋𝑠𝑠
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛(𝑘𝑘|𝑘𝑘 − 1) 

𝑋𝑋𝑠𝑠𝑓𝑓
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛�𝑡𝑡𝑓𝑓|𝑘𝑘� = 𝑋𝑋𝑠𝑠𝑓𝑓

𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛�𝜏𝜏 = 𝑡𝑡𝑓𝑓|𝑘𝑘�𝑓𝑓𝑟𝑟𝑉𝑉𝑚𝑚(4.66) + 𝑓𝑓𝑏𝑏𝑏𝑏 

𝒛𝒛0(𝑘𝑘|𝑘𝑘 − 1) = 𝒛𝒛𝑚𝑚𝑠𝑠(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙 

𝑋𝑋0(𝑘𝑘|𝑘𝑘 − 1) = 𝑋𝑋𝑚𝑚𝑠𝑠(𝑘𝑘), ∃𝛼𝛼 ∈ ℕ,𝑘𝑘 = 𝛼𝛼∆𝑙𝑙 

 (4.66) 



   

 105 

4.4.1 Comparison of Nominal and Robust Model Predictions for Pure Batch Operation 

In this section, a simple case study of the uncertainty propagation based on 𝐸𝐸𝑞𝑞𝑠𝑠. (4.47) and the 

problem(4.48) is done by following the procedure illustrated in section 4.3.4. Then, the result of 

this propagation procedure onto the model predictions is compared with nominal predictions. In 

this section, feed and perfusion are not considered; similarly, the prediction of the robust model is 

the worst case scenario 𝑰𝑰𝐵𝐵𝑤𝑤 from the start of the batch process. Also, an initially higher glucose 

concentration 𝑧𝑧𝐺𝐺𝑙𝑙,0 than the one presented in Table 4.1 is used in order to ensure the occurrence of 

all the possible phases of cell growth mentioned before. Thus, the parameter values used in the 

current study are as in Table 4.1. 

Table 4.1 Process parameters for E. coli growth on glucose and acetate used for uncertainty 

propagation 

Name Value 

𝑘𝑘𝐿𝐿𝑎𝑎 4 ℎ𝑟𝑟−1 

𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 12.0 𝑚𝑚𝑀𝑀/𝑔𝑔 − 𝑑𝑑𝑤𝑤/ℎ𝑟𝑟 

𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 6.5 𝑚𝑚𝑀𝑀/𝑔𝑔 

𝜹𝜹𝒅𝒅 1 + [−0.2 0.2] 

𝐾𝐾𝑚𝑚 0.015 𝑚𝑚𝑀𝑀 

�𝑡𝑡𝑓𝑓 ,∆𝑡𝑡� [10.0,0.1] ℎ𝑟𝑟 

�𝑠𝑠𝑓𝑓 ,∆𝑠𝑠� [20,0.5] ℎ𝑟𝑟 

∆𝑙𝑙 1.0 ℎ𝑟𝑟 
[𝑟𝑟𝐹𝐹 , 𝑟𝑟𝑃𝑃] [0,0] 𝐿𝐿/ℎ𝑟𝑟 

�𝑧𝑧𝐺𝐺𝑙𝑙,0, 𝑧𝑧𝑂𝑂2,0, 𝑧𝑧𝐴𝐴𝑛𝑛,0� [2.0,0.21,0.20] 𝑚𝑚𝑀𝑀 

[𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚] [0.2,0.4] 𝐿𝐿 
[𝑋𝑋0,𝑉𝑉0] [1 × 10−3 𝑚𝑚𝑀𝑀, 0.3 𝐿𝐿] 

[𝑃𝑃0,𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
∗ ,𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛] [1,0.2,0.2] 

The worst case scenario for each metabolite, i.e. biomass (𝑋𝑋), glucose (𝐺𝐺𝑙𝑙𝑐𝑐𝑥𝑥𝑡𝑡), acetate (𝐴𝐴𝑐𝑐) and 

oxygen (𝑂𝑂2), can be obtained from the tree structure shown in Fig. 4.14, where the difference 

between the red line 𝜓𝜓𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 and the blue line 𝜓𝜓𝑖𝑖

𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 is due to the uncertainty. 
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(a) Prediction of the glucose concentration 𝑧𝑧𝐺𝐺𝑙𝑙 (b) Prediction of the biomass concentration 𝑋𝑋 

  

  
(c) Prediction of the oxygen concentration 𝑧𝑧𝑂𝑂2 (d) Prediction of the acetate concentration 𝑧𝑧𝐴𝐴𝑛𝑛 

Figure 4.14 Robust Prediction of Worst Case Scenario vs Nominal Prediction (blue line is the 

maximum bound 𝝍𝝍𝒊𝒊
𝒓𝒓,𝒎𝒎𝒂𝒂𝒙𝒙 of worst case scenario, red line 𝝍𝝍𝒊𝒊

𝒓𝒓,𝒎𝒎𝒊𝒊𝒄𝒄 is the minimum bound of the worst 

case scenario, the yellow dot line is the prediction of the nominal process) 

It can be noticed that the prediction of the oxygen concentration 𝑧𝑧𝑂𝑂2 and the acetate concentration 

𝑧𝑧𝐴𝐴𝑛𝑛 in Fig. 4.14(c) and Fig. 4.14(d) exhibits highly nonlinear behavior while the uncertainty range 

is still predictable by using TBT method. The predictions of the nominal model are also shown in 

Fig. 4.14 by the yellow dot line. It is evident that the nominal predictions fall between the 

maximum and the minimum bounds of the robust model predictions. Also, it is evident that the 
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final production of biomass is equal for both nominal and robust model predictions as expected 

from the mass balance since all the glucose is consumed towards biomass. These facts corroborate 

the ability of the TBT method to propagate the uncertainty onto the predictions while complying 

with the mass balances. 

Note that the differences between the two branches of the robust predictions of biomass shown in 

Fig. 4.14(b) reflect the differences of the growth rates when reaching the maximal biomass value 

corresponding to the complete depletion of the initial glucose. Finally, from Fig. 4.14(c) and Fig. 

4.14(d), it is obvious that at the time instant of 5 ℎ𝑟𝑟 the minimum bound line (red line) 𝜓𝜓𝑖𝑖
𝑟𝑟,𝑚𝑚𝑖𝑖𝑛𝑛 has 

changed dramatically since at that instant for this scenario (worst case scenario), the robust horizon 

for the prediction of this first time interval is 5 ℎ𝑟𝑟. After this instant, the probability of the tableau 

that defines the minimum bound of this scenario is less than the minimum probability criteria 

𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 = 0.2. Thus, the tableau corresponding to this bound will always be set to the nominal tableau 

as discussed in section 4.2.1. 

4.4.2 Comparison of Robust Case Studies 

Two controllers are compared in this section: i- the robust EMPC controller based on equations 

 (4.47) and the problem (4.48) using the TBT for uncertainty propagation as proposed in 4.3.5 

and ii- the nominal EMPC controller based on equations (4.47) and the problem(4.48) with the 

formulation proposed in 4.3.6.  

The nominal parameter values of the parameters that are used for the comparative case study of 

the robust and nominal EMPC controllers are presented in Table 4.2.  

As shown in table 4.2, eight different set of parameters corresponding to the different combinations 

of upper and lower limits of 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 are used to generate different disturbance 

conditions. Each of these parameters, i.e. 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, are kept constant during the 

run of the semi-batch operation, and the results of the robust and nominal controllers are compared 

in Table 4.2. Table 4.3 presents the amounts of biomass (cost) 𝑉𝑉�𝑡𝑡𝑓𝑓�𝑋𝑋�𝑡𝑡𝑓𝑓� that are produced at the 

end of the batch 𝑡𝑡𝑓𝑓 using the robust and nominal controllers respectively. 

Table 4.2 Process parameters for E. coli growth on glucose and acetate used for robust/nominal 

controller 
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Name Value 

𝑘𝑘𝐿𝐿𝑎𝑎 4 ℎ𝑟𝑟−1 

𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 12.0 𝑚𝑚𝑀𝑀/𝑔𝑔 − 𝑑𝑑𝑤𝑤/ℎ𝑟𝑟 

𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 6.5 𝑚𝑚𝑀𝑀/𝑔𝑔 

𝜹𝜹𝒅𝒅 1 + [−0.2 0.2] 

𝐾𝐾𝑚𝑚 0.015 𝑚𝑚𝑀𝑀 

�𝑡𝑡𝑓𝑓 ,∆𝑡𝑡� [10.0,0.1] ℎ𝑟𝑟 

�𝑠𝑠𝑓𝑓 ,∆𝑠𝑠� [20,0.5] ℎ𝑟𝑟 

∆𝑙𝑙 1.0 ℎ𝑟𝑟 

�𝑧𝑧𝐺𝐺𝑙𝑙,𝑖𝑖𝑛𝑛, 𝑧𝑧𝑂𝑂2,𝑖𝑖𝑛𝑛, 𝑧𝑧𝐴𝐴𝑛𝑛,𝑖𝑖𝑛𝑛� [5.0,0,0] 𝑚𝑚𝑀𝑀 

�𝑧𝑧𝐺𝐺𝑙𝑙,0, 𝑧𝑧𝑂𝑂2,0, 𝑧𝑧𝐴𝐴𝑛𝑛,0� [0.40,0.21,0.20] 𝑚𝑚𝑀𝑀 

[𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚] [0.2,0.4] 𝐿𝐿 
[𝑋𝑋0,𝑉𝑉0] [1 × 10−3 𝑚𝑚𝑀𝑀, 0.3 𝐿𝐿] 

[𝑃𝑃0,𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
∗ ,𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛] [1,0.2,0.2] 

From Table 4.3, it is obvious that the production of biomass is less sensitive to changes in 𝑘𝑘𝐿𝐿𝑎𝑎 and 

more sensitive to changes in 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. For this particular case study it was found that positive 

changes in the 3 uncertain parameters, i.e. 𝑘𝑘𝐿𝐿𝑎𝑎, 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, have positive effects on 

the biomass productivity value. Accordingly, when these 3 parameters are increasing the feeding 

of oxygen for tableau 𝑴𝑴𝑴𝑴𝟏𝟏 occurring is insufficient and thus the worst case strategy of tableau 

𝑴𝑴𝑴𝑴𝟐𝟐 is more likely to happen. This is one of the reasons why the robust controller performance is 

improving when the uncertainty parameters are larger than the nominal condition, as shown in 

Table 4.3. Another case that supports this conclusion is that when 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 9.1𝑚𝑚𝑀𝑀/𝑔𝑔  the 

resulting biomass productivity of the robust controller is 0.4905, which is about 4% better than 

that of the nominal controller (0.4733). However, the benefits of the robust controller are not 

significant when the uncertainty parameters are similar or slightly less than their corresponding 

nominal conditions, for which case the performance of the robust and nominal controllers are 

similar to each other. The explanation for this similarity stems from one or a combination of the 

following: i) the prediction interval of the nominal controller is ∆𝑡𝑡 = 0.1ℎ𝑟𝑟  while for robust 

controller it is based on the intervals used for the stages ∆𝑠𝑠 = 0.5ℎ, which result in less precise 

prediction for the current study; ii) the nominal scenario of the TBT method in this case study was 



   

 109 

obtained by directly using the result of nominal prediction. Improvements regarding both of these 

items are left for future work. Nevertheless, if the uncertain parameter realizations are far lower 

than the nominal values, the performance of the robust controller can be also better that for the 

nominal controller as shown in the next subsection. 

The CPU time of each controller is also presented in Table 4.3. The CPU time reported contains 

corresponds to the maximum time where the robust/nominal controller computes an optimized 

control action during one manipulating time interval (1 hour). As shown in this table, the average 

CPU time of the robust controller is approximately 30.4 times of the nominal controller. This 

results also indicates that the performance of the proposed TBT-based robust controller is more 

competitive than the sampling based methods, such as MC simulation and PCE, when the number 

of sampling points would require larger CPU times on each time interval. 

Table 4.3 Robust controller and nominal controller performance 

𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 9.6 𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =14.4 

𝑘𝑘𝐿𝐿𝑎𝑎 = 3.2 𝑘𝑘𝐿𝐿𝑎𝑎 = 4.8 𝑘𝑘𝐿𝐿𝑎𝑎 = 3.2 𝑘𝑘𝐿𝐿𝑎𝑎 = 4.8 

Robust 
Cost 

Nominal 
Cost 

Robust 
Cost 

Nominal 
Cost 

Robust 
Cost 

Nominal 
Cost 

Robust 
Cost 

Nominal 
Cost 

5.2 0.0898 0.0900 0.0991 0.996 0.1140 0.1120 0.1276 0.1290 

7.8 0.2656 0.2654 0.3085 0.3112 0.3389 0.3329 0.3868 0.3770 

Ratio 1.00 0.99 1.02 1.03 

CPU 
Time 0.8062 0.0151 0.9737 0.0248 0.5944 0.0205 0.6080 0.0362 

4.4.3 Comparison of a Specific Robust Case Study 

Following the results presented in the previous section, one particular case is analyzed in the 

current section where the uncertainty parameters are significantly smaller than the corresponding 

nominal values. The 3 uncertain parameters considered here are set as 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 4.6,𝑂𝑂𝐺𝐺𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =

8.4,𝑘𝑘𝐿𝐿𝑎𝑎 = 2.8 while the other parameter are as listed in Table 4.2. The productivity for the robust 

and nominal controllers that used the same methods as in section 4.4.2 are compared here as shown 

in Fig. 4.15.  
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As shown in Fig. 4.15(b), the terminal biomass productivity 𝑉𝑉�𝑡𝑡𝑓𝑓�𝑋𝑋�𝑡𝑡𝑓𝑓� of this robust controller 

system is 0.0527, which is about 4% better than that of the nominal controller of 0.0508. When 

analyzing the time trajectories, it can be seen that between time=0 to approximately 6ℎ𝑟𝑟, though 

the feed and perfusion are slightly different at the initial several hours, the biomass growth occurs 

on glucose while the acetate profiles are similar for the robust and the nominal controllers. 

Accordingly, the nominal and robust controllers show similar performance during this time. In the 

time period 6ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 9ℎ𝑟𝑟, the concentration of acetate for both robust and nominal controllers 

have been exhausted while the supplementation of glucose for the robust controller is larger than 

for the nominal system. Since the controller action of the feeding and perfusion in the robust 

controller during this time interval is much more radical than for the nominal controller, especially 

within the period 6ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 7ℎ𝑟𝑟. However, the biomass growth is still similar for both controllers 

during this time period. 

During the last phase of the batch, i.e. 9ℎ𝑟𝑟 ≤ 𝑡𝑡 ≤ 10ℎ𝑟𝑟, the controller action differs significantly 

between the robust and the nominal controller, in particular with respect to the perfusion rates 

calculated by each of the controllers. As a result of these actions, the acetate concentration under 

the action of the nominal controller is growing much faster than for the robust controller. As a 

result of this increase, the biomass growth for the nominal controller is significantly lower than for 

the robust controller. However, the nominal controller cannot predict the occurrence of such worst 

case thoroughly, thus it cannot provide an appropriate controller action for reducing the probability 

for occurrence of the anaerobic process in advance. In conclusion, based on the performance 

comparison that have been discussed, the robust controller generally showed better final 

productivity (biomass level) than the nominal controller by 4% in higher disturbance or uncertainty 

conditions. Though it is a quite small improvement, the profit can be improved signigicantly for a 

high value product, a highly unstable system or a process with a more complex dynamic models. 

