70 research outputs found

    White paper on crowdsourced network and QoE measurements – definitions, use cases and challenges

    Get PDF
    The goal of the white paper at hand is as follows. The definitions of the terms build a framework for discussions around the hype topic ‘crowdsourcing’. This serves as a basis for differentiation and a consistent view from different perspectives on crowdsourced network measurements, with the goal to provide a commonly accepted definition in the community. The focus is on the context of mobile and fixed network operators, but also on measurements of different layers (network, application, user layer). In addition, the white paper shows the value of crowdsourcing for selected use cases, e.g., to improve QoE or regulatory issues. Finally, the major challenges and issues for researchers and practitioners are highlighted. This white paper is the outcome of the WĂŒrzburg seminar on “Crowdsourced Network and QoE Measurements” which took place from 25-26 September 2019 in WĂŒrzburg, Germany. International experts were invited from industry and academia. They are well known in their communities, having different backgrounds in crowdsourcing, mobile networks, network measurements, network performance, Quality of Service (QoS), and Quality of Experience (QoE). The discussions in the seminar focused on how crowdsourcing will support vendors, operators, and regulators to determine the Quality of Experience in new 5G networks that enable various new applications and network architectures. As a result of the discussions, the need for a white paper manifested, with the goal of providing a scientific discussion of the terms “crowdsourced network measurements” and “crowdsourced QoE measurements”, describing relevant use cases for such crowdsourced data, and its underlying challenges. During the seminar, those main topics were identified, intensively discussed in break-out groups, and brought back into the plenum several times. The outcome of the seminar is this white paper at hand which is – to our knowledge – the first one covering the topic of crowdsourced network and QoE measurements

    Given Enough Eyeballs, all Bugs are Shallow - A Literature Review for the Use of Crowdsourcing in Software Testing

    Get PDF
    Over the last years, the use of crowdsourcing has gained a lot of attention in the domain of software engineering. One key aspect of software development is the testing of software. Literature suggests that crowdsourced software testing (CST) is a reliable and feasible tool for manifold kinds of testing. Research in CST made great strides; however, it is mostly unstructured and not linked to traditional software testing practice and terminology. By conducting a literature review of traditional and crowdsourced software testing literature, this paper delivers two major contributions. First, it synthesizes the fields of crowdsourcing research and traditional software testing. Second, the paper gives a comprehensive overview over findings in CST-research and provides a classification into different software testing types

    VidPlat: A Tool for Fast Crowdsourcing of Quality-of-Experience Measurements

    Full text link
    For video or web services, it is crucial to measure user-perceived quality of experience (QoE) at scale under various video quality or page loading delays. However, fast QoE measurements remain challenging as they must elicit subjective assessment from human users. Previous work either (1) automates QoE measurements by letting crowdsourcing raters watch and rate QoE test videos or (2) dynamically prunes redundant QoE tests based on previously collected QoE measurements. Unfortunately, it is hard to combine both ideas because traditional crowdsourcing requires QoE test videos to be pre-determined before a crowdsourcing campaign begins. Thus, if researchers want to dynamically prune redundant test videos based on other test videos' QoE, they are forced to launch multiple crowdsourcing campaigns, causing extra overheads to re-calibrate or train raters every time. This paper presents VidPlat, the first open-source tool for fast and automated QoE measurements, by allowing dynamic pruning of QoE test videos within a single crowdsourcing task. VidPlat creates an indirect shim layer between researchers and the crowdsourcing platforms. It allows researchers to define a logic that dynamically determines which new test videos need more QoE ratings based on the latest QoE measurements, and it then redirects crowdsourcing raters to watch QoE test videos dynamically selected by this logic. Other than having fewer crowdsourcing campaigns, VidPlat also reduces the total number of QoE ratings by dynamically deciding when enough ratings are gathered for each test video. It is an open-source platform that future researchers can reuse and customize. We have used VidPlat in three projects (web loading, on-demand video, and online gaming). We show that VidPlat can reduce crowdsourcing cost by 31.8% - 46.0% and latency by 50.9% - 68.8%

