9 research outputs found

    Making Metric Temporal Logic Rational

    Get PDF
    We study an extension of MTL in pointwise time with regular expression guarded modality Reg_I(re) where re is a rational expression over subformulae. We study the decidability and expressiveness of this extension (MTL+Ureg+Reg), called RegMTL, as well as its fragment SfrMTL where only star-free rational expressions are allowed. Using the technique of temporal projections, we show that RegMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL. We also identify a subclass MITL+UReg of RegMTL for which our equisatisfiable reduction gives rise to formulae of MITL, yielding elementary decidability. As our second main result, we show a tight automaton-logic connection between SfrMTL and partially ordered (or very weak) 1-clock alternating timed automata

    Logics Meet 1-Clock Alternating Timed Automata

    Get PDF
    This paper investigates a decidable and highly expressive real time logic QkMSO which is obtained by extending MSO[<] with guarded quantification using block of less than k metric quantifiers. The resulting logic is shown to be expressively equivalent to 1-clock ATA where loops are without clock resets, as well as, RatMTL, a powerful extension of MTL[U_I] with regular expressions. We also establish 4-variable property for QkMSO and characterize the expressive power of its 2-variable fragment. Thus, the paper presents progress towards expressively complete logics for 1-clock ATA

    On the expressiveness and monitoring of metric temporal logic

    Get PDF
    It is known that Metric Temporal Logic (MTL) is strictly less expressive than the Monadic First-Order Logic of Order and Metric (FO[<, +1]) when interpreted over timed words; this remains true even when the time domain is bounded a priori. In this work, we present an extension of MTL with the same expressive power as FO[<, +1] over bounded timed words (and also, trivially, over time-bounded signals). We then show that expressive completeness also holds in the general (time-unbounded) case if we allow the use of rational constants q ∈ Q in formulas. This extended version of MTL therefore yields a definitive real-time analogue of Kamp’s theorem. As an application, we propose a trace-length independent monitoring procedure for our extension of MTL, the first such procedure in a dense real-time setting

    When is Metric Temporal Logic Expressively Complete? ∗

    Get PDF
    A seminal result of Kamp is that over the reals Linear Temporal Logic (LTL) has the same expressive power as first-order logic with binary order relation &lt; and monadic predicates. A key question is whether there exists an analogue of Kamp’s theorem for Metric Temporal Logic (MTL) – a generalization of LTL in which the Until and Since modalities are annotated with intervals that express metric constraints. Hirshfeld and Rabinovich gave a negative answer, showing that first-order logic with binary order relation &lt; and unary function +1 is strictly more expressive than MTL with integer constants. However, a recent result of Hunter, Ouaknine and Worrell shows that when rational timing constants are added to both languages, MTL has the same expressive power as first-order logic, giving a positive answer. In this paper we generalize these results by giving a precise characterization of those sets of constants for which MTL and firstorder logic have the same expressive power. We also show that full first-order expressiveness can be recovered with the addition of counting modalities, strongly supporting the assertion of Hirshfeld and Rabinovich that Q2MLO is one of the most expressive decidable fragments o

    The Expressive Power, Satisfiability and Path Checking Problems of MTL and TPTL over Non-Monotonic Data Words

    Get PDF
    Recently, verification and analysis of data words have gained a lot of interest. Metric temporal logic (MTL) and timed propositional temporal logic (TPTL) are two extensions of Linear time temporal logic (LTL). In MTL, the temporal operator are indexed by a constraint interval. TPTL is a more powerful logic that is equipped with a freeze formalism. It uses register variables, which can be set to the current data value and later these register variables can be compared with the current data value. For monotonic data words, Alur and Henzinger proved that MTL and TPTL are equally expressive and the satisfiability problem is decidable. We study the expressive power, satisfiability problems and path checking problems for MLT and TPTL over all data words. We introduce Ehrenfeucht-Fraisse games for MTL and TPTL. Using the EF-game for MTL, we show that TPTL is strictly more expressive than MTL. Furthermore, we show that the MTL definability problem that whether a TPTL-formula is definable in MTL is not decidable. When restricting the number of register variables, we are able to show that TPTL with two register variables is strictly more expressive than TPTL with one register variable. For the satisfiability problem, we show that for MTL, the unary fragment of MTL and the pure fragment of MTL, SAT is not decidable. We prove the undecidability by reductions from the recurrent state problem and halting problem of two-counter machines. For the positive fragments of MTL and TPTL, we show that a positive formula is satisfiable if and only it is satisfied by a finite data word. Finitary SAT and infinitary SAT coincide for positive MTL and positive TPTL. Both of them are r.e.-complete. For existential TPTL and existential MTL, we show that SAT is NP-complete. We also investigate the complexity of path checking problems for TPTL and MTL over data words. These data words can be either finite or infinite periodic. For periodic words without data values, the complexity of LTL model checking belongs to the class AC^1(LogDCFL). For finite monotonic data words, the same complexity bound has been shown for MTL by Bundala and Ouaknine. We show that path checking for TPTL is PSPACE-complete, and for MTL is P-complete. If the number of register variables allowed is restricted, we obtain path checking for TPTL with only one register variable is P-complete over both infinite and finite data words; for TPTL with two register variables is PSPACE-complete over infinite data words. If the encoding of constraint numbers of the input TPTL-formula is in unary notation, we show that path checking for TPTL with a constant number of variables is P-complete over infinite unary encoded data words. Since the infinite data word produced by a deterministic one-counter machine is periodic, we can transfer all complexity results for the infinite periodic case to model checking over deterministic one-counter machines
    corecore