The difference in the control actions of the robust and nominal controller in the last one hour also 

contributes to the difference in the production of byproducts, such as the acetate. For instance, in 

the last one hour, as it has been illustrated in Fig. 4.15(d), the growth of the acetate concentration 

using the nominal controller is significantly higher than that obtained with the robust controller.  
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Time ∆𝑡𝑡 = 0.1ℎ𝑟𝑟 

Figure 4.15 Robust vs. Nominal Controller: Feeding, Perfusion, Biomass, Glucose and Acetate 
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(a) The profile of Oxygen and Acetate 
concentration in 10 hours 

 (b) The profile of Oxygen and Acetate 
concentration in the last 1 hour 

Figure 4.16 Robust vs. Nominal Controller: Oxygen and Acetate 

Fig. 4.16 illustrates the oxygen and acetate profiles using the two controllers. Based on the 

concentration of oxygen, the production of the biomass can be divided into 2 phases, as it as been 

shown in Fig. 4.16(a), during the first 9 hours, cells mainly adopt aerobic growth on glucose and 

acetate, this is the aerobic phase with high efficiency in biomass production since byproducts is 

less. However, during the last one hour, when the oxygen is insufficient, the anaerobic growth on 

glucose will be the only choice, this is the worst case phase and the byproduct is acetate. Fig. 

4.16(b) illustrated that in the last one hour, since the worst cases has already been predicted in the 

process of robust controller, the occurrence of the anaerobic growth was delayed significantly. 

Thus, less byproducts are obtained in the case of the robust controller; hence, the corresponding 

performance as well as the efficiency of the closed-loop process are improved considerably. 

4.5 Summary 

This chapter proposed a novel robust EMPC. In the current work a tree structure is used to 

propagate the uncertainty following different scenarios. The scenario based tree structure is based 

on the idea that the space described by the uncertain parameters can be sub-divided into a series 

of polyhedrons where the supremum can be obtained by linear calculations within each polyhedron 

region. Though there are many different ways to divide the uncertainty space, in the current work 

a novel algorithm referred to as the CCM algorithm presented in Chapter 2 has been adopted. Since 
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the biochemical processes of the case study presented in this chapter is described by a dynamic 

metabolic flux model (DMFM) that is formulated by a constrained LP problem, the CCM method, 

which was particularly designed for this kind of applications, can be readily applied to the present 

case study. A tree structure multistage uncertainty propagation method is proposed that is referred 

to as tableaus based tree (TBT) method. Based on theoretical arguments it was shown that the TBT 

based propagation method is significantly more efficient than Monte Carlo or PCE method and 

thus it is particularly amenable for online implementation. Finally, a series of case studies were 

used to illustrate the proposed EMPC algorithm. It was shown that the robust controller is able to 

provide superior productivity as compared to the nominal controller for most cases. 
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Conclusions and future work 

5.1 Conclusions 

This thesis presented a new robust EMPC algorithm based on a novel uncertainty propagation 

algorithm, which has been referred to as the Tableau Based Tree (TBT) method. This algorithm is 

shown to be less sensitive to the number of the uncertain parameters as compared to other robust 

algorithms that are based on sampling the uncertain parameters for uncertainty propagation. The 

method exploits the LP structure of the model used to describe the bioprocess considered for 

control. 

5.1.1 CCM Algorithm in Sensitivity Analysis of RHS Space 

The key goal of this study was to develop a computationally efficient robust EMPC algorithm. The 

computationally demanding step of any robust control algorithm is the propagation of uncertainty 

onto the variables involved in the control strategy.  

The key idea proposed in the current work is to identify convex regions in the parameter space 

where each region corresponds to a Simplex tableau or part of it. It is assumed that the parameter 

space of the family of LP problems describing the uncertain system can be divided into a set of 

polyhedrons where for each polyhedron upper and lower bounds can be calculated by linear 

operations. In chapter 3, a series of lemmas are presented that provide the theoretical basis for the 

partitioning of the uncertain parameter space, i.e. the parameters used in the RHS of the constraints 

of the LP problem, into a finite number of polyhedrons. Since all of the polyhedrons in the RHS 

space can be illustrated as convex cones based on a standard simplex form of LP, the proposed 

partitioning method is referred to as the Convex Cone Method (CCM).  

The 100 Percent Rule that has been widely used in LP problem to calculate local sensitivity of the 

LP solution has been found to be inefficient for uncertainty propagation in the context of robust 

control design. It was shown in this thesis that the 100 Percent Rule can only provide necessary 

but not sufficient conditions regarding the applicability of a particular Simplex tableau in the 

neighborhood of a nominal point but this method is not efficient for calculating all the Simplex 

tableaus that may exist for given ranges of uncertainty parameters’ values. Beyond its ability to 

identify convex regions that correspond to different Simplex tableaus the CCM was also found 
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useful for providing the probability of occurrence of each of these regions by following the 

procedure presented in chapter 3. These two aspects make the CCM an attractive basis for 

uncertainty propagation in an LP problem as compared to the 100 Percent Rule that is of limited 

applicability for our problem. 

Though the CCM method can be adopted for multi-dimensional cases, from a series of case studies 

of the CCM approach, it was found that with the dimensionality of the LP problem increasing, the 

complexity of the problem also increases dramatically. Actually, without optimization, the time 

complexity of CCM algorithm off-line is approximately 𝑂𝑂(𝑚𝑚!) in the worst case, where 𝑚𝑚 is the 

dimension of RHS. Fortunately, in most cases, this complexity mostly contributes on the CPU time 

of the first layer in CCM, the RHS map generation part, which has to be performed only once off-

line. Although the second sensitivity analysis layer needs to be executed online, the computational 

effort is not as high as for the first layer. Thus, the negative impact of the time complexity in this 

algorithm can be relatively mitigated. 

5.1.2 TBT-Based Robust EMPC  

Following the identification of the convex polyhedrons by the CCM method the TBT method was 

developed to propagate the uncertainty in parameters onto the variables used in the control 

strategy.   

Based on the CCM, the RHS map can be obtained where each polyhedron is referred to as tableaus 

or tableau regions in this thesis. With the intention of demonstrating the conditions of each tableau 

in any specific time instant during the process, the main idea of TBT method is introduced. In 

general, the TBT method is a tree structure based uncertainty propagating method where the 

branches correspond to each one of the convex cones calculated by the CCM algorithm. This 

approach is found to reduce the conservativeness of the uncertainty propagation step considerably, 

since not only all of the present uncertainty but also the influence of the previous uncertain 

parameters and control actions can be considered into the TBT formulation. 

A theoretical comparison is conducted in terms of the computational demand as a function of the 

number of uncertain parameters. According to this comparison, it can be concluded that the TBT 

method have a potential to save considerable computational demand as compared to Monte Carlo 

simulations and PCEs. For instance, if the robust horizon is 3 with 7 uncertainty parameters and 

each of them have 10 different uncertainty conditions, the computational time of the Monte Carlo 
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based method is expected to be 1 × 1018 times the computational time of the TBT method. The 

two main reasons that are contributing to this advantage are: the computational time in the TBT 

method is cubic, for a robust horizon of a limit time intervals, whereas for the computation in MC 

is exponential with respect to the number of uncertain parameters; the TBT method has the ability 

to prune branches with low probability thus saving unnecessary computations. 

It is worth to note that the TBT also have its scope of application. When uncertainty parameters 

are less or RHS dimensions are too many, the TBT method might not such appropriate than other 

algorithms. For instance, the case study of the bioreactor indicates that the performance of this 

TBT based robust controller is more competitive than the sampling based measured (Monte Carlo 

simulations, PCEs, etc.) when the number of sampling points is more than 30.4 in each time 

interval. 

In this thesis, the application of TBT-based robust EMPC controller was illustrated for a fed-batch 

reactor that is described by a dynamic metabolic flux model (DMFM). The robust controller 

showed a potential for obtaining higher final productivity (biomass level). This computational 

efficiency of the proposed approaches, i.e. the combination of the CCM with the TBT algorithms, 

strengthens the applicability of the algorithm in real time applications. 

As a novel method, this TBT uncertainty propagating approach cannot avoid challenges and 

limitations. The first limitation is that it does not show a clear advantage in performance to other 

robust control methods, such as nominal controller or MC sampling method, when the number of 

uncertain parameters is small. Though the TBT method have been proved to be more efficient 

theoretically when dealing with a large number of uncertain parameters, the condition with such a 

large number has not been investigated in this work due to time limitations and thus a practical 

comparison of nominal or other robust controller methods has not been established yet. Another 

challenge of this method is that it is based on the assumption that the uncertain parameters are 

independent of each other, and the distribution of the uncertainty is assumed to be uniform. 

Therefore, when the full dimensional probability distribution needs to be considered with the 

highly correlated uncertain parameters. Accounting for such correlation might be necessary for 

reducing the conservatism considerably at the expense of increasing the computational costs.  
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5.2 Future work 

The current work generated several research questions to be considered in future research for future 

research work, i.e. 

1. Update the formulation of CCM algorithm in order to improve efficiency: Though the 

CCM algorithm proposed in this work is able to generate the entire region of RHS map and 

the generation process is off-line, the time required by this method as well as the proposed 

method for eliminating redundant constraints could be potentially reduced. Other topics 

that need further study are: finding bounds and make suitable decisions in case that for two 

tableaus the value of the cost function is equal in the overlap region, dealing with the case 

where the shape of the uncertainty region is not a convex polyhedron, etc.  

2. Multivariable probability distribution of the multi-dimensional output space: In 

chapter 4, the probability distribution of each convex region can be calculated based on the 

assumption that the probability distribution of occurrence of parameters in each polyhedron 

of RHs space are uniform. Other more realistic probability distributions should be 

considered in the future. 

3. Correlation between parameters: The uncertainty in the model parameters were assumed 

to be independent but in reality, they may be highly correlated. Accounting for such 

correlation may reduce further the conservatism of the method. 

4. Develop a method that can handle larger number of scenarios: In the case study of 

current research, the amount of scenario is only 2 to simplify the computation. It is 

necessary to investigate the algorithm with a large number of scenarios. 

5. Application to large-scale process systems: In this thesis, the application of the proposed 

algorithms is based on the fed-batch reactor. However, control has to be often applied to 

continuous processes thus necessitating modifications to the currently proposed algorithm. 

A moving horizon approach could be considered for such case.  
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Appendix A  
Supplementary information for Chapter 4 

The RHS map generated for the problem (4.48) is listed in this section. For the LP form of the 

problem (4.48), the main parameters such as 𝑨𝑨, 𝒄𝒄 and 𝒃𝒃 are listed below: 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡

0 9.46 9.84 19.23
35 12.92 12.73 0

−39.43 0 1.24 12.12
0 9.46 9.84 19.23

35 12.92 12.73 0
39.43 0 −1.24 −12.12⎦

⎥
⎥
⎥
⎥
⎤

 

𝒄𝒄 = [1 1 1 1] 

𝑏𝑏1 =
𝑮𝑮𝑼𝑼𝑴𝑴𝒎𝒎𝒂𝒂𝒙𝒙 𝒁𝒁𝑮𝑮𝒍𝒍𝒄𝒄𝒙𝒙𝒔𝒔 
𝑲𝑲𝒎𝒎 + 𝒁𝒁𝑮𝑮𝒍𝒍𝒄𝒄𝒙𝒙𝒔𝒔

 

𝑏𝑏2 = 𝑶𝑶𝑼𝑼𝑴𝑴𝒎𝒎𝒂𝒂𝒙𝒙 

𝑏𝑏3 = 100 

𝑏𝑏4 = 𝑿𝑿−1 �
𝑟𝑟𝐹𝐹�𝒛𝒛𝑮𝑮𝒍𝒍,𝒊𝒊𝒄𝒄 − 𝒛𝒛𝑮𝑮𝒍𝒍�

𝑉𝑉
+
𝒛𝒛𝑮𝑮𝒍𝒍
𝑑𝑑𝑡𝑡
� 

𝑏𝑏5 = 𝑿𝑿−1 �−
𝑟𝑟𝐹𝐹𝒛𝒛𝑶𝑶𝟐𝟐
𝑉𝑉

+ 𝒌𝒌𝑳𝑳𝒂𝒂�0.21 − 𝒛𝒛𝑶𝑶𝟐𝟐� +
𝒛𝒛𝑶𝑶𝟐𝟐
𝑑𝑑𝑡𝑡
� 

𝑏𝑏6 = 𝑿𝑿−1 �−
𝑟𝑟𝐹𝐹𝒛𝒛𝑨𝑨𝒄𝒄
𝑉𝑉

+
𝒛𝒛𝑨𝑨𝒄𝒄
𝑑𝑑𝑡𝑡
� 

In most cases, the constraint corresponding to 𝑏𝑏3, 𝑏𝑏4, 𝑏𝑏5 and 𝑏𝑏6 are too large to be active; thus, 

when all these four parameters are larger than 50, only 𝑏𝑏1 and 𝑏𝑏2 are considered to generate the 

RHS map in order to improve the efficiency of the sensitivity analysis procedure. In this case, the 

RHS map is 2 dimensional which is referred as 2D RHS map for short. When any one of the 𝑏𝑏4, 

𝑏𝑏5 and 𝑏𝑏6 are smaller than 50, then all of these 3 parameters are also considered in the RHS map 

generation procedure, the map is referred to as 5D case. The map for 2D case is listed in Table A.1 

for 𝑴𝑴𝑴𝑴𝟏𝟏  and Table A.2 for 𝑴𝑴𝑴𝑴𝟐𝟐 , which correspond to the basic fluxes {𝜈𝜈1, 𝜈𝜈2}  or {𝜈𝜈2, 𝜈𝜈4} 

respectively. Similarly, the map for 5D case is also able to maintain these two tableaus which are 

listed Table A.3 and Table A.4, respectively. 
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Table A.1 Main tableau 𝑴𝑴𝑴𝑴𝟏𝟏 {𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐} for 2D RHS map 

Sub-
tableaus 

Convex 
cones 

Main 
properties 

coefficients 
 𝛼𝛼1 𝛼𝛼2 

[1,2] 1 

Edge 
constrains 

𝑒𝑒1 -1.0000 0.0000 

𝑒𝑒2 1.0000 -0.7322 

Basic 
solutions 

𝜈𝜈1 -0.0390 0.0286 

𝜈𝜈2 0.1057 0.0000 

𝜈𝜈3 0.0000 0.0000 

𝜈𝜈4 0.0000 0.0000 

Table A.2 Main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 {𝝂𝝂𝟐𝟐,𝝂𝝂𝟒𝟒} for 2D RHS map 

Sub-
tableaus 

Convex 
cones 

Main 
properties 

coefficients 

 𝛼𝛼1 𝛼𝛼2 

[2,4] 

1 

Edge 
constrains 

𝑒𝑒1 -1.0000 0.7322 

𝑒𝑒2 1.0000 -0.7730 

Basic 
solutions 

𝜈𝜈1 0.0000 0.0000 

𝜈𝜈2 0.0000 0.0774 

𝜈𝜈3 0.0000 0.0000 

𝜈𝜈4 0.0520 -0.0381 

2 

Edge 
constrains 

𝑒𝑒1 0.0000 -1.0000 

𝑒𝑒2 -1.0000 0.7730 

Basic 
solutions 

𝜈𝜈1 0.0000 0.0000 

𝜈𝜈2 0.0000 0.0774 

𝜈𝜈3 0.0000 0.0000 

𝜈𝜈4 0.0520 -0.0381 

As shown in Table A.1. and Table A.2., there are only two main-tableaus 𝑴𝑴𝑴𝑴𝒎𝒎𝒄𝒄 which correspond 

to two alternative cell strategies for its survival, i.e. either an aerobic or anaerobic respiration 

modes, while the sub-tableaus 𝑻𝑻𝑴𝑴𝒄𝒄𝒄𝒄 of each one of these two main-tableaus are not significantly 



   

 125 

different in terms of fluxes, i.e. the 𝜶𝜶 matrix of basic solutions, from the results obtained with the 

main tableaus. 

