View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Qucosa - Publikationsserver der Universitat Leipzig

The Expressive Power, Satisfiability and Path Checking
Problems of MTL and TPTL over Non-Monotonic Data Words

\on der Fakultat fur Mathematik und Informatik
der Universitét Leipzig
angenommene

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

im Fachgebiet
Informatik

Vorgelegt
von Shiguang Feng

geboren am 17.01.1984 in Shandong, China

Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Markus Lohrey, Universitat Siegen
2. Prof. Dr. Manfred Droste, Universitat Leipzig

3. Prof. Dr. Martin Lange, Universitat Kassel

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 19.04.2016 mit dem Gesamtpradikat

magna cum laude

https://core.ac.uk/display/226118556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First of all, | am most grateful to my supervisor Prof. Dr. Mas Lohrey for his patient and
continuous support throughout my work. His illuminatingtights and insightful remarks
have contributed to this thesis in many ways. His generadityne and guidance has deeply
informed my development. | have gained much from collabonaith him.

| would like to thank the Deutsche Forschungsgemeinscitdf5) Research Training
Group 1763 "Quantitative logics and automata” for giving time opportunity to pursue my
interests in an inspiring international community and tinaricial support for me during the
last three years. | also want to thank my second supervisat Pr. Manfred Droste for
providing an excellent working and learning environmentimversitat Leipzig.

In addition, | am grateful to my colleague Dr. Karin Quaas ifaroducing me to the
wonderful topic of temporal logic over non-monotonic dat@rgs. Many ideas for this work
are derived from the discussion with her. | have benefited fsdm her insight and patience.

Finally, I would like to thank my colleagues Claudia Cardg@and Oliver Fernandez Gil
for their interest and help in my work. The work in this thekess been co-authored and
discussed with them. | also want to thank Parvaneh Babarrdgbinovitaly Perevoshchikov,
Eric Noth, Alexander Kartzow and my former Supervisor Pétshun Zhao and colleague
Dr. Yuping Shen for their kind help in my work and daily life.

Table of contents

1 Introduction

2 Preliminaries

21 Datawords
2.2 Lineartemporallogic L
2.3 Metrictemporallogic
2.4 Timed propositionaltemporallogic.
2.5 EXPressive POWEN v v v v e e e
2.6 Computationalcomplexity,
2.7 Two-countermachines

3 The expressive power of MTL and TPTL
3.1 The Ehrenfeucht-Fraissé gameforMTL
3.2 Application of the EF-gameforMTL
3.3 MTL with non-strict semantics
3.4 The Ehrenfeucht-Fraissé game for TPTL e e e
3.5 Application of the EF-gamefor TPTL
3.6 Summary of the relative expressive power

4 The satisfiability problems for MTL and TPTL
4.1 The satisfiability problemforMTL
4.2 SAT for the positive fragments of MTLand TPTL
4.3 SAT for the unary fragments of MTLand TPTL
4.4 SAT for the pure fragmentof MTL
4.5 SAT for other fragments of MTLand TPTL
4.6 Summary of satisfiabilityresults

5 The path checking problems for MTL and TPTL
5.1 Theuppercomplexitybounds

17
17
22
32
36
40
48

49
51
53
56
62
65
76

77

Vi

Table of contents

5.2 The lower complexitybounds.
5.3 Summary of path checking results
5.4 Model checking for deterministic one-counter machines

6 Conclusion and future work

References

Chapter 1

Introduction

Recently, verification and analysis of sets of data wordstgained a lot of interestLp—
14,17, 28, 30, 76]. A data word is a sequence oV D, whereP is a finite set of labels, and

D is a set of data values. One prominent example of data woedsnaed words, used in the
analysis of real-time system8][Linear-time temporal logicl(TL) is nowadays one of the
main logical formalisms used for the specification and veatfon of reactive systems, and has
found applications in industrial tools. In this contextjsfability and model checking are the
main computational problems fam L. The complexity of these problems in various settings is
well-understood, see e.gL(] for background. Triggered by applications in real-timstgyns,
various timed extensions &ffL have been invented. Two of the most prominent examples
are metric temporal logid{TL) [54] and timed propositional temporal logi€RTL) [7]. In
MTL, the temporal operator untilj is indexed by a time interval. For instance, the formula
pUp23 q holds at a certain timg, if there is a timet’ € [t 4 2,t + 3), whereq holds, andp
holds during the intervdt,t’). TPTL is a more powerful logic that is equipped with a freeze
formalism. It uses register variables, which can be set ¢octirrent time value and later
these register variables can be compared with the curraetitalue. For instance, the above
MTL-formula pUp, 3)q is equivalent to th& PTL-formulax.(pU (gA2 < x < 3)). Here, the
constraint < x < 3 should be read as: The difference of the current time vaiddlze value
stored inx is in the interval2, 3).

For bothMTL andTPTL, two different semantics exist: the continuous semantitgre
the time domain are the real numbers, and the discrete sies\ambhere the time domain are
the natural numbers. We will be only interested in the digsceemantics, where formulas
are evaluated over finite or infinite sequen¢@sdo)(P1,ds) ... of pairs(R,d;). HereR, C P
is a finite set of atomic propositions (from some pre-spetifisite setP) andd; € N is a
time stamp such that; < di.; for all i > 0. The freeze mechanism fromPTL has also
received attention in connection with non-monotonic datads. A non-monotonic data word

2 Introduction

is a finite or infinite sequendd, dp)(Py,d;) ... of the above form, where we do not require
the data valued; to be monotonic. In timed words, intuitively, the sequentdata values
describes the timestamps at which the properties from tieddaset hold. Non-monotonic
sequences of natural numbers, instead, can model theivar@tan observed value during
a time elapse: we can think of the heartbeat rate recordedchydgac monitor, atmospheric
pressure, humidity or temperature measurements obtaioedd meteorological station. For
example, leWeather = {sunny, cloudy, rainy} be a set of labels. A data word modeling the
changing of the weather and highest temperature day afyecaidd be:

(rainy,10)(cloudy, 8)(sunny, 12)(sunny, 13). ..

Applications forMTL andTPTL over non-monotonic data values can be seen in areas, where
data streams of discrete values have to be analyzed anddheiBon the dynamic variation
of the values (e.g. streams of discrete sensor data or shacksy. Both logics, however, have
not gained much attention in the specification of non-momigtdata words, albeit they can
express many interesting properties. The goal of this $hegp investigatéTL andTPTL
when evaluated over non-monotonic data words: the expeepsiwer, satisfiability problem
and path checking problem.

To continue our example, using tA@TL-formulax.(sunny U (cloudy A —3 < x < —1))
over the labels s&Weather, we can express the following property: Itis sunny untiegtbmes
cloudy and the highest temperature has decreased of 1 to@ded his formula is equivalent
to the MTL-formula (sunny U|_3 4 cloudy). The main advantage &fiTL with respect to
TPTL is its concise syntax. It would be practical if we could shtvattMTL equalsTPTL
over data words. It is a simple observation that ewdiyL-formula can be translated into an
equivalentTPTL-formula with only one register variable. For the other diren, however,
it turns out that the result depends on the data domain. Footoaic data words over the
natural numbers, Alur and Henzingd proved thatMTL andTPTL are equally expressive.
For timed words over the non-negative reals, instead, Boetyal. [L8] showed thafTPTL is
strictly more expressive thav TL. We consider the relative expressive powe&fTL and
MTL over non-monotonic data words, and show th&fTL is strictly more expressive than
MTL in this setting.

Satisfiability and model checking problem fdfTL and TPTL have been studied inten-
sively in the past, see e.@,[7, 20, 21, 28, 31, 56, 63, 65. On monotonic data words over the
natural numbers, the satisfiability problem for bi’L andTPTL is EXPSPACE-complete,
and is undecidable fof PTL over non-monotonic data word§,[7]. However, over timed
words, the satisfiability for both logics is undecidable rowvdinite timed words §, 63], there
is a difference in the finite timed words caSe? TL has undecidable satisfiability problesj,[

while satisfiability forMTL is decidable (but non-primitive recursivegg]. The type (finite

or infinite) of data words has influence on the decidabilitgatisfiability and the complexity
of model checking. In this thesis, we considéiL and TPTL over infinite data words and
finite data words, respectively. We show that over non-mamotdata words, foMTL and
most fragments oMTL and TPTL, the satisfiability problem is undecidable, which is either
>1-complete o&9-complete depending on the data words in consideratioméiréte or finite.

As for TPTL, the logicfreezeLTL can store the current data value in a registeBut
in contrast toTPTL, the value ofx can only be compared for equality with the current data
value. Model checking one-counter machines ViitlazeL TL is in general undecidabl&(],
and so is the satisfiability problen2g]. A good number of recent publications deal with
decidable and undecidable fragments$reézelL TL [28-32]. The authors of31] consider one-
counter machines (OCM) as a mechanism for generating iafirah-monotonic data words,
where the data values are the counter values along the unaquputation path. Whereas
freezeLTL model checking for non-deterministic OCMig-complete, the problem becomes
PSPACE-complete for deterministic OCMB[]. We investigate the complexity of path check-
ing problems foMTL and TPTL over non-monotonic data words. These data words can be
either finite or infinite periodic. Non-monotonic data wos be considered as behavioral
models of one-counter machines. Our results strengthensgettent decidability result for
model checking ofTPTL over deterministic OCM§9], and also generalizes tH&SPACE-
completeness result féreezeL TL over deterministic OCM fromd1].

Below we give a brief description of the contents of this tbes

In Chapter2, we give some basic definitions and notations about datasyandtric tem-
poral logic, timed propositional temporal logic, the relatexpressive power, computational
complexity and two-counter machines.

In Chapter3, we study the relative expressive powemdTL andTPTL, and the expres-
sive power of several fragments BFTL and TPTL by restriction of the syntactic resources,
e.g., the number of register variables, the until rank ardsttt of constraint numbers (or in-
terval borders). As a main tool for showing the results, weoithuce quantitative versions of
Ehrenfeucht-Fraissé games fdifL and TPTL over data words. In model theory, EF-game
is mainly used to prove inexpressibility results for somgids [34], e.g., first-order logic,
monadic second-order logic. Etessami and WilB§ ntroduced the EF-game fdfTL and
used it to show that the until hierarchy fofL is strict. Quantitative EF-games provide a very
general and intuitive mean to prove results concerningxpeessive power of quantitative log-
ics. Using the EF-game faviTL, we show thafTPTL is strictly more expressive thaviTL
over both infinite data words and finite data words. 16]] Bouyer et al. used the formula
X.F(bAF(cAx < 2)) to separate these two logics over timed words. We show teaithpler

4 Introduction

TPTL-formulax.XX(x = 0) is not definable ifMTL. Note that this formula is in the unary
fragment offreezeL TL and uses only one register variable, which is very restactictually,
we proveTPTL! is strictly more expressive thaiTL. The intuitive reason for the difference
in expressiveness is that, using register variables, westtag data values at any position of
a word to compare them with a later position, and it is possibicheck that other properties
are verified in between. This cannot be done using the consttéemporal operators MTL.
This does not resultin a gap in expressiveness in the moitatata words setting, because the
monotonicity of the data sequence does not allow arbitrats dalues between two positions
of a data word. Furthermore, we show that M&L definability problem: whether @aPTL-
formula is definable ilMTL, is undecidable. We prove the undecidability over infinibel a
finite data words by reductions of recurrent state probledreaiting problem of two-counter
machines, respectively.

The register variables imPTL play an important role in reaching its greater expressive
power compared t&ITL. When restricting the number of register variables, we aie &
show that there is a strict increase in expressiveness wk@mireg two register variables
instead of just one, i.eTPTL? is strictly more expressive thaFPTLL. We obtain this result
by proving theT PTL2-formulaxy.X(x; > 0AX2.F(x1 > 0A X, < 0)) is not definable imPTL.

But it is still open for the general case that whetM@TL"** is strictly more expressive than
TPTL" whenr > 2. We conjecture that the hierarchy about the number of tegisriables
for TPTL is strict.

We also consider the expressive power of several fragmémisic andTPTL by restric-
tion of the until rank and the set of constraint numbers (terival borders). We show that
the until rank hierarchies faiTL andTPTL are strict over both infinite and finite data words.
Similar to theMTL definability problem, for everk € N, whether arMTL-formula (respec-
tively, TPTL-formula) is definable iMTLy (respectively,TPTLy) is also undecidable. When
the set of constraint numbers (or interval borders) is itstt, we obtain linear constraint
hierarchies and lattice constraint hierarchies for BdL and TPTL.

There is an alternative definition féATL that uses the non-strict semantics for the until
modality. We can show that, over non-monotonic data woki§L. with strict semantics is
strictly more expressive thad TL with non-strict semantics, whereas these two logics are
equivalent over monotonic data words.

In Chapter4, we study the satisfiability d¥ITL andTPTL and some fragments of them
over non-monotonic data words. More detailed, we considgsfgbility over infinite data
words (infinitary SAT) and finite data words (finitary SAT) spectively. We show that for
MTL, the unary fragment oMTL and the pure fragment d¥ATL, infinitary SAT is Z%-
complete and finitary SAT ii?-complete. This still holds even for the unary fragment of

MTL with two propositions and for the unary fragment ®®TL! without theX modality.
This is opposed to the decidability result fieeezeLTL with one register variable evaluated
over finite data words28]. However, it is an open problem whether undecidabilitypdislds
for the unary fragment ofATL in which theX modality is not allowed. We prove the unde-
cidability of infinitary SAT (respectively, finitary SAT) b reduction from the recurrent state
problem (respectively, halting problem) of two-counteramaes.

We also consider another syntactic restriction of the legiamely we restrict the negation
operator to propositions and constraint formulas, whidults in what we call the positive
fragments of our logics. This excludes the globally mogalihich is used in most of the
undecidability proofs. For the positive fragmentdiL andTPTL, we show that a positive
formula is satisfiable if and only it is satisfied by a finitealatord. Finitary SAT and infinitary
SAT coincide for positiveVI TL and positiveTPTL. Both of them aret(l’-complete. Last but
not least, we study the unary positive fragmentsiafiL andTPTL (called existential fragment
in [18]). For existentialTPTL and existentiaMTL, we show that SAT i®dlP-complete.

The main insight of this chapter is that bd¥iTL and TPTL have a very limited use in
specifying properties over non-monotonic data languadéss adds an important piece to
complete the picture about decidability of satisfiabilitplplems for extensions of temporal
logics.

In Chapter5, we investigate the complexity of path checking problemd&fd L andTPTL
over non-monotonic data words. These data words can be éitite or infinite periodic; in
the latter case the data word is specified by two finite datadsvor= (P;,d;)- - (Pn,dm)
andv = (Qq,e1)---(Qn,&n), which are the initial part and the period, respectivelyd am
offset numberK. The resulting infinite data word i8[7i>o(v+ iK), wherev+ M denotes
the data wordQ1,e1 +M)--- (Qn,en+M). It can be easily seen that the infinite data word
produced by a deterministic OCM is such a periodic data wét. periodic words without
data values, the complexity @ffL path checking belongs tA)Cl(LogDCFL) (a subclass of
NC) [55]. This result solved a long standing open problem. For fimtasotonic data words,
the same complexity bound has been showrMaiL in [21].

We show that the latter result a2]] is quite sharp in the following sense: Path checking
for MTL over non-monotonic (finite or infinite) data words as well athpchecking fom PTL
with one register variable over monotonic (finite or infijitaita words i$>-complete. More-
over, path checking fof PTL (with an arbitrary number of register variables) over firate
well as infinite periodic data words becom&PACE-complete. We also show thBSPACE-
hardness already holds for the fragmentTéfTL with only two register variables and all
constraint numbers are encoded in unary notation. If we oohsider finite data words and

6 Introduction

the number of register variables is bounded fiyc N), then the complexity of path checking
for TPTL" becomes$-complete.

For MTL, we prove theP-hardness over non-monotonic data words. This is unavoid-
able by the result in41] that path checking foMTL over monotonic data words belongs to
ACl(logDCFL). We define the logiSMTL which is a succinct version dITL and has the
same expressive power 8TL. For SMTL, we show that patch checking over monotonic
data words i$>-complete. We also show that path checkingNbFL over infinite monotonic
periodic data words of the forifu)%, (i.e., without the initial part) belongs #C1(logDCFL).

All these results yield a rather complete picture on the dewity of path checking foMTL
andTPTL.

Since the infinite data word produced by a deterministic O€Ideariodic, we can transfer
all complexity results for the infinite periodic case to detmistic OCM. In [69], the author
proved recently that model checking for non-monotoRRETL over deterministic OCM is
decidable, but the complexity remained open. Our resutis/ghat the precise complexity is
PSPACE-complete. This also generalizes &PACE-completeness result féteezelL TL over
deterministic OCM in 81].

Chapter 2

Preliminaries

In this chapter, we give some basic definitions and notaabosit data words, temporal logics,
two-counter machines and computational complexity.

2.1 Data words

We useZ andN to denote the set of integers and the set of natural numlesgsectively. Let
P be a finite set oAtomic propositionsA word overP is a finite or infinite sequendgP; - - -,
whereR, C P(i € N). A data wordoverP is a finite or infinite sequenc@,do)(P1,d1) - -,
where(R,d) € (2° x N) (i € N). It is monotonig(strictly monotonig, if di < di;1 (di < di1)
foralli e N. Itis pure if B =0 for alli € N. A pure data word is just written as a sequence
of natural numbers. We denote witB” x N)* and (2° x N)%, respectively, the set of finite
and infinite, respectively, data words oWerLetu be a data word. We use njin and maxu)
to denotehe minimal data valuandthe maximal data valum u, respectively. If there is no
maximal data value i, we set matu) = +o. We uselu| to denotethe length of ui.e., the
number of all pairgR,d;) in u. For example|(Po,dp)(Pr,d1) -+ (Py,dn)| =n+1. If uis an
infinite data word, we seti| = +. Letu be a finite data word. We usgl|| to denotehe size
of u, i.e., the number of all symbols occurringun

Given a data word = (Py,dp)(P1,ds) - - -, we use the notationsi] := (R, d;),

ufi :]:= (R, di) (P41, 0isa) -+,
u[:i] == (Po,do)(P1,d1) -+ (R, di),
ufi: j] == (R,d)(P41,dit1) - (P, dj),

andu,y := (Py,do+Kk)(Pr,d; +K)---, wherek € N. We useu;u, to denote the concatenation
of two data wordsu; anduy, whereu; has to be finite. For a finite data wonchnd numbers

8 Preliminaries

n,k € N, we define

no._
ULy s= Ul Uil - Uy (n-1)ks

W .
U g i= Ul Uk Uyak: - -

In the pair(R, d;), if B is a singleton sefp}, we write it (p,d;) for brevity. Letwp, w; be two
data words. We will us® ; andd; j to denote the set of propositions and data value in the
positionj of data wordw; (i € {0,1}, j € N), respectively.

For wordsw, wy,w, and numbers, n € N, the notations]i], w[: i], w[i :], wi(wz)"w and
wi (W,)? are defined in the expected way, wherew, have to be finite.

2.2 Lineartemporal logic

The set of formulas of linear-time temporal logid () is built up fromP by Boolean connec-
tives, and theauntil modality U using the following grammar:

¢:=T[pl-d oA [PU

wherep € P.

Formulas ofLTL are interpreted ovexords Letw=PyP.P--- be a word, and letbe a
position inw. We define thesatisfaction relation foL.TL inductively as follows:

. (i) T,
« (wi) = pifandonlyifpeR.

o (Wi) = ¢ if and only if (w,i) } ¢.

o (Wi) = ¢1 A g2 ifand only if (w,i) = @1 and(w,i) = do.

* (w,i) = ¢1Ugo if and only if there exists a positiop> i in w such thatfw, j) &= ¢, and
(w,t) = ¢4 for all positionst withi <t < j.

We say that a wordatisfiesan LTL-formula ¢, writtenw = ¢, if (w,0) = ¢. We use the
following standard abbreviations:

2.3 Metric temporal logic 9

Li==T Fo :=TU¢
$1V 2 := =(—p1 A —¢2) Go :=—F—¢
$1— ¢2:= 91V ¢2 X¢:=1U¢
$1R ¢z := ~(—¢1U—¢) XM =X X

The modalitieX (nex), F (eventuallyandG (globally) are allunaryoperators, which refer
to the next position, some position in the future and all pass in the future, respectively. The
modalityR is thereleaseoperator, which is useful to transform a formula into negatiormal
form, i.e, the negation operator)is only applied toT or atomic propositions.

Example 1. Let w be a word,i a position inw, and letX¢, F¢, G¢ and ¢1R¢, be LTL-
formulas. Then

* (i) = X¢ if and only ifi is not the last position o and(w,i +1) = ¢.
* (w,i) = F¢ if and only if there exists a position> i in w such thafw, j) = ¢.
* (W i) = G¢ if and only if for all positionsj >iinw, (w, j) = ¢.

* (w,i) = ¢1R@2 if and only if either for all positiong > i, (w,) = ¢, or there is a
positionj’ > i such tha{w, ') = ¢1, and for all positions with i <t < j’, (w,t) = ¢2.

It is easy to check that, ilv is a finite word, then for every formuld, the formulas<X¢ and
F¢ are always false an@¢ is always true at the last position wf

We define two quantitative extensionsldiL: MTL and TPTL, which are evaluated over
data words in the following.

2.3 Metric temporal logic

Metric temporal logic K1TL) is an extension dfTL where the until modality) is augmented
with a constraint interval ovet. More precisely, the formulas ®iTL are built by the follow-
ing grammar:

¢p==T[p|-¢|dAD|OUid

wherel C Z is an open, closed or half-closed interval. We use pseutlmygatic expressions
to denote intervals. For instanee2 and> 1 denote the interval®, 2] and|[1, «), respectively.
If | =Z, then we may omit the inddxin U,.

10 Preliminaries

Formulas ofMTL are interpreted over data words. Let= (P, dg)(P1,d1)--- be a data
word, and lei < |w|. We define the satisfaction relation fgfTL inductively as follows:

. (i) T,

« (wi) = pifand onlyifpe B,

o (Wi) = —¢ ifand only if (w,i) i ¢.

o (Wi) = @1 A ¢ if and only if (w,i) = ¢1 and (w,i) = ¢o.

* (w,i) = ¢1U,¢2 if and only if there exists a positiopwith i < j < |w| such thatw, j) =
¢2, dj —dj € I, and for all positions withi <t < j, (w,t) = ¢1.

We say that a data word satisfies BT L-formula ¢, writtenw = ¢, if (w,0) = ¢. We
use the same syntactic abbreviations ad dr where every temporal operator is augmented
with a constraint interval, i.eX|¢ := LUj¢, Fi¢ := TU ¢, G ¢ := =F ¢, ¢1R ¢ :=
—(=¢1U;=65), andX"p := X, --- X, ¢.