    A survey of the use of crowdsourcing in software engineering

    Get PDF
    The term 'crowdsourcing' was initially introduced in 2006 to describe an emerging distributed problem-solving model by online workers. Since then it has been widely studied and practiced to support software engineering. In this paper we provide a comprehensive survey of the use of crowdsourcing in software engineering, seeking to cover all literature on this topic. We first review the definitions of crowdsourcing and derive our definition of Crowdsourcing Software Engineering together with its taxonomy. Then we summarise industrial crowdsourcing practice in software engineering and corresponding case studies. We further analyse the software engineering domains, tasks and applications for crowdsourcing and the platforms and stakeholders involved in realising Crowdsourced Software Engineering solutions. We conclude by exposing trends, open issues and opportunities for future research on Crowdsourced Software Engineering

    The Many Faces of Edge Intelligence

    Get PDF
    Edge Intelligence (EI) is an emerging computing and communication paradigm that enables Artificial Intelligence (AI) functionality at the network edge. In this article, we highlight EI as an emerging and important field of research, discuss the state of research, analyze research gaps and highlight important research challenges with the objective of serving as a catalyst for research and innovation in this emerging area. We take a multidisciplinary view to reflect on the current research in AI, edge computing, and communication technologies, and we analyze how EI reflects on existing research in these fields. We also introduce representative examples of application areas that benefit from, or even demand the use of EI.Peer reviewe

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined

    Experimentation and Characterization of Mobile Broadband Networks

    Get PDF
    The Internet has brought substantial changes to our life as the main tool to access a large variety of services and applications. Internet distributed nature and technological improvements lead to new challenges for researchers, service providers, and network administrators. Internet traffic measurement and analysis is one of the most trivial and powerful tools to study such a complex environment from different aspects. Mobile BroadBand (MBB) networks have become one of the main means to access the Internet. MBB networks are evolving at a rapid pace with technology enhancements that promise drastic improvements in capacity, connectivity, and coverage, i.e., better performance in general. Open experimentation with operational MBB networks in the wild is currently a fundamental requirement of the research community in its endeavor to address the need for innovative solutions for mobile communications. There is a strong need for objective data relating to stability and performance of MBB (e.g., 2G, 3G, 4G, and soon-to-come 5G) networks and for tools that rigorously and scientifically assess their performance. Thus, measuring end user performance in such an environment is a challenge that calls for large-scale measurements and profound analysis of the collected data. The intertwining of technologies, protocols, and setups makes it even more complicated to design scientifically sound and robust measurement campaigns. In such a complex scenario, the randomness of the wireless access channel coupled with the often unknown operator configurations makes this scenario even more challenging. In this thesis, we introduce the MONROE measurement platform: an open access and flexible hardware-based platform for measurements on operational MBB networks. The MONROE platform enables accurate, realistic, and meaningful assessment of the performance and reliability of MBB networks. We detail the challenges we overcame while building and testing the MONROE testbed and argue our design and implementation choices accordingly. Measurements are designed to stress performance of MBB networks at different network layers by proposing scalable experiments and methodologies. We study: (i) Network layer performance, characterizing and possibly estimating the download speed offered by commercial MBB networks; (ii) End users’ Quality of Experience (QoE), specifically targeting the web performance of HTTP1.1/TLS and HTTP2 on various popular web sites; (iii) Implication of roaming in Europe, understanding the roaming ecosystem in Europe after the "Roam like Home" initiative; and (iv) A novel adaptive scheduler family with deadline is proposed for multihomed devices that only require a very coarse knowledge of the wireless bandwidth. Our results comprise different contributions in the scope of each research topic. To put it in a nutshell, we pinpoint the impact of different network configurations that further complicate the picture and hopefully contribute to the debate about performance assessment in MBB networks. The MBB users web performance shows that HTTP1.1/TLS is very similar to HTTP2 in our large-scale measurements. Furthermore, we observe that roaming is well supported for the monitored operators and the operators using the same approach for routing roaming traffic. The proposed adaptive schedulers for content upload in multihomed devices are evaluated in both numerical simulations and real mobile nodes. Simulation results show that the adaptive solutions can effectively leverage the fundamental tradeoff between the upload cost and completion time, despite unpredictable variations in available bandwidth of wireless interfaces. Experiments in the real mobile nodes provided by the MONROE platform confirm the findings
    • 

    corecore