Table A.3 Main tableau 𝑴𝑴𝑴𝑴𝟏𝟏 {𝝂𝝂𝟏𝟏,𝝂𝝂𝟐𝟐} for 5D RHS map 
Sub-tableau [ 1  2  5  6  8 ] 
Convex cones Edge constrains (Matrix 𝜶𝜶) Basic solutions (Matrix 𝜶𝜶) 
1 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 

- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 3 6 5 8   - 0 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 4 0 5 6   0 . 0 0 0 0   - 0 . 8 8 7 6 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 3 2 2   0 . 6 4 9 9 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 4 0 5 6   0 . 0 0 0 0   - 0 . 8 8 7 6 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 3 2 2   0 . 6 4 9 9 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 4 0 5 6   - 0 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 1 1 5   - 0 . 6 3 1 5 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

4 -0 .0000   -0 .00 00   -1 .0000   - 0 .0000   -0 .00 00 
-0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 4 0 5 6   - 0 . 0 0 0 0   0 . 8 8 7 6 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 1 1 5   0 . 6 3 1 5 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 1  2  5  6  9 ] 
1 -0 .0000   -0 .00 00   -1 .0000   - 0 .0000   -0 .00 00 

- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 
0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 6 4 9 9 

0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 1  2  5  8  9 ] 
1 -0 .0000   -0 .00 00   -1 .0000   - 0 .0000   -0 .00 00 

- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 2 8 6   - 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 5 5 9 5   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 2 8 6   - 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 5 5 9 5   - 0 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 3 6 5 8   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 2 8 6   - 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 1  2  6  7  8 ] 
1 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 

1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 6 4 9 9 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   0 . 7 1 1 5   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 6 3 1 5 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
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1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 3 2 2   0 . 6 4 9 9 
- 1 . 0 0 0 0   0 . 7 1 1 5   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 6 3 1 5 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 3 2 2   0 . 6 4 9 9 
1 . 0 0 0 0   - 0 . 7 1 1 5   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 6 3 1 5 
- 1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 7 1 1 5   - 0 . 6 3 1 5 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

4 -1 .0000   -0 .00 00   -0 .0000   - 0 .0000   -0 .00 00 
-0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 1 1 5   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 6 3 1 5 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 1 1 5   0 . 6 3 1 5 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 5 4 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 1  2  6  7  9 ] 
1 -1 .0000   -0 .00 00   -0 .0000   - 0 .0000   -0 .00 00 

1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

- 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

- 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 
- 1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 7 3 2 2   - 0 . 6 4 9 9 

- 0 . 0 3 9 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 2 8 6   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 1  2  7  8  9 ] 
1 -1 .0000   -0 .00 00   -0 .0000   - 0 .0000   -0 .00 00 

1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

- 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   1 . 7 8 7 5   0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 5 8 6 6 

- 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 1 . 7 8 7 5   - 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 5 8 6 6 
- 1 . 0 0 0 0   0 . 7 3 2 2   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 6 4 9 9 

- 0 . 0 3 9 0   0 . 0 2 8 6   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 1 0 5 7   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

Table A.4 Main tableau 𝑴𝑴𝑴𝑴𝟐𝟐 {𝝂𝝂𝟐𝟐,𝝂𝝂𝟒𝟒} for 5D RHS map 
Sub-tableau [ 2  4  5  6  9 ] 
Convex cones Edge constrains (Matrix 𝜶𝜶) Basic solutions (Matrix 𝜶𝜶) 
1 - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 

- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

2 - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

4 -0 .0000   -0 .00 00   -0 .0000   - 1 .0000   -0 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 



   

 127 

- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

5 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

6 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

Sub-tableau [ 2  4  5  8  9 ] 
1 -0 .0000   -1 .00 00   -0 .0000   - 0 .0000   -0 .00 00 

- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 2 9 3 7   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 2 9 3 7   0 . 0 0 0 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 5 5 9 5   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 2 9 3 7   0 . 0 0 0 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 5 5 9 5   - 0 . 0 0 0 0   0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

4 - 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 2 9 3 7   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

5 - 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 2 9 3 7   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 5 5 9 5   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

6 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 1 . 3 6 5 8   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   1 . 2 9 3 7   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 5 5 9 5   - 0 . 0 0 0 0   0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0 

Sub-tableau [ 2  4  6  7  9 ] 
1 - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 

- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

2 - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
- 1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

4 -0 .0000   -0 .00 00   -0 .0000   - 1 .0000   -0 .00 00 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
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- 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

5 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   0 . 8 8 7 6 
- 1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   1 . 7 8 7 5   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

6 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 7 8 7 5   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 0 3 8 1   0 . 0 0 0 0 

Sub-tableau [ 2  4  7  8  9 ] 
1 - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 

1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

2 - 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
- 1 . 0 0 0 0   1 . 7 8 7 5   0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

3 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
- 1 . 0 0 0 0   0 . 7 3 2 2   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 0 . 7 7 3 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
1 . 0 0 0 0   - 1 . 7 8 7 5   - 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

4 -0 .0000   -1 .00 00   -0 .0000   - 0 .0000   -0 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
0 . 0 0 0 0   1 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   - 0 . 8 8 7 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

5 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   0 . 8 8 7 6 
- 1 . 0 0 0 0   1 . 7 8 7 5   0 . 0 0 0 0   0 . 0 0 0 0   - 1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 

6 -0 .0000   -0 .00 00   -0 .0000   - 0 .0000   -1 .00 00 
1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
- 0 . 0 0 0 0   1 . 0 0 0 0   - 0 . 0 0 0 0   - 1 . 0 0 0 0   - 0 . 0 0 0 0 
- 1 . 0 0 0 0   0 . 7 7 3 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0   - 0 . 0 0 0 0 
1 . 0 0 0 0   - 1 . 7 8 7 5   - 0 . 0 0 0 0   - 0 . 0 0 0 0   1 . 5 8 6 6 

0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 7 7 4   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
0 . 0 5 2 0   - 0 . 0 3 8 1   0 . 0 0 0 0   0 . 0 0 0 0   0 . 0 0 0 0 
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Appendix B  
 MATLAB Codes 

Main codes that designed for Chapter 3 CCM algorithm 

classdef AtabDistribution 
    properties 
        Tab_type = 0; 
        Basic_tab = []; 
        List = []; 
        List_edge = []; 
        List_temp = []; 
        Possible = 0; 
        MaxMin = []; 
    end 
     
    methods 
        function obj = AtabDistribution(tab_type, basic_tab, list, list_edge, 
list_temp, possible, maxmin) 
            % Tab_type, Basic_tab, List, List_edge, List_temp, Possible, MaxMin 
            obj.Tab_type = tab_type; 
            obj.Basic_tab = basic_tab; 
            obj.List = list; 
            obj.List_edge = list_edge; 
            obj.List_temp = list_temp; 
            obj.Possible = possible; 
            obj.MaxMin = maxmin; 
        end 
         
    end 
end 
 

classdef branchList 
    % tree list 
    properties 
        Time = 0; 
        BranchSubtab = []; 
        Pos_list = []; % possiblility of different line 
        Scenario = []; 
        Wholerange = []; 
    end 
     
    methods 
        function list = branchList(time, branchsub, pos_list, scenario, wholerange) 
            % time, branchsub, pos_list, scenario 
            list.Time = time; 
            list.BranchSubtab = branchsub; 
            list.Scenario = scenario; 
            list.Pos_list = pos_list; 
            list.Wholerange = wholerange; 
        end 
  
    end % methods 
     
end % classdef 
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classdef branchSubtab 
     
    properties 
        Prev = []; %[ subtab#] 
        Mid = []; 
        Next = []; 
        Time = 0; 
        Up_leaf = []; 
        Mid_leaf = []; 
        Low_leaf = []; 
        List_conbine = []; 
        Possible = 0; 
        X_grad = []; % grad of biomass 
        Prob_dis = []; % Probalitity distribution 
        Unit = []; 
        Nodes = []; 
        MaxMin_nu_mu = []; 
        MaxMin_y = []; 
        Data 
    end 
     
    methods 
        function node = branchSubtab(time, up_leaf, mid_leaf, low_leaf, list_conbine, 
possible, x_grad, prob_dis, unit, nodes, maxmin_nu_mu, maxmin_y, data) 
            % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, 
prob_dis, unit, nodes, maxmin_nu_mu, maxmin_y, data 
            % DLNODE  Constructs a node object. 
            node.Time = time; 
            node.Up_leaf = up_leaf; 
            node.Mid_leaf = mid_leaf; 
            node.Low_leaf = low_leaf; 
            node.List_conbine = list_conbine; 
            node.Possible = possible; 
            node.X_grad = x_grad; 
            node.Prob_dis = prob_dis; 
            node.Unit = unit; 
            node.Nodes = nodes; 
            node.MaxMin_nu_mu = maxmin_nu_mu; 
            node.MaxMin_y = maxmin_y; 
            node.Data = data; 
        end 
         
         
         
    end % methods 
end % classdef 
 
 

classdef Leaves 
    % tree list 
    properties 
        Time = 0; 
        Num = 0; % 1-up, 2-mid, 3-low 
        Prev = []; %[ subtab#] 
        Lenu = []; % unitlength 
        Possible = 0; 
        Br_node_list = []; 
        MaxMin_nu_mu = []; 
        MaxMin_y = []; 
    end 
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    methods 
        function list = Leaves(time, num, prev, lenu, possible, br_node_list, 
maxmin_nu_mu, maxmin_y) 
            % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y 
            list.Time = time; 
            list.Num = num; 
            list.Prev = prev; 
            list.Lenu = lenu; 
            list.Possible = possible; 
            list.Br_node_list = br_node_list; 
            list.MaxMin_nu_mu = maxmin_nu_mu; 
            list.MaxMin_y = maxmin_y;  
        end 
  
    end % methods 
     
end % classdef 
 

classdef Subspace 
    properties 
        Num = 0; 
        Base_con = []; 
        Space_con = []; 
        K = []; 
        Verties = []; 
        Vol = []; 
        Mid_point = []; 
        Tab = []; 
        Basic_sol = []; 
        Tab_type = []; 
        Radius = 0; 
        Basic_sol_v = []; 
        MaxMin = []; 
        Possible = 0; 
    end 
     
    methods 
        function obj = Subspace(n, base_con, sc, k, v, vol, mid, tab, radius, 
basic_sol, tab_type, basic_sol_v, max_min, possible)  
            % Num, Base_con, Space_con, K, Verties, Vol, 
            % Mid_point, Tab, Basic_sol, Tab_type, MaxMin, Possible 
            obj.Num = n; 
            obj.Base_con = base_con; 
            obj.Space_con = sc; 
            obj.K = k; 
            obj.Verties = v; 
            obj.Vol = vol; 
            obj.Mid_point = mid; 
            obj.Tab = tab; 
            obj.Radius = radius; 
            obj.Basic_sol = basic_sol; 
            obj.Tab_type = tab_type; 
            obj.Basic_sol_v = basic_sol_v; 
            obj.MaxMin = max_min; 
            obj.Possible = possible; 
        end 
         
        function Show(obj) 
            disp(['Subspace number: ', num2str(obj.Num)]);   
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        end 
         
    end 
end 
 

function [Tab_distribution] = gen_rhs_map_subspace_5d_newmet(A, c, rand_b, lowbound, 
possible_tol) 
  
% This function is intend to 
  
% example for this research: 
% A = [     0    9.4600    9.8400   19.2300 
%     35.0000   12.9200   12.7300         0 
%     0    9.4600    9.8400   19.2300 
%     35.0000   12.9200   12.7300         0 
%     39.4300         0   -1.2400  -12.1200]; 
% c = [1 1 1 1]'; 
% c = -c; % max 
% rand_b = [10 15]; % an asumption of b range for calculation, no need to be changed 
% lowbound = 0; 
% possible_tol = 1e-9; 
% [Tab_distribution] = gen_rhs_map_subspace_5d_newmet(A, c, rand_b, lowbound, 
possible_tol) 
  
%%%%%%% Main Part of Functoin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Initialize constrains 
  
lenb = length(A(:,1)); 
lenA = length(A(1,:)); 
lenc = length(c(:, 1)); 
Anew = [A, eye(lenb)]; 
lenAnew = length(Anew(1,:)); 
  
syms_b = ' '; 
syms_bound = ' '; 
  
for i = 1:lenb 
    syms_b = [syms_b 'b' num2str(i) ' ']; 
    % b1 b2 b3; 
end 
  
eval(['syms', syms_b, 'real']) 
% syms b1 b2 b3 real 
eval(['b = [', syms_b, '];']) 
% b = [b1 b2 b3]; 
b = b'; 
  
for i = 1:lenb 
    syms_bound = [syms_bound 'diff(xi,b' num2str(i) ') ']; 
    % diff(xi, b1) diff(xi, b2) diff(xi, b3) 
end 
  
N = nchoosek(1:lenAnew,lenb); 
N = N(1: (end-1), :);%eliminate 0 0 0 ... condition 
lenN = length(N(:,1)); 
factor = ff2n(lenA); 
factor = factor(2:end, :);%eliminate 0 0 0 ... condition 
lenF = length(factor); 
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Tab_distribution = cell(lenF, 1); 
for i = 1:lenF 
    Tab_distribution{i} = AtabDistribution(i, factor(i, :), [], [], [], 0, []); 
    % Tab_type, Basic_tab, List, List_edge, List_temp, Possible, MaxMin 
end 
  
%% Initialize Subspaces 
Subspace_list = cell(lenN, 1); 
space_con = []; 
vert_set = []; 
Mid_point = zeros(lenb,1); 
radius = inf; 
base_con = []; 
basic_sol = []; 
tab_type = []; 
Subspace_list{1} = Subspace(1, base_con, space_con, [], ... 
    vert_set, [], Mid_point, [], radius, basic_sol, tab_type, [], [], 0); 
% Num, Base_con, Space_con, K, Verties, Vol, Mid_point, Tab, Radius, 
% Basic_sol, Tab_type, Basic_sol_v 
  
%% Find Base Subspaces 
n = 0; 
bound_set = zeros(lenb, lenb + 1); 
basic_sol_v = bound_set; 
basic_zero_tab = zeros(1, lenA); 
for i = 1:lenN 
    Atemp = Anew(:,N(i,:)'); 
    if rank(Atemp) == lenb 
        ls = linsolve(Atemp,b); 
        for j = 1:lenb 
            xi = ls(j,:); 
            eval(['bound = [', syms_bound, '];']) 
            % bound = [diff(xi, b1) diff(xi, b2) diff(xi, b3)]; 
            basic_sol_v(j, :) = [bound, 0]; 
            unitlize = find(abs(bound) > 0); % trying to avoid bug of noredund 
            bound = bound/abs(bound(unitlize(1))); 
            bound_set(j, :) = [bound, 0];% f(b_i) > bound_set(:,end) 
        end 
        % setting each subspace 
        % core properties 
        f = ones(lenb, 1); 
        [~,~,EXITFLAG] = linprog(f,- bound_set(:, 1:end-1),- bound_set(:,end)); 
        % [An,bn,~] = noredund(A_space, b_space); 
        if EXITFLAG ~= 2 
            n= n + 1; 
            basic_sol_temp = basic_zero_tab; 
            Subspace_list{n} = Subspace_list{1}; 
            Subspace_list{n}.Num = n; 
            Subspace_list{n}.Base_con = - bound_set;% f(b_i) < bound_set(:,end) 
            Subspace_list{n}.Tab = N(i,:); 
            Subspace_list{n}.Basic_sol_v = basic_sol_v; 
            basic_sol_temp(Subspace_list{n}.Tab(N(i,:) <= lenA)) = 1; 
            for k = 1:lenF 
                if basic_sol_temp == Tab_distribution{k}.Basic_tab 
                    Subspace_list{n}.Basic_sol = basic_sol_temp; 
                    Subspace_list{n}.Tab_type = k; 
                    % obtaining basic solutoin value which could be used in cost 
function 
                    basic_tab = Subspace_list{n}.Tab(Subspace_list{n}.Tab <= lenc); 
                    basic_n = (sum(1 == basic_sol_temp)); 
                    basic_sol_v = Subspace_list{n}.Basic_sol_v; 
                    basic_v = basic_sol_v(1:basic_n, :); 
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                    basic_sol_v = zeros(lenc, lenb + 1); 
                    s = 0; 
                    for r = 1:lenc 
                        if 1 == basic_sol_temp(r) 
                            s = s + 1; 
                            basic_sol_v(r, :) =  basic_v(s, :); 
                        end 
                    end 
                    Subspace_list{n}.Basic_sol_v = basic_sol_v; 
                    Tab_distribution{k}.List = [Tab_distribution{k}.List; 
Subspace_list{n}]; 
                    break 
                end 
            end 
        end 
    end 
end 
Subspace_list((n+1): end) = []; 
  
%% upper section can run for only one time 
  
A_wholeSpace = [-ones(1,lenb);ones(1,lenb); -eye(lenb)]; 
b_wholeSpace = [-rand_b(1); rand_b(2); ones(lenb,1)*lowbound]; 
  
[V_whole,~,~] = lcon2vert_ef(A_wholeSpace, b_wholeSpace,[],[],[]); 
  
[~,wholeVol] = convhulln(V_whole); 
  
[Subspace_edge_list] = subspace_edge_new(Subspace_list, lenb, rand_b, lowbound); 
lenSe= length(Subspace_edge_list); 
  
for i = 1:lenF 
    Tab_distribution{i}.List_edge = []; 
end 
  
for i = 1:lenSe 
    type = Subspace_edge_list{i}.Tab_type; 
    Tab_distribution{type}.List_edge = [Tab_distribution{type}.List_edge; 
Subspace_edge_list{i}]; 
end 
  
% eliminate some tableaus which volume is too small to be happen 
j_eli = 0; 
for i = 1:lenF 
    lenL = length(Tab_distribution{i}.List_edge); 
    sub_s_list = Tab_distribution{i}.List_edge; 
    edge_list_empty = []; 
    for j = 1:lenL 
        % [~,Voltab] = convhulln(sub_s_list(j).Verties, {'QJ'}); 
        try 
            [~,~] = convhulln(sub_s_list(j).Verties); 
            % Voltab/wholeVol <= possible_tol 
        catch 
            edge_list_empty = [edge_list_empty, j]; 
            j_eli = j_eli + 1; 
        end 
    end 
    sub_s_list(edge_list_empty) = []; 
    Tab_distribution{i}.List_edge = sub_s_list; 
end 
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%% cut one side of the overlap range from same basic tableau %% analyse by set theory 
(this part is needed to be reconsidered) 
  
for i = 1:lenF 
    lenL = length(Tab_distribution{i}.List_edge); 
    Tab_distribution{i}.List_temp = Tab_distribution{i}.List_edge; 
    if lenL >= 2 
        list_edge = Tab_distribution{i}.List_edge; 
        List_temp = []; 
        for j = 1: lenL 
            n_sub_cut = Tab_distribution{i}.List_edge; 
            n_sub_cut(j) = []; 
            n_sub_remain = Tab_distribution{i}.List_edge(j); 
            for k = 1 : lenL - 1 
                n_sub_remain_temp = []; 
                for kk = 1:length(n_sub_remain) 
                    [~, extr_Subspace_list_q, ~, overlap_q] = ... 
                        cost_fun_cut_better(n_sub_cut(k), n_sub_remain(kk), c); 
                    n_sub_remain_temp = [n_sub_remain_temp; extr_Subspace_list_q; 
overlap_q]; 
                end 
                n_sub_remain = n_sub_remain_temp; 
            end 
            List_temp = [List_temp; n_sub_remain]; 
        end 
        Tab_distribution{i}.List_temp = List_temp; 
        Tab_distribution{i}.List_edge = Tab_distribution{i}.List_temp; 
    end 
end 
  
  
% getting vertices and midpoint 
Subspace_edge_list = []; 
j_eli2 = 0; 
V_eli = 0; 
P_eli = 0; 
for i = 1:lenF 
    lenL = length(Tab_distribution{i}.List_edge); 
    if lenL >= 1 
        sub_s_list = Tab_distribution{i}.List_edge; 
        edge_list_empty = []; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%% ( this part may not need 
)%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        for j = 1:lenL 
            A_space = sub_s_list(j).Space_con(:, 1:(end - 1)); 
            b_space = sub_s_list(j).Space_con(:, end); 
            [V,~,~]=lcon2vert(A_space, b_space, [], [], 1e-9, []); 
            if isempty(V) 
                edge_list_empty = [edge_list_empty, j]; 
            else 
                sub_s_list(j).Verties = V; 
                [~,Voltab] = convhulln(V, {'QJ'}); 
                if Voltab/wholeVol <= possible_tol 
                    edge_list_empty = [edge_list_empty, j]; 
                    j_eli2 = j_eli2 + 1; 
                    V_eli = V_eli + Voltab; 
                    P_eli = P_eli + Voltab/wholeVol; 
                else 
                    for k = 1:lenb 
                        sub_s_list(j).Mid_point(k) = (max(V(:,k))+min(V(:,k)))/2; 
                    end 
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                    midpoint = sub_s_list(j).Mid_point; 
                    lenV = length(V(:,1)); 
                    distance_p = zeros(lenV, 1); 
                    for k = 1:lenV 
                        distance_p(k) = norm(midpoint - V(1, :)'); 
                    end 
                    sub_s_list(j).Radius = max(distance_p); 
                end 
            end 
        end 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        sub_s_list(edge_list_empty) = []; 
        Tab_distribution{i}.List_edge = sub_s_list; 
        Subspace_edge_list = [Subspace_edge_list; sub_s_list]; 
    end 
end 
  
% eliminate empty Tab_distribution 
tab_edge_dis = []; 
for i = 1:lenF 
    if ~isempty(Tab_distribution{i}.List_edge) 
        tab_edge_dis = [tab_edge_dis; i]; 
    end 
end 
  
  
% save('5d_de_bug_308.mat'); 
  
%% calculating cost function cutting 
  
% load 5d_de_bug_308.mat 
  
lent = length(tab_edge_dis); 
  
% A_space = [-ones(1,lenb);ones(1,lenb); -eye(lenb)]; 
% b_space = [-rand_b(1); rand_b(2); ones(lenb,1)]; 
% [V,~,~]=lcon2vert(A_space, b_space, [], [], 1e-9, []) 
% [~,sum_vol_real] = convhulln(V); 
  
Tab_distribution_mant = Tab_distribution; 
  
error_tab_conb = []; 
% for i = 1:lent 
for i = 1:lent 
    j_list = tab_edge_dis; 
    j_list(i) = []; 
    for j = 1:length(j_list) 
        disp([i, j, tab_edge_dis(i), j_list(j), lent, lent - 1]); 
        List_L = Tab_distribution{tab_edge_dis(i)}.List_edge; 
        List_R = Tab_distribution_mant{j_list(j)}.List_edge; 
        if ~isempty(List_L) && ~isempty(List_R) 
            L_remain_temp = List_L; 
            for k = 1:length(List_R) 
                L_remain = []; 
                for kk = 1:length(L_remain_temp) 
                    try 
                        [extr_Subspace_list_p, ~, overlap_p, ~] = ... 
                            cost_fun_cut_better(L_remain_temp(kk), List_R(k), c); 
                        L_remain = [L_remain; extr_Subspace_list_p; overlap_p]; 
                        %  if j > 1 
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                        %  [L_remain, ~] = check_L_remain(L_remain, 1e-12, 1, 
sum_vol_real); 
                        %  end 
                    catch 
                        error_tab_conb = [error_tab_conb; tab_edge_dis(i), j_list(j)]; 
                        L_remain = L_remain_temp; 
                    end 
                end 
                L_remain_temp = L_remain; 
            end 
            %  [L_remain, ~] = check_L_remain(L_remain, 1e-12, 1, sum_vol_real); 
            Tab_distribution{tab_edge_dis(i)}.List_edge = L_remain; 
        end 
    end 
    % [Tab_distribution{tab_edge_dis(i)}.List_edge, ~] = 
    % check_L_remain(Tab_distribution{tab_edge_dis(i)}.List_edge, 1e-9, 0, 0); 
    % elimate subtab smaller than 1e-9 of whole tab 
end 
  
  
for i = 1:lenF 
    lenL = length(Tab_distribution{i}.List_edge); 
    if lenL >= 1 
        for j = 1:lenL 
            Tab_distribution{i}.List_edge(j).Space_con(1:2, :) = []; 
        end 
    end 
end 
  
save('rhs_map_5d_new_all'); 
save('rhs_map_5d_new', 'Tab_distribution', 'A', 'c'); 
end 
 

function [extr_Subspace_list_p, extr_Subspace_list_q, overlap_p, overlap_q] = ... 
    cost_fun_cut_better(Subspace_list_p, Subspace_list_q, c) 
% since this part might generate nonconvex hull, using convex part cutting another one 
% always want to obtain min cost function 
  
% [p_Space_con, q_Space_con] = 
cot_fun_cut(Subspace_edge_list{p},Subspace_edge_list{q}, c); 
% Subspace_edge_list{p}.Space_con = p_Space_con; 
% Subspace_edge_list{q}.Space_con = q_Space_con; 
  
% ef = one of [1 2 3 4 5] 
% ef = 0; 
  
cost_fun_con =  c'*Subspace_list_p.Basic_sol_v - c'*Subspace_list_q.Basic_sol_v; 
  
unitlize = find(abs(cost_fun_con) > 0); % trying to avoid bug of noredund 
cost_fun_con = cost_fun_con/abs(cost_fun_con(unitlize(1))); 
  
% cost_p < cost_q ==>  cost_p - cost_q < 0  ==> cost_fun_con < 0 
  
% 1. find the overlap range 
% 2.  check if c across or not the range 
lenSp = length(Subspace_list_p.Space_con); 
overlap_range_re = [Subspace_list_p.Space_con; Subspace_list_q.Space_con]; 
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%% overlap cutting 
[~,nro,~,ef] = lcon2vert_ef(overlap_range_re(:, 1: end-1), overlap_range_re(:, end), 
[], [], 1e-10, []); 
% [An,bn,nro] = noredund(overlap_range_re(:, 1: end-1), overlap_range_re(:, end)); 
  
if  0 == ef && ~isempty(nro) %overlap 
     
    overlap_range = overlap_range_re(nro,:); 
     
    extr_p = find(nro <= lenSp); 
    if ~isempty(extr_p) 
        overlap_con_p = overlap_range_re(nro(extr_p), :); 
        extr_Subspace_list_q = overlap_cut(Subspace_list_q, overlap_con_p); 
    else 
        extr_Subspace_list_q = []; 
    end 
     
    extr_q = find(nro > lenSp); 
    if ~isempty(extr_q) 
        overlap_con_q = overlap_range_re(nro(extr_q), :); 
        extr_Subspace_list_p = overlap_cut(Subspace_list_p, overlap_con_q); 
    else 
        extr_Subspace_list_p = []; 
    end 
     
     
    %% cosfunction cutting 
     
    overlap_p = Subspace_list_p; 
    overlap_q = Subspace_list_q; 
     
    A_con = [overlap_range(:, 1: end-1); cost_fun_con(1: end-1)]; 
    b_con = [overlap_range(:, end); cost_fun_con(end)]; 
    [~,nr,~,ef]=lcon2vert_ef(A_con, b_con, [], [], 1e-10, []); 
     
    if 0 ~= ef || isempty(nr) % overlap part belongs to q 
        overlap_q.Space_con = overlap_range; 
        overlap_p = []; 
    else 
        overlap_p.Space_con = [A_con(nr,:), b_con(nr,:)]; 
         
        A_con = [overlap_range(:, 1: end-1); - cost_fun_con(1: end-1)]; 
        b_con = [overlap_range(:, end); - cost_fun_con(end)]; 
        [~,nr,~,ef]=lcon2vert_ef(A_con, b_con, [], [], 1e-10, []); 
        if 0 ~= ef || isempty(nr) % overlap part belongs to p 
            overlap_q = []; 
        else 
            overlap_q.Space_con = [A_con(nr,:), b_con(nr,:)]; 
        end 
         
    end 
     
else %non-overlap 
    extr_Subspace_list_p = Subspace_list_p; 
    extr_Subspace_list_q = Subspace_list_q; 
    overlap_p = []; 
    overlap_q = []; 
end 
  
end 



   

 139 

Main codes that designed for Chapter 4 Nominal EMPC 

% Nominal Control 
%------------------------------------------------------------------- 
% Main function for model, control parameters and initial conditions 
%------------------------------------------------------------------- 
clear variables 
close all 
clc 
%% Initial Conditions 
% z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X) 
z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X) 
V0 = 0.3; % L, Initial Volume of the reactor, guess 
Vmax = 0.4; % L, Final maximum batch volume, guess 
Vmin = 0.2; % L, Final minimum batch volume, guess 
% Fig = 0.1; % L/h 
Fmax = 0.3; % L/h 
Zgl_feed = 5; 
%% Model parameters 
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12]; 
c = ones(4,1); 
kla = 4; % hr^-1, Mahadevan paper 
Km = 0.015; % mM, Mahadevan paper 
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper 
OUR_max = 12; % mM/g-dw/hr, Mahadevan paper 
Ki = 1.0; 
% Uncertainty Information 
GUR_sig = 0.2; % +/- 20%, guess 
OUR_sig = 0.2; % +/- 20%, guess 
kla_sig = 0.2; 
Km_sig = 0.01; 
Ki_sig = 0.2; 
% # of time steps and step size 
% nit = 110; 
% tend = 11; % h, total time of cell culture growth, guess 
nit = 100; %110 
tend = 10; % 1h, total time of cell culture growth, guess 
dt = tend/nit; % h, time, guess 
%% frequency for disturbance 
%% frequency for disturbance 
t = [1:1:nit]'; n = 11; % frequency for disturbance 
% disturbance for 109, se01 
% disturbance = sin(2*pi/n*t); 
% disturbance2 = cos(pi/n*t); 
% disturbance3 = - sin(pi/n*t); 
% disturbance for se02——1.5 
disturbance = -1*ones(length(t), 1); 
disturbance2 = 1*ones(length(t), 1); 
disturbance3 = 1*ones(length(t), 1); 
dist = [disturbance, disturbance2, disturbance3]; 
% n2 = 8; % frequency for changing plant definition 
% load('perf_disturbance.mat'); 
% load('perf_disturbance2.mat'); 
beta = 0; % cell death paramete 
%% controller parameters 
number_of_inputs = 10;  % # of manipulation 
p = number_of_inputs; 
u = zeros(2*p,1); % combination of F and P predictions 
dl = tend/number_of_inputs; % h, time interval of each measurement and manipulation 
% Initial guess for Feed rate 
% load('feed_rate_ig_nit_110_nominal.mat'); 
uig = 0.001*ones(p*2,1); 
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% uig = [(Vmax-V0)/dt/nit(1)*ones(nit(1),1); 1e-3*ones(nit,1)]; 
% uig = 0.02*ones(2*number_of_inputs,1); 
umax = Fmax*ones(2*number_of_inputs,1); 
%% Optimisation parameters 
op = optimset('fmincon'); 
op.Display = 'On'; 
op.TolFun = 1E-7; 
op.TolX = 1E-6; 
op.MaxIter = 10000; 
op.MaxFunEvals = 100000; 
op.Algorithm = 'interior-point'; 
op.UseParallel = 1; 
GUR_plant_list = [6.5 6.5 6.5 8 4]; 
kla_plant_list = [4 2.4 5.6 4 4]; 
% GUR_plant = GUR_max; 
%% the control and plant loop 
% initialisation 
z0_plant = z0_model;%(Glc,O2,Aci,X) 
% z0_plant = [0.4 0.21 0.2 0.001]';%(Glc,O2,Aci,X) 
fb_k = 0; % initialisation of fb error 
if isempty(gcp('nocreate')) == 1  %matlab pool not yet started 
    parpool('local'); 
    % for both======================================= 
else  %matlab pool already started 
    disp('matlab pool already started'); 
end 
    GUR_plant = 6.5; 
    kla_plant = 4; 
    filename = strcat('nominal_control_GUR_OUR_kla1010_se02_-1_1_1_0.1.mat'); 
    main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,... 
        OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,... 
        V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ... 
        GUR_plant, kla_plant, dl, number_of_inputs, dist) 
% end 
% delete(gcp('nocreate'))%commented when adjusting or debugging parpool 
% matlabpool close %commented when adjusting or debugging parpool 
 

%------------------------------------------------------------ 
% Main Controller (Nominal Control) 
%------------------------------------------------------------ 
function main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,... 
    OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,... 
    V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...  
    GUR_plant, kla_plant, dl, number_of_inputs, dist) 
%% variables to store 
Basic_model = zeros(nit,4); 
Basic_plant = zeros(nit,4); 
y_plant = zeros(nit,5); 
z_plant = zeros(nit,3); 
x_plant = zeros(nit,1); 
V_plant = zeros(nit,1); 
u_plant = zeros(2*nit,p); 
nu_plant = zeros(nit,4); 
F_plant = zeros(nit,1); 
P_plant = zeros(nit,1); 
x_model = zeros(nit,1); 
u_model = zeros(2*p,p); 
fval_model = zeros(p,1); 
% y_model = zeros(nit,5); 
z_model = zeros(nit,3); % stores model predictions 
nu_model = zeros(nit,4); 
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fb_plant = zeros(nit,1); % feedback error in nominal model prediction 
time_store = zeros(p,1); 
ef_plant = zeros(nit,1); 
fval_plant = zeros(nit,1); 
cost_plant = zeros(nit,1); % cost or yield is equal to x*V 
% obj_plant = zeros(nit,5); 
y_measured = zeros(p,5); %(Glc,O2,Aci,X,V) 
nu_measured = zeros(p,4); 
%% initialise the control inputs 
%n = length(c); 
y = [z0_model;V0];%initial plant (Glc,O2,Aci,X,V) 
nu = zeros(4,1);%initial rate (Glc,O2,Aci,X) 
mu = sum(nu); 
mu_m = mu; 
tl = 0; 
maninter = dl/dt; 
disp('Controller without cell death,bounded reference trajectory'); 
%% Plant parameters 
for k = 1:nit 
    %% controller prediction 
    if mod((k-1), maninter) == 0 % decide which time to measure & manipulate 
        kp = k; 
        tl = 1+tl; 
        % fb_k0 = fb_k/maninter; 
        fb_k0 = 0; 
        p = number_of_inputs+1-tl; 
        % measurements records 
        y_measured(tl,:) = y'; 
        nu_measured(tl,:) = nu'; 
        z0_model = y(1:4); % adjusting model after be measured 
        tstart = clock; % to save the time that fmincon cost 
        % Linear Optimisation Constraints 
        umax = Fmax*ones(2*p,1); 
        % du_max = Fmax; 
        % u = zeros(2*p,1); 
        % objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x) 
        A_cons = [tril(ones(p,p)) tril(-ones(p,p)); ... % Linear Constraint: 
V(k+i)<=Vmax 
            -tril(ones(p,p)) tril(ones(p,p))]; % Linear Constraint: V(k+i)>=Vmin 
        b_cons = [(Vmax - V0)/dl*ones(p,1); ... % Linear Constraint: V(k+i)<=Vmax 
            (V0 - Vmin)/dl*ones(p,1)]; % Linear Constraint: V(k+i)>=Vmin 
        [u, fval, exitflag] = fmincon(@(u) objfun (u, z0_model, V0, dt, A, c, kla, Km, 
GUR_max,... 
            OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, 
fb_k),uig,A_cons,b_cons,[],[],zeros(2*p,1),umax,[],op); %ÕâÀï²»´«µÝmu 
        % save prediction results and time consumption 
        u_model(tl:number_of_inputs,tl) = u(1:p)'; 
        u_model(number_of_inputs+tl:end,tl) = u(p+1:end)'; 
        fval_model(tl,1) = -fval; 
        time_store(tl,1) = etime(clock,tstart)/60; % min 
        % initial guess for next time interval comes from computed solution 
        uig = [u(2:p); u(p+2:end)]; 
    end 
    F0 = u(1); 
    P0 = u(p+1); 
    %% plant dynamics 
    % plant parameters 
    GUR_p = GUR_max*(1 + GUR_sig*dist(k, 1)); 
     
    OUR_p = OUR_max*(1 + OUR_sig*dist(k, 2)); 
     
    kla_p = kla*(1 + kla_sig*dist(k, 3)); 
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    Ki_p = 1; 
  
    % GUR_p = GUR_plant(k); kla_p = kla_plant(k); 
    % OUR_p = OUR_plant(k); Ki_p = Ki_plant(k); 
    [y, nu, Basic, mu] = plant_dynamics(z0_plant, V0, F0, P0, dt, A, c, ... 
        kla_p, Km, GUR_p, OUR_p, Ki_p, Zgl_feed, mu); 
    %% run nominal model dynamics for one time step 
    fb_ke = fb_k0; 
    [y_m, nu_m, Basic_m, mu_m] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
        kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu_m); 
    % reinitialise 
    z0_plant = y(1:4); 
    z0_model = y_m(1:4); 
    z0_model(4, :) = z0_model(4, :) + fb_ke; 
    V0 = y(5); 
    fb_k = y(4) - z0_model(4); 
    %% save the results 
    Basic_model(k,:) = Basic_m; 
    Basic_plant(k,:) = Basic; 
    y_plant(k,:) = y'; 
    z_plant(k,:) = y(1:3)'; 
    u_plant(k,1:p) = u(1:p)'; 
    u_plant(nit+k,1:p) = u(p+1:end)'; 
    F_plant(k,1) = u(1); 
    P_plant(k,1) = u(p+1); 
    % F_plant(k,1:p) = u(1:p)'; 
    % P_plant(k,1:p) = u(p+1:end)'; 
    V_plant(k,1) = y(5); 
    x_plant(k,1) = y(4); 
    nu_plant(k,:) = nu'; 
    ef_plant(k,1) = exitflag; 
    fval_plant(k,1) = -fval; % modeled cost 
    cost_plant(k,1) = y(4)*y(5); 
    x_model(k,1) = z0_model(4); 
    % y_model(k,:) = [z0_model; V0]'; 
    z_model(k,:) = z0_model(1:3)'; 
    nu_model(k,:) = nu_m'; 
    fb_plant(k,1) = fb_k; 
    save(filename); 
end 
end 
 

function ydot = model_dynamics(~,z, kla, ... 
Anu_gl, Anu_o2, Anu_Ac, mu, Zgl_feed, F0, P0) 
% function ydot = model_dynamics(t,z, kla, ... 
% Anu_gl, Anu_o2, Anu_Ac, mu, Zgl_feed, F0, P0) 
V = z(5); X0 = z(4);  
ydot(1,1) = F0/V*(Zgl_feed - z(1)) - Anu_gl*X0 ; 
ydot(2,1) = kla*(0.21 - z(2)) - Anu_o2*X0 - F0/V*z(2); 
ydot(3,1) = -F0/V*z(3) + Anu_Ac*X0 ; 
ydot(4,1) = mu*X0 - (F0-P0)/V*X0; 
ydot(5,1) = F0-P0; 
end 
 

function fmin = objfun (u, z0_model, V0, dt, A, c, kla, Km, GUR_max, ... 
    OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, fb_k) 
% structure of z0_model = [zgl, zo2, zac, x] 
% y_plant_p = zeros(nit,5); 
% nu_plant_p = zeros(nit,4); 
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tl = 0; 
mu = 0;% initial condition of mu always be zero. 
for k = kp:nit 
    if mod((k-1), maninter)==0 
        tl = tl+1; 
        F0 = u(tl);P0 = u(p+tl); 
    end 
    [y, ~, ~, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
        kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu); 
    % Reinitialise z0_model and V0 for next time step 
    % y(4) = y(4) + fb_k; 
    z0_model = y(1:4); 
    V0 = y(5); 
    % store the plant dynamics (not essential) 
    % nu_plant_p(k,:) = nu'; 
    % y_plant_p(k,:) = y'; 
end 
fmin = -(y(4) + fb_k)*y(5); % max cost = final_x*final_V 
 
 
function [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
    kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu) 
% structure of z0_plant = [zgl, zo2, zac, x] 
% LP Model solution 
% n = length(c); 
if (z0_model(1)<=1e-3 && z0_model(3)<=1e-3)    
    X_k = z0_model(4); 
else 
    X_k = z0_model(4) + (-mu*z0_model(4) - (F0-P0)/V0*z0_model(4))*dt; 
end 
Anew = [A; A(1:2,:)*X_k; -A(3,:)*X_k]; 
b = [GUR_max*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_max; ... 
    100; ... 
    F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt; ... 
    kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt;... 
    F0/V0*z0_model(3) + z0_model(3)/dt; ]; 
% - F0/V0*z0_model(3) + z0_model(3)/dt; ]; 
[nu, mu, Basic] = simplex_tab(-c,Anew,b,[],[],[]); 
Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu; 
tspan = [0 dt]; 
z0 = [z0_model; V0]; 
if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0) 
    z = [0 0 0 z0(4) V0]; 
else 
    [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ... 
        -mu, Zgl_feed, F0, P0), tspan, z0); 
%   [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ... 
%       -mu, Zgl_feed, F0, P0), tspan, z0); 
end 
y = z(end,:)'; 
if (z(end,1) <= 1e-6) % check for O2 concentration 
    y(1,1) = 1e-6; 
end 
if (z(end,2) <= 1e-6) % check for O2 concentration 
    y(2,1) = 1e-6; 
end 
if (z(end,3) <= 1e-6) % check for O2 concentration 
    y(3,1) = 1e-6; 
end 
end 
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Main codes that designed for Chapter 3 Robust EMPC 

% Nominal Control 
%------------------------------------------------------------------- 
% Main function for model, control parameters and initial conditions 
%------------------------------------------------------------------- 
clear variables 
close all 
clc 
%% Initial Conditions 
z0_model = [0.4 0.21 0.2 0.001]'; %(Glc,O2,Aci,X) 
V0 = 0.3; % L, Initial Volume of the reactor, guess 
Vmax = 0.4; % L, Final maximum batch volume, guess 
Vmin = 0.2; % L, Final minimum batch volume, guess 
% Fig = 0.1; % L/h 
Fmax = 0.3; % L/h 
Zgl_feed = 5; 
%% Model parameters 
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12]; 
c = ones(4,1); 
kla = 4; % hr^-1, Mahadevan paper 
Km = 0.015; % mM, Mahadevan paper 
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper 
OUR_max = 12; % mM/g-dw/hr, Mahadevan paper 
Ki = 1.0; 
% Uncertainty Information 
GUR_sig = 0.2; % +/- 20%, guess 
OUR_sig = 0.2; % +/- 20%, guess 
kla_sig = 0.2; 
Km_sig = 0.01; 
Ki_sig = 0.2; 
% # of time steps and step size 
% nit = 110; %110 
% tend = 11; % 1h, total time of cell culture growth, guess 
nit = 100; %110 
tend = 10; % 1h, total time of cell culture growth, guess 
dt = tend/nit; % h, time, guess 
%% frequency for disturbance 
t = [1:1:nit]'; n = 12; % frequency for disturbance 
disturbance = -1*ones(length(t), 1); 
disturbance2 = 1*ones(length(t), 1); 
disturbance3 = 1*ones(length(t), 1); 
dist = [disturbance, disturbance2, disturbance3]; 
% n2 = 8; % frequency for changing plant definition 
% load('perf_disturbance.mat'); 
% load('perf_disturbance2.mat'); 
beta = 0; % cell death paramete 
%% controller parameters 
number_of_inputs = 10;  %11% # of manipulation 
eti = 0.5; %0.5h per estimation (propagate uncertainty) 
p = number_of_inputs; 
u = zeros(2*p,1); % combination of F and P predictions 
dl = tend/number_of_inputs; % h, time interval of each measurement and manipulation 
% Initial guess for Feed rate 
% load('feed_rate_ig_nit_110_nominal.mat'); 
% load feed_rate_ig_nit_110_wb.mat; 
uig = 0.001*ones(p*2,1); 
% u = uig_discrete; 
% uig = [(Vmax-V0)/dt/nit(1)*ones(nit(1),1); 1e-3*ones(nit,1)]; 
% uig = 0.02*ones(2*number_of_inputs,1); 
load rhs_map_5d_new.mat 
load rhs_map_2d_new.mat 
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t2d = Tab_distribution_2d; 
t5d = Tab_distribution_5d; 
umax = Fmax*ones(2*number_of_inputs,1); 
tab_tol = 0.20; 
%% Optimisation parameters 
op = optimset('fmincon'); 
op.Display = 'On'; 
op.TolFun = 1E-7; 
op.TolX = 1E-6; 
% op.TolFun = 1E-6; 
% op.TolX = 1E-5; 
% op.MaxIter = 10000;1000 
op.MaxIter = 10000; 
% op.MaxFunEvals = 100000;3000 
op.MaxFunEvals = 100000; 
op.Algorithm = 'interior-point'; 
op.UseParallel = 1; 
% op.LargeScale = 'on'; 
% objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x) 
opt = optimoptions('linprog','Algorithm','interior-point'); 
GUR_plant = GUR_max; 
kla_plant = kla; 
%% the control and plant loop 
% initialisation 
z0_plant = z0_model;%(Glc,O2,Aci,X) 
% z0_plant = [0.4 0.21 0.2 0.001]';%(Glc,O2,Aci,X) 
fb_k = 0; % initialisation of fb error 
if isempty(gcp('nocreate')) == 1  %matlab pool not yet started 
     
    parpool('local'); 
    % for both======================================= 
else  %matlab pool already started 
    disp('matlab pool already started'); 
end 
    filename = strcat('robust_control_wb_GUR-20_OUR-20_kla-201010_se02_-
1_1_1_dt0.50.1.mat'); 
    main_controller(nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,... 
        OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,... 
        V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ... 
        GUR_plant, kla_plant, dl, number_of_inputs, dist, tab_tol, eti, opt, t2d, t5d) 
% delete(gcp('nocreate'))%commented when adjusting or debugging parpool 
% matlabpool close %commented when adjusting or debugging parpool 
 

%------------------------------------------------------------ 
% Main Controller (Nominal Control) 
%------------------------------------------------------------ 
function main_controller (nit, dt, tend,A, c, kla, kla_sig, Km, GUR_max, GUR_sig,... 
    OUR_max, Ki, Ki_sig, uig, Fmax, fb_k, p, u, op, z0_model, z0_plant,... 
    V0, Vmax, Vmin, Zgl_feed, OUR_sig, beta, filename, ...  
    GUR_plant, kla_plant, dl, number_of_inputs, dist, tab_tol, eti, opt, t2d, t5d) 
%% variables to store 
Basic_model = zeros(nit,4); 
Basic_plant = zeros(nit,4); 
y_plant = zeros(nit,5); 
z_plant = zeros(nit,3); 
x_plant = zeros(nit,1); 
V_plant = zeros(nit,1); 
u_plant = zeros(2*nit,p); 
nu_plant = zeros(nit,4); 
F_plant = zeros(nit,1); 
P_plant = zeros(nit,1); 
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x_model = zeros(nit,1); 
u_model = zeros(2*p,p); 
fval_model = zeros(p,1); 
% y_model = zeros(nit,5); 
z_model = zeros(nit,3); % stores model predictions 
nu_model = zeros(nit,4); 
fb_plant = zeros(nit,1); % feedback error in nominal model prediction 
time_store = zeros(p,1); 
ef_plant = zeros(nit,1); 
fval_plant = zeros(nit,1); 
cost_plant = zeros(nit,1); % cost or yield is equal to x*V 
% obj_plant = zeros(nit,5); 
y_measured = zeros(p,5); %(Glc,O2,Aci,X,V) 
nu_measured = zeros(p,4); 
%% initialise the control inputs 
%n = length(c); 
y = [z0_model;V0];%initial plant (Glc,O2,Aci,X,V) 
nu = zeros(4,1);%initial rate (Glc,O2,Aci,X) 
mu = sum(nu); 
mu_m = mu; 
tl = 0; 
maninter = dl/dt; 
disp('Controller without cell death,bounded reference trajectory'); 
 
for k = 1:nit 
    %% controller prediction 
    if mod((k-1), maninter) == 0 % decide which time to measure & manipulate 
        kp = k; 
        tl = 1+tl; 
        % fb_k0 = fb_k; 
        fb_k0 = 0; 
        p = number_of_inputs+1-tl; 
        % measurements records 
        y_measured(tl,:) = y'; 
        nu_measured(tl,:) = nu'; 
        z0_model = y(1:4); % adjusting model after be measured 
        z0_model_n = z0_model; 
        tstart = clock; % to save the time that fmincon cost 
        % Linear Optimisation Constraints 
        umax = Fmax*ones(2*p,1); 
        % du_max = Fmax; 
        % u = zeros(2*p,1); 
        % objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x) 
        A_cons = [tril(ones(p,p)) tril(-ones(p,p)); ... % Linear Constraint: 
V(k+i)<=Vmax 
            -tril(ones(p,p)) tril(ones(p,p))]; % Linear Constraint: V(k+i)>=Vmin 
        b_cons = [(Vmax - V0)/dl*ones(p,1); ... % Linear Constraint: V(k+i)<=Vmax 
            (V0 - Vmin)/dl*ones(p,1)]; % Linear Constraint: V(k+i)>=Vmin 
        [u, fval, exitflag] = fmincon(@(u) objfun (u, z0_model, V0, dt, A, c, kla, Km, 
GUR_max, ... 
    OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, GUR_sig, OUR_sig, kla_sig, fb_k, 
tab_tol, eti, opt, t2d, t5d),uig,A_cons,b_cons,[],[],zeros(2*p,1),umax,[],op);  
        % save prediction results and time consumption 
        u_model(tl:number_of_inputs,tl) = u(1:p)'; 
        u_model(number_of_inputs+tl:end,tl) = u(p+1:end)'; 
        fval_model(tl,1) = -fval; 
        time_store(tl,1) = etime(clock,tstart)/60; % min 
        % initial guess for next time interval comes from computed solution 
        uig = [u(2:p); u(p+2:end)]; 
    end 
    F0 = u(1); 
    P0 = u(p+1); 
    %% plant dynamics 
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    % plant parameters 
    GUR_p = GUR_max*(1 + GUR_sig*dist(k, 1));  
     
    OUR_p = OUR_max*(1 + OUR_sig*dist(k, 2)); 
     
    kla_p = kla*(1 + kla_sig*dist(k, 3)); 
     
    Ki_p = 1; 
    % GUR_p = GUR_plant(k); kla_p = kla_plant(k); 
    % OUR_p = OUR_plant(k); Ki_p = Ki_plant(k); 
    [y, nu, Basic, mu] = plant_dynamics(z0_plant, V0, F0, P0, dt, A, c, ... 
        kla_p, Km, GUR_p, OUR_p, Ki_p, Zgl_feed, mu); 
    %% run worst branch dynamics for one time step 
    %     [y_m, nu_m, Basic_m, mu_m] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, 
... 
    %         kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu_m); 
     
    bran_tol = 0.05; 
    % tab_tol = 0.05; 
    fb_ke = fb_k0; 
    ti = eti/dt; 
    if mod((k-1), maninter) == 0 
        % lentime = nit - kp + 1; 
        time_conv = 2; % every 2 time interval converge branchs 
         
        GUR_range = GUR_max*[1-GUR_sig 1+GUR_sig]; 
        OUR_range = OUR_max*[1-OUR_sig 1+OUR_sig]; 
        kla_range = kla*[1-kla_sig 1+kla_sig]; 
         
        % [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
        %     kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu) 
         
        y_m = [z0_model; V0]; 
        time = 0; 
        brsubtab = branchSubtab(time, [], [], [], [], 1, [], [], [], [], [], y_m, []); 
        % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis, 
unit, nodes, maxmin_nu_mu, maxmin_y, data 
        brsubtab.Prev = 0; 
        brsubtab.Mid = []; 
        brsubtab.Next = 1; 
        branchlist = branchList(time, brsubtab, 1, 1, []); 
        % time, branchsub, pos_list, scenario 
         
        i = 2; 
        branchlist(i) = branchlist(i - 1); 
         
        time = branchlist(i - 1).Time + 0.1; 
        branchlist(i).Time = time; 
         
        branchlist(i).BranchSubtab = []; 
        branchlist(1).Wholerange = z0_model; 
        z0_model = branchlist(i - 1).BranchSubtab.MaxMin_y(1:4); 
        X_k = z0_model(4); 
         
        pre = 1; 
         
        [brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c, 
... 
            kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, 
mu, X_k, pre, bran_tol, tab_tol, opt, t2d, t5d); 



   

 148 

        branchlist(i).BranchSubtab = brsubtab_list; 
         
        %generate scenario 
         
        branchlist(i).Wholerange = branchlist(i).BranchSubtab.MaxMin_y; 
        list_sub = branchlist(i).BranchSubtab; 
        lensub = length(list_sub); 
        branchlist(i).Pos_list = ones(lensub, 1); 
        branchlist(i).Scenario = 1; 
        % for j = 1:lensub 
        %     branchlist(i).Pos_list(j) = list_sub(j).Possible; 
        %     branchlist(i).Scenario(j, end) = j; 
        %     branchlist(i).Scenario(j, 1: end - 1) = branchlist(i - 
1).Scenario(list_sub(j).Prev, :); 
        % end 
         
        y_m = branchlist(i).Wholerange(:, 2); 
%         z0_model = y_m; 
%         V0 = y_m(5); 
         
        branchlist(1) = branchlist(2); 
        branchlist(2) = []; 
        cur_subtabmap = []; 
        fti = 1; 
    else 
        i = k - kp + 1; 
         
        lenbran = length(branchlist(i - 1).BranchSubtab); 
        branchlist(i) = branchlist(i - 1); 
        branchlist(i).BranchSubtab = []; 
        time = branchlist(i - 1).Time + 0.1; 
        branchlist(i).Time = time; 
        sump = 0; 
         
        %% only for worst case branch 
        if branchlist(i - 1).Pos_list <= tab_tol 
            z0_model = branchlist(i - 1).Wholerange(1:4, :); 
            V0 = branchlist(i - 1).Wholerange(5, :); 
            n = [2 1]; 
            for j = 1:2 
                nn = n(j); 
%                 [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, 
c, ... 
%                     kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu); 
                [y_m, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, 
c, ... 
                kla_range(nn), Km, GUR_range(nn), OUR_range(nn), Ki, Zgl_feed, mu); 
                branchlist(i).Wholerange(:, j) = y_m; 
            end 
        else 
            %% 
             
            for j = 1:lenbran 
                % lenbfr = length(branchlist(i).BranchSubtab); 
                pre = j; 
                %             [subtablist, sump] = gene_sub_tab(time, z0_model, V0, 
F0, P0, dt, A, c, ... 
                %                 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, 
kla_range, Ki, Zgl_feed,... 
                %                 mu, branchlist(i - 1).BranchSubtab(j), pre, 
bran_tol, tab_tol, sump); 
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                [subtablist, sump, cur_subtabmap] = gene_sub_tab_wb(time, z0_model, 
V0, F0, P0, dt, A, c, ... 
                    kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, 
Zgl_feed,... 
                    mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol, 
sump, fti, cur_subtabmap, opt, t2d, t5d); 
                 
                if mod((i + 1), ti)==0 
                    fti = 1; 
                else 
                    fti = 0; 
                end 
                 
                branchlist(i).BranchSubtab = [branchlist(i).BranchSubtab; subtablist]; 
            end 
             
            % generate scenario 
            lensub = length(branchlist(i).BranchSubtab); 
            branchlist(i).Pos_list = zeros(lensub, 1); 
            branchlist(i).Scenario = zeros(lensub, i); 
            yylistmi = zeros(5, lensub); 
            yylistma = zeros(5, lensub); 
             
            for j = 1:lensub 
                branchlist(i).BranchSubtab(j).Possible = 
branchlist(i).BranchSubtab(j).Possible/sump; 
                branchlist(i).Pos_list(j) = branchlist(i).BranchSubtab(j).Possible; 
                branchlist(i).Scenario(j, end) = j; 
                % branchlist(i).Scenario(j, 1: end - 1) = branchlist(i - 
1).Scenario(branchlist(i).BranchSubtab(j).Prev, :); 
                branchlist(i).Scenario(j, 1: end - 1) = 1; 
                yylistmi(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 1); 
                yylistma(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 2); 
            end 
             
            branchlist(i).Wholerange = [min([yylistmi, yylistma], [], 2) 
max([yylistmi, yylistma], [], 2)]; 
            branchlist(i).Wholerange(4, :) = fliplr(branchlist(i).Wholerange(4, :)); 
            y_m = branchlist(i).Wholerange(:, 2); 
            %% only for whole branch method 
             
            % if rem(i, time_conv) == 0 && lensub > 1 
            %     [branchlist(i)] = branch_conv(branchlist(i), 
branchlist(i).Wholerange); 
            % end 
            % y_m = branchlist(i).Wholerange(:, 2); 
            %% only for worst case branch method 
            branchlist(i).Pos_list = 
branchlist(i).BranchSubtab.List_conbine.Possible*branchlist(i).Pos_list; 
            %% 
%             z0_model = y_m; 
%             V0 = y_m(5); 
             
        end 
    end 
     
    V0 = V0(1); 
  
     [z0_model_y, ~, ~, mu] = plant_dynamics(z0_model_n, V0, F0, P0, dt, A, c, ... 
        kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu); 
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    z0_model_n = z0_model_y(1:4); 
     
    % reinitialise 
    z0_plant = y(1:4); 
    z0_model = tab_tol*y_m(1:4) + (1 - tab_tol)*z0_model_n; 
    z0_model(4, :) = z0_model(4, :) + fb_ke; 
    z0_model_n = z0_model; 
    V0 = y(5); 
    fb_k = y(4) - z0_model(4); 
    %% save the results 
%     Basic_model(k,:) = Basic_m; 
    Basic_plant(k,:) = Basic; 
    y_plant(k,:) = y'; 
    z_plant(k,:) = y(1:3)'; 
    u_plant(k,1:p) = u(1:p)'; 
    u_plant(nit+k,1:p) = u(p+1:end)'; 
    F_plant(k,1) = u(1); 
    P_plant(k,1) = u(p+1); 
    % F_plant(k,1:p) = u(1:p)'; 
    % P_plant(k,1:p) = u(p+1:end)'; 
    V_plant(k,1) = y(5); 
    x_plant(k,1) = y(4); 
    nu_plant(k,:) = nu'; 
%     ef_plant(k,1) = exitflag; 
%     fval_plant(k,1) = -fval; % modeled cost 
    cost_plant(k,1) = y(4)*y(5); 
    x_model(k,1) = z0_model(4); 
    % y_model(k,:) = [z0_model; V0]'; 
    z_model(k,:) = z0_model(1:3)'; 
%     nu_model(k,:) = nu_m'; 
    fb_plant(k,1) = fb_k; 
    try 
    save(filename); 
    catch 
        keyboard 
    end 
end 
end 
 
 

function [fmin, branchlist] = objfun (u, z0_model, V0, dt, A, c, kla, Km, GUR_max, ... 
    OUR_max, Ki, Zgl_feed, nit, p, kp, maninter, GUR_sig, OUR_sig, kla_sig, fb_k, 
tab_tol, eti, opt, t2d, t5d) 
% structure of z0_model = [zgl, zo2, zac, x] 
V0n = V0; 
z0_model_n = z0_model; 
ti = eti/dt; 
  
% y_plant_p = zeros(nit,5); 
% nu_plant_p = zeros(nit,4); 
  
% fb_ke = fb_k; 
fb_ke = 0; 
tl = 1; 
mu = 0;% initial condition of mu always be zero. 
bran_tol = 0.05; 
% tab_tol = 0.05; 
F0 = u(1);P0 = u(p+1); 
  
% nit >= 3 
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lentime = nit - kp + 1; 
time_conv = 2; % every 2 time interval converge branchs 
  
GUR_range = GUR_max*[1-GUR_sig 1+GUR_sig]; 
OUR_range = OUR_max*[1-OUR_sig 1+OUR_sig]; 
kla_range = kla*[1-kla_sig 1+kla_sig]; 
  
% [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
%     kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu) 
  
y = [z0_model; V0]; 
time = 0; 
brsubtab = branchSubtab(time, [], [], [], [], 1, [], [], [], [], [], y, []); 
% time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis, unit, 
nodes, maxmin_nu_mu, maxmin_y, data 
brsubtab.Prev = 0; 
brsubtab.Mid = []; 
brsubtab.Next = 1; 
branchlist = branchList(time, brsubtab, 1, 1, []); 
% time, branchsub, pos_list, scenario 
  
i = 2; 
branchlist(i) = branchlist(i - 1); 
  
time = branchlist(i - 1).Time + 0.1; 
branchlist(i).Time = time; 
  
branchlist(i).BranchSubtab = []; 
branchlist(1).Wholerange = z0_model; 
z0_model = branchlist(i - 1).BranchSubtab.MaxMin_y(1:4); 
X_k = z0_model(4); 
pre = 1; 
  
[brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c, ... 
    kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu, X_k, 
pre, bran_tol, tab_tol, opt, t2d, t5d); 
branchlist(i).BranchSubtab = brsubtab_list; 
  
%generate scenario 
  
branchlist(i).Wholerange = branchlist(i).BranchSubtab.MaxMin_y; 
list_sub = branchlist(i).BranchSubtab; 
lensub = length(list_sub); 
branchlist(i).Pos_list = ones(lensub, 1); 
branchlist(i).Scenario = 1; 
% for j = 1:lensub 
%     branchlist(i).Pos_list(j) = list_sub(j).Possible; 
%     branchlist(i).Scenario(j, end) = j; 
%     branchlist(i).Scenario(j, 1: end - 1) = branchlist(i - 
1).Scenario(list_sub(j).Prev, :); 
% end 
  
y = branchlist(i).Wholerange(:, 2); 
z0_model = y; 
z0_model(4, :) = z0_model(4, :) + fb_ke; 
V0 = y(5); 
  
branchlist(1) = branchlist(2); 
branchlist(2) = []; 
cur_subtabmap = []; 
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fti = 1; 
  
for i = 2:lentime 
     
    if mod((i - 1), maninter)==0 
        tl = tl+1; 
        F0 = u(tl);P0 = u(p+tl); 
    end 
    lenbran = length(branchlist(i - 1).BranchSubtab); 
    branchlist(i) = branchlist(i - 1); 
    branchlist(i).BranchSubtab = []; 
    time = branchlist(i - 1).Time + 0.1; 
    branchlist(i).Time = time; 
    sump = 0; 
     
    %% only for worst case branch 
    if branchlist(i - 1).Pos_list <= tab_tol 
        z0_model = branchlist(i - 1).Wholerange(1:4, :); 
        V0 = branchlist(i - 1).Wholerange(5, :); 
        n = [2 1]; 
        for j = 1:2 
            nn = n(j); 
%             [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, c, 
... 
%                 kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu); 
            [y, ~, ~, mu] = plant_dynamics(z0_model(:, j), V0(j), F0, P0, dt, A, c, 
... 
            kla_range(nn), Km, GUR_range(nn), OUR_range(nn), Ki, Zgl_feed, mu); 
            branchlist(i).Wholerange(:, j) = y; 
        end 
    else 
        %% 
         
        for j = 1:lenbran 
            % lenbfr = length(branchlist(i).BranchSubtab); 
            pre = j; 
%             [subtablist, sump] = gene_sub_tab(time, z0_model, V0, F0, P0, dt, A, c, 
... 
%                 kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, 
Zgl_feed,... 
%                 mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol, 
sump); 
            [subtablist, sump, cur_subtabmap] = gene_sub_tab_wb(time, z0_model, V0, 
F0, P0, dt, A, c, ... 
                kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, 
Zgl_feed,... 
                mu, branchlist(i - 1).BranchSubtab(j), pre, bran_tol, tab_tol, sump, 
fti, cur_subtabmap, opt, t2d, t5d); 
             
            if mod((i + 1), ti)==0 
                fti = 1; 
            else 
                fti = 0; 
            end 
             
            branchlist(i).BranchSubtab = [branchlist(i).BranchSubtab; subtablist]; 
        end 
         
        % generate scenario 
        lensub = length(branchlist(i).BranchSubtab); 
        branchlist(i).Pos_list = zeros(lensub, 1); 
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        branchlist(i).Scenario = zeros(lensub, i); 
        yylistmi = zeros(5, lensub); 
        yylistma = zeros(5, lensub); 
         
        for j = 1:lensub 
            branchlist(i).BranchSubtab(j).Possible = 
branchlist(i).BranchSubtab(j).Possible/sump; 
            branchlist(i).Pos_list(j) = branchlist(i).BranchSubtab(j).Possible; 
            branchlist(i).Scenario(j, end) = j; 
            % branchlist(i).Scenario(j, 1: end - 1) = branchlist(i - 
1).Scenario(branchlist(i).BranchSubtab(j).Prev, :); 
            branchlist(i).Scenario(j, 1: end - 1) = 1; 
            yylistmi(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 1); 
            yylistma(:, j) = branchlist(i).BranchSubtab(j).MaxMin_y(1:5, 2); 
        end 
         
        branchlist(i).Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi, 
yylistma], [], 2)]; 
        branchlist(i).Wholerange(4, :) = fliplr(branchlist(i).Wholerange(4, :)); 
        y = branchlist(i).Wholerange(:, 2); 
       %% only for whole branch method 
         
        % if rem(i, time_conv) == 0 && lensub > 1 
        %     [branchlist(i)] = branch_conv(branchlist(i), branchlist(i).Wholerange); 
        % end 
        % y = branchlist(i).Wholerange(:, 2); 
       %% only for worst case branch method 
        branchlist(i).Pos_list = 
branchlist(i).BranchSubtab.List_conbine.Possible*branchlist(i).Pos_list; 
        %% 
        z0_model = y; 
        z0_model(4, :) = z0_model(4, :) + fb_ke; 
        V0 = y(5); 
    end %%%only for worst case branch method 
end 
fmin_wb = - (y(4) + fb_k)*y(5);% max cost = final_x*final_V 
  
  
%% nominal part 
y = [z0_model_n;V0n];%initial plant (Glc,O2,Aci,X,V) 
% structure of z0_model = [zgl, zo2, zac, x] 
% y_plant_p = zeros(nit,5); 
% nu_plant_p = zeros(nit,4); 
tl = 0; 
mu = 0;% initial condition of mu always be zero. 
for k = kp:nit 
    if mod((k-1), maninter)==0 
        tl = tl+1; 
        F0 = u(tl);P0 = u(p+tl); 
    end 
    [y, ~, ~, mu] = plant_dynamics(z0_model_n, V0n, F0, P0, dt, A, c, ... 
        kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu); 
    % Reinitialise z0_model and V0 for next time step 
    z0_model_n = y(1:4); 
    V0n = y(5); 
    % store the plant dynamics (not essential) 
    % nu_plant_p(k,:) = nu'; 
    % y_plant_p(k,:) = y'; 
end 
fmin_n = - (y(4) + fb_k)*y(5); % max cost = final_x*final_V 
  
%% 
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% worst case 
fmin = fmin_n*(1 - tab_tol) + fmin_wb*tab_tol; 
% fmin = fmin_wb; 
end 
 

function [brsubtab_list] = gene_branch_node_of1(time, z0_model, V0, F0, P0, dt, A, c, 
... 
    kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu, X_k, 
pre, bran_tol, tab_tol, opt, t2d, t5d) 
  
  
% Anew = [A; A(1:2,:); -A(3,:)]; 
Anew = [A(1:2,:); -A(3,:)]; 
  
bmax = [GUR_range(2)*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_range(2); ... 
    100; ... 
    (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
    (kla_range(2)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;... 
    (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
  
% GUR_range(1)*(z0_model(1)/(Km + z0_model(1) + (z0_model(1)^2)/Ki) 
bmin = [GUR_range(1)*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_range(1); ... 
    100; ... 
    (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
    (kla_range(1)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;... 
    (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
  
rand_b = [bmin bmax]; 
  
[cur_subtabmap, ~, ~] = propagate_rhs_5d([rand_b(1:2, :);rand_b(4:6, :)], opt, t2d, 
t5d); 
  
yrange = zeros(5,2); 
brsubtab_list = []; 
  
for i = 1:length(cur_subtabmap) 
    list_conbine = cur_subtabmap(i); 
    possible = cur_subtabmap(i).Possible; 
    sump = 0; 
     
    if possible >= tab_tol 
        sump = sump + possible; 
        brsubtab = branchSubtab(time, [], [], [], list_conbine, possible, [], [], [], 
[], [], [], []); 
        % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis, 
unit, nodes, maxmin_nu_mu, maxmin_y, data 
        brsubtab_list = [brsubtab_list; brsubtab]; 
  
        for j = 1:2 %leaves 
            kla = kla_range(j); 
            nu = cur_subtabmap(i).MaxMin(1:4, j); 
            %%%avoiding unnecessary eliminatating upper bound of nu. mu 
            bnew = [(F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
                (kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + 
z0_model(2)/dt)/X_k;... 
                (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
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            % [numin, ~, ~] = simplex_tab(-c,Anew,bnew,[],[],[]); 
            [numin, ~] = linprog( - c, Anew, bnew,[],[],zeros(1, 4), nu' + 1e-9, opt); 
            %%% 
            % mu = cur_subtabmap(i).MaxMin(5, j); 
            % mu = - max(sum(nu), mu); 
            nu = min([nu, numin], [], 2); 
            mu = - sum(nu); 
             
            Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu; 
            tspan = [0 dt]; 
            z0 = [z0_model; V0]; 
            if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0) 
                z = [0 0 0 z0(4) V0]; 
            else 
                [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, 
... 
                    -mu, Zgl_feed, F0, P0), tspan, z0); 
                %   [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, 
Anu_Ac, ... 
                %       -mu, Zgl_feed, F0, P0), tspan, z0); 
            end 
            y = z(end,:)'; 
            if (z(end,1) <= 1e-6) % check for O2 concentration 
                y(1,1) = 1e-6; 
            end 
            if (z(end,2) <= 1e-6) % check for O2 concentration 
                y(2,1) = 1e-6; 
            end 
            if (z(end,3) <= 1e-6) % check for O2 concentration 
                y(3,1) = 1e-6; 
            end 
            yrange(:, j) = y; 
             
        end 
        maxmin_y = [yrange(:,2), yrange(:, 1)]; 
        possible = brsubtab_list(end).Possible; 
  
        brsubtab_list(end).Mid_leaf = Leaves(time, [], [], [], possible, [], [], 
maxmin_y); 
        % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y 
         
        brsubtab_list(end).MaxMin_y = maxmin_y; 
        %         brsubtab = branchSubtab(time, [], [], [], list_conbine, possible, 
[], [], [], [], []); 
        % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, nodes, 
maxmin_nu_mu, maxmin_y, data 
        brsubtab_list(end).Prev = pre; 
        brsubtab_list(end).X_grad = maxmin_y(1:5, 2) - maxmin_y(1:5, 1); 
         
        [prob_dis, unit, nodes] = pro_dist(brsubtab_list(end).X_grad, maxmin_y(1:5, 
1)); 
         
        brsubtab_list(end).Prob_dis = prob_dis; 
        brsubtab_list(end).Unit = unit; 
        brsubtab_list(end).Nodes = nodes; 
         
    end % if 1 == length(current_tabmap) 
     
end 
  
for i = 1:length(brsubtab_list) 
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    brsubtab_list(i).Possible = brsubtab_list(i).Possible / sump; 
end 
  
%% only for find worst case branch 
  
lensub = length(brsubtab_list); 
yylistmi = zeros(5, lensub); 
yylistma = zeros(5, lensub); 
  
for j = 1:lensub 
    % brsubtab_list.BranchSubtab(j).Possible = 
brsubtab_list.BranchSubtab(j).Possible/sump; 
    % brsubtab_list.Pos_list(j) = brsubtab_list.BranchSubtab(j).Possible; 
    yylistmi(:, j) = brsubtab_list(j).MaxMin_y(1:5, 1); 
    yylistma(:, j) = brsubtab_list(j).MaxMin_y(1:5, 2); 
end 
  
Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi, yylistma], [], 2)]; 
Wholerange(4, :) = fliplr(Wholerange(4, :)); 
  
for j = 1:lensub 
    if brsubtab_list(j).MaxMin_y(4, 2) == Wholerange(4, 2) 
        maint = j; 
        break 
    end 
end 
  
brsubtab_list = brsubtab_list(maint); 
  
%     brsubtab_list(j).MaxMin_y = Wholerange; 
brsubtab_list.Possible = brsubtab_list.Possible*sump; 
  
  
end 
  
  
function [prob_dis, unit, nodes] = pro_dist(grad, miny) 
dgrad = grad./7; 
nodes = zeros(5,5); 
for i = 1:5 
    miny = miny + dgrad; 
    nodes(:, i) = miny; 
end 
prob_dis = {ones(1, 5)*(1/5), ones(1, 5)*(1/5), ones(1, 5)*(1/5), ones(1, 5)*(1/5)}; 
unit = abs(grad./5); 
end 
 

function [brsubtab_list, sump, cur_subtabmap] = gene_sub_tab_wb(time, ~, V0, F0, P0, 
dt, A, c, ... 
    kla, Km, GUR_max, OUR_max,GUR_range,OUR_range, kla_range, Ki, Zgl_feed, mu, 
BranchSubtab, pre, bran_tol, tab_tol, sump, fti, cur_subtabmap, opt, t2d, t5d) 
% worst case branch 
% sub_pos_list = []; 
pos = BranchSubtab.Possible; 
%% posible of subtab 
% Anew = [A; A(1:2,:); -A(3,:)]; 
Anew = [A(1:2,:); -A(3,:)]; 
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% [z0_model, X_k] = cubcut(BranchSubtab, 1); 
    z0_model = BranchSubtab.MaxMin_y(1:3, 2); 
    X_k = BranchSubtab.MaxMin_y(4, 2); 
  
bmax = [GUR_range(2)*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_range(2); ... 
    100; ... 
    (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
    (kla_range(2)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;... 
    (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
  
  
% [z0_model, X_k] = cubcut(BranchSubtab, 2); 
    z0_model = BranchSubtab.MaxMin_y(1:3, 1); 
    X_k = BranchSubtab.MaxMin_y(4, 1); 
  
bmin = [GUR_range(1)*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_range(1); ... 
    100; ... 
    (F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
    (kla_range(1)*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt)/X_k;... 
    (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
  
  
rand_b = [bmin bmax]; 
rand_b = [rand_b(1:2, :);rand_b(4:6, :)]; 
  
  
if fti == 1 
    [cur_subtabmap, ~, ~] = propagate_rhs_5d([min(rand_b, [], 2) max(rand_b, [], 2)], 
opt, t2d, t5d); 
%      
% else 
%     [tab_m] = simp_prop_rhs_5d([min(rand_b, [], 2) max(rand_b, [], 2)], opt, t2d, 
t5d); 
%     for i = 1:2 
%         cur_subtabmap(i).MaxMin = tab_m{i}; 
%     end 
end 
  
brsubtab_list = []; 
  
lencur = length(cur_subtabmap); 
poslist = zeros(lencur, 1); 
for i = 1:lencur 
    poslist(i) = cur_subtabmap(i).Possible; 
end 
maxpos = max(poslist); 
if maxpos < tab_tol 
poslist(poslist == maxpos) = tab_tol; 
end 
%   
for i = 1:lencur 
    if poslist(i) >= tab_tol 
        poslist(i) = poslist(i)*pos; 
        sump = sump + poslist(i); 
        yrange = zeros(5,2); 
         
        list_conbine = cur_subtabmap(i); 
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        brsubtab = branchSubtab(time, [], [], [], list_conbine, poslist(i), [], [], 
[], [], [], [], []); 
        % time, up_leaf, mid_leaf, low_leaf, list_conbine, possible, x_grad, prob_dis, 
unit, nodes, maxmin_nu_mu, maxmin_y, data 
        brsubtab_list = [brsubtab_list; brsubtab]; 
         
        splist = zeros(7, 5, 2); 
        spnodes = [BranchSubtab.MaxMin_y(:, 1), BranchSubtab.Nodes, 
BranchSubtab.MaxMin_y(:, 2)]; 
         