(—¢1U1—¢2) Ko 1 X ¢

m

Example 2. The following formula, over the s&Weather = {cloudy,sunny, rainy} of atomic
propositions, expresses the fact that the weather is suntilyitubecomes cloudy and the
temperature has decreased by three degrees. Furthermibre funture it will rain and the
temperature will increase by at least one degree:

sunny U—__3 (cloudy A F>1 rainy). (2.1)

We say that aM TL-formula¢ is pureif there are no atomic propositions fn Thepure
fragmentoMTL, denoted byureMTL, is the set of all pur® TL-formulas. AnMTL-formula
is unaryif it is built from T and atomic propositions, using the Boolean connectivasbitaa
unary temporal modalitieX; andF;. Theunary fragment oMTL, denoted byunaMTL, is
the set of all unaryMTL-formulas. We useureUnaMTL to denote the set of all pure unary
MTL-formulas.

2.4 Timed propositional temporal logic

LetV be a countable set oégister variables The formulas of timed propositional temporal
logic (TPTL) are built by the following grammar:

¢p=T[p[x~c|-¢[pNnd|PUd|x

2.4 Timed propositional temporal logic 11

wherex eV, ce Z, and~ € {<,<,=,>,>}. We may also use formulas of the fosoE | as
abbreviation for conjunctions of constraints, e.g., we maye x € [a,b] for x> aAx < b.

A register valuationv is a function fromV to Z. Given a register valuation, a data
valued € Z, and a variabl € V, we define the register valuatioms+ d andv[x — d| as
follows: (v +d)(y) = v(y) +d for everyy € V, (v[x+— d])(y) = v(y) for everyy € V\{x},
and(v[x—d])(x) =d. Letw= (Py,do)(P1,d1) - - - be a data word, lat be a register valuation,
and leti < |w|. The satisfaction relation foFPTL is defined inductively as follows:

e (Wi,v)E=T.

e (wi,v)EpifandonlyifpeBR.

o (Wi, v) = —¢ if and only if (Wi, v) |~ 9.

« (Wi,v) = ¢ A ¢ ifand only if (w,i,v) = g1 and(w,i,v) |= @p.

* (Wi,v) = ¢1U¢o if and only if there exists a positiop with i < j < |w| such that
(W, j,Vv) = ¢, and for all positions with i <t < j, (wt,v) = ¢.

* (wi,v)Ex~cifandonlyifdi —v(x) ~ c.
e (Wi,v) =x¢ ifand only if (w,i,v[x— di]) = ¢.

Intuitively, X.¢, means that we anesetting xto the current data value, ad~ ¢ means
that, compared to the last time that we res¢he data value has increased or decreased at least
by c. We say that a data wond satisfies al PTL-formula¢, writtenw |~ ¢, if (w,0, 6) = ¢,
where0 denotes the valuation that maps all register variablesaanitial data valuely.

We use the same syntactic abbreviations as fdr. The pure and unaryPTL-formulas
are defined similarly to the pure and undmf L-formulas, respectively, but in which we can
use the constraints~ c. We usepureTPTL, unaTPTL andpureUnaTPTL to denote the set
of all pure TPTL-formulas, unaryTPTL-formulas and pure unaryPTL-formulas, respec-
tively. Moreover, we definéreezeL TL to be the set of allTPTL-formulas that are obtained
by allowing only constraints of the form= 0(x € V). Givenr € N, we useTPTL" (respec-
tively, freezeLTL") to denote the fragment GIPTL (respectivelyfreezeL TL) that uses at most
r different register variables, ..., X;.

Example 3. TheMTL-formula2.1in Example2 is equivalent to thd PTL!-formula
X.[sunny U (x= —3Acloudy AX.F (X > 1Arainy))].

The formulasx.((cloudy A x < 2)U sunny) andx.F (cloudy A F (sunny Ax < 2)) express the
following properties:

12 Preliminaries

(1) The weather will eventually become sunny. Until thersitioudy every day and the
temperature is at most two degrees higher than the tempetthe present day.

(2) It will be cloudy in the future, later it will become sunrgnd the temperature will have
increased by at most 2 degrees.

2.5 Expressive power

Let C be a class of data words. We say tkais definableby a formula¢ if for every data
wordw, w € C if and only ifw = ¢. Two formulasg andy areequivalentverC if for every
data wordw € C we havew = ¢ if and only if w = . We say thatp andy are equivalent,
written ¢ = (, if they are equivalent over all data words.

Let £ and.% be two logics. We say that a#f;-formula ¢ is definable in% if there is
an _%-formula such thatp and are equivalent. We say tha&t, is more expressive than
24, written £ < %, if for every £;-formula, there exists an equivale#b-formula. % is
strictly more expressive tha#f;, written_#; < .4 if, additionally, there is adZ-formula that
does not have any equivaleft-formula. Further,?; and.%, areequally expressiyevritten
L =5, A<D and D < L. L and % areincomparableif neither 2 < % nor
LH <A

Remarkl. In the definition ofLTL, we use thestrict semanticdor the until modalityU, i.e.,
a wordw satisfies the formulg1 U ¢2 in a positioni if and only if there is a positior) > i
such thatp, holds in the positiorj, and¢1 holds in all positions betweenand j. The strict
semantics for the until modalityy is essential to derive the next modaliXy There is an
alternative definition foL.TL that uses th@on-strict semantickr the until modality R6, 36,
55]. In this definition, a wordv satisfies the formulgs U ¢, in a positioni if and only if either
¢> holds in the position, or there is a position > i such thatp, holds in the positiorj and
$1 holds in the positiom and all positions betweenand j. Since the next modalitf is not
definable by the until modality interpreted by the non-$semantics, it is given explicitly in
the syntax oL TL in this definition. More precisely, the interpretations tbe next modality
X and the until modalityJ are as follows (we use a dot over the modality operator to deno
that the modality operator is interpreted by the non-stgchantics):

o (W,i) = X¢ ifand only ifi +1 < |w| and(w,i + 1) = ¢.

« (w,i) = ¢1Ug- if and only if there exists a positiopwith i < j < |w| such thafw, j) |=
¢2, and for all positions withi <t < j, (w,t) = ¢1.

2.6 Computational complexity 13

There are also definitions fdd TL andTPTL that use the non-strict semantics for the until
modality U, which is defined in a similar way as that fiofL [6, 7]. ForLTL andTPTL, both
definitions are equivalent to each other with respect ta #vgiressive power. For example,
we haveXp = Xp, pUg=qV (pA(pUQ)), andpUg= X(pU g), wherep andq are atomic
propositions. But foMTL, we can show that the logM TL interpreted by the strict semantics
is strictly more expressive than its counterpart integudby the non-strict semantics (see
Section3.3).

2.6 Computational complexity

A Turing machineTM contains an infinite tape divided into cells, and a head thatread
and write symbols on the cell and move on the tape. To be mexga, a Turing machine is
a 7_tup|e<Q7 Z? r7 57 0o, Gacc; qrej> where

(1) Qis anon-empty finite set of states,

(2) T is a non-empty finite set of tape symbols where the blank symlorl,
(3) Z=T\{u} isthe set of input symbols,

(4) 6:QxTI — QxTI x{L,R} is the transition function,

(5) qo € Qs the initial state,

(6) Qacc is the accepting state,

(7) g is the rejecting state.

The input of TM is afinite string s= apa; ...an Wherea € (0 <i < n) stored in the
tape. Each cell contains a symlapl Initially, TM readsag with stateqg. ThenTM runs ons
according to the transition functiah If TM readsa; with stateg;, andd(a;, q) = (a;,q;,L)
(respectively,d(a;,qi) = (a;,d;j,R)), thenTM erasess and writesa; in the same cell, and
changes into statg; and moves to the left cell (respectively, the right cell). Sdg thafTM
acceptghe input string if it reaches the staig.c, andrejectsthe input string if it reaches the
stateg;.

A problemis a set of strings. We say that a probl&ms decidablef there exists a Turing
machineTM 1 such that for every string, if s belongs toP thenTM ; acceptss, otherwise,
TM 1 rejectss.

Let f : N — N be a function. We say that problebis decidable irtime f(n) (respec-
tively, space fn)) if there exists a Turing machineM 2 which decidesP such that for all

14 Preliminaries

stringss, TM » can accept or rejecin f(|s|) many steps (respectively, using at mdsis|)
many cells), wheres| is the length oF, i.e., the number of symbols & We will denote by
TIME(f(n)) (respectivelySPACE(f(n))) the class of all problems that are decidable in time
f(n) (respectively, spacé(n)). We define

P = |J TIME(n),
keN
PSPACE = | J SPACE(n¥).
keN

If the Turing machine contains two tapes: an input tape andrk vape, where the input
tape stores the input and is read-only, and the work tape magdd and written in the usual
way, then we can define a sublinear space complexity claseevamdy the cells used on the
work tape are counted as follows:

LOGSPACE = | J SPACE(k-log(n)).
keN

A nondeterministid@uring machine is a variant of Turing machine where at anyfiaia
computation it has several possibilities to proceed. Maoeeigely, its transition function has
the form

0:QxI = Z(QxTI x{L,R})

whereZ(QxT x {L,R}) isthe set of all subsets @ xI' x {L,R}. LetTM be a nondetermin-
istic Turing machine. In the computation ©M, if it readsa; with stateq;, andd(a;,qgj) = S
whereSe Z(Q xTI x {L,R}), thenTM nondeterministically chooses sorfsg, qj,D) (D is

L or R) from S, and acts according t@;,qj,D). We say thalM accept the input if there is

a computation offM that can reach the statg.., and reject otherwise. We will denote by
NTIME(f(n)) (respectivelyNSPACE(f(n))) the class of all problems that are decidable by a
non-deterministic Turing machine in tinfén) (respectively, spacé(n)). We define

NP = [J NTIME(n*),
keN

NL = [_J NSPACE(k-log(n)).
keN

An alternating Turing machine is an ordinary non-deterministic Turingeimae, whose
states, except fay,.. andq,j, are divided into two setQ5 (existential states) an@y (uni-

2.7 Two-counter machines 15

versal states). In the computation of an alternating Tunraghine, we say that a state
is acceptingif (i) g = gacc Or (ii) g € Q3 and there exists a transition from the current con-
figuration leading to an accepting state or (gi Qy and every transition from the current
configuration leads to an accepting state. The machine tcaepnputs if and only if the
initial state ovessis accepting.

We will denote byATIME(f(n)) (respectivelyASPACE(f(n))) the class of all problems
that are decidable by an alternating Turing machine in tirtr@ (respectively, spacé(n)).
We define

APTIME = |] ATIME(n®),
keN

ALOGSPACE = | J ASPACE(k-log(n)).
keN

It is known thatAPTIME = PSPACE andALOGSPACE = PTIME [77].

We say that a problerf is P-hard (NP-hard andPSPACE-hard, respectively) if for every
problemP’ in P (NP andPSPACE, respectively) there is a logarithmic space (polynomiakij
reduction fromP”’ to PP.

A problemP is P-completg(NP-completeand PSPACE-complete respectively) if it is in
P (NP andPSPACE, respectively) and iB-hard NP-hard and®SPACE-hard, respectively).

2.7 Two-counter machines

A two-counter machiné/l contains two counters denoted By andC,, and a finite set
{lo,...,In} of instructions, which operate d@y andC,. Each instructiori; (0 < j <n)is
one of the following instructions, wheras 1 or 2:

(1) increment: C; :=C; +1; nondeterministically go to songe Sj, whereS; is a nonempty
subset ofl,...,In}.

(2) decrement if C; = 0 then nondeterministically go to sorhec Sj1 elseCi:=C; — 1; non-
deterministically go to somi, € ¢, whereS}, S are nonempty subsets lfo, ..., In}.

(3) halt: M halts.

If for each instruction j (0 < j < n) the setS; (or Sj1 and sz) contains exactly one element,
then we say thal is deterministic A configurationof a two-counter machin® is a triple
y=(lj,c1,C2), wherel j € {lo,...,In} andcy,co € N. A computatiorof M is a finite or infinite

16 Preliminaries

sequencéy)i>o of configurations, starting from the initial configuratig;= (10,0,0), such
thaty, 1 is the result of executing the instructityon y; for all i > 0.
Thehalting problemfor two-counter machines is defined as follows:

Input: a two-counter machink

Output: yes if there exists a finite computation & that reaches a halting instructiaig
otherwise.

Therecurrent state problerfor two-counter machines is defined as follows:
Input: a two-counter machink!

Output: yes if there exists an infinite computation & that visits the initial instructiorg
infinitely often,no otherwise.

Both of these two problems are not decidable. In additianhtdting problem iicl’-complete 60,
and the recurrent state probIerrE%compIete .

Chapter 3

The expressive power of MTL and TPTL

In this chapter we introduce the Ehrenfeucht—Fraissé géom®4TL and TPTL, respectively.
We show thafTPTL is strictly more expressive tha¥ TL over both infinite data words and
finite data words. We also consider the expressive powenarakfragments off PTL and
MTL by restriction of syntactic resources, e.g., the until rahlke set of constraint numbers
(or interval borders) and the number of register variables.

3.1 The Ehrenfeucht—Fraissé game for MTL

In this section we define the Ehrenfeucht—Fraissé gam#lfidr, and prove two theorems
about the relationship between EF-game and expressiverpowe
First we give the definition of the until rank of &ATL-formula.

Definition 1. The until rank of atM TL-formula¢, denoted byRank(¢), is defined inductively
on the structure of:

* If ¢ isT or pe P, thenRank(¢) =0.
o If ¢ is —¢1, thenRank(¢) = Rank(¢1).
* If ¢ is ¢1 A @2, thenRank(¢) = max{Rank(¢1),Rank($2)}.

* If ¢ is 91U, ¢, thenRank(¢) = max{Rank(¢1),Rank(¢2)} + 1.

In the following we define several fragmentsMfT L. Let SC Z, and letk € N. Define

MTLS = {¢ € MTL | all interval borders irp are inS},
MTLx = {¢ € MTL | Rank(¢) <Kk},
MTLS = MTLSNMTLy.

18 The expressive power of MTL and TPTL

Itis easily seen tha¥ TL = Uyen Us-7 MTLE.

Example 4. In MTL® we can only use the until modality;; (U for short) that is augmented
with the interval of all integers, i.e., if1 U ¢ € MTL?, thenl = Z.

LetS={1,3}, and let$ be a formula irtMTLS. Then the until modality) in ¢ can be aug-
mented with the intervalg, [1,3],(1,3],[1,3),(1,3) or (—,i), (—oo,i],[i,i], (i,+0),[i, +),
wherei is 1 or 3.

If SC Z is a finite set, we can show thMTLE is also finite up to equivalence for every
k € N. This result is important for the proofs of Theorefinand2.

Lemma 1. For every finite SC Z and every ke N, there are only finitely many formulas in
MTLE up to equivalence.

Proof. Fix a finite setSC Z. We prove this lemma by induction dn

For k = 0, no until modality will be used, the number of propositibftamulas is finite
up to equivalence sinde s a finite set. Suppose that it holds fqQrwe will prove it fork+ 1.
Because&sis a finite set, the number of different until modalitiésis finite, where the borders
of | are inS. So there are finitely many formulas up to equivalence in éte s

R={¢1U ¢2 | 1,2 € MTLZ} UMTLS.

The formulas obtained by using Boolean connectives on thaulas inR are also finitely
many up to equivalence. HentseTLE+1 is a finite set up to equivalence. O

Definition 2. Let SC Z andk € N. Letwp,w; be two data words, and léf,i; > 0 be two
positions inwy andw;, respectively. We say thaty|ip :] andws|iq :] are MTLE—equivalent,
written (Wo, o) =g (Wa,i1), if for every ¢ € MTLE, (wo,io) |= ¢ if and only if (wi,i1) |= ¢.

We will write wo =g w if (Wo,0) =p (wy,0) in the following.

Definition 3. Let SC Z be afinite set, and |, ..., c, be a list of all numbers I8 such that
G < Ci+1(1<i<n). Foranya,be Z, we say thaaé bif a=b, or bothaandb belong to one
of the intervalg—, c1), (Cp, +), (Ci,Ci+1) (1 < i< n) (or belong to the interval—o, 4),
if S=0).

It is easily seen that for every fini®C Z the binary relatiore is an equivalence relation
onZ. The equivalence classes form a partitiorZof

Example 5. Let S= {1,4,8}. The set of equivalence classes is

{(=,1),[1,1],(1,4),4,4],(4,8),[8,8],(8,+)}.

3.1 The Ehrenfeucht—Fraissé game for MTL 19

We have 22 3, 52 6,1 é b1 (a1,b; < 0) anday 2 by (a2,bp > 9).

Let wp, w; be two data words. Recall that we URg andd; j (i € {0,1}, j € N) to denote
the set of propositions and data value in the posijiofdata wordw;, respectively.

We define the Ehrenfeucht—Fraissé gaméfdt. in the following. The EF-game is played
by two players, called Spoiler and Duplicator, on two datadsevg andw; with a finite set
SC Z. A game configuration is a pair of positiofig,i1) € N x N, whereig is a position invg
andi; is a position inwz. In each round of the game, where the current game configaristi
(io, il)i

(1) Spoiler chooses an indéx {0,1} and a positiorj; > i} in data wordw,.
(2) Duplicator responds with a positign_| > i;_; in data wordw,_; such that
e if j=1+1,thenj;_; =11, +1, and
* (dj—d) = (di1jy — 1ty)
Then Spoiler chooses between one of the following two ogtion

(a) The new configuration becomg, j1).

(b) Spoiler chooses a position | < j;_; < ji— in wy_;, Duplicator responds with a
1
positioni; < j{ < j; in w, and the new configuration becomgs, j}).

We use Mcﬁ’(wo, io,W1,i1) to denote thé&-round EF-game foMTL starting from the po-
sitionig in wp and the positiomy in wy with a finite setSC Z.

Thewinning condition for Duplicatois defined inductively. We say that Duplicator wins
the O-round EF-game I\/@Ewo,io,wl,il) if Poj, = P1j,. Duplicator wins thek+ 1)-round EF-
game MG, ;(Wo,io,W1,i1) if she wins the O-round EF-game NGvo,io,W1,i1), and either
ip andiq are the last positions aflp andw;, respectively (Spoiler has no position to choose),
or for every choice of moves of Spoiler in the first round, Degior can respond correctly
and wins thek-round EF-game Mﬁ(wo,no,wl,nl), where(ng,n;) is the new configuration
after the first round. If Duplicator cannot win the game, we taat Spoiler wins the game.
We write (Wo,io) ~f (W1, i1) if Duplicator wins thek-round EF-game MEWo, i, Wi,i1). It
follows easily that if(wo, ig) ~§ (Wa,i1), then for allm < k, (wo,io) ~5 (Wi,i1). We will write
Wo ~ Wy if (Wo,0) ~2 (wy,0) in the following.

Theorem 1. Let wp, w1 be two data words, and lej,ii; be two positions in ww, respectively.
For every finite SC Z and every ke N, (wo,i0) =; (Wa,i1) if and only if (Wo,ig) ~f (W1, i1).

20 The expressive power of MTL and TPTL

Proof. Fix a finite setSC Z. We prove this theorem by induction én It is clear fork = 0.
Suppose that this theorem holds kpwe show that it also holds fde+ 1.

For the direction =", we give a proof by contradiction. Suppoéep,io) EEH (Wy,i1)
holds andwo, ip) Nk+1 (wy,i1) does not hold. Then Spoiler wins I\E@l(wo, ig,Wq,i1). With-
out loss of generality suppose that Spoiler choaggeand a positiorig, > ig in wop. For each
ip < j <lip, define

=\ {9 eMTLZ| (wo,) = ¢}.

Note that¢; is well-defined since there are only finitely maWLE—formulas up to equiva-
lence by Lemmad.. Define thel\/ITLEH-formuIa

Vo oepuigy?
i0<j<i6

whered = dyj; — doj, and

([d,d] ifdes

(—w,a) if d <aandaisthe smallest number 8

(b,+) if d > bandbis the largest number i§,

(a,b) if a,be Sa<d<bandthereisnaec Ssuchtha<c<b,
Z if S=0.

Clearly,Rank(¢) < k+ 1 and(wo,ip) = ¢. We have(wy,i1) = ¢ since(wo,ip) Efﬂ (Wy,i1).
Hence there exist§ > i1 such thatwy,i}) = ¢i6 anddlI —dyj, €1, and for alliy < i <i,
(wy,if) = Vio<j<ig ¢;. So Duplicator can respond with the positigrin wy. Now if they start
a new round from the configuratidiig, i1), we know by(wi, i}) = ¢; and the definition of
¢;, that (Wo,ip) =¢ (Wa,i}). By |nduct|on hypothesiswo, i) ~ f(wl, i7), which means that
Dupllcator wins the remaining rounds. On the other hand, if Spoiler chooses a position
i1 <if <ifinwy, we know by(wy,i7) = \/,0<]<,/ ¢; that there is a positioiy < iy < iy such
that(wy, %) = ¢i~ Hence Duplicator can respond with the positigim wo. If they start a new
round from the conflguratlo(‘l” 1), we know by the definition of;, that(wo, ig) =2 (wi,i7),
and thus, by induction hypothesis, ttak, i) ~¢ (w1, i7), which means that Duplicator wins
the remainind rounds again. Becaug®,io) EEH (Wy,i1), we haveRyj, = Py j,. Finally, we
know that Duplicator wins the game NE%(WO, io,W1,i1), which contradicts the assumption.
For the “<=" direction, suppose thding,io) NEH (ws,i1), i.e., Duplicator wins the game.
We show thatiw,ig) =g, ; (Wi,i1). Letd € MTLZ, . If Rank(@) <k, then (wp,io) |= ¢

=10, ¢i6 if ip =i0+ 1, i.e., there are no positions between positipand positiori,.

3.1 The Ehrenfeucht—Fraissé game for MTL 21

if and only if (wy,i1) = ¢, since(Wo,io) ~¢,; (Wi,i1) implies (Wo,io) ~¢ (Wi,i1), and by
induction hypothesigwo, i) ~i (Wa,i1) if and only if (Wo, i) =f (Wa,i1). If Rank(¢) =k+1,
we prove for the case = ¢, U, ¢, where ¢1, ¢, € MTLE, that (wo,ip) = ¢1U; ¢ if and
only if (wy,i1) = ¢1U; ¢2. The proof for the other cases is easy. Without loss of gdibhera
supposeWwo,io) = ¢1U; ¢2, we show thatw,i1) = ¢1U; ¢2. The other direction can be
proved analogously.

We have(wp, ig) = ¢1U) ¢2 if and only if there exists > ig such thatwo, i) = ¢ and
doj; —doji € I, and for allio < j < ig, (Wo, j) = @1. Assume Spoiler chooses the positign
in wp. Since Duplicator wins the game, she can respond with aipp$jt> i1 in wy such that
(do% —doji) S (dLi/1 —dyj,) and (wo,ip) Nf (w1,i}). By induction hypothesisiwo, ig) EE
(w1,i7). Thus,(wy,i7) = ¢2. On the other hand, if Spoiler chooses a positioa i{ < i in
w1, we know by assumption that Duplicator can respond with &iposg < ig < i such that
(Wo,ig) ~% (wi,i7). By induction hypothesisiwo,if) =g (wi,i7), and hencéws,i}) = ¢1.
Since Spoiler can choose an arbitrary position betweandi?, we can know thatwy, j) =

¢1 for everyiy < j <ij. Adding (do;; — dojio) 2 (dyj, —duj;) and (wy,ih) = ¢2 we have
(Wi,i1) = ¢1U; ¢2. Finally, we havewo,io) =g, ; (Wi, i1). O

Theorem 2. LetC be a class of data words. The following are equivalent:
(1) Cis not definable ifMTL.

(2) Forevery finite SC Z and every ke N, there exist two data wordsgne C and w; ¢ C
such that w ~2 w;.

Proof. From (1) to (2), we give a proof by contradiction. AssumB folds and 2) does not
hold. Then there exist a finite s8tC Z and a numbek € N such that for every pair of data
wordswo, wy, if wo € C andwy ¢ C, thenwg 42 wy. By Theorem, this implieswp #g wi.
So for every pair of data wordsg, wy, if wo EE w1, thenwg € C if and only ifw; € C. For a
data wordw, we define

dw=\{d e MTLZ|w|=¢}.

We define theM TLZ-formula

o=\ du.

weC

Note that there are only finitely many formulasMirL? up to equivalence, so both, and
® are well-defined. We show th&t is definable by the formul&, which contradicts the
assumption. For an arbitrary data wordif w € C, thenw = ® by the definition of®d. If
w = @, there must exists some data wevde C such thatw = ¢,,. This implies thawv and
W satisfy the same formulas MTLE, i.e.,w=5W. Then we havev € C sincew < C.

22 The expressive power of MTL and TPTL

From @) to (1), suppose by contradiction th@tis definable by th(MTLE—formuIat,U for
some finite se6C Z andk € N. We can know that for every pair of data wondg, wy, if
wp € C andw; ¢ C, thenwy ,ﬂéf Wy, Sincewp = ¢ andw; [~ . By Theoreml, this implies
Wo 74 Wi, contrary to p). O

3.2 Application of the EF-game for MTL

In this section, we present one of our main resul8TL is strictly more expressive thanTL
over both infinite data words and finite data words. Furtheenae show that the problem
which asks whether aPTL-formula is definable inMTL is undecidable. We also prove
one hierarchy theorem for the fragmentMT L that restrict the until rank and two hierarchy
theorems for the fragment MTL that restrict the set of interval borders.

3.2.1 Relative expressiveness of TPTL and MTL

We first prove two useful lemmas.

Lemma 2. Let SC Z be a finite set, and letyw; be two data words such thatp| = |wy|. If
forevery i> 0, Ryj = Pyj and for every |> j > 0, (dg jy — do,j) 2 (dg jo —dy,j), then for every
ke N, wy NE W1.

Proof. The proof is straightforward. In each round, Duplicator eamays respond with the
same position that Spoiler chooses in the other data word.edsy to check that Duplicator
wins the game M&wo, 0, w, 0) for everyk € N. O

Corollary 1. For every ne N, w and w,., satisfy the sambITL-formulas.

Lemma 3. Let SC Z be a nonempty finite set, and let m be the maximal number inS. Le
u1, Uz be two finite data words and€ N such that

min(uz) —max(ug) > m, (3.1)

and
min(uz) +c— max(uz) > m. (3.2)

Then for every ke N and every data word w, if either w is empty or

min(w) —max(uz) —kc>m, (3.3)

3.2 Application of the EF-game for MTL 23

then

Uz (U2) S oW ~ () 6w

Proof. Without loss of generality we can assukie 1 andw s not empty. Letvg = uy (up)X ;w
andw; = ul(uz)'fglw. We show that Duplicator wins the game M@, 0,wy,0). We only

need to consider the choices of Spoiler in the first roundr& hee four cases:

(1) Spoiler chooses a position wmfrom wy or wy, Duplicator can respond with the same
position inw from the other data word. Let/ be the suffix ofw from that position.
Suppose that they continue to play the remairflag 1) rounds on the new data word
w'. Obviously, Duplicator wins the game MG, (W, 0,w’,0).

(2) Spoiler chooses a position in the prefipu, of wg or wi, Duplicator can respond with
the same position inyuy from the other data word. Let; be the suffix ofuju, from
that position. Suppose that they continue to play the reimgifk — 1) rounds on the
new data wordsv) = uj (u,)% tw andw = U} (uy)k ;w, whereu, = (Up) 4c. It is easily
seen thati, U, also satisfy the premise of the lemma. By inductiorkpwe can show

that Duplicator wins the game MGG, (W), 0, w, 0).

(3) Spoiler chooses a position in tH&(2 < i < k) repetition ofu, in wg, Duplicator can
respond with the same position in tfie- 1)1 repetition ofuy in w;. Letw} be the suffix
of wp from the position that Spoiler choosesvig, and letw] be the suffix ofw; from
the position with which Duplicator respondswa. Suppose that they continue to play
the remainingk— 1) rounds on the new data wordg andw). By Lemma2, Duplicator
wins the game M@ , (W), 0,w;, 0).

(4) Spoiler chooses a position in tit(2 < i < k+ 1) repetition ofu in wy, Duplicator
can respond with the same position in tfie- 1) repetition ofu, in wy. Let w; be
the suffix ofw; from the position that Spoiler choosesvifn, and letw; be the suffix of
wp from the position with which Duplicator respondswg. Suppose they continue to
play the remainingk — 1)-round game on the new data wosfsandw/. By Lemmaz2,
Duplicator wins the game Mg ; (W}, 0,w},0).

In the first round, whatever Spoiler chooses, Duplicatoreapond according to the above
four cases. It is easily seen that the response of Duplicatisfies the winning condition
about the atomic propositions and the difference of dataegby 8.1), (3.2 and 8.3). O

In [6], the authors showed th&lTL and TPTL have the same expressive power over

infinite monotonic data words. L&t be a data word, and Ietoe a position inw. It is easily
seen thatw,i) = X T if and only if the position is not the last position of. So a data word

24 The expressive power of MTL and TPTL

w is infinite if and only ifw = XT A GXT. We consider the expressive power over the class
of infinite data words and the class of finite data words seplgran the following we show
that TPTL is strictly more expressive thaiTL over both infinite and finite data words.

Theorem 3. TPTL! is strictly more expressive thaWi TL over both infinite and finite data
words.

Proof. To show thaMTL < TPTL?, for everyMTL-formula, we can inductively define an
equivalentTPTL -formulay’ by the following rules:

o If YisT orpeP,theny’ = .

o If ¢ is—yn, theny' = —y;.

o If Yis YiAyp, theny' = g A Y.

o If YisyiU yn, theny' =x (P U(P5hAXEL)).

In the following we show that th& PTL -formulax.XX(x = 0) is not definable iMTL
over both infinite and finite data words.

First we consider the non-definability over infinite data esrFor every finite&sC Z, we
define two infinite data wordsp andw; such thaivg = x. XX (x = 0), wp = x.XX(x = 0), and
Wo ~¢ Wy for everyk € N. Then, by Theorer, we can know that. XX (x = 0) is not definable
in MTL over infinite data words.

Let SC Z be a finite set, let > 0 be such that all numbers Biare contained ii—r,+r)
and lets > 2r. Intuitively, we choose in such a way that a jump of magnitude in data
value cannot be detected by a formula LS, as all numbers iSare contained iti—r, +r).
Define two infinite pure data wordg = (s)(s— 2r)%, andw; = (s)(s—r)%, (see Fig3.1). It

Wo

S S—2r Ss—r S S+r S+2r s+3r .-

S S—r S S+r s+2r s+3r s+4r ...

Fig. 3.1 The infinite data wordsy andw;

is easily seen thatj = x.XX(x = 0) andw; = x.XX(x = 0). We show that Duplicator wins
the game M(S(Wo, 0,wjy, 0) for everyk € N. The proof for the caske= 0 is easy. Without loss

3.2 Application of the EF-game for MTL 25

Case 1 Case 2 Case 3 Case 4

(i,i—1), (i+1,0),

Move 1| (1,1) or (1,1) (2,1) i>3 i>2

Move 2 - - Tl), |[@Yor(j,j—1

<i-2 2<j<i

I/\’“

Table 3.1 The winning strategy for Duplicator in the firstmou

of generality, we assume> 1. We give the winning strategy for Duplicator in the first nolu
There are four cases (see TaBlé?):

(1) Spoiler chooses the position 1wg or wy, Duplicator can respond with the position 1
in the other data word. We hayép 1 —do o) e (dy1 —dyg) since(dg1—doo) = —2r
and(dLl — d170) = —T.

(2) Spoiler chooses the position 2wp, Duplicator can respond with the position 1via.
We have(do 2 — do o) (dl 1— d1 o) smce(do 2— do o) (d171 — dl,O) = —T.

(3) Spoiler chooses the positiofi > 3) in wp, Duplicator can respond with the position
i—1inwi. We have(dgj —doo) = (d1| 1—010) since(dopj —doo) = (d1j—1—d10) =
(i—3)r. In the next move, if Spoiler chooses a positiof § <i— 2 inwj, Duplicator
can respond with the positign+ 1 in wp.

(4) Spoiler chooses the positiofi > 2) in w1, Duplicator can respond with the position
i+1inwg. We have(do ir1—do 0) (d1| d170) since(do7i+1 — dop) = (d17i — d170) =
(i—2)r. Inthe next move, if Spoiler chooses the position dgnDuplicator can respond
with the position 1 inwvy. If Spoiler chooses a position j <i in wp, Duplicator can
respond with the position— 1 in wj.

After the first round, the new game configuration is eitfied) or (i+1,i) (i > 1). If the
new configuration ig1,1), we have(wo[1 :])r =w;[1 :]. By Lemma2, Duplicator wins the
game MG_(Wo, 1,wy, 1). If the new configuration i +1,i) (i > 1), we havewo[(i +1):] =
wy i :]. Obviously, Duplicator can win the game I\ﬁq (Wo, i+ 1,wy,i).

In the following we show that.XX(x = 0) is not definable ifMTL over finite data words.
It is similar to the case for infinite data words. L€ Z be a finite set, let, s> 0 be defined as

2Let(ig,i1) be a pair of positions, wheig, i1 are positions img, w;, respectively. We underlirig(j € {0,1})
to denote that Spoiler chooses the positipim w;j and Duplicator responds with the positign in wy_;.

26 The expressive power of MTL and TPTL

above. For everi € N, define two finite pure data woreg = (s)(s— 2r)"+3 andw; = (s)(s—
)”2 We show that Duplicator wins the game @(@/o,o wy, 0). Without loss of generality
we assumé& > 1. We can adapt the winning strategy for Duplicator in Table After the first
round, if the new configuration i€,1), we haveng[1] = (s—2r)*t3 andwy[1] = (s—r)*+2,
By Lemma3, (s—2r)kt3~3 | (s—2r)X2 and by Lemma, (s—2r)%12~3 | (s—1)kt2. This

implies(s— 2r)k+3 ~e 1 (s—)k+2 So Duplicator wins the game MG, (Wo, 1,ws, 1). If the
new configuration igi + 1,i) (i > 1), we havewp[(i + 1) :] = wy][i :]. Obviously, Duplicator
can win the game ME | (Wo,i + 1wy, i). O

Remark2. In [18], the authors showed that tAePTL-formulax.F(b AF(cAX < 2)) is not
definable inMTL over timed words. A timed word is an infinite sequeneg to) (Py,t1).. .,
where(R,t;) € (2P x R*) (i € N), such that

* to=0,
s Vie Nt >t
« ¥sc R",3i € Nsuch that; > s.

We can show that the formubaF(b A F(cA X < 2)) is also not definable iMTL over
infinite data words.

For every finite se6 C Z, letr > 0 be such that all numbers 8are contained iti—r,+r)
ands > 3r. Define two infinite data words (see Fg}2)

wo = (0,s)(c,s—3r)(b,s—2r)(c,s—r)((b,s+r)(c,5+2r)) %Yy,
wy = (0,s)(c,s—2r)(b,s—r)((c,s+r)(b,s+2r))%y,

whereb, c are atomic propositions. It is easily seen tvat= x.F(bAF(cAx < 2)) andw; [~
x.F(bAF(cAx < 2)). We leave it to the reader to verify that Duplicator can wie game
MG(wo, 0, W, 0) for everyk € N.

C b C b c b ...

Woo—o—o—o—o—o—%
S S—3r s—2r s—r S+r s+2r s+3r

C b C b c b ...

Wi e—eo e o o o o
'S s=2r sor Str st2r st3r Stdr

Fig. 3.2 The data wordsg andw;

3.2 Application of the EF-game for MTL 27

Corollary 2. TPTL is strictly more expressive thadTL over both infinite and finite data
words.

3.2.2 The MTL definability decision problem

In the last subsection, we show thERTL is strictly more expressive thaviTL. It is natural
to ask: Given alPTL-formula ¢, is ¢ definable inMTL? In the following we show that this
problem is undecidable over both infinite and finite data warsing the EF-game method.

Theorem 4. The problem that whether @PTL-formula is definable ilMTL is undecidable
over both infinite and finite data words.

Proof. First we show that whether BPTL-formula is definable itMTL is undecidable over
infinite data words. We reduce the recurrent state probletwafcounter machines which is
undecidable to thtMTL definability decision problem in the following way: For eydwo-
counter machin®, we construct a PTL-formula yn such thaty is definable inMTL if
and only ifM is a negative instance of the recurrent state problem.

For every two-counter machi there is al PTL-formula¢;,s, such thaiM is a positive
instance of the recurrent state problem if and only if theran infinite data worev such that
W = @infin°. Define

Pm = XXX(X=0) A F @infin -

If M is a negative instance, thén,;, cannot be satisfied by any infinite data word, hegyge
is equivalent to theVITL-formula L over infinite data words. Otherwise, M is a positive
instance, we show that for every finig&eC Z andk € N, there are two infinite data woradg
andw; such thawg = Um, Wi = gm andwg NE wi. Then by Theoren2, we can know that
Y\ is not definable il TL.

Suppose tha¥l is a positive instance anfl, s, is satisfied by the infinite data wovd Let
SC Z be a finite set, and lets > 0 be such that all numbers Bare contained if—r, +r)
ands > 2r. For everyk € N, we define two infinite data wordsy = (s)(s— 2r)%3w, n and
wy = (S)(s— f)lfrZWer, wherem= s+ (k+1)r. By Lemma2, we can know thatv; m = infin-

It is easily seen thatp ~ Yy andwy = Yy . We shall show thatyy wal. This can easily be
shown by using the winning strategy for Duplicator in thegdrof Theorem3.

To prove that whether @PTL-formula is definable iMTL is undecidable over finite data
words, we use a reduction from the halting problem of tworteumachines. The proof is

similar to the infinite case. For every two-counter machvhehere is aTPTL-formula ¢y,

3In [7], the authors constructedP TL-formula that can capture the computation of a two-countaehine.
We construct an equivaleMTL-formula. For more details about the formula we refer theleedo Sectiort.1
in Chapterd.

28 The expressive power of MTL and TPTL

such thatM is a positive instance of halting problem if and only if these finite data word
w such thaw' = ¢4, (see Chapted). For every two-counter machiM, we can define the
TPTL-formulayy, = x.XX(x= 0) A F ¢5, such thaty,, is definable irfMTL if and only if M
is a negative instance of the halting problem.

Suppose thau is a positive instance of the halting problem apyl is satisfied by the
finite data wordw/. Let SC Z be a finite set, and lats > 0 be such that all numbers in
S are contained if—r,+r) ands > 2r. For everyk € N, we define two finite data words
Wo = (8)(s— 2r)XH3w, ,, andwy = (s)(s—1)X2w, 1, wherem = s+ (k+ 1)r. Itis a simple
matter to check thatig = ({y, w1 = g, andwp ~g wy. O

3.2.3 Effects on the expressiveness by restriction of syrmtac resources

In this subsection, we consider the expressive power ofraefragments oMTL by restric-
tion of the until rank or the set of interval borders. B[, the authors showed that the until
rank hierarchy is strict fokTL. In a similar way, we can show that the until rank hierarchy fo
MTL is also strict over both infinite and finite data words.

Proposition 1. For every ke N, MTLy, 1 is strictly more expressive thaviTLy over both
infinite and finite data words.

Proof. Let ¢1 = (pA Xp), wherep is an atomic proposition. For eveky> 1, definegy 1 =
(pAX¢y). Note that for everk > 1, ¢ € MTLx. We shall show thapy is not definable in
MTLg_1 over both infinite and finite data words.

kil
W P p p p q q ...
0 r 2r kr (k+1)r (k+2)r
k
W p p P q q g...
I (k=11 (Kr)r (kr2)r (k+3)r

Fig. 3.3 The data wordsg andw;

Since MTLx_1 = Usinite 52 MTL? ,, it will thus be sufficient to prove thapy is not
definable inMTLY , for every finiteSC Z. Let SC Z be a finite set, and let > 0 be
such that all numbers i8 are less tham. First we provegy is not definable ilMTLY ;
over infinite data words. Define two infinite data wonds = (p,0)%t(q, (k+ 1)r)%, and
w = (p,0)%, (g, (k+1)r)%,, wherep, q are propositions (see Fi§.3). We see thatg = ¢

3.2 Application of the EF-game for MTL 29

andw; £~ ¢x. By Lemma3, we havewy Nf_l w1, which implies thatpy is not definable in
MTLY ;.
To provedy is not definable ifMTLY ; over finite data words, we define two finite data

wordswp = (p, O)'fjrl andw; = (p,0)X,. Again, by Lemmé8, we havewg ~7_; Wi. O

Similar to theMTL definability decision problem, we can show that the probléat t
whether anMTLy ;-formula is definable ilMTLy is also undecidable over both infinite and
finite data words.

Proposition 2. For every k> 5 (respectively, k> 4), the problem that whether aM TLy. 1-
formula is definable itMTLy is undecidable over infinite data words (respectively, didiata
words).

Proof. This proof is adapted from the proof of Theorém For every two-counter machine
M there is arMTL-formula ¢;.5, (respectivelygs,) such thaMM is a positive instance of the
recurrent state problem (respectively, the halting pnoblg and only if there is an infinite
data wordw such thaiv |= ¢ (respectively, a finite data wosd such thaw = ¢5,).* We
see thaRank(¢;,sin) = 5 andRank(¢s,) = 4. HenceRank(F ¢;,sin) = 6 andRank(F ¢5,) = 5.

Letk > 5. First we show that whether aTLy ;-formula is definable iMTLy is unde-
cidable over infinite data words. Define

Pm = Oir1 A F Qinfin,

wheregy. 1 is the formula defined in the proof of Propositibrand we assume the proposition
p does not occur i;,si,. We haveRank(yn) = k+ 1. If M is a negative instance, thefy
cannot be satisfied by any infinite data word, heggeis equivalent to the formula. over
infinite data words. Otherwise, Ml is a positive instance, we show that for every fir8te 7Z,
there are two infinite data wordg andw; such thatvy = Y, Wy = v andwg wal. Then
we can know thatpy is not definable iMTLy. Let SC Z be a finite set, and let> 0 be such
that all numbers iBare less than. Definewo = (p,0)%7 W, 4, 1)r andwy = (p,0)%, W, iy 1)r-
Similar to the proof of Propositioh, we can show thatg NE W1.

To prove that whether aMl TLy, 1-formula is definable itMTLg is undecidable over finite
data words, wherk > 4, we can define

U = bks1 A F sin.

4For the details ofi.g, and¢s, we refer the reader to the proof of Theoréfin Chapterd.

30 The expressive power of MTL and TPTL

For every finiteSC Z, letr > 0 be such that all numbers B are less tham. Setwy =
(p, O)ﬁl\/\/+(k+1)r andwy = (p, O)ﬁrw+(k+1)r. It is a simple matter to check thal = Yy,
Wi B v andwo ~ wy. O

Corollary 3. For every ke N, the problem that whether aviTL-formula is definable it TLy
is undecidable over both infinite and finite data words.

Let S, C Z and letS, be a proper subset &. Intuitively, MTLS is more expressive
thanMTLZ, e.g.,MTL® < MTL{®2}, But this does not hold in general. For example, let
S ={0,1,2} andS, = {0,2}. MTL™ andMTL® have the same expressive power, since we
can replace the interval that uses number 1 as the border bywwmalent interval that uses
number O or 2 as the border, e.g., & LS -formula pUi1q g is equivalent to theV TL=2-
formula pU g2 g, wherep,q are atomic propositions. In the following we study the effec
on the expressive power MTL by restriction of the set of interval borders.

Lemma 4. Let SC Z, and let ne Z. If {n—1,n}NS=0or {n,n+1} NS= 0, then the
formulaX_,, T is not definable ifMTLS over both infinite and finite data words.

Proof. SinceMTLS = Usinite scs Uken MTLY, itis enough to show that_ T is not definable
in MTLY for every finiteS C Sand everyk € N.

We first show thalX_,, T is not definable ifMTLS over infinite data words. Le8 C S
be a finite set. Ifn,n+1} NS= 0, then lets,r > 0 be such thas+n > 0 and all numbers
in S are less tham+r. We define two pure infinite data wordg = (s)(s+n)%, andw; =
(s)(s+n+1)%, (see Fig3.4). Itis easily seen thatig = X—n T andwy = X_nT.

Wo (8 =s+n)

S S S+r S+2r §+3r +4r

Wy (' =s+n+1)

S g d'4r §'+2r §'+3r '+4r
Fig. 3.4 The data wordsg andw;

For everyi’ >i > 0, we have

n if i’=1andi =0,
doiy —doj = ¢ n+(i'—)r ifi’>1andi =0,
i'—r ifil>i>1

3.2 Application of the EF-game for MTL 31

and
n+1 if i’ =1 andi =0,
thy—diyi=<n+(i’'—Dr+1 ifi’>1andi=0,
(i —i)r if i/ >i>1

Since{n,n+ 1} NS= 0 and all numbers i§ are less than+r, we have for every >i >0,
(do,ir — doji) g (dijy —dyj). Then, by Lemm&, we havew Nf w; for everyk € N. This
implies thatX_, T is not definable iMTLS.

Similarly, if {n—1,n} NS= 0, then lets,r > 0 be such that+n—1 > 0 and all numbers
in S are less tham+r — 1. We define two pure infinite data wordg = (s)(s+n)%, and
wi = (s)(s+n—1)%. We havewy = X_n T andwy = X_n T, and for everyi’ > i > 0,
(do,r — do,) = (dyi —dy;). By Lemma2 again, we havevg ~ w; for everyk € N.

To proveX_, T is not definable ilMTLS over finite data words, le§ C Sbe a finite set
and letk € N. We can setv = (s)(s+n)*tt andw; = (s)(s+n+ 1)t if {n,n+1}NS=0,
orwp = (s)(s+n)*tt andwy = (s)(s+n— DXL, if {n—1,n} NS= 0, wheres,r are defined
as in the infinite case. By Lemnzawe havew Nf Wi. O

The following three propositions hold over both infinite@atords and finite data words.