        % for j = 1:7 %Up and Low leaves 
        for j = 1:6:7 %Up and Low leaves    
            z0_model = spnodes(1:4, j); 
            X_k = z0_model(4); 
    
            for k = 1:2 
                kla = kla_range(k); 
                nu = cur_subtabmap(i).MaxMin(1:4, k); 
                %%%avoiding unnecessary eliminatating upper bound of nu. mu 
                bnew = [(F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt)/X_k; ... 
                    (kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + 
z0_model(2)/dt)/X_k;... 
                    (-F0/V0*z0_model(3) + z0_model(3)/dt)/X_k]; 
                % [numin, ~, ~] = simplex_tab(-c,Anew,bnew,[],[],[]); 
                [numin, ~] = linprog( - c, Anew, bnew,[],[],zeros(1, 4), nu' + 1e-9, 
opt); 
                %%% 
                % mu = cur_subtabmap(i).MaxMin(5, k); 
                % mu = - max(sum(nu), mu); 
                nu = min([nu, numin], [], 2); 
                mu = - sum(nu); 
                 
                Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu; 
                tspan = [0 dt]; 
                z0 = [z0_model; V0]; 
                if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0) 
                    z = [0 0 0 z0(4) V0]; 
                else 
                    [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, 
Anu_Ac, ... 
                        -mu, Zgl_feed, F0, P0), tspan, z0); 
                    %   [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, 
Anu_Ac, ... 
                    %       -mu, Zgl_feed, F0, P0), tspan, z0); 
                end 
                y = z(end,:)'; 
                if (z(end,1) <= 1e-6) % check for O2 concentration 
                    y(1,1) = 1e-6; 
                end 
                if (z(end,2) <= 1e-6) % check for O2 concentration 
                    y(2,1) = 1e-6; 
                end 
                if (z(end,3) <= 1e-6) % check for O2 concentration 
                    y(3,1) = 1e-6; 
                end 
                yrange(:, k) = y; 
  
                maxmin_y = [yrange(:,2), yrange(:, 1)]; 
                 
            end 
            splist(j, :, :) = maxmin_y; 
            if 7 == j 
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                brsubtab_list(end).Up_leaf = Leaves(time, [], [], [], [], [], [], 
maxmin_y); 
                % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, 
maxmin_y 
            end 
            if 1 == j 
                brsubtab_list(end).Low_leaf = Leaves(time, [], [], [], [], [], [], 
maxmin_y); 
                % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, 
maxmin_y 
            end 
        end 
         
        maxmin_y_list = [brsubtab_list(end).Low_leaf.MaxMin_y(:, 2), 
brsubtab_list(end).Up_leaf.MaxMin_y(:, 1)]; 
         
        % maxmin_y = [min(maxmin_y_list, [],2), max(maxmin_y_list, [],2)]; 
         
        brsubtab_list(end).MaxMin_y = [brsubtab_list(end).Low_leaf.MaxMin_y(:, 1), 
brsubtab_list(end).Up_leaf.MaxMin_y(:, 2)]; 
         
        brsubtab_list(end).Mid_leaf = Leaves(time, [], [], [], [], [], [], 
maxmin_y_list); 
        % time, num, prev, lenu, possible, br_node_list, maxmin_nu_mu, maxmin_y 
         
        %% Probability distribution for each element 
 
        xgrad = brsubtab_list(end).MaxMin_y(1:5, 2) - brsubtab_list(end).MaxMin_y(1:5, 
1); 
        brsubtab_list(end).X_grad = xgrad; 
        brsubtab_list(end).Prev = pre; 
         
        dgrad = brsubtab_list(end).X_grad ./ 7; 
        nodes = zeros(5,5); 
        miny = brsubtab_list(end).MaxMin_y(1:5, 1); 
        for j = 1:5 
            miny = miny + dgrad; 
            nodes(:, j) = miny; 
        end 
        brsubtab_list(end).Nodes = nodes; 
         
    end 
     
end % if 1 == length(current_tabmap) 
  
%% find worst case branch 
  
    lensub = length(brsubtab_list); 
    yylistmi = zeros(5, lensub); 
    yylistma = zeros(5, lensub); 
     
    for j = 1:lensub 
        % brsubtab_list.BranchSubtab(j).Possible = 
brsubtab_list.BranchSubtab(j).Possible/sump; 
        % brsubtab_list.Pos_list(j) = brsubtab_list.BranchSubtab(j).Possible; 
        yylistmi(:, j) = brsubtab_list(j).MaxMin_y(1:5, 1); 
        yylistma(:, j) = brsubtab_list(j).MaxMin_y(1:5, 2); 
    end 
     
    Wholerange = [min([yylistmi, yylistma], [], 2) max([yylistmi, yylistma], [], 2)]; 
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    Wholerange(4, :) = fliplr(Wholerange(4, :)); 
     
    for j = 1:lensub 
        if brsubtab_list(j).MaxMin_y(4, 2) == Wholerange(4, 2) 
            maint = j; 
            break 
        end 
    end 
    try 
    brsubtab_list = brsubtab_list(maint); 
    catch 
       keyboard  
    end 
     
    %     brsubtab_list(j).MaxMin_y = Wholerange; 
    brsubtab_list.Possible = brsubtab_list.Possible*sump; 
  
end 
 
 

function [current_tabmap,cur_subtabmap, efl] = propagate_rhs_5d(rand_b, opt, t2d, t5d) 
% A = [     0    9.4600    9.8400   19.2300 
%     35.0000   12.9200   12.7300         0 
%     0    9.4600    9.8400   19.2300 
%     35.0000   12.9200   12.7300         0 
%     39.4300         0   -1.2400  -12.1200]; 
% b_norm = [1 
%     1 
%     1 
%     1 
%     1];    % 10 
% % using 1e-10 instead of 0 in this part 
% rand_b1 = [0 2]; %min and max of b. max = rand_b(1)*b_range 
% % use 1e-6 instead of 0 for avoiding an error of lcon2vert 
  
% rand_b = [0 1; 0 1; 0 1; 0 1; 0 1]; %delta[b1 b2 b4 b5 b6]' 
efl = 0; 
if min(rand_b(3:5,1)) <= 50 
  
    A = [0    9.4600    9.8400   19.2300 
        35.0000   12.9200   12.7300         0 
        0    9.4600    9.8400   19.2300 
        35.0000   12.9200   12.7300         0 
        39.4300         0   -1.2400  -12.1200]; 
    c = [-1;-1;-1;-1]; 
    Tab_distribution = t5d; 
     
else 
     
    A = [0    9.4600    9.8400   19.2300 
        35.0000   12.9200   12.7300         0]; 
    c = [-1;-1;-1;-1]; 
    Tab_distribution = t2d; 
    rand_b = rand_b(1:2, :); 
end 
  
lenb = length(rand_b(:,1)); 
  
b_spacecon = [eye(lenb) rand_b(:, 2); -eye(lenb)  -rand_b(:, 1)]; 
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lenF = length(Tab_distribution); 
  
whole_vol = prod(rand_b(:, 2) - rand_b(:, 1)); 
  
if whole_vol <= 1e-9 %a small epsilon for lower dim range 
    rand_b(:, 2) = rand_b(:, 2) + 1e-4; 
    b_spacecon = [eye(lenb) rand_b(:, 2); -eye(lenb)  -rand_b(:, 1)]; 
    whole_vol = prod(rand_b(:, 2) - rand_b(:, 1)); 
end 
  
% finding possible subspace 
tab_map = Tab_distribution; 
  
error = []; 
  
lenf = length(A(1, :)) + 1; 
  
for i = 1:lenF 
    lenL = length(Tab_distribution{i}.List_edge); 
    if lenL >= 1 
        tab_vol = 0; 
        empty_tab = []; 
        max_s = []; 
        min_s = []; 
        for j = 1:lenL 
            Space_con = Tab_distribution{i}.List_edge(j).Space_con; 
            subpace_con = [Space_con; b_spacecon]; 
            A_space = subpace_con(:, 1:end - 1); 
            b_space = subpace_con(:, end); 
            try 
                % [V,nr,ef] = con2vert(A_space,b_space); 
                [V,nr,~,ef] = lcon2vert_ef(A_space,b_space,[],[],[],[]); 
            catch 
                ef = 5; 
                efl = 1; 
                error = [error; i, j]; 
            end 
            if 0 == ef && ~isempty(V) 
                At = A_space(nr,:); 
                bt = b_space(nr,:); 
                tab_map{i}.List_edge(j).Space_con = [At, bt]; 
                tab_map{i}.List_edge(j).Verties = V; 
                [K,vol] = convhulln(V); 
                tab_map{i}.List_edge(j).Vol = vol; 
                tab_map{i}.List_edge(j).K = K; 
                tab_vol = tab_vol + vol; 
                tab_map{i}.List_edge(j).Possible = vol/whole_vol; 
                % calculate for the worst case 
                sol_fun_con = tab_map{i}.List_edge(j).Basic_sol_v; 
                cost_fun_con = c'*sol_fun_con; 
                % [maxmin_mat] = maxmin(At, bt, sol_fun_con, cost_fun_con, opt); 
                [maxmin_mat] = maxmin_v(V, sol_fun_con, cost_fun_con); 
                max_s = [max_s, maxmin_mat(:, 2)]; 
                min_s = [min_s, maxmin_mat(:, 1)]; 
                tab_map{i}.List_edge(j).MaxMin = maxmin_mat; 
                % mid/morm point 
                for k = 1:lenb 
                    tab_map{i}.List_edge(j).Mid_point(k) = 
(max(V(:,k))+min(V(:,k)))/2; 
                end 
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            else 
                empty_tab = [empty_tab; j]; 
            end 
        end 
        tab_map{i}.List_edge(empty_tab) = []; 
        tab_map{i}.Possible = tab_vol/whole_vol; 
        % calculate for the worst case for base tab 
        if tab_map{i}.Possible > 0 
            maxmin_wt = zeros(lenf, 2); 
            for k = 1:lenf 
                maxmin_wt(k, 1) = min(min_s(k, :)); 
                maxmin_wt(k, 2) = max(max_s(k, :)); 
            end 
            tab_map{i}.MaxMin = maxmin_wt; 
        end 
    end 
end 
  
empty_tab_map = []; 
for i = 1:lenF 
    if 0 == tab_map{i}.Possible 
        empty_tab_map = [empty_tab_map; i]; 
    end 
end 
tab_map(empty_tab_map) = []; 
current_tabmap = []; 
  
for i = 1:length(tab_map) 
current_tabmap = [current_tabmap; tab_map{i}]; 
end 
  
%% generate subspace tab map 
cur_subtabmap = []; 
 
end 
  
  
function [maxmin_mat] = maxmin(A, b, sol_fun_con, cost_fun_con, opt) 
fm = [sol_fun_con(:, 1:end - 1); cost_fun_con(:, 1:end - 1)]; 
[lenf, lens] = size(fm); 
maxmin_mat = zeros(lenf, 2); 
  
for i = 1:lenf 
    f = fm(i, :)'; 
    % [bmin, tmin, ~] = simplex_tab(f, A, b, [], [], []); 
    [~,tmin] = linprog(f,A,b,[],[],zeros(1, lens),[],opt); 
    % [bmax, tmax, ~] = simplex_tab(- f, A, b, [], [], []); 
    [~,tmax] = linprog( - f,A,b,[],[],zeros(1, lens),[],opt); 
    if i == lenf 
        maxmin_mat(i, :) = [tmax, - tmin]; 
        %actuall [min max] since c = -c 
    else 
        maxmin_mat(i, :) = [tmin, - tmax]; 
    end 
    %convert from -c condition 
end 
end 
function [maxmin_mat] = maxmin_v(V, sol_fun_con, cost_fun_con) 
fm = [sol_fun_con(:, 1:end - 1); cost_fun_con(:, 1:end - 1)]; 
[lenf, ~] = size(fm); 
maxmin_mat = zeros(lenf, 2); 
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for i = 1:lenf 
    f = fm(i, :)'; 
    sol = V*f; 
    tmax = max(sol); 
    tmin = min(sol); 
    if i == lenf 
        maxmin_mat(i, :) = abs([tmax, tmin]); 
        %actuall [min max] since c = -c 
    else 
        maxmin_mat(i, :) = abs([tmin, tmax]); 
    end 
    %convert from -c condition 
end 
end 
 

function [y, nu, Basic, mu] = plant_dynamics(z0_model, V0, F0, P0, dt, A, c, ... 
    kla, Km, GUR_max, OUR_max, Ki, Zgl_feed, mu) 
% structure of z0_plant = [zgl, zo2, zac, x] 
% LP Model solution 
% n = length(c); 
if (z0_model(1)<=1e-3 && z0_model(3)<=1e-3)    
    X_k = z0_model(4); 
else 
    X_k = z0_model(4) + (-mu*z0_model(4) - (F0-P0)/V0*z0_model(4))*dt; 
end 
 
Anew = [A; A(1:2,:)*X_k; -A(3,:)*X_k]; 
b = [GUR_max*(z0_model(1)/(Km + z0_model(1)));... 
    OUR_max; ... 
    100; ... 
    F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt; ... 
    kla*(0.21 - z0_model(2)) - F0/V0*z0_model(2) + z0_model(2)/dt;... 
    F0/V0*z0_model(3) + z0_model(3)/dt; ]; 
% - F0/V0*z0_model(3) + z0_model(3)/dt; ]; 
[nu, mu, Basic] = simplex_tab(-c,Anew,b,[],[],[]); 
Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu; 
tspan = [0 dt]; 
z0 = [z0_model; V0]; 
if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0) 
    z = [0 0 0 z0(4) V0]; 
else 
    [~,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ... 
        -mu, Zgl_feed, F0, P0), tspan, z0); 
%   [t,z] = ode45(@(t,z) model_dynamics(t,z, kla, Anu_gl, Anu_o2, Anu_Ac, ... 
%       -mu, Zgl_feed, F0, P0), tspan, z0); 
end 
y = z(end,:)'; 
if (z(end,1) <= 1e-6) % check for O2 concentration 
    y(1,1) = 1e-6; 
end 
if (z(end,2) <= 1e-6) % check for O2 concentration 
    y(2,1) = 1e-6; 
end 
if (z(end,3) <= 1e-6) % check for O2 concentration 
    y(3,1) = 1e-6; 
end 
end 
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