Proposition 3. Let § C Zand $ C Z. MTLS < MTL® if and only if for every re S, either
neSor{n—-1n+1} CS.

Proof. For the direction =", suppose that there exists a numbet S; such thafm—1,m}nN
S=0or{mm+1}NS, =0. Then by Lemmd, theMTLS-formulaX_p, T is not definable
in MTL®, contrary toMTLS < MTL*2.

For the direction =", let ¢ be anM TLS-formula. We can construct an equival®it L>-
formula by replacing every constraint intervalgrthat uses a numben as the border, where
me S andm¢ S, with an equivalent interval that uses— 1 orm+ 1 as the border. O

For everyn € Z, let MTL=" = MTLIMZIm=n} The expressive power relatiendefines a
linear order on the sgtMTL=" | n € Z} such that ifn; < np, thenMTL=" < MTL="2, This
gives the following constraint hierarchy fofTL.

Proposition 4. (Linear Constraint Hierarchy d¥TL)
For any n,ny € Z, if ny < ny, thenMTL=™ < MTL=2,

Proof. Obviously, MTL=" < MTL="2, By Lemma4, the MTL="2-formula X_n, T is not
definable inMTL=". Hence, we hav#TL=" < MTL="2, n

32 The expressive power of MTL and TPTL

LetRC Z be a set such that for eveny= Z, n € Rifand only ifn+1 ¢ R, e.g., the set of
all even numbers. By Propositid) we haveMTLR = MTL. For anyS; CRand$S, CR, if
S1 € S, by Lemmad, we haveMTL™ < MTL=. The expressive power relatien defines a
partial order on the se{ﬂ\/ITLS | SC R}. In the following we give another constraint hierarchy
for MTL.

Proposition 5. (Lattice Constraint Hierarchy df1TL)
Let RC Z be a set such that for everyanZ, ne R if and only if n+1 ¢ R. Then({MTLS |
SC R}, <) constitutes a complete lattice in which

(i) the greatest element MTLR,

(i) the least element iMITL?,

and for every @C Z(R), whereZ(R) is the power set of R,
(i) AscQMTL®=MTL e,
(iv) VseqMTLS =MTLYUseS,

Proof. The proof for (i) and (ii) is easy.

For (iii), it is easily seen thaVi TL s2S is a lower bound of MTLS | Se Q}. For every
S CR, if MTLS is a lower bound of MTLS | Se Q}, then we must hav C NscoS i-e.,
MTLS < MTLNs=eS, Otherwise, there exista € S such tham ¢ NscqS We can know that
m¢ S for someS; € Q. By Lemmad4, the MTLg-formuIaX:mT is not definable i TLS,
contrary to thaMTLS is a lower bound.

For (iv), it is easily seen thafl TLUs=eS is an upper bound ofMTLS | Se Q}. For every
S C R, if MTLS is an upper bound ofMTLS | S Q}, then we must havgls.oSC S, i.e.,
MTLUseS < MTLS. Otherwise, there exista € Us.q Ssuch tham¢ S. We can know that
me S for someS; € Q. By Lemmad4, the MTLSl-formuIaX:mT is not definable ir‘MTLg,
contrary to thaMTLS is an upper bound. O

3.3 MTL with non-strict semantics

In the definition ofMTL, we use the strict semantics for the until modality. Theransther
definition for MTL that uses the non-strict semantics (séle 4nd we denote this logic by
weakMTL in this section). InveakMTL, the next modalityX is given explicitly in the syntax,
since it is not definable by the until modality interpretedtbg non-strict semantics.

The interpretations for the next modality and the until magan weakMTL are as follows
(we use a dot over the modality operator to denote that theahtpdperator is interpreted by
the non-strict semantics):

3.3 MTL with non-strict semantics 33

« (w,i) =X ¢ ifand only ifi+1 < |w

,(Wi+1) = ¢ anddi;1—d 1.

« (w,i) = 91U, ¢ if and only if there exists a positiopwith i < j < |w| such thatw, j) =
¢2, d; —d; € I, and for all positions with i <t < j, (W,t) |= ¢1.

It is easy to check that evemweakMTL-formula is equivalent to aMTL-formula. Let¢
be aweakMTL-formula. The equivalelMTL-formula ¢’ can be defined inductively by the
following rules:

o If ¢isT orpeP,thend’ =¢.
If ¢ is =1, thend’ = —¢;.
If ¢ is g1 A P2, thend’ =] A ¢5.

If ¢ is X| ¢y, thend’ = X ¢},

If ¢ is ¢1 U, ¢, then

o — $1/ (91U1 4) ifo¢l,
¢5V (91 A (91U ¢5)) otherwise.

In [6], the authors showed thakeakMTL and TPTL (with the non-strict semantics) have
the same expressive power over infinite monotonic data wogisce everyMTL-formula
is equivalent to alrPTL-formula (with the strict semantics and over all data words)d
both of the strict and the non-strict semantics are equidle TPTL. We can conclude
thatweakMTL and MTL are equivalent over infinite monotonic data words. But owan-n
monotonic data words, we can show tMiTL is strictly more expressive thateakMTL. To
prove this, we first introduce the Ehrenfeucht—Fraissé gameeakMTL.

The EF-game foweakMTL is similar to the EF-game foMTL. Let SC Z be a finite
set, and letvg, w; be two data words. In each round of the game, suppose thentgame
configuration ig(ip,i1), whereig andi; are positions iwp andws, respectively:

(1) Spoiler chooses an indéx {0,1} and a positiorj; > ij in data wordw,.
(2) Duplicator responds with a positign_; > i;_; in data wordw;_; such that
e if j =i +1,thenj,_ =i, +1,andifj =i}, thenj;_| =11y,

* (dj—d) = (de1jy — 1ty)

Then Spoiler chooses between one of the following two ogtion

34 The expressive power of MTL and TPTL

(a) The new configuration becom@s, j1).

(b) Spoiler chooses a position | < j;_, < ji_; in wy_;, Duplicator responds with a
1
positioni; < j{ < j; in w, and the new configuration becom@s, j}).

The difference between the EF-game f@akMTL and the EF-game faviTL is: In the
EF-game forweakMTL, Spoiler can choose the current positionwig or wy, but in the EF-
game forMTL, Spoiler can only choose a position after the current pmsiti W or wy.

We use wMC%(wo,io,wl,il) to denote thé&-round EF-game foweakMTL starting from
the positionig in wy and the positiom in wy with a finite setSC Z. We say that Duplicator
wins the O-round EF-game WNEBNO,io,Wl,il) if Poj, = P1j,. Duplicator wins thek+ 1)-
round EF-game WM§+1(W0, ig,W1,i1) if she wins the 0-round EF-game WI\@GVO, ig,W1,i1),
and for every choice of moves of Spoiler in the first round, gbor can respond correctly
and wins the&-round EF-game WME(WO, No, W1, N1), where(ng, np) is the new configuration
after the first round.

Let SC Z andk € N. The fragmentsveakMTLS, weakMTLy andweakMTL are defined
in a similar way to that oMTL. We abuse the notation§Wo, i) =; (Wa,i1)” and “(Wo,io) ~¢
(wy,i1)” for weakMTL, which are defined in the expected way. It is a simpler matteheck
that Theorem4 and2, Lemmasl, 2 and3 also hold forweakMTL.

In the following we show that th®TL-formulaF_q T is not definable irweakMTL over
both infinite and finite data words. Note that a data wershtisfies the formul&_o T if and
only if there is a positiorj > 0 such thatlj = dy, whered; anddy are the data values in the
positionsj and 0, respectively.

Theorem 5. MTL is strictly more expressive thaveakMTL over both infinite and finite data
words.

Proof. We prove the theorem by showing that thE L-formula F_o T is not definable in
weakMTL over both infinite and finite data words. The proof is simitathe proof of Theo-
rem3. For every finiteSC Z and everk € N, we construct two data wordg, w; such that
Wo = F_oT,ws = F_oT andwy Nf w;. Then we can know thdt_g T is not definable in
weakMTLY

First we consider the non-definability over infinite data esr LetS C Z be a finite set,
and lets,r > 0 be such that all numbers are contained ifi—r,+r) and lets > r. Define
two infinite pure data wordep = (S)(s+T1,5)%,, andwy = (s)(s+ 2r,s+r1)%,, (see Fig3.5).

In data wordwp, the data values in position 2 equals to the data value in position 0,
and in data wordvy, all data values after position O are greater thait is easily seen that

Wo = F_o T andwy = F_o T. We show thatvg ~F wy for everyk € N in the following. We

3.3 MTL with non-strict semantics 35

Wo
S S+r S s+3r s+2r s+5r s+4r

W1

S S+2r Ss+r Ss+4r s+3r s+6r s+br

Fig. 3.5 The infinite data wordsg andw;

prove by induction ork. It is easy for the cask = 0. Supposé& > 1, we give the winning
strategy for Duplicator in the first round. There are five sgsee Tabl&.2°):

(1) Spoiler chooses the position 0wy (j € {0,1}), Duplicator can respond with the posi-
tion O inwy_j.

(2) Spoiler chooses the position 1w (j € {0,1}), Duplicator can respond with the po-
sition 1 inw;_j. We have(dy1 — doo) é (d11 —dy) since(dg1 —dop) =r and
(dy1 —dio) = 2r. In the next move, if Spoiler chooses the position Onfj, Du-
plicator can respond with the position Owr.

(3) Spoiler chooses the position 2wg, Duplicator can respond with the position OvA.
S .
We have(dog — d070) = (d170 — d170) S|nce(do72 — d070) = (dl,O — d170) =0.

(4) Spoiler chooses the positioi > 3) in wp, Duplicator can respond with the position
i — 2 inwy. We have(doj — do,o) = (dyi_2 — d10) since(do, — doo) > r and(dyi_2 —
di0) > r. In the next move, if Spoiler chooses a positioft) <i—3 inwy, Duplicator
can respond with the positign+ 2 in wp.

(5) Spoiler chooses the positiofi > 2) in wy, Duplicator can respond with the position
i +2 inwp. We have(doj 2 — do,o) = (dyj — di0) since(do, 2 — doo) > r and (dy —
dio) > r. In the next move, if Spoiler chooses the position 0 (respelgt 1) in wo,
Duplicator can respond with the position O (respective)yiniw;. If Spoiler chooses a
position 2< j <i+1 inwp, Duplicator can respond with the positipp- 2 in wj.

After the first round, the new game configuration is eitf@0), or (1,1), or (i+2,i) (i >
0). We shall show that Duplicator can win the remainiikg- 1) rounds from these config-
urations. If the new configuration i©,0), by induction hypothesis, we havey ~¢ ; Wi,

SGiven a pair(ip,i1) of positions, we underling (I € {0,1}) to denote that Spoiler chooses the posifjdn
w; and Duplicator responds with the positign; in wy_.

36 The expressive power of MTL and TPTL

Case 1 Case 2 Case 3 Case 4 Case 5
Movell or0.0) | or(L1) (2,0 i >3 i >0
woez| _[00ran || Grap | 200
(0,0)if (1,2) 0<j<i=3| 7

Table 3.2 The winning strategy for Duplicator in the firstmdu

which means that Duplicator can win the remainikg- 1) rounds. If the new configuration
is (1,1), we have(wo[1 :]);r = wi[1], by Lemma2, we have(wo, 1) ~¢ ; (Wi, 1). If the new
configuration is(i + 2,i) (i > 0), by Lemma2 again, we havéw, i +2) ~p_; (Wi, i).

In the following we show thaE_o T is not definable irweakMTL over finite data words.
It is similar to the case for infinite data words. Lt Z be a finite set, and lats > 0 be
defined as above. For evekye N, definewg = (S)(s+T, s)'ijrl andw; = (s)(s+ 2r,s+ r)‘fm.
It is easily seen thatp |= F_o T andw; = F_o T. We shall show thatip ~ ws.

We prove, by induction ok, that for everyl > k, wj ~2 w}, wherewy = (s)(S+T, s)'++2%
andw; = (s)(s+2r,s+ r)'+2r. It is clear for the cask=0. Letk > 1 andl > k. We show that
Duplicator wins the game WM@V\/O,O, wjy,0). In the first round, we can adapt the winning
strategy for Duplicator in Tabl8.2. After the first round, if the new configuration(8,0), by
induction hypothesis, we havé ~2 , w;. If the new configuration i¢l, 1), by Lemma3, we
have(wj, 1) ~¢ ; (W;,1). If the new configuration i$i + 2,i) (i > 0), by Lemma2, we have
(W, 1 +2) ~ig_q (W, i). [

3.4 The Ehrenfeucht—Fraissé game for TPTL

In Section3.1, we define the Ehrenfeucht—Fraissé gameMadiL. Using it we prove several
results about the expressive poweMf L. To study the expressive powerbPTL, we define
the Ehrenfeucht—Fraissé game TR TL in this section.

Theuntil rank of a TPTL-formula¢, denoted byRank(¢), is defined analogously to that
of MTL-formulas, where we additionally defifank(x ~ ¢) = 0 andRank(X.¢) = Rank(¢).
LetSC Z, and letk € N, we define

TPTLS= {¢ € TPTL | for every constraintg ~ cin ¢.,c € S},
TPTLx={¢ € TPTL | Rank(¢) < k}.

3.4 The Ehrenfeucht—Fraissé game for TPTL 37

Letr € N. Recall that we us@PTL" to denote the fragment ofPTL that uses at most
register variables. We define

TPTL"S=TPTL' NTPTLS,
TPTL® = TPTL N TPTLSNTPTLy,

whereSC Z andr,k € N.

Lemma 5. For every finite SC Z, every re N and every ke N, there are only finitely many
formulas inTPTL® up to equivalence.

Proof. This lemma is proved in the much same way as Lennféx a finite setSC Z and a
numberr € N. So there are only finitely many different constraint forasx ~ c.

We prove this lemma by induction dn Fork = 0, no until modality will be used, the num-
ber of formulas built fromT, propositions and constraint formulas using Boolean cotives
and freeze quantifiers¢.” (1 <i <) is finite up to equivalence. Suppose that it holdskior
we will prove it fork+ 1. Define

R={¢1Uds]| ¢1,¢2 € TPTLSLUTPTLL®,

Itis easily seen thdis a finite set up to equivalence. The formulas obtained byguBbolean
connectives and freeze quantifiers on the formul&sare also finitely many up to equivalence.

Hence,TPTLlr(’f1 is a finite set up to equivalence. O

Definition 4. Let wp,w; be two data words, lefp,i; > 0 be two positions invg and wy,
respectively, levg, v be two register valuations, and ISIC Z, r € N, k € N. We say that
(Wolio 3], vo) and (wyfiz], v1) are TPTL}>-equivalent, written(Wo, io, Vo) =p> (Wr,i1, V1), if
for every¢ € TPTL]S, (Wo,io, Vo) k= ¢ if and only if (wy, i1, v1) = ¢.

We will write wo =}>wy if (Wo,0,0) =} (wy,0,0) in the following.

The Ehrenfeucht—Fraissé game Tt TL is played by Spoiler and Duplicator on two data
wordswp andw; with a finite set of register variabldss, ..., X% } and a finite set of constraint
numbersSC Z. A game configuration is a tuplgo, Vo, i1, V1), Wherevp, v1 are two register
valuations, andyp,i; > O are positions img andwsy, respectively. Let be a register valuation,
letY be a set of register variables anddet N. Define the register valuation

d if xeY,
vlY —d](x) =
v(x) otherwise.

In each round of the game (suppose the current game conf@uigfio, Vo,i1,V1)):

38 The expressive power of MTL and TPTL

(1) Spoiler chooses a subdet {xi,...,% } and sets)f = w[Y — d ;] (t € {0,1}).
(2) Spoiler chooses an indéx {0,1} and a positiorj; > ij in data wordw.

(3) Duplicator responds with a positign_| > i1_j in data wordw,_| such that ifj, =1, +1,
thenj,_; =i, + 1. Then Spoiler chooses between one of the following twaoomgti

* The new configuration becoméf, Vg, j1, V7).

* Spoiler chooses a positiof | < j; | < j1_i in wy_j, Duplicator responds with a
positioni; < j{ < jj in w;, and the new configuration becomgg, v, j1. V).

We use TCES(W(), io, Vo, Wy, i1, V1) to denote th&-round EF-game folf PTL starting from
the positiondg,i; with the register valuationgg, v1 in data wordsag andw;,, respectively,
with the register variables s€xy, ..., % } and constraint numbers sgt

The winning condition for Duplicatoris defined inductively. We say that Duplicator
wins the O0-round EF-game 'Igé(wo,io, Vo,Wy,i1, V1) if Pyj, = Prj,, and for all constraints
X ~ ¢ wherex € {xq,...,X%} andc € S, (Wp,ip,Vp) = X ~ c if and only if (w1,i1,v1) =
X ~ ¢. Duplicator wins the(k + 1)-round EF-game Tﬁl(wo,io, Vo, Wi, i1, V1) if she wins
the O-round EF-game 'I‘(g.%(wo,io, Vo,Wy,i1,V1), and eitheripg andi, are the last position of
Wo andw;, respectively (Spoiler has no position to choose), or fargwchoice of moves
of Spoiler in the first round, Duplicator can respond coifyeeind wins thek-round EF-
game TCﬁS(Wo, No, Vg, W1, N1, V1), where(ng, v, Ny, V1) is the new configuration after the first
round. If Duplicator cannot win the game, we say that Spoaers the game. We write
(Wo,i0, Vo) NES (wa,i1, v1) if Duplicator wins thek-round EF-game TE:S(WO, ig, Vo, W1,i1,V1).

It follows easily that if (W, ig, Vo) NES (Wi,i1, V1), then (Wo,io, Vo) ~f (Wa, i1, v1) for all

m < k. We will write w ~§:> wy if (Wo,0,0) ~§° (wy,0,0) in the following.

Theorem 6. Let wy, w1 be two data words, lepii; > 0 be two positions in wand w, respec-
tively, and letvg, v1 be two register valuations. For every finiteCSZ, every re N and every
ke N, (Wo, o, Vo) ={° (Wy, i1, vy) if and only if (Wo,io, Vo) ~;> (Wi, ix, va).

Proof. Fix a finite set of register variabldxy,...,% } and a finite set of constraint numbers
SC Z. We prove this theorem by induction dn It is clear fork = 0. Suppose that this
theorem holds fok. We prove that it also holds fd+ 1.

For the direction =", we give a proof by contradiction. Suppose ttiab,io, Vo) Elr(’fl
(wi,i1,v1) holds and'wp, o, Vo) Nrk’fl (ws,i1,Vv1) does not hold. Then Spoiler wins the game
TGrk’fl(wo,io, Vo,W1,i1,V1). By induction hypothesis, it is easily seen thfal, ig, Vo) NBS
(wy,i1,Vv1), i.e., Duplicator wins the 0-round EF-game from the configion (i, Vo,i1,v1). In

3.4 The Ehrenfeucht—Fraissé game for TPTL 39

the following we show that Duplicator can always win the remrag k-round EF-game, a con-
tradiction. Without loss of generality suppose that Spaileooses a subs¥tC {xy,...,% }
and sets/y = vy[Y — dojj,] andv; = vi[Y — dyj,], and then chooses a positigyt> ig in wo.
For eachig < j < i, define

¢ = \{¢ € TPTLL®| (Wo, j,vh) = ¢}

Note thatg; is well-defined sincé.rPTer’S is a finite set up to equivalence by LemaDefine

the TPTL>, -formula

p=yi.¥n |\ 9)UPy
ip<j<ig
whereys, ..., Yy, are all register variables M. Clearly,(wo, ig, Vo) = ¢. We havgws, i1, V1) =
¢, sinceRank(¢) < k+ 1 and(wp, ig, Vo) E[ﬁl (wa,i1,v1). Hence there existg > i1 such
that (wy,i7,vq) = ¢, and for alliy < iy <ij, (Wa,i7,v;) = Vip<j<i, ®j. Hence Duplicator
can respond with the positio in wy. If they start a new round from the configuration

(ig, V0,11, V1), we know by (wi,i7,vq) |= ¢y and the definition ofg;, that (wo,ig, Vo) =5S

(wa,i%,Vv1). By induction hypothesis{wo,ig, Vg) ~ L’S (wa,i%,v1). On the other hand, if Spoiler
chooses a position < i < i} in wy, we know by(wy,i7,V]) = \/,O<J<,/ ¢j that there is some
ip < i < i such thatwy,if, vl) = ¢,// Hence Duplicator can respond with the positigm
wo. If they start a new round from the configurati@fj, vy, i7, v1), we know by the definition
of 4’13 that (wo, ig, v{) _ks (w1,i{,v1), and thus, by induction hypothesis, tti@, ij, V() NES
(wa,i7,v1).

For the direction ¥=", suppos&wy, io, Vo) ~ Lfl (Wy, i1, vl) i.e., Duplicator wins the game.
We show that(wp, ig, Vo) Elr(’fl (wy,i1,v1). Let ¢ € TPTLk+1 If Rank(¢) <k, then, by
induction hypothesigwo, io, Vo) = ¢ if and only if (wq,i1,v1) E ¢. If Rank(¢) = k+ 1, we
assume thap = y1...yn.(¢1U ¢2), wherepq, ¢ € TPTLES, which is the most interesting
case. The proof for the other cases is easy. We must shovmhiag, vo) = ¢ if and only if
(Wy,i1,V1) = ¢. Supposéwy,ip, Vo) = ¢, we prove(wy, i1, v1) = ¢. The other direction can
be proved analogously.

LetY = {y1,...,¥n}. Then(wo,io,Vo) =Vy1...Yn.(¢1U @) if and only if (wo, ig, VoY —
do,io)) = ¢1U @2 if and only if there is a positioff, > ig such thatwo, ig, VoY — doji,]) = @2,
and for allip < j < g, (Wo, J, VoY + doj,]) = ¢1.

Assume Spoiler chooses the Yednd sets the register valuationfs= vo[Y — do q,], V] =
v1[Y — dy g,], and then chooseé§ > ig in wp. Since Duplicator wins the game, she can respond

8¢ =y1...yh.(LU ¢i6) if i =io+1, i.e., there are no positions between positipand positiorig,.

40 The expressive power of MTL and TPTL

with a positioni}, > i1 inw such tha{wo, i), vj) ~¢° (Wi, i}, v;). By induction hypothesis, we

have(w,i},V;) = ¢2. On the other hand, if Spoiler chooses a positioqt if < i/ in wy, Du-
plicator can respond with a positiefi< if < i such thatwo, ig, vp) Nrk,s (wg,i7,v1). Hence,
by induction hypothesigws, i/, Vv;) = ¢1. Since Spoiler can choose an arbitrary position be-
tweeniy andi}, we know thatwy, j, V) = ¢1 for all i1 < j < i}. Adding (wy,i}, V) = ¢2 we

have(wl, il, Vi)): ¢1 U ¢2, i.e., (W]_, i]_, V]_)): Yi.. .yh.(¢1U ¢2)]

Theorem 7. Let C be a class of data words. For every finitecSZ, every re N and every
k € N, the following are equivalent:

(1) Cis not definable i PTL}>.

(2) There exist two data wordspwe C and w ¢ C such that w NES W1.

Proof. From (1) to (2), we give a proof by contradiction. AssumB folds and 2) does not
hold. Then for every pair of data woreg andw;, if wop € C andw; ¢ C, thenwg 7érk’sw1. By
Theoremg, this implieswg ;érk’s wi. So ifwg Erk’s wi, thenwg € C if and only ifw; € C. Let
w be a data word, we define

ow=/\{¢ € TPTL®|wE ¢},

and
o=/ duw.
weC

Note that there are only finitely many formulas‘thﬁ’TLES up to equivalence, so botk, and
® are well-defined. We next show th@tis definable by the formulé, which contradicts the
assumption. For every data wong if w € C, thenw = @ by the definition of®. If w = @,
there must exists some data wevde C such thaiv |= ¢,,. This implies thatv andw’ satisfy
the sameTPTLL’S-formuIas, ie.w EL’SV\/. Fromw € C we can know thaiv e C.

From @) to (1), suppose that there are two data wowgsc C andw; ¢ C such that
Wo ~>wy. By Theorem, we havewo =[>wy. This means that for evefPTL}:>formula
¢, wWo = ¢ if and only ifw; = ¢. HenceC is not definable irTPTer’S. O

3.5 Application of the EF-game for TPTL

In this section, we consider the expressive power of sett@ginents ofTPTL by restriction
of the until rank, the set of constraint numbers and the nurobeegister variables. Similar
to MTL, we show that the until rank hierarchy and the constraintanady are still strict for
TPTL. First we give a lemma that is useful for the proof.

3.5 Application of the EF-game for TPTL 41

Lemma 6. Let SC Z be a finite set, and let € N. Let wy,w; be two data words such that
\Wo| = |w| and for every > 0, By; = Py and for every’i>i > 0,

(do,i’ — doi) = (dg i —dyj). (3.4)

For any two register valuationgy and v, if for every i> 0 and every constraint x ¢, where
xe {xy,...,%}and ce S,

(Wp,i,Vo) =X~ cifand only if(wy,i,vq) EXx~cC, (3.5)

then for every ke N, (Wo,0, Vo) =° (w1, 0, vy).
Proof. Letk € N, we show that Duplicator wins the game Q‘TQNO,O, Vo, W1, 0, V7).

In each round, Duplicator can always respond with the sarsiipo that Spoiler chooses
in the other data word. After one round, suppose the new gamiggaration is(j, vj, j, V1),
wherej > 0. Itis easily seen thd j = Py j, sincePyj = Py j for everyi > 0. We need to show
that (wo, j,V{) = x~ cif and only if (wy, j,v1) = x ~ c for every constraink ~ ¢, where
X € {X1,...,% } andc € S. Letx ~ c be a constraint. There are two cases:

(1) The register variabbeis not freezed by Spoiler until now, i.ej(x) = vo(X) andvi (x) =
v1(X), by (3.5), we have(wy, j, V) = x~ cif and only if (wy, j,V]) = x~cC.

(2) If vi(x) andv;(x) are obtained by freezingto the data values in positiof(0 < j’ <
j) in wo andws, respectively, i.e.y)(x) = dgjy andvy(x) = dy j, by (3.4), we have
(do,j —do,j7) S (d1,j —dy j). Hence,(wo, J,Vy) =x~cifand only if (dgj —dg) ~ C
if and only if (dy,j — dy j) ~ cif and only if (wy, j,v) =X~ cC.

Corollary 4. For every ne N, w and w,, satisfy the samé&PTL-formulas.

Proposition 6. Let SC Z be a finite set, and let & max{|c| | c € S}. Then for every finite
data word w, there exists a finite data word u such tldt= |u| and

+ all data values in u are bound Hy| - (C+1),
« w and u satisfy the same formulasTRTLS.

Proof. Suppose thaw| = n. Let m:=a,,...,a, be an enumeration of all data valueswn
such thatg; < a1 for all 1 <i < n. For each ki <n, defined =a —a_1. We define a

42 The expressive power of MTL and TPTL

new sequencd := by, ..., by inductively as followsh;, = 0 and for all 1< i < n,

bi_1+6 if & <C,
b_1+C+1 ifd>C.

Intuitively, the data valueb; are obtained by shrinking the so that the largest difference
between two different data values is bounded(y 1. We obtain a new data wond by
replacing inw every data value; by bj (1 <i < n). Note thath, < (n—1)(C+ 1). Hence, all
data values im are bound byu|- (C+1).

Let dj, anddj, (respectively;jj1 and d}z) be the data values in thg!" position andj,"
position ofw (respectivelyy), respectively, where € j1 < j2 < n. Without loss of generality
we can assume;, < dj,. Leta,...,a;« (respectivelyb;,...,bj) be the sub-sequence in
(respectivelysr) such that = dj, andaj . = dj, (respectivelyb; = dj, andbj,yx = d;). If
a1 —a < Cforeveryi <t <i+Kk, then, by the definition off, we havey 1 — by = a1 —a
for everyi <t <i+k, which impliesdj, —d;, = d}z —d}l. If & 1—a; >Cforsome <t<i+k
(henced;, —dj, > C), then, by the definition oft’, we haveb ;1 — by = C+ 1, which implies
dj, —dj, > C. Finally, we can conclude thatj, —dj, 3 dj, —dj, for any jy, j such that
0 < j1 < j2 < n. By Lemmaé, this implies thatv EL’SU for everyr € Nand evenke N, i.e.,
w andu satisfy the same formulas IRPTLS. O

3.5.1 Effects on the expressiveness by restriction of the mber of regis-
ter variables

In Section3.2, we show thafTPTL is strictly more expressive thalTL. The register vari-
ables play a crucial role in reaching this greater expressgs. We want to explore more
deeply whether the number of register variables allowed P& L-formula has an impact
on the expressive power of the logic. We are able to show ttektis a strict increase in
expressiveness when allowing two register variables auasté just one. For the general case,
we conjecture that for everye N, TPTL 1 is strictly more expressive tharPTL".

Theorem 8. TPTL? is strictly more expressive thalPTL! over both infinite and finite data
words.

Proof. In the following we show that th&€ PTL2-formula

¢ =x1.X(Xg > 0AX2.F(x1 > 0AX2 < 0))

3.5 Application of the EF-game for TPTL 43

is not definable inTPTL! over both infinite and finite data words. To prove this, it isegh
to show thatp is not definable iﬁl’PTL&’S for every finiteSC Z andk € N.

We first proveg is not definable ifTPTL! over infinite data words. Le$ C Z be a finite
set and lek € N. Lets,r > 0 be such that all numbers Bare contained if{—r,+r) and
s—kr > 0. We define two pure infinite data wordg andw; as follows (see Fig3.6):

Wo = (s,5+2r)(s—knk}?(s+3)%,

Wy = (5,54 2r)(s—kn)¥t(s+3r)%,.

In data wordnp, the data valus+ 2r in position 1 is larger than the data valksi® position
0, and the data valuetr in positionk+ 3 is betweersands+2r. So we havey |~ ¢. In data
word wy, there are no data values betwessmds+ 2r after position 1. So we hawe; = ¢.
We show thatvg N&’Swl in the following. By Theoren?, we can know tha is not definable
in TPTL&’S. It is clear for the cask= 0. We assumé& > 1.

k42

W 7 N
05 st2r s—kr S—k—=Dr -+ S s+r S+3r s+4r ...

k+1

A
e ™~

Wis st2r s—krs—(k—=1)r --- S S+3r S+Ars+5r...

Fig. 3.6 The two data wordsy andw;

Without loss of generality we use the tugle, no,i1,n1) to denote the game configuration
(ip, Vo, i1, V1), Whereig, i1 are positions img, wi, respectively, antlg(x1) = np andvy(x1) =ny
(note that only one register variabigcan be used in the game).

The initial game configuration i©, s, 0, s). In the first round, if Spoiler chooses a position
i(i>1)inw (I €{0,1}), Duplicator can respond with the same positiamw;_. In the next
move, if Spoiler chooses a positionkQj < i in wy_j, Duplicator can respond with the same
position j in w;. After the first round, the new game configuration is eitfies,i,s) (i > 2),
or (1,s,1,s). If the new configuration igi,s,i,s) (i > 2), by Lemma6, we can know that
(Wo, 1, Vp) Ni’_sl (w1,i,V]), wherevy(x1) =sandv;(x1) =s, i.e., Duplicator wins the remaining
(k—1) rounds. If the new configuration {4,s,1,s), there are two cases in the second round:

(1) Spoiler does not freezq to the data valus+ 2r in the current position. This case is
easy. Duplicator can always respond with the same postiainSpoiler chooses in the
other data word. By Lemm@, Duplicator can win the remaining rounds.

44 The expressive power of MTL and TPTL

(2) Spoiler freezeg; to the data value+2r, i.e., the configuration becomék s+ 2r, 1,5+
2r). Letv{(x1) = s+2r andvy(x1) = s+ 2r. We show thatwo, 1, V() ~ &Sl (wi,1,v7).

There are three cases in the next round:

(a) Spoiler chooses the position 2vn(l € {0,1}), Duplicator can respond with the
same position iw;_;. We shall show that Duplicator wins the remainifkg- 2)
rounds from the new configuratid@, s+ 2r,2,s+ 2r). This is equivalent to show
that Duplicator wins the game 'Iié(V\/o,O, Vg, Wy, 0,vY), whereh=k—2 and

(s— (h+2)n)"4(s+3r)%,,
(s— (h+2)n)"3(s+3r)%,.

3
I

By induction onh, we can show thatw;, 0, v() N#s (wy,0,v7).

(b) Spoiler chooses positidrii > 3) in wp, Duplicator can respond with the position
i —21inwj. Inthe next move, if Spoiler chooses a positior: g < i—1 inwy,
Duplicator can respond with the positign+ 1 in wy. After this round, the new
configuration is(i,s+ 2r,i — 1,5+ 2r) (i > 3). By Lemmas6, we can know that
(Wo,1, V() ~ k82 (wa,i—1,v7), i.e., Duplicator wins the remaining — 2) rounds.

(c) Spoiler chooses positiari > 3) in wy, Duplicator can respond with the position
i+ 1 inwp. In the next move, if Spoiler chooses the position 2vg) Duplicator
can also respond with the position 2dq. If Spoiler chooses a position2j <iin
Wo, Duplicator can respond with the positipr- 1 inwy. After this round, the new
configuration is eithe(2,s+ 2r,2,s+ 2r), then by (a) we havéwo, 2, V) Nﬁ’_sz
(w1,2,v), or (i+ 1,5+ 2r,i,s+2r) (i > 2), then by Lemm&b we have(wp,i +
1, Vg) &SZ (Wl,lvvl)

To prove¢ is not definable inTPTL! over finite data words, |8 C Z be a finite set, let
k € N, and lets,r > 0 be defined as above. Define

Wo = (5,5+2r)(s— k)t (s+3n)k,,
Wy = (5,54 2r)(s—kn)*t(s+3r)k,.

Similar to the proof for the infinite case, it is easy to chewkt vy N&’S Wj. O

3.5 Application of the EF-game for TPTL 45

3.5.2 Effects on the expressiveness by restriction of the tihrank and
the set of constraint numbers

In the following proposition we show that the until rank taeshy forTPTL is strict over both
infinite and finite data words.

Proposition 7. For every ke N, TPTLy,; is strictly more expressive thahPTLy over both
infinite and finite data words.

Proof. Let ¢1 = (pAXp), and for evenk > 1, let ¢ 1 = (pA X ¢k), wherep is an atomic
proposition. We hav®&ank(¢x) = k. We shall show thapy is not definable infTPTLy_1 over
both infinite and finite data words. It is enough to show thais not definable inTPTLEfl

for every finiteSC Z and every € N.

kil
Wo p p p p q q
0 0 0 0 0 0
k
Wy p p P q q q
0 0 0 0 0 0

Fig. 3.7 The data wordsg andw;

First we provepy is not definable irTPTLlrf1 over infinite data words. Define two infinite
data wordsvg = (p, O)'_fgl (9,0)%g andwy = (p, O)'io (9,0)9, wherep, g are propositions (see
Fig. 3.7). We see thatvg = ¢k andwy [~ @.

In the following we prove by induction okithatwg N|r£1 w1, then by TheorenT, we can
know thatgy is not definable inTPTLlrfl. It is easy for the cask= 1. Suppos&k > 2. We

give the winning strategy for Duplicator in the first rounchefe are three cases:

(1) Spoiler chooses the position 1wy or w1, Duplicator can respond with the position 1
in the other data word.

(2) Spoiler chooses the positiofi > 2) in wp, Duplicator can respond with the position
i —21inwji. Inthe next move, if Spoiler chooses a position) < i — 1 inw;, Duplicator
can respond with the positign+ 1 in wp.

(3) Spoiler chooses the positiofi > 2) in wy, Duplicator can respond with the positio#n
1inwpg. Inthe next move, if Spoiler chooses the position dvynDuplicator can respond
with the position 1 inwvy. If Spoiler chooses a position j <i in wp, Duplicator can
respond with the position— 1 in wj.

46 The expressive power of MTL and TPTL

Let u be the register valuation that maps all register varialdds tNote that the register
valuation is alway® during the game (all register variables can only be freeaeld value
0). After the first round, the new game configuration is eittiev, 1, v), then by induction
hypothesis, we havvg, 1,v0) ~ kSZ (w1,1,0),or(i+1,v,i,0)(i > 1), then by Lemmd&, we
have(wo,i+1,0) ~ kSZ (W1,i,0).

To provegy is not definable |rTI'PTLrS over finite data words, we defirvey = (p,0)"Jrl
andw; = (p,) . Similar to the infinite case, we can show tbu@tw 1 W1. O

In Proposition2 we show that the problem that whetherMii L, 1-formula is definable
in MTLy is undecidable. Since eveWTL-formula is equivalent to @PTL-formula with the
same until rank, we can adapt the proof I TL. The following proposition can be proved
in much the same way as Propositian

Proposition 8. For every k> 5 (respectively, k> 4), the problem that whether @PTLy . 1-
formulais definable iMPTLg is undecidable over infinite data words (respectively, didita
words).

In the following we consider the effects on the expressiwegraf TPTL by restriction of
the set of constraint numbers.

Lemma 7. Let SC Z, and let ne Z. If {n—1n}NS=0or {n,n+1}NS= 0, then the
formula xX(x = n) is not definable ifTPTLS over both infinite and finite data words.

Proof. The proof is similar to the proof of Lemma We show that the formulaX(x = n) is
not definable inTPTLES’ for every finiteS C S, everyr € N and evenk € N.

We first show that the formula is not definable"lﬁﬁ’TL&S’ over infinite data words. If
{n,n+1}NS=0, thenles,r > 0 be such thad+n> 0 and all numbers i are less than+r.
We define two data wordsp = (s)(s+n)%, andwy = (s)(s+n+1)%,. If {n—1,n}NS=10,
then lets,r > 0 be such thas+n—1 > 0 and all numbers if8 are less tham-+r — 1. We
definewg = (s)(s+n)%, andw; = (s)(s+n—1)%,. Itis easily seen thatp = x.X(x=n) and
w £ x.X(x = n). By Lemma6, we haveny Nrks wy for everyk € N. Then by Theorend, we
can know thak.X(x = n) is not definable irTPTer’g for everyk € N.

To prove the formula is not definable TrPTL&g over finite data words, we can adapt the
proof for the infinite case. Lét< N, we can seto = (s)(s+n)5t andwy = (s)(s+n+ 1)kt

+r o

if {(n,n+1}NS=0, orwp = (s)(s+n)¥it andwy = (s)(s+n—1)¥L, if {n—1,n}NS=0.

By Lemma6, we havewq leg Wy. O

The following three propositions hold over both infinite@atords and finite data words.

3.5 Application of the EF-game for TPTL 47

Proposition 9. Let § C Z and $ C Z. TPTLY < TPTL® if and only if for every ne S,
eitherne S or {n—1,n+1} C S,

Proof. For the direction %", suppose that there exists a numinere S; such that{m—
1,mNS =0or{mm+1}NS, = 0. Then by Lemma, the TPTLS-formulax.X(x = m) is
not definable inTPTL®, contrary toTPTLS < TPTL®,

For the direction =", let ¢ be aTPTLS-formula. We can construct an equivalent
TPTL=-formula by replacing every constraint formwla- min ¢, whereme S, andm¢ S,
with an equivalent constraint formuta, where

(xgm—1VX2m+l if X~ misx#m,
X>m+1 if X~ misx>m,
a=<x>m-1 if X~ misx>m,
x<m-1 if X~ misx<m,
(X<m+1 if X~ misx<m.

O

For everyn € Z, let TPTL=" = TPTL{MZIm=<n} By | emma7 and Propositio, we have
the following two hierarchies fof PTL.

Proposition 10. (Linear Constraint Hierarchy of PTL)
Forany n,ny € Z, if ny < ny, thenTPTL=S™ < TPTL=™,

Proposition 11. (Lattice Constraint Hierarchy of PTL)
Let RC Z be a set such that for everyZ, ne R if and only if n+1 ¢ R. Then({TPTLS|
SC R}, <) constitutes a complete lattice in which

(i) the greatest element BPTLR,
(i) the least element iFPTLY,
and for every @C Z(R), whereZ(R) is the power set of R,
(i) Asc@TPTLS=TPTL S,

(V) Vo TPTLS = TPTLUs0S,

48

The expressive power of MTL and TPTL

3.6 Summary of the relative expressive power

We conclude the relative expressive powewedkMTL, MTL andTPTL in Fig. 3.8. ForLTL
andTPTL, the semantics (strict or non-strict) has no effect on thgressive power, whereas
MTL with strict semantics is strictly more expressive thdiL with non-strict semantics
(weakMTL) over all data wordsMTL is strictly less expressive thalPTL on data words.
Actually, MTL is strictly less expressive thafPTL!, and TPTL! is strictly less expressive
thanTPTL?. Itis still open that whethef PTL" ™ is strictly more expressive tharPTL" for

r > 2. The until rank for bottMTL andTPTL is strict.

weakMTL C

MTL

Ut
MTL3

)
MTL,

Ut
MTL,

N

,,,,,,,,,,,,, Tere
TPTLL TPTL? TPTL3 i
IS Ut Ut |
| TPTLY TPTLZ TPTLS :
Ut S|l w Sl u | &
| TPTL3 TPTLZ TPTLS |
U Us Us
| TPTLE TPTL? TPTLS }

Fig. 3.8 The relative expressive powerMdiT L andTPTL

Chapter 4

The satisfiability problems for MTL and
TPTL

In this chapter, we consider the satisfiability problemsTs&r MTL andTPTL. A formula
is satisfiable if it is satisfied by a data word. The satisfigbgroblem asks, given a formula
¢, whetherg is satisfiable or not. More precisely, |&f be a logic and le€ be a class of data
words, thesatisfiability problem forZ overC is:

Input: Aformula¢ € .Z.
Output: yes if there existav € C such thaiv = ¢, no otherwise.

We are interested in infinitary and finitary versions of thessability problem, whereC
is the class of infinite data words and the class of finite datalg; respectively.

The arithmetical hierarchy classifies problems based ondheplexity of first-order arith-
metic formulas that define them. The cl&}in the arithmetical hierarchy consists of all
problems that can be defined by a formula which begins withgaesgce of existential quan-
tifiers and followed by a formula with only bounded quantgian it. ch’ contains exactly all
recursively enumerable sets. Analytical hierarchy is daresion of the arithmetical hierarchy,
where second-order arithmetic formulas can be used toifglgseblems. The clasﬁi in the
analytical hierarchy consists of all problems that can Hendd by a second-order arithmetic
formula which begins with a sequence of second-order exislequantifiers and followed
by a formula with no second-order quantifieBs. contains highly undecidable problems, in-
cluding nonarithmetical problems. For more details abbatdrithmetical hierarchy and the
analytical hierarchy we refer the reader 73]

In [7], Alur and Henzinger proved that infinitary SAT foiPTL is Z%-complete, evenifone
does not allow for propositions. The proof in the cited papdyy reduction of the recurrent

50 The satisfiability problems for MTL and TPTL

state problem for two-counter machines. However, one caityedapt the proof for finitary
SAT using a reduction of the halting problem for two-countechines.

Theorem 9([7]). For TPTL, infinitary SAT isZ%-compIete and finitary SAT Q-complete.

Proof. We use a reduction of the halting problem for two-counter mvas to prove finitary
SAT for TPTL is undecidable. This also implies tﬁ%hardness of finitary SAT. To show that
finitary SAT is inZ9, we only need to show that all satisfiadl@ TL-formulas over finite data
word are recursively enumerable. Lgta aTPTL-formula. We uséPy to denote the set of
all propositions occurring igp. Observe that for eaame N, there are only finitely many data
wordsw overPy such thatw| < nand all data values iw are bounded bwy. Define

S={(¢,n)| ¢ isaTPTL-formula andh € N}.

It is easily seen thab is recursively enumerable. Let be an enumeration d&. For each
(¢,n) in T, we check for every data wont over Py whetherw = ¢, wherejw| < n and all
data values iw are bounded by. If there is a data word that satisfigs then we outputp.
Otherwise, we check the next pairin In this way, we can enumerate all satisfiabeTL-
formulas. This procedure is effective, since for every péim) there are only finitely many
data words need to check and the path checking problemRaiL over finite data words is
decidable by Theorerm8in Chapterb. O

Remark3. One can change thEPTL-formulas in the proof of Theore®in [7] such that they
only use one register variable. This means that The&@eiso holds forTPTLL. However,
by the result foMTL in Section4.1, we can also conclude the same resultfemL?.

Every formula inMTL can effectively be translated intoTé@ TL-formula. Hence the the
upper bound of infinitary SAT (respectively, finitary SATYf@PTL also apply to infinitary
SAT (respectively, finitary SAT) foMTL and other fragments 8 TL andTPTL (we will not
prove this in addition in the following proofs). We show thédr most of the logics in this
chapter, infinitary SAT isi%-complete and finitary SAT iig-complete. We also prove that
finitary SAT and infinitary SAT coincide for positiv€PTL and positiveMTL, and SAT for
existentialTPTL and existentiaM TL areNP-complete. As a consequence, Blehardness of
infinitary SAT excludes the possibility to axiomatize vatydor MTL andTPTL in a standard
proof calculus system.

Generally, we prove the undecidability of infinitary SAT gpectively, finitary SAT) for
a logic.Z by a reduction from the recurrent state problem (respdgtitalting problem) of
two-counter machines in the following way: For every twasoter machiné/, we construct
a formulag;.sin (respectivelygs,) of £ such thatp;.s, (respectivelygs,) is satisfied by an

4.1 The satisfiability problem for MTL 51

infinite data word (respectively, a finite data word) if andyaih M is a positive instance of
the recurrent state problem (respectively, the haltingplem).

Let M be a two-counter machine with instructions $&4,...,Ih}. In this chapter, for
technical reasons, we always assume that |, andl, is the only halting instructiomalt.
We will write 1, simply halt for readability when no confusion can arise.

4.1 The satisfiability problem for MTL

In this section, we consider infinitary SAT and finitary SAT /dTL. We show that both of
them are not decidable. Since evéfif L-formula is equivalent to @PTL!-formula, we can
know that this result also holds faPTL.

Theorem 10. For MTL, infinitary SAT isS1-complete and finitary SAT &-complete.

Proof. Let M be a two-counter machine with instructions. .., l,. Define a set of proposi-
tionsP = {lo,...,Ih,C1,C2}. First we show how to encode a computatiorvbfinto a data
word overP. Let (J,c,d) be a configuration o1, whereJ € {lo,...,I,} andc,d € N. We en-
code it by the data wor@J, 0)(C4,¢)(C»,d). In the encoding of the configuration we store the
number O in the pair with an instruction proposition such th@ can use it to test whether the
data value stored i€, or C, is 0 or not. Letrr = (Jp,Cp,dp)(J1,C1,d1) ... be a computation
of M, where(Jp, o, do) = (10,0,0), J; € {lo,...,In} andc;,di € N(i > 1). We can encod&
into the following data word:

(Jo,0)(C1, o) (Ca,do) (31,0)(C1,C1) (Ca,) ...

In the following we define severd TL-formulas which express that a data word encodes
a computation oM properly, whereX™ is an abbreviation fom copies of the modalit).

(1) There is exactly one proposition frofthat holds in each position:

¢prop ::(\/ p)/\ /\(p_) /\ _'Q)

peP peP aeP\{p}

(2) The sequence of all propositions in the data word is ofdh@a Jy, C1,C»,J1,C1,Co, .. .:

Bseq == ((\/ 11) = (XC1AXZC))A(C2 =X \/).

0<i<n 0<i<n

52 The satisfiability problems for MTL and TPTL

(3) The initial configuration iglg,0,0):

Pinit *= 10 A X=0(C1AX-0C2).

(4) For the halting instructioh, (i.e., halt), define

Dhalt := halt A dprop A X(C1 A Pprop) AXZ(C2 A Porop)-

(5) For an increment instructiohy: C; := C1+ 1; go to somely € Sj, whereS§; is a
nonempty subset dfl, ..., I}, define

. —|J—> \/ C1VC2 U_ 0|k)/\X((Cz\/|k)U:1C1)/\XZ((||<\/C1)U:0C2)].

| kES]

If I operates oi€,, then define

;=17 = \/ [((C1VC2)U—ol) AX((C2V k) U=oC1) AX*((IxV C1) U1 C2)].

| kES]

(6) For adecrementinstructidn: if C; =0 then go to somé € Sjl elseC1:=C;—1;go
to somel, € S7, whereS} andS? are nonempty subsets ffg, ..., In}, define

¢Ij = (I j /\X:O Cl — L,Uzero) A (I j /\X>O Cl — L.Unotzero)7

where

Waero := \/ C1VC2 U_ o|k)/\X((Cz\/|k)U:0C1)/\XZ((||<\/C1)U:0C2)],

|k631

Uhotzero =\ [((C1V C2)U_olm) AX((C2VIm)U—-_1C1) AX*((ImV C1)U_0C2)].
ImES]2

If Ij operates oi€,, then define
1, := (1A (C1U—0C2) = Wrero) A(1j A (C1U=0C2) = Wiotrero)s

where

wr:otzero = \/ [((Cl\/ CZ)U=0 I m) /\X((CZ\/ I m)U:o Cl) /\XZ((I mV C1>U:71 CZ)]-

Imesj2

4.2 SAT for the positive fragments of MTL and TPTL 53

We define two formulag;.s, and@y, in the following such tha; ., (respectivelygps,) is
satisfiable if and only iM has a recurring computation (respectively, a halting caatpn).

¢inﬁn ::¢init/\¢prop/\¢|o/\GF|0/\
G(d’prop/\d)seq/_'hah/\ /\ ¢|j>7

0<j<n

and

Ofin = Pinit A Pprop A P1o AFhalt A
(¢prop A ¢seq A —halt A /\ ¢Ij> U ¢halt-

0<j<n

It is easily seen that i1 is a positive instance of the recurrent state problem (icts@ty,
the halting problem), then there is an infinite data war@tespectively, a finite data wosd)
which is the encoding of a recurring computatiorMbirespectively, a halting computation of
M) such thawv = ¢, (respectivelyw = ¢5,). Conversely, i, is satisfiable over infinite
data words, then there is an infinite data word that encodiegiaite computation oM, which
visits the instructiong infinitely often by the formul&F 1o. Similarly, if ¢, is satisfiable over
finite data words, then there is a finite data word that encadieste computation oM which
reaches the instructidmalt. O

4.2 SAT for the positive fragments of MTL and TPTL

In this section, we consider the satisfiability problem toe positive fragments d¥ITL and
TPTL, in which the negation operateris only applied to propositions or atomic constraints.
We show that a positive formula is satisfiable if and only igisatisfied by a finite data word.
This means that finitary SAT and infinitary SAT coincide foispive formulas. First we give
the definitions for positivéTL and positivelT PTL in the following.

Definition 5. The set of positivéMTL-formulas posMTL) is built by the following grammar:

p==T|L[p[-plo¢rd|dVe|oUid

The set of positivd PTL-formulas posTPTL) is built by the following grammar:

¢==T[L|p[=p|x~c[-Xx~c|ord |V |pUd|x¢

54

The satisfiability problems for MTL and TPTL

In the following, we show that pos TP TL-formula is satisfiable if and only if it is satisfied
by a finite data word. First we prove two lemmas.

Lemma 8. Let u be a finite data word, let i be a position in u andvebe a register valuation.
Then for everposTPTL-formula¢ and every data word w, {iu,i,Vv) = ¢, then(uwi,v) = ¢.

Proof. We prove the lemma by induction @n The proof for the cases th@tis T, L, p,—p, X ~
Cor —x~ cis easy.

If ¢ is ¢1 A @2, then(u,i,v) = ¢1 A @2 if and only if (u,i,v) = ¢1 and(u,i,v) = ¢2.
By induction hypothesis, we havewi,v) = ¢1 and (uwi,v) = ¢o. This implies

(Ui, V) |= ¢1. A @2.
If ¢ is ¢1V ¢, then(u,i,v) = @1V @2 if and only if (u,i,v) = ¢1 or (u,i,v) = ¢.
By induction hypothesis, we hav@iwi,v) = ¢1 or (uwi,v) = ¢o. This implies
(UVV,i,V)): ¢1\/¢2-

If ¢ is x.¢1, then(u,i,v) = x.¢1 if and only if (u,i,v[x+— di]) = ¢1. By induction
hypothesis, we haveiw;i, v[x — di]) = ¢1. This implies(uw,i, V) = x.¢1.

If ¢ is ¢1U o, then(u,i,v) = ¢1U ¢, if and only if there is a position< j < |u| such
that(u, j,v) = ¢2 and foralli <t < j, (u,t,v) = ¢1. By induction hypothesis, we have
(uw, j,v) = ¢o and for alli <t < j, (uwt,v) = ¢1. Thisimplies(uwi,v) = ¢1U ¢o.

O

Lemma 9. Let w be a data word, let i be a position in w and lebe a register valuation.
Then for everyposTPTL-formula ¢, if (w,i,v) = ¢, then there exists a position>j i in w
such thatw[0 : j],i,v) = ¢.

Proof. We prove the lemma by induction @n

If ¢ isT,L,p,—p,Xx~cor—x~ c,then(w,i,v) = ¢ if and only if (W[0 :i],i,Vv) = ¢.

If ¢ is @1/ @2, then(w,i,v) = @1 A @2 if and only if (w,i,Vv) = ¢1 and (w,i,v) = ¢2.
By induction hypothesis, there exist two positions> i and j> > i in w such that
(W[0: j1],i,v) E ¢1 and(w[0: jo],i,v) = ¢2. Let j =max{j1, j2}. By Lemma8, we
have(w[0: j|,i,v) = ¢1 and(w[0 : j],i, V) = ¢2. Thisimplies(w[0: j],i,V) = ¢1 A ¢2.

If ¢ is ¢1V @2, then(w,i, V) = ¢1V @2 if and only if (w,i,v) = ¢1 or (W,i,v) = ¢2.
By induction hypothesis, there exist two positions> i and j> > i in w such that
(WO : j1],i,v) = @1 or (W[O : j2l,i,V) = ¢2. Let j =max{js, j2}. By Lemmas, we
have(w[0: j],i,v) = ¢1 or (W[0: j],i,v) = ¢2. This implies(w[0: j],i,Vv) = ¢1V ¢2.

4.2 SAT for the positive fragments of MTL and TPTL 55

o If ¢ isx.¢1, then(w,i,v) = x.¢1 if and only if (w,i,v[x+— di]) E ¢1. By induction
hypothesis, there exists a positip i in w such tha{w[0 : j],i,v[x— di]) = ¢1. This
implies(w[0 : j],i,V) = X.¢1.

o If ¢ is ¢1U ¢y, then(w,i,v) = ¢1U @, if and only if there is a positiom < i’ < |w|
such thatw,i’,v) = ¢, and for alli <t <i’, (w,t,v) = ¢1. Suppose’ =i+ n, where
n> 1. By inductive hypothesis, there exist positiges> (i +s) in w, where 1< s<n,
such thatw[0 : jn],i+n,v) = ¢ and for all 1< s<n, (W0 : jg],i+S V) = ¢1. Let
j=max{j1,..., jn}. By Lemma8, we havgw[0: j],i+n,v) = ¢, and for all 1< s< n,
(W[O: j],i+s,V) = ¢1. This implies(w[0 : j],i,v) = ¢1 U ¢.

Theorem 11. (Finite Model Property for positivé PTL)
For everyposTPTL-formulag, if ¢ is satisfiable, then it is satisfied by a finite data word.

Proof. Let ¢ be aposTPTL-formula. Suppose that there exists a data wesdich thatv = ¢.
By Lemma9, we can know that there exists a positipin w such thatv[0 : j] = ¢. Obviously,
w(0 : j] is a finite data word. O

Since everyposMTL-formula is equivalent to posTPTL-formula, we can get the follow-
ing corollary.

Corollary 5. For everyposMTL-formula ¢, if ¢ is satisfiable, then it is satisfied by a finite
data word.

Theorem 12. For posMTL andposTPTL, finitary SAT and infinitary SAT coincide, and both
of them arez9-complete.

Proof. Itis easily seen that finitary SAT and infinitary SAT coincideposMTL andposTPTL
by Lemma8 and Theorenil

We show that finitary SAT i§(1’-complete forposMTL by a reduction from the halting
problem for two-counter machines. Note that the formgga constructed in the proof of
TheoremlOis in positive form except the formulds, for decrement instructiorlg in it. We
can construct an equivaleppsMTL-formula ¢/ = by replacingg;; with equivalent formulas.
Letl; be a decrement instruction.llf operates o€, then we can replacs; constructed in
(6) in the proof of Theorem 0 with the followingposMTL-formula

¢|,j = <_‘| j \/X>O Ci1V L,Uzero) A\ <_‘| j VX_oC1V L.Unotzero)~

56 The satisfiability problems for MTL and TPTL

If 1j operates oiC;, then we can replacg; with
¢ = (=1 V(C1U=0C2) V Yhero) A (=1 V (C1U=0C2) V YWhotzero)-

Clearly, ¢;. . is equivalent to gosTPTL-formula, so finitary SAT forposTPTL is also
>9-complete. O

4.3 SAT for the unary fragments of MTL and TPTL

In this section, we consider the satisfiability problem foe unary fragments dfITL and
TPTL, in which only the modalities andX are allowed to use. First we give the definitions
for unaMTL andunaTPTL in the following.

Definition 6. The set of unarfMTL-formulas (inaMTL) is built by the following grammar:

p=TI[p[-p|oNd[Xi¢|Fid

The set of unaryf PTL-formulas (inaTPTL) is built by the following grammar:
¢=T|p|x~c|-¢|dNd[X|Fd[x¢

In [28], non-primitive recursive complexity for finitary SAT fonaryfreezeLTL' is proved.
This result was strengthened to SAT for unéegzeL TL! without theX modality 40]. Unfor-
tunately, if we extendreezeLTL' to TPTLY, we can obtain undecidability for the satisfiability
problem, and this still holds even f@iP TL! without theX modality. We also prove undecid-
ability of SAT for unaMTL, however, it is an open problem whether undecidability aislols
for theunaMTL fragment in which th&X modality is not allowed.

Theorem 13. For unaMTL, infinitary SAT isZ1-complete and finitary SAT Eg-complete.
For unaTPTLY, this is even the case if we do not allow for thenodality.

Proof. Let M be a two-counter machine with instructions. .., 5. Define a set of proposi-

tionsP ={lo,...,In,C1,Cs}. First we show how to encode the computatiofvbinto a data
word overP. Let 1= (Jy,Co,dp)(J1,C1,d1) ... be a computation oM, where(Jp, Co,dg) =
(19,0,0), J € {lo,...,In} andc;,di € N(i > 1). We can encodd as follows:

(JO7 O)(Clv CO)<C27 dO) (Jla 1)<C17 C1+ 1)(C27 dy + 1) R

4.3 SAT for the unary fragments of MTL and TPTL 57

i.e., for each > 0, theit" configuration ofrtis encoded by the data word
(J,1)(Cq,c+1)(Co,di +1).

The data values in the positions where instruction projpost); hold are strictly monotonic
and increase progressively by exactly 1. We can use thesbearsrifor the zero test operation.
By this encoding we can know that for any two consecutive goméitions in the computation,
the subdata word

(3,1)(C1,n1.1)(C2,n21)(J,i +1)(C1,n1.2)(C2,N22),

which is the encoding of them in the data word that encodew/ttide computation, satisfies
the following conditions, wherg¢is 1 or 2:

 If JsetsCj := Cj+1, thennj > =nj+2.
* If JsetsCj :=Cj —1, thennj, =n;j 1.
« If Cj does not change, then ; = nj 1 + 1.

Hence, the data values in the positions wheggrespectivelyC,) holds are also monotonic.
We can exploit this monotonicity property to get rid of thenodality, and also th¥ modality
for unaTPTLZ.

In the following we define severahaMTL-formulas (respectivelyynaTPTL!-formulas
without the X modality) which express that a data word encodes a compatafiM prop-
erly. It is easily seen that evepnaMTL-formula without theX modality can effectively be
translated into an equivaleata TPTL -formula without theX modality. So we do not define
theunaTPTL -formulas explicitly where we have theseaMTL-formulas below. But for the
unaMTL-formulas that use th¥ modality, we will give the equivalentnaTPTL!-formulas
without theX modality.

(1) There is exactly one proposition frofithat holds in every position:

¢prop ::(\/ p)/\ /\(p_) /\ _'Q)

peP peP aeP\{p}

(2) The data values in the positions whéyé0 < i < n) holds are strictly monotonic and
increase progressively by exactly 1. Defipg: to be a conjunction of the following
two formulas.

58 The satisfiability problems for MTL and TPTL

« The data values are strictly monotonic:

(\/ li) = —F<o \/ .

0<i<n 0<i<n

* The data values increase by 1:

(V l)—=Fa \ L

0<i<n 0<i<n

(3) The sequence of all propositions in the data word is ofdha Jy, C1,C>»,J1,C1,Co,. ...

e ForunaMTL, define

Bseq := ((\/ 1i) = (XCLAXZC))A(C2—=X \/ 1).

0<i<n 0<i<n
« ForunaTPTL! without theX modality, definep,,, to be a conjunction of the fol-
lowing two formulas.
— There are two propositionS; and C, between two consecutive instruction

propositions:

(V 1) = xF[CLAF(C2AF(x=1A \/ 1))].

0<i<n 0<i<n

— There is only one propositioG; (respectivelyC,) between two consecutive
instruction propositions:

(V 1) = XF[CIAF(CiAF(x=1A \/ 1}))]

0<i<n 0<i<n
ACV 1) = XF[C2AF(CoAF(x=1A \/ 1))].
0<i<n 0<i<n

(4) The data values in the positions whée (respectivelyC,) holds are monotonic, and
are no less than the previous data values in the positionsvitn&ruction propositions
hold:

Pentdat :=(C1 — “F0C1) A (Co = =FoC»)
A(\/ li) = ~(F<0C1VF-0C»).

0<i<n

4.3 SAT for the unary fragments of MTL and TPTL 59

(5) The initial configuration iglo,0,0).

e ForunaMTL, define

Oinit == o AX=0(C1AX=0C2).

« ForunaTPTL?! without theX modality, define

Oinie := 1o AXF[C1AX=0AF(CoAX=0AF(x=1A \/ 1}))].

0<i<n
(6) For the halting instructiokhy, (i.e., halt), define

¢ha|t 3:ha|t/\¢prop/\G(¢Pr0P/_| \/ II)/\

0<i<n

F(C1AFC2) AG((Cy— —=FC1) A(Ca — —F T)).

This formula guarantees that the data word ends (i#it, n1)(C1,n2)(C2,n3), where
ni, N2, N3 € N.

(7) Ijis anincrement instructiorC; := C1 +1; go to soméy € S;.

e ForunaMTL, define

¢, =1 = [(F21 \/ 1) AX(=F2C1AF_2C1) AX?(=F1C2AF_1Cy)].
IeS;

Note that incrementing the count€g by 1 corresponds to incrementing the data
value by exactly 2 in the encoding. The value of cou@gdoes not change, and
this corresponds to incrementing the data value by exactly 1

If I'j operates oI€,, then define

¢|j = |j — [(F:]_ \/ Ik) /\X(—|F<1C1/\F:1C1) /\Xz(—'F<2C2/\F:2C2>].

IES;
« ForunaTPTL! without theX modality, define

¢|lj :IJ — \/ (¢C1/\¢C2)7

IkeS;

60 The satisfiability problems for MTL and TPTL

where

Pc, :=XF[C1AF(Xx=1Al) AX.G(C1 = x> 2) AXF(C1AX=2)],
Pc, :=XF[CoAF(Xx=1Al) AX.G(Co = x> 1) AXF(CoAXx=1)].

Note that the formuld(x = 1Alg) in ¢c, (j € {1,2}) guarantees that th; in
consideration is exactly the one betwdegrmandl,. Hence we can get rid of thé¢
modality.

If Ij operates oI€,, then define

B =15 \/ (96,705,

keS|

where

¢c, =XF[C1AF(x=1Alx) AXG(Cy — x> 1) AXF(CiAXx=1)],
¢c, =XF[CaAF(x=1Alx) AX.G(C2 = x> 2) AXF(C2AX=2)].

(8) 1 is a decrement instruction: €, = 0 then go to somég € SJ-1 elseC;:=C;1—1; go
to somel € sz.

¢ ForunaMTL, define

¢|j = (I jAF_0C1— Wrero) N (1 jA—"F_oC1— Wnotzero)

where

Yhero := X(C1A=F1C1AF_1C1) AX®(CoA—F1 CoAF_1 Co) AF_y \/ I,

|kesj1

and

Ynotzero := X(C1 AF_gC1) AX3(CoA=F 1 CoAF_1Co) AF_1 \/ Im.
ImeSJ2

Note that decrementing the value®f corresponds to not changing the data value
in the encoding.

4.3 SAT for the unary fragments of MTL and TPTL 61

If Ij operates oI€,, then define

¢|j = (I j NF_oCo — Ll’zero) A (I j A=F_oC2 — wr,'notzero)7
where

wr,'lotzero = X(Cl A _‘F<l CiNnFo1 Cl) A XZ(CZ AF—p Cz) AF=q1 \/ Im.
ImeS?
]

« ForunaTPTL?! without theX modality, define
¢, == (I AXF(X=0AC1) = @hero) A (Ij A=XF(x=0AC1) = thotzero),
where

Prero = \/ (XF[C1AF(x=1Al) AX.G(C1 — x> 1) AXF(CiAX=1)]

|kesj1

AXF[CoAF(X=1AlK) AXG(Cy — x> 1) AXF(CoAX=1)]),

hotzero = \/ (XF[C1AF(Xx=1AlIm) AXF(CyAX=0)]
ImeS?
]

AXF[CoAF(X=1A1m) AXG(Cz — x> 1) AXF(CoAX=1)]).

If Ij operates oI€,, then define
¢ = (1] AXF(X=0AC2) = @ero) A (I j A=XF(X=0AC2) = Ghotzero):
where

Gotzero =\ (XF[C2AF(X=1AIm) AXF(C2AX=0)]
ImeS?
]

AXF[CLAF(X=1AIm) AXG(C1 — x> 1) AXF(CiAX=1)]).

In the following we define two formulagi.qi, and ¢, (respectively ! . and ¢y) for
unaMTL (respectivelyunaTPTL! without theX modality) that can capture the infinite com-
putation ofM that visits the initial instructiomg infinitely often and the finite computation of

M that reaches the halting instructibalt, respectively.

62 The satisfiability problems for MTL and TPTL

ForunaMTL, define

Pinfin :=Pinit A Pprop A Plg A Pdat A Penedat A GFloA
G (¢prop A ¢seq A ¢dat A ¢cntdat A —halt A /\ ¢|j)7

0<j<n

and

Ofin :=Pinit A Pprop A Pig A Pdat A Pentdat A\ F Phale A
G (F ¢ha|t — ¢prop A ¢seq A ¢dat A ¢cntdat A /\ ¢Ij)'

0<j<n

ForunaTPTL! without theX modality, define

¢],nfin ::d)i/nit A ¢prop A ¢;eq A ¢|,0 A ¢dat A ¢cntdat NGFI oA
G (¢prop A ¢éeq A ¢dat A ¢cntdat A=halt A /\ d)llJ)7

0<j<n

and

¢flin ::¢i/nit A ¢PFOP A ¢éeq A ¢|/0 N ¢dat A ¢cntdat NF ¢ha|t A
G (F ¢ha|t — ¢prop A ¢éeq A ¢dat A ¢cntdat A\ /\ ¢I/J)

0<j<n

We see at once thai,q, and¢! . (respectivelyps, and¢/.) are satisfiable if and only if

infin

M has a recurring computation (respectively, a halting casatpan). O

Corollary 6. For unaTPTL, infinitary SAT isZ%-compIete and finitary SAT &-complete.

4.4 SAT for the pure fragment of MTL

In Theorem 5 of 7], the authors proved that infinitary SAT is undecidable fue pure frag-
ment of TPTL. In this section, we consider the satisfiability problemttoe pure fragment
of MTL. We show that both of infinitary SAT and finitary SAT are not ideble for the pure
fragment ofMTL. First we give the definition fopureMTL in the following.

4.4 SAT for the pure fragment of MTL 63

Definition 7. The set of puré/TL-formulas pureMTL) is built by the following grammar:

p=T|-¢[dND[dUid

In the theorem blew, we show that the propositions are noéssaey to get the undecid-
ability. The satisfiability problem is still undecidablefd TL even without any propositions.

Theorem 14. For pureMTL, infinitary SAT isS1-complete and finitary SAT Q-complete.

Proof. Let M be a two-counter machine with instructiohs...,l,. For each configuration
(1j,c,d) of M, wherej € {0,...,n} andc,d € N, we encode it into the following pure data
word (we put the numbers into pairs for readability of thegfyo

n+1
(0,3)(0,1)---(0,1)(0,2)(0,1)---(0,1) (0,4+4c) (0,4+d).
——— ——

(. o
v~

I Cy Co

It starts with the paif0, 3), and followed byn+ 1 pairs: one ig0,2), and the remaining are
(0,1). The pair(0,2) is the (j + 1) pair after the pai0,3). Thesen+ 2 pairs encode the
instructionl j. After that, the pair(0,4+ c) encodes the value &; and the pair(0,4+d)
encodes the value @». The encoding of a computation bf is a sequence of encodings for
each configuration of it.

In the following we define severalireMTL-formulas which express that a pure data word
encodes a computation bf properly.

(1) The pair(0,3) identifies an instruction (i.e., the beginning of the enogdif a configu-
ration):
Pinst := X=3X=_3T.
(2) Foreach instructioh; (j € {0,...,n}), define
Yj = X:3X:,3(X:1X:,1>j X:2X:,2(X:1X:,1)n_j X>aX<qX>a T,
where(lex}l)" is an abbreviation fok copies ofX_1 X__1.

(3) The data word is a concatenation of encodings of configunst

Dstruct = (\/ ij)_>x2n+8(\/ L»UJ)

0<j<n 0<j<n

64 The satisfiability problems for MTL and TPTL

(4) The initial configuration iglg,0,0):

Binit = Yo A XTI (X_aX__4)?T.
(5) For the halting instructioky, (i.e., halt), define

Bhait := X=3X—_3(X=1Xo1)"XooXo o X54X<aX54 (X T).
(6) Foranincrement instructidf: C1 := C1+1; go to soméy € Sj, define

¢|j = lrU] — (ﬁd)inst U=0 \/ Ll’k) /\¢C1/\¢C27

IkeS;
where

¢C1 ::X2n+5[(_‘xs¢inst) U:1 (XS ¢inst)]7
¢C2 ::X2n+7[(_‘x¢inst> U—o (X ¢inst>] .

If I} operates o1€,, then define:

¢Ij = l,Uj — (_‘¢inst U—o \/ L.Uk) /\d)é:l/\d)ézza

IkeS;

where

¢C1 ::X2n+5[(_‘xs¢inst) U:O (XS ¢inst)]7
¢C2 ::X2n+7[(_‘x¢inst> U=1 (X ¢inst>] .

(7) For adecrement instructidgt if C; = 0 then go to somé € Sjl elseC1:=C;—1; go
to some, € S, define

¢Ij = l,Uj _><[_‘¢inst U=4X3 ¢inst — (_‘d)inst U—o \/ lpk> A ¢zero]/\

|kesj1

[_‘¢inst U>4X3 ¢inst — (_‘d)inst U=0 \/ Lllm) A ¢notzero]>a
ImeSj2

4.5 SAT for other fragments of MTL and TPTL 65

where

¢zero = X2n+5[(_‘x3¢inst) U—o (X3 ¢inst)] A X2n+7[(_‘x¢inst> U-o (X ¢inst>]7
¢notzero = X2n+5[(_‘x3¢inst) U:—l (X3 ¢inst>] A X2n+7[(_‘x¢inst> U:O (X ¢inst>] .

If I} operates o1€,, then define:

¢|j = L»U] _><[_‘¢inst U:4X ¢inst — <_‘¢inst U:O \/ L.Uk) A ¢zero]/\

IkeSjl

[_‘¢inst U>4X¢inst — (_‘¢inst U:0 \/ me) A ¢r/10tzero]>7
ImeS?

where

¢r/10tzero = X2n+5[<_‘X3¢inst) U—o (Xs ¢inst)] A X2n+7[<_‘x¢inst) U= (X ¢inst)]~

We define twopureMTL-formulase;,.q, and ¢y, in the following:

Binfin := Binit A D1 A Dstruct A GF o AG (dstruce A\ @),

0<j<n

Ofin = Binit A\ Pig A Pstruct AF Prhaie AG (F Phaie — Pstruct A /\ ¢Ij)-

0<j<n

It is easy to check thap;,.q, (respectivelygs,) is satisfiable if and only iM has a recurring
computation (respectively, a halting computation). O

4.5 SAT for other fragments of MTL and TPTL

In this section, we consider the satisfiability problem fome other fragments i TL and
TPTL. We show that SAT is still undecidable even for unary MTL witfo propositions, but
for existentialTPTL, SAT isNP-complete.

4.5.1 The satisfiability problem for unary MTL with two propo sitions

By an observation of the proof for Theorem 5 if},[we see that no until modality is used in
it. It means that this theorem also holds for the pure unagrfrent ofTPTL. It is of interest

66 The satisfiability problems for MTL and TPTL

to consider the satisfiability problem for the pure unargfment ofMTL. In Theoreml3 and
Theorem14, we show that SAT is undecidable fonaMTL andpureMTL, respectively. But
in the proofs of them, we either use propositions (the nurobgropositions depends on the
number of instructions, which is not fixed) or use the untildality. In the following we show
that two propositions are enough fimraMTL to get the undecidability.

Theorem 15. For the fragment ofinaMTL with at least two propositions, infinitary SAT is
Z%-complete and finitary SAT &-complete.

Proof. First we give a proof for the theorem that uses four propws#j then we show how to
reduce the number of propositions to two. Bet {Zero, Instr,C1,C>}. Suppose thal is a
two-counter machine with instructiohg . . ., In, andrr= (1 j,, Co,do) (I j;,C1,d1) (I j,,C2,). ..

is a computation oM, where(l j,, Co,do) = (10,0,0), ji € {0,...,n} andc;,d e N(i > 1). We
encoderrinto a data word ovelP as follows:

(Zero,0)(Instr,0)(C4,0)(C»,0)
(Zero,n), (Instr,n+ j1),(C1,n+n-¢1)(Cz,n+n-dh)
(Zero, 2n)(Instr,2n+ j2)(C1,2n+n-c2)(Cz,2n+n-dy)

i.e., for each > 0, theit" configuration is encoded by
(Zero,i-n), (Instr,i-n+ ji),(Cq,i-n+n-¢)(Cai-n+n-d).

The data values in the positions whé&ero holds are strictly monotonic and increase progres-
sively by exactlyn. We use these numbers for the zero test operation. If co@ntee {1,2})
is increased by 1 (decreased by 1, not changed, respe(titlein the corresponding data
value in the encoding is increased by @ot changed, increased by respectively). Hence,
the data values in the positions whete (respectively,C,) holds are also monotonic. We
exploit this monotonicity property to get rid of themodality.

In the following we define severahaMTL-formulas which express that a data word en-
codes a computation & properly.

(1) There is exactly one proposition frofthat holds in every position:

Pprop ’:(\/ p) A /\(p—> /\ —0).

peP peP geP\{p}

4.5 SAT for other fragments of MTL and TPTL 67

(2) The sequence of all propositions in the data word is ofah&
Zero, Instr,C,C,, Zero, Instr,C,Co,...:

- 2 3
seq *— .
Pseq := (Zero — Xlinstr AX“C1 AX’C) A (Ca2 — XZero)

(3) The data values in the positions whe&ero holds are increasing exactly loy

Pdat := Zero — (F_nZero A —F_nZero).

(4) The data value in the position whdrestr holds encodes an instructiop(0 < j < n):

¢instr = Zero — X[Qn] Instr.

(5) The data values in the positions whée (respectivelyC,) holds are monotonic, and
are no less than the previous data values in the positionseeeo holds:

Pentdat :=(C1— =(F<0C1)) A(C2 = —(F<0C2))
AN (ZGI’O — —|(F<o Ci1VF_o Cz)).

(6) The initial configuration iglo,0,0):

Dinit := Zero A X_g(Instr AX_g(C1AX—-0C>)).

(7) For the halting instructioh, (i.e., halt), define
Phalt =20 A Pprop A X=n[INStr A Pprop A X(Pprop A C1AX(Pprop A C2 A—=XT))].

This formula says that the data word ends wilero,d)(Instr,d +n)(C1,d1)(Co, d2),
whered,dq,d> € N.

8) For an increment instructidn: C; := C1+ 1; go to somdy € S;, define
j j

¢, :=Zero AX_jlInstr — (F_n(Zero A \/ X_Instr) A dc, Adc,),
IkeS;

68 The satisfiability problems for MTL and TPTL

where

¢c, =X*(C1 AF_pnC1 A—F_2,C1),
dc, =X3(Ca AF_nCa A—FnCa).

If I operates oI€,, then define:

¢, :=Zero AX_jlInstr — (F_n(ZeroA \/ X_iInstr) A ¢, Adc,),
IkeS;

where

¢él ::XZ(C]_ VAN F:n Cl A _'F<n C1)7
¢c, :=X3(CaAF_onC2 A —F 2, Cy).

(9) Foradecrement instructidgt if C; = 0 then go to somé € Sjl elseC1:=C;—1; go
to some, € S, define

¢|j :=Zero A X—jInstr —

[(F.oC1— F_n(ZeroA \/ X_xINStr) A ¢zero) A\
||(€SJl

(<F—0C1— F_n(Zero A \/ X_mInstr) A notzero)],
ImeS?
]

where

Brero == X?(CL AF_nC1 A=FnC1) AX3(C2AF_nCa A =FnCy),
Brotzero := X2(C1AF—_0C1) AX3(Ca AF_nCa A =F 5 Co).

If I} operates oi€,, then define:

¢\, :=Zero AX_jInstr —
[(FoC2 — F—n(Zero A \/ X_xINStr) A ¢zero) A

|kesj1

(_‘F:O C2 — F:n(zero A \/ X:m Instr) A ¢r,10tzero>]7
ImeS?
]

4.5 SAT for other fragments of MTL and TPTL 69

where
B! irere i= X?(C1 AF—nC1 A—=FnC1) AX3(Ca AF_oC)).

We define two formulag;,.q, andg¢s, in the following:

Pinfin :=Pinit A\ Pprop A Pio A Pdat A Pentdat A GF (Zero AX_glnstr) A
G (¢prop A ¢instr A ¢seq A ¢dat A ¢cntdat A /\ ¢Ij)7

0<j<n

and

Pfin :=Pinit /\ Pprop /A D1 A Pdat A Pentdat A F Phale A
G (F ¢ha|t - ¢prop A ¢instr A ¢seq A ¢dat A ¢cntdat A /\ ¢Ij)'

0<j<n

It is easy to check thap;,., (respectivelygs,) is satisfiable if and only iM has a recurring
computation (respectively, a halting computation).

We next show how to reduce the number of propositions to tvei.plL.g be two proposi-
tions. We can replace the propositiatesro, Instr,C1,C» by =pA—q,pAQ, PA ~Q,7PA(
in the formulasg;nsn and ¢, respectively, and remove the formupg,.,. We can get two
new formulasg/ . and¢: . Then, we replac&ero,Instr,C1,C» by 0,{p,q},{p},{qa} in
the data word, respectively. It is easily seen th@at and¢;. can also capture the recurring
computation and halting computationdf over the new data word, respectively. O

4.5.2 The satisfiability problem for existential TPTL

In this subsection, we consider the satisfiability probldrthe existential fragment of PTL,

in which we only use th& andX modalities, and the negation operatei) {s only applied

to atomic propositions and constraints- ¢. This fragment has also been considered for
MTL and TPTL over monotonic timed wordslB]. In this setting, SAT for both logics is
NP-complete. Here, we show that this applies also to the gatfinon-monotonic data words.
Without explicit state, all data words in this subsection famite.

Definition 8. The formulas of the existential fragment©PTL (extTPTL) is defined by the
following grammar:

¢=T[L[p[-p|x~cC[=X~C[PNP |V [XP[FP|x

By a reduction from the propositional satisfiability pralblewe see at once that SAT for
extTPTL is NP-hard. Actually, we can show that SAT for the fragmeneafTPTL with two

70 The satisfiability problems for MTL and TPTL

register variables and without any propositions is $tb-hard. We use a reduction from the
subset sum problem, which is defined as:

Input: A sequencey,...,an, b € N of binary encoded numbers.

Output: yes if 3{by,...,bm} C {ay,...,a:} such thaly{", bj = b, no otherwise.
It is well known that the subset sum problemNiB-complete 77].

Proposition 12. For the pure fragment afxtTPTL?, SAT isNP-hard.

Proof. We prove the proposition by a reduction from the subset swiblem. Letay,...,a,,b
ba an instance of this problem, we construct the formuweE @1, where¢; (1 <i < n) is
defined inductively by

b — (x=0Vvx=g)AXF¢iy1 ifl<i<n,
"l x=0vx=a)Ay=b ifi=n.

If x.y.F¢1 is satisfiable, then there is a data werduch thatv = x.y.F¢1. We define a subset
Sof {ay,...,an} such that for each (1 <i <n), g is in Sif and only if the constraink = g
holds when we evaluatey.F¢, overw. By the constrainy = b we can see that the sum of
all numbers irSis b. Conversely, ifay,...,an, b is a positive instance, it is easy to construct a
data wordw such thatv = x.y.F¢;. O

Let ¢ be anextTPTL-formula. We define the sét(¢) for ¢ such that it contains exactly
all those formulas that can be obtained frgniby resolving the non-determinism induced by
the occurrences of the boolean operatoMore preciselyl (¢) is defined inductively by the
following rules:

s (¢)={¢}ifpisT, L, p,~p,Xx~coOr—-x~c.
C(¢1A02) :={Yr | P €T (¢1) andyp € T(¢2)}.
F(¢1V ¢2) :=T(¢1) UT(¢2).

F(X.91) == {xyn [T ($1)}.

F(Fo1) :={Fyr| el (¢1)}.

F(X¢1) ={X¢r 1 eT(¢1)}.

Let ||¢|| be the size ob, i.e., the number of all symbols ip. It is easily seen thdi(¢) is a
finite set (maybe exponentially larger with respect|td|), and for each formulg in I'(¢),

Wl <lell.

4.5 SAT for other fragments of MTL and TPTL 71

Lemma 10. Let w be a data word. Then for evesyt TPTL-formula ¢, every position i in w
and every register valuation,

(W,i,v) = ¢ if and only if (w,i,v) = for somey € ' (¢).

Proof. We prove the lemma by induction @n It is easy for the cases thétis T, L, p,—p,
X~ COr =X~ C.

o If ¢ isP1A @2 then(w,i,v) = g1 A @2 if and only if (w,i,v) = ¢1 and(w,i,v) = @2, by
induction hypothesis, if and only {fw,i,v) = g1 for someyn € I'(¢1) and(w,i,v) =
W for someyn € I'(¢2), if and only if (w,i,v) = Y1 A Y for someyn € I'(¢1) and
Yo € T'(¢2). By the definition ofr (¢1 A ¢2), we know thatyn A gn € T (d1 A ¢2).

If ¢ is ¢1V ¢, then(w,i,v) |= @1V @2 if and only if (w,i,V) = ¢1 or (Wi, V) = ¢, by
induction hypothesis, if and only {iv,i, v) = (1 for someyy € I'(¢1) or (W,i,V) = Yo
for someys, € I'(¢2). By the definition ofl (¢1V ¢2), we know thatyy andys, are in

F(p1V¢2).

If ¢ is x.¢1, then(w,i,v) &= x.¢1 if and only if (w,i,v[x+— di]) &= @1, by induction
hypothesis, if and only ifw,i,v[x +— di]) = @ for someyn € I'($1), if and only if
(W,i,V) = x.4n for someyn € ' (¢1). By the definition of (x.¢1), we know thak.y, €
F(Xx.¢1).

If ¢ is F¢q, then(w,i,v) = F¢q if and only if 3j > i such that(w, j,v) = ¢1, by
induction hypothesis, if and only ij > i such tha{w, j,v) |= g» for someys € ' (¢1),
if and only if (w,i,v) = F (1 for someyy € I'(¢1). By the definition ofl (F ¢1), we
know thatF g € ' (F ¢1).

If ¢ isX @1, then(w,i,v) =X¢qifandonlyif (w,i+1,v) = @1, by induction hypothesis,
if and only if (w,i +1,v) |= ¢y for somey; € I'(¢1), if and only if (w,i,v) = Xy for
somey € I'(¢1). By the definition off (X ¢1), we know thaX ¢ € I' (X 1).

O

By the definition ofl (¢), all formulas in it do not contain any occurrence\af We say

that anextTPTL-formula issimpleif it does not contain any occurrence gof Let ¢ be a
simpleextTPTL-formula. We defineub(y) to be the multiset of all subformulas @f, where
two syntactically equally subformulas occurring in di#fat positions inp are considered as
different. Furthermore, lefal be the set of all register valuations.

72 The satisfiability problems for MTL and TPTL

Definition 9. Let w be a data wordi, a position inw, let vy be a register valuation, and let
i be a simplexxtTPTL-formula. A mappingd : sub(y) — ({0,...,|w|} x Val) is awitness
mappingfor (w,i,vp) andy, if it satisfies the following conditions:

(1) 6(y) = (i,vo).
(2) If g A2 € sub(Y) andB(Y A Y2) = (j, V), thenB(yn) = (j,v) andB(y2) = (j,V).
(3) If Fyr € sub(y) andO(F) = (j1,Vv), thenB(yr) = (j2,v) for somejo > ji.

(4) If Xy € sub(y) andO(Xyn)

(i,v), then@(yn) = (j+1,v).
(5) If x.¢1 € sub(¢) andB(x.yn) = (j,v), thenB(Yn) = (j,v]x— dj)).
(6) If Y1 € sub(y), wherey, is T, L, por—-p,and8(yYr) = (j,v), then(w, j,v) = .

(7) If Y € sub(y), wherey isx~ cor—x~ c,andd(y1) = (j,v) then(w, j,v) |= .

Intuitively, a withness mappin§ captures the satisfaction relation between the data word
and the formulap, i.e., if Y1 € sub(y) andB(yn) = (j,v), then(w, j,v) = ¢1. The witness
mappingd is preserved under subformulas., if ; is a subformula ofy and6(y») = (j, V'),
then the restriction o to sub() is also a witness mapping fow, j, v') andys.

Lemma 11. For every triple(w,i, vp), where w is a data word, i is a position in wgp is a
register valuation, and every simpéetTPTL-formula g, (w,i,vo) = ¢ if and only if there
exists a witness mappir@)): sub() — ({0,...,|w|} x Val) for (w,i, vg) and .

Proof. If (w,i,Vvp) = @, then there exists a withess mappiégas is easy to check. Con-
versely, suppose that there exists a witness mapifog (w, i, vo) andy, we shall show that
(w,i,vo) = . We now proceed by induction ap. The proof is easy for the cases thjais
T,L,p,—p,X~ COr —x~C.

o If Yisyr Ao, then(w,i, Vo)): yn A yp if and only if (W,i, Vo)): Un and(w,i, Vo)): Wo.
By the conditions 1) and @) above we havé(y;) = (i, vo) and@(y») = (i,vo). Note
that @ is preserved under subformulas. Hence, by induction hygsighwe can obtain

(W,i, Vo) = g1 and(w,i, Vo) = Yo.

o If Yisx.yn, then(w,i,vo) = x.¢x if and only if (w,i, vo[x — di]) = 1. By the condi-
tions (1) and 6) above we havé (Y1) = (i, vo[x — di]), and by induction hypothesis,
we can obtainiw, i, Vo[x — di]) = 1.

4.5 SAT for other fragments of MTL and TPTL 73

o If Y is Fyn, then(w,i,vg) = Fyy if and only if 3] > i such that(w, j,vo) = 1. By
the conditions) and @) above we havé () = (j, Vo) for somej > i, by induction
hypothesis, we can obtaiw, j, vo) = (1 for somej > i.

o If Y is Xy, then(w,i,vp) = X if and only if (w,i + 1, vp) = 1. By the conditions
(1) and @) above we havé (1) = (i +1,vp), and by induction hypothesis, we can
obtain(w,i+ 1, vg) = (.

O

In Theoreml11 we show that if a positivd PTL-formula is satisfiable, then it is satisfied
by a finite data word. In the following we show that for a simpteT PTL-formulay, if ¢ is
satisfiable, then it is satisfied by a data word whose lendtbusided by |y||.

Lemma 12. Let ¢ be a simplextTPTL-formula. If ¢ is satisfiable, then it is satisfied by a
data word u such thau| < ||(]].

Proof. Suppose thatp is satisfiable, then there is a data wasdsuch thatw = ¢. By
Lemma1ll, there is a witness mappirg: sub() — ({0,...,|w|} x Val) for (w,0,0) and
Y. Letm:=io,iy,...,in be a sequence of numbers such that 0,ij <ij;1(0< j<n), and
a numbeii is in rTif and only if there exist a formulg < sub(y) and a valuatiorv such that
6(®) = (i,v). Letwr be the data wor@P,,, di,) (R, di,) - - (R,,di,), where(R,,di;) (0< j <n)
is the(ij)th pair inw. By the definition off, we see that the lengtiv,| of wy is less than or

equal to the sizgy|| of . If we show thatwy,0,0) = ¢, then the lemma follows. We prove
it by showing that a more general claim:

If @ € sub(y) andB(@p) = (ij,Vv), then(wx, j,V) = @.

We prove the claim in a bottom-up process: Suppose thatdistfol all subformulas of, we
show that it also holds fop.

o If @is p,—porx~ c, by the definition of9, the claim holds foxp.

o If @is YAy and 8(P1 A yp) = (ij,v), thenB(yn) = (ij,v) and 8(yn) = (ij,Vv).
By induction, we havéwyg, j,v) = 1 and(wy, j,V) = @o. This implies(wy, j, V) =
Y Ao

o If @isx.yn and@(x.gn) = (ij,v), thenB(yn) = (ij,v[x — d;]). By induction, we have
(Wr, j, V[x+ di,]) = gu. This implies(wy, j,v) = X. ¢

74 The satisfiability problems for MTL and TPTL

* If isFyy andB(Fyn) = (ij,v), thenB(yy) = (ij,v) for someij > ij. By induction,
we have(wy, j’,v) = (1. By the definition ofrr, we know thatj’ > j. Hence, we have

(WTD j,V)): le

o If @is Xy and (X) = (ij,v), thenB(y1) = (ij +1,v). By the definition ofrr
we can know thatj +1 =ij+1. Hence,8(yn) = (ij+1,v). By induction, we have
(WTD J + 17 V)): L,Ul. This imp”es(Wm j7 V)): le

O

Corollary 7. Let ¢ be anextTPTL-formula. If ¢ is satisfiable, then it is satisfied by a data
word w such thatu| < ||¢||.

Proof. If ¢ is satisfiable, then by Lemnid), there exists a simpkxtTPTL-formulay €T (¢)
such thatyy is also satisfiable. By Lemm&2, there is a data word such thatu = ¢ and
lul < ||g||. By LemmalOagain, we have = ¢. Clearly,|u| <||®]|. O

Theorem 16. For extTPTL, SAT isNP-complete.

Proof. The lower bound for this problem follows by Propositiba For the upper bound, we
give two algorithms that can decide this probleniii in the following.

Let ¢ be anextTPTL-formula, and lein = ||¢||. By Corollary 7 we can know that it
is satisfiable, then it is satisfied by a data word whose leiggiftounded byn. We defineP
to be the set of all propositions occurring¢n and defineval’ to be the set of all mappings
from {x¢,...,%} to {do,...,dn_1}, Wherex, ..., are all register variables occurring §n
anddo, . ..,dn_1 are auxiliary variables.

For technical reasons, we assume that all constraingsane in positive form, i.e., the
negation operator-) can only be applied to atomic propositions. Note that we reqtace
every—(x ~) by an equivalent constraint or a disjunction of two constsie.g~(x< a) =
(x>a),~(x>a)=x<aand—-(x=a)=(x>avx<a).

Algorithm 1.:

1. Guess aformulg/inT(¢).
2. Guess a sequence of paiPs, do) (P1,d1). .. (Pr_1,dn_1), whereR, C P(0<i < n).

3. Guess a mappin@: sub(y) — ({0,...,n—1} x Val’).

4.5 SAT for other fragments of MTL and TPTL 75

4. Check whethef) satisfies the conditiong) - (6) in Definition9 for the witness mapping,
rejectif no.

5. Build a set of linear inequalitieg” such that ifx ~ ¢ € sub(¢/) and8(x ~ ¢) = (i, V'),
wherev’(x) = dj, thend; —dj ~ cisin .

6. Check whethe¥ has a solution oi¥, acceptif yes, otherwiseeject

In Step 1, guessing a formulafi{¢) can be done in polynomial time because it amounts
to select which disjunct to remove frogy V ¢, for each subformula, Vv ¢o of ¢. Itis
easy to check that Steps 2 - 5 can be done in polynomial timeallizi we need to show
that whetherg has a solution olN can be checked in polynomial time. The set of linear
inequalities# can be treated as a system of difference constraints (séers24.4 in R7)).

By Theorem 24.9 in77], we can use the Bellman-Ford algorithm to check whethestesy of
difference constraints has a feasible solution, and Beltaard algorithm runs in polynomial
time. If the algorithm accepts, then it means that there igta @ord that satisfieg. By
Lemmal0, we know that this data word also satisfies

LetC = max{|c| | x~ cis a constraint irp }. By Propositiors in Chapter3, we can know
that if ¢ is satisfiable, then it is satisfied by a data word whose ddteesare all bounded by
C-||¢||- Using this fact we give another algorithm that computesdidua word directly ifg
is satisfiable. LeVal” be the set of all mappings frofixy, ..., xc} to {0,....C-||¢]|}.

Algorithm 2:

(1) Guessaformulg/inT(¢).

(2) Guess a data womt := (Py,dp)(Pi1,d1) ... (Ph-1,dn—1), whereR C P andd; <C-||¢||
foreach O<i < n.

(3) Guess a mappin@ : sub(y) — ({0,...,n—1} x Val").

(4) Check whetheB is a witness mapping fofw,0,0) and (), acceptif yes, otherwise
reject

If the algorithm accepts, then by Lemrvd we can know thawv = ¢, and by Lemmad.0
we havew |= ¢. O

76 The satisfiability problems for MTL and TPTL

Define the existential fragment MTL (extMTL) to be the set oM TL-formulas built by
following grammar:

¢p=T|L[p|l-Plord[¢Ve|Xid]|Fi¢

It is obvious that evergxtMTL-formula is equivalent to aext TPTL-formula. So we can get
the following corollary.

Corollary 8. For extMTL, SAT isNP-complete.

Proof. The lower bound can be obtained by a reduction from the propoal satisfiability
problem. The upper bound follows from Theoré O

4.6 Summary of satisfiability results

In this section, we give a summary of the computational cexipl of satisfiability for dif-
ferent fragments oMTL and TPTL in Table4.1 On finite data words, the satisfiability of
most fragments oM TL andTPTL is Z‘f-complete. On infinite data words, the satisfiability of
most fragments oMTL andTPTL is Z%-complete, whereas for the positive fragments is still
Z(l’-complete. Additionally, for the unary fragments, the saemilts can also be obtained for
unaTPTL where only one register variable and thenodality are allowed, and famaMTL
where at most two propositions are allowed. For the exigteinagment ofMTL andTPTL,
satisfiability over both finite and infinite data wordd\NB-complete.

unaMTL,
unaTPTL

extMTL,
extTPTL

posMTL,

MTL posTPTL

pureMTL

finite

>9-complete

>9-complete

>9-complete

>9-complete

NP-complete

infinite

z1-complete

z1-complete

z1-complete

59-complete

NP-complete

Table 4.1 Computational complexity of satisfiability

Chapter 5

The path checking problems for MTL and
TPTL

In this chapter, we study the complexity of path checkingopgms forMTL andTPTL over
data words. In Sectioh.1we prove several upper complexity bounds, and in Se&idnve
prove several lower complexity bounds. In Sectiof) we extend these results to deterministic
one-counter machines. For a logi¢ and a class of data word3, we consider theath
checking problem foiZ overC:

Input: A data wordw € C and a formulap € .Z.
Output: yes if w= ¢, no otherwise.

Data words can be (i) finite or infinite, (ii) monotonic or norenotonic, (iii) pure or non-
pure, and (iv) unary encoded or binary encoded. All infindgadwords in this chapter are
of the form Ul(uZ)i’k’ whereus, U, are finite data words ankle N, unless explicitly stated
otherwise. For complexity considerations, it makes a cifiee, whether the numbetsn
constraintx ~ c are encoded in binary or unary notation, and similarly ferititerval borders
in MTL. We write TPTL{,, TPTL,, andMTL, (respectively,TPTL, TPTLp, andMTLy) if
we want to emphasize that numbers in constraints are encodedry (respectively, binary)
notation. All upper bounds that hold for a logi® where constraint numbers (or interval
borders) are encoded in binary notation also hold_#1f constraint numbers (or interval
borders) are given in unary notation. Conversely, all lobeunds that hold forZ where
constraint numbers (or interval borders) are encoded imyunatation also hold forZ if
constraint numbers (or interval borders) are given in lyimatation.

78 The path checking problems for MTL and TPTL

5.1 The upper complexity bounds

In this section we prove our upper complexity boundsTeirL, TPTL" andMTL. All upper
bounds that hold for infinite (respectively, binary encgdéddta words also hold for finite
(respectively, unary encoded) data words.

5.1.1 Polynomial space upper bound for TPTL

For technical reasons, we definestative semantictor TPTL in the following.

Definition 10. Let w be a data word ande N be a position inw, and letd be a register
valuation. The relative satisfaction relation foPTL, denoted by="*, is defined as follows:

. (Wi, &) =T,

« (wi,8) =" pifand only ifpe P,

o (Wi, &) =" —¢ if and only if (w,i,v) £ ¢.

o (Wi, &) =" 1A o2 if and only if (w;i, v) =" g1 and(w,i,v) = ¢,.

* (w,i,0)):“e' $1U¢, if and only if there is a positiofwith i < j < |w| such tha{w, j, 5+
(dj —di)) =" ¢2, and for all positions with i <t < j, (W,t,5+ (ck —di)) =" ¢1.

« (w,i,d) =" x~ cifand only if 5(x) ~ c.
e (Wi, &) =" x.¢ if and only if (w,i,d[x — 0]) =" ¢.

We say that data wond satisfies formula under the relative semantics, writter="e' ¢,
if (w,0,0) |= ¢, where0 denotes the valuation function that maps all register tag#ato 0.
We show below thaw |= ¢ if and only if w ="' ¢, which allows to work with the relative
semantics. Its main advantage is the followingTIATL, a constraink ~ cis true under a
valuationv in a position with data value, if d — v(x) ~ cholds. In contrast, under the relative
semantics, a constrairt~ ¢ is true under a valuatiod, if 4(x) ~ c holds.

Lemma 13. Let w be a data word and; de the data value in position i, and &t v be two
valuations. Ifd(x) = di — v(x) for all register variables x, then for allPTL-formulasé¢,

(W,i,v) = ¢ if and only if (w,i,6) =" ¢.
Proof. We prove this lemma by induction on the formgla

« If ¢ is T or a propositiorp, then(w,i,v) = ¢ if and only if (w,i, &) =" ¢.

5.1 The upper complexity bounds 79

If ¢ is—@1, then(w,i,v) =—¢y ifand only if (w,i,v) j= ¢1 if and only if (w,i, &) "' ¢1
if and only if (w,i,5) =" —¢1.

o If ¢ is 1@ then(w,i,v) = 1A @2 if and only if (Wi, v) = @1 and(w,i, v) = ¢, if
and only if(w,i,) =" ¢1 and(w,i, 8) =" ¢ if and only if (w,i,d) =" ¢1 A ¢o.

o If § =x~c, then(w,i,v) =x~ cifandonly ifd; — v(x) ~ c. Sinced(x) = di — v(x),
the latter holds if and only i(x) ~ c, if and only if (w,i,) =" x ~ c.

o If ¢ =x.¢1, then(w,i,v) = x.¢1 if and only if (w,i, v[x — di]) = ¢1. Sinced; — v[x—
diJ(x) =0, d[x— O](x) =0, andd[x+— 0](y) = di — v[x+— di](y) for all y # x. By induc-
tion hypothesis, the latter holds if and only(if i, 5[x — 0]) ="' ¢4, i.e., (w,i,) ="
X.¢1.

o If ¢ = p1Ugo, then(w,i,v) = ¢1U¢2 if and only if there is a position with i < j <
lw| such that(w, j,v) = ¢2 and (w,t,v) |= ¢ for all positionst with i <t < j. By
induction hypothesis, this holds if and only if there is aifios j with i < j < |w| such
that(w, j, 6+ (dj — di)) =™ ¢ and (w,t, 5+ (dk —di)) =" ¢4 for all positionst with
i <t < j. Thisis equivalent tgw,i, &) ="' ¢p1U,.

O

Corollary 9. For all data words w and allfTPTL-formulas¢, we have w= ¢ if and only if
W):rel ¢

Lemma 14. Let w be a data word, and let& N. Then for all register valuations, all
TPTL-formulas¢ and all positions i in w(w,i,Vv) = ¢ if and only if (W,i,V+K) = ¢.

Proof. Given an arbitraryT PTL-formula¢, suppose € TPTL"S, wherer e NandSC Zis a
finite set. By Lemma in Chapter3, we havew;i, V) =K (W, i, v +K) for every valuatiorv,

everyi € N and everyn € N. This implies(w,i, V) |= ¢ if and only if (W;y,i,v+K) =¢. O

For the next two lemmas, we always assume thandu, are finite data words > 0,
Wi=U1(Up)%,, i > |ua|, andgis aTPTL-formula.

Lemma 15. For all register valuationsd, (w,i,d) ="' @ if and only if (w,i + |u|, 8) =" .

Proof. Let d be a register valuation. Define two register valuations' by v(x) = dj — 3(X)
andv’(x) = v(x) 4 k for every register variablg. By Lemmal3, we have(w,i,d) =" ¢ if
and only if (w,i,v) |= @, and(w,i + |up|,) =" @ if and only if (w,i + |up|,V') = @, since
V/(X) = V(X) +k = di — 8(x) +k = di |y, — 6(x). We prove thaiw,i,v) = ¢ if and only

80 The path checking problems for MTL and TPTL

if (w,i+ |uz],V) E @; the lemma then follows. By Lemm#4, (w,i,v) = @ if and only if
(Wik,i,V+K) = @. Sincei > |uz|, we havew,y]i ;] = w[(i + |uz]) :]. So the latter holds if and
only if (w,i+ |uz|,V’) = . O

For aTPTL-formulag and a finite data word we define:

Cp = max{ceZ|x~ cisaconstraintinp} (5.1)
My = max{d; —d;j|d; andd; are data values im} > 0 (5.2)

We may always assume thag > 0 (we can add a dummy constraint 0). Note that in the
infinite data word\/‘fk, for all positionsj > i we haved; — di + M, > 0 (where as usual is
the data value in positiol).

Lemma 16. Let & be a register valuation and define the register valuat®@rby d'(x) =
min{&(x),Cqy+ My, + 1} for all x. For every subformuld of ¢, we havew,i,) =" 6 if and
only if (w,i,&") ="' 6.

Proof. Define two register valuationg, v’ by v(x) = di — (x) and v'(x) = d; — &' (x) for
every register variable. Let j > i. For every constraint ~ c in ¢, by Lemmal3, we have
(W, j,v) [z x~ cifand only if (w, j,dj — di + &) =" x ~ cif and only if (d; — dj + &) ~ ¢, and
(W, j,V) = x~ cifand only if (w, j,dj — di + &') =" x ~ cif and only if (dj — di + &') ~ c.
We prove thatfw, j,v) = x ~ cif and only if (w, j, V') = x ~ ¢, then by Lemm&5, this
lemma follows. 1fd(x) < Cy+ My, + 1, thend’(x) = d(x). So assumé(x) > Cy+ My, + 1,
and hence’(x) = Cy+My, +1. Thend; —d; +6(x) > dj —di +Cyp+ My, +1>Cyp+1 and
dj —di +d'(x) =d; —di +Cy+ My, +1 > Cy+ 1. This implies(d; —d; + 6) ~ cif and only
if (dj —di+0’") ~ csincec < C,,. O

We can now prove &S PACE upper bound for our most general path checking problem:
path checking folf PTLy over infinite binary encoded data words.

Theorem 17.Path checking fof PTL, over infinite binary encoded data words isRSPACE.

Proof. Fix two finite data wordauy,uy, a numberk € N and aTPTL-formula ¢, and let

w = U(U2)¥,. We show that one can decideAPTIME (= PSPACE) whethew |= ¢ holds.
We first deal with the casle > 0 and later sketch the necessary adaptations for the (simple
casek = 0. Without loss of generality, we further assumgigo be in negation normal form,
i.e., negations only appear in front of atomic propositioRgcall that we defing, R ¢ :=
—(—¢1U—¢2). So we can use the release oper&to translate & PTL-formula into negation
normal form. Defin&C := Cy andM := My, by (5.1) and 6.2).

5.1 The upper complexity bounds 81

The non-trivial cases in our alternating polynomial timgalthm are the ones for the
formulas of form¢,U¢, and@,R¢@.. Consider a positionand a register valuatiod. We have
(Wi, 8) =" ¢1U¢; if and only if there existg > i such tha(w, j, 6 +d;j —di) ="' ¢, and for
alli <t<j, (Wt,d+d —d) =" ¢;. Becausav is an infinite word,j could be arbitrarily
large. Our first goal is to derive a bound pnSuppose that & i < |uz| 4 |up| — 1; this is no
restriction by Lemma.5. Define

ms = min{d(X) | xis a register variable ig}, (5.3)
my = max{d —d; | d andd; are data values imu,} and (5.4)
mp; = min{d|dis adata value in}. (5.5)

Let n > 2 be the minimal number such that +my+ (n—1)k—di > C+M+1, i.e. (here
we assumé > 0),

(5.6)

n=max{2, [C+M+l+fi —m5—mz"‘ +1}.

Leth > |u1| + (n—1)|uy|, then for every register variablefrom ¢ we have
O(X)+dn—di >ms+dh—di >ms+mp+(n—1)k—di >C+M+1.
By Lemmasl5and16, for everyh > |uz| + (n— 1)|up| we have
(Wh, & +dh— i) =™ 92 & (W,h+ Uzl 8+ Chs oy —) " 62

Therefore, the positiopwitnessing(w, j, 6 +d;j —di) =" ¢, can be bounded by | +n|ug).
Similarly, we can get the same result fprR¢o.

We sketch an alternating Turing machifi®l that, given al PTLy-formulay and a data
word w, has an accepting run if and onlyw = ¢. The machineTM first computes and
stores the valu€ + M + 1. In every configurationTM stores a tripl€i, d, ¢), wherei is a
position in the data word) is a register valuation (with respect to the relative semajtand
¢ is a subformula ofy. By Lemmal5, we can restrict to the intervallO, |u| + |uz| — 1],
and by Lemmal6, we can restrict the range @&fto the interval—m, max{m;,C+M + 1}].
The machinelM starts with the triplg0,0, @), where0(x) = 0 for each register variabbe
Then, TM branches according to the following rules, where we defieginctionp : N —
[0, [ua| + |uz| — 1] by

82 The path checking problems for MTL and TPTL

z if z< |ugl,
p(Z){

((z— |uz])mod|up|) +|uz| otherwise.

If ¢ is of the formT, L, p, =p, orx ~ ¢, then accept ifw,i,5) ="' ¢, and reject otherwise.
If ¢ = ¢1 A @2, then branch universally t@, d, ¢1) and(i, d, ¢2).

If ¢ = @1V @2, then branch existentially t@, d, ¢1) and(i, d, ¢2).

If @ =X.¢1, then go ta(i, d[x — O], ¢1).

If ¢ = ¢1U¢@>, then first compute the valueaccording to %.3), (5.5), and 6.6), and then
branch existentially to each valuec [i + 1,|us| + n|uy|], and finally branch universally to
each triple from{(p(t), &, ¢1) |i <t < jrU{(p(]), 5}, $2)}, where for all register variables
iny:
5 (x min{d(x) +d; —di,C+M+1} if j > |ugl,
) o(x)+dj—d otherwise,

min{d(x) +d —di,C+M+1} if t > |ug],
X) =
O(X) +dy —di otherwise.

If ¢ = ¢1R @2, then first compute the valueaccording to %.3), (5.5), and 6.6) and then
branch existentially to the following two alternatives:

« Branch universally to all triples frofi(p(j), j, ¢2) | i < j < |ug| +n|uz|}, where

5(min{d(x) +d; —di,C+M+1} if j > |ugl,
(%) —
J o(x)+dj—d otherwise.

* Branch existentially to each valuec [i 4+ 1, |ui| + n|uz|], and then branch universally
to all triples from{(p(t),&,¢2) |1 <t < jU{(p(]),dj,¢1)}, where for all register
variablesxin (:

5 min{d(x) +d; —di,C+M+1} if j > |ugl,
(%) —
J o(x)+dj—di otherwise,

min{d(x) +d —di,C+M+1} ift> |ug],
X) =
0(X) +dy —di otherwise.

5.1 The upper complexity bounds 83

The machind’M clearly works in polynomial time.

Let us briefly discuss the necessary changes for thelcase (i.e.,w = ui(u)®). The
main difficulty in the above algorithm is to find the upper bdwf the witnessing position
j for the formulasg1U¢2 and ¢1R¢,. If k=0, then it is easily seen that for all positions
i > |uz], formulas¢ and valuationy, (w,i,v) = ¢ if and only if (w,i + |uz|,V) = ¢. We see
at once that the witnessing positiprcan be bounded bl | + 2|up|. It is straightforward to
implement the necessary changes in the above algorithm. O

It is easy to adapt the proof in the above theorem to finite watas. We have the follow-
ing theorem.

Theorem 18. Path checking fom PTLy, over finite data words is iRSPACE.

5.1.2 Polynomial time upper bound for TPTL'

In this subsection, we consider the complexity of path checkor the logicTPTL" (r € N),
which is a fragment of PTL where the number of register variables is bounded. by

In Theoreml17, we show that path checking faPTLy over infinite binary encoded data
words is inPSPACE. For TPTL', if all input numbers are encoded in unary notation, then we
can show that the path checking problem i®in

Theorem 19. For every fixed re N, path checking fofTPTL], over infinite unary encoded
data words is irP.

Proof. In the algorithm from the proof of Theoreiv, if all numbers are given in unary,
then the number€ + M + 1, my, mp andn can be computed in logarithmic space and are
bounded polynomially in the input size. Moreover, a confagion triple(i, d, ¢) needs only
logarithmic space: Clearly, the positiog [0, |u;|+ |uz| — 1] and the subformulg only need
logarithmic space. The valuatianis anr-tuple over[—my, max{m;,C + M + 1}] and hence
needs logarithmic space too, since a constant. Hence, the alternating machine from the
proof of Theoreml7 works in logarithmic space. The theorem follows, sidd& GSPACE =

P. O

Later (see Theoreril), we will see that path checking chrPTLS over infinite binary
encoded data words RSPACE-complete. Hence, we cannot (unld3s= PSPACE) extend
Theoreml9to infinite binary encoded data words. But if we consider itdibinary encoded
monotonic data words, then we can do so. Actually, a condglghtly weaker than mono-
tonicity suffices. We define quasi-monotonic data words efdtlowing. Recall that we use
min(u) and maxu) to denote the minimal data value and the maximal data valtieeiniata
word u, respectively.

84 The path checking problems for MTL and TPTL

Definition 11. Let u; andu, be two finite data words, and lkte N. The infinite data word
uz(u2)%y is quasi-monotonic if maki;) < max(uz) < min(uz) +-k.

Note that iful(uz)ﬂ*r’k iS monotonic, therml(uz)ﬂ*r’k is also quasi-monotonic.

Theorem 20. For every fixed re N, path checking foif PTL], over infinite binary encoded
guasi-monotonic data words is

Proof. Let ¢y be aTPTL-formula,k € N, anduy, u two finite data words such thai(uz)fk
is quasi-monotonic. We construct in polynomial time two ynancoded finite data words
v1,V> and a numbel € N encoded in unary notation such tha(uz)‘fk = if and only if
vi(v2)%, = . Then we can apply Theoret®.

DefineS= {c|x~ cis a constraint iny} andC = max{|c| | c € S}. Suppose thatiju,| =
n. Leta,...,a, be an enumeration of all data valuesufu, such thata; < aj, for all
1< j<n Foreach ki <n, defined = d, —di_;. We define a new sequenbe, ..., by
inductively as followsb; = 0 and for all 1< i <n,

bi—1+6 if & <C,
b_,1+C+1 ifg>C.

b =

We obtain the new data wordg andv, by replacing inu; andu, every data value; by
bi (1 <i<n). Note thath, < (C+1)-(n—1). SinceC is given in unary notation, we can
compute in polynomial time the unary encodings of the nuber.. ., b,.

To define the numbédr note thatd = min(u,) +k—max(up) is the difference between the
smallest data value ifu,).x and the largest data value in (which is also the largest data
value ofuyup). Sinceul(uz)‘fk is quasi-monotonic, we have> 0. We define the numbéras

max(v2) —min(vz) + o if 6 <C,

maxvz) —min(vz) +C+1 if 6 > C.

Again, the unary encoding dfcan be computed in polynomial time. Let(respectivelyd))
be the data value in tH& position ofuy (uz) %, (respectivelyy; (v2)%)). Similar to the proof of
Propositior6 in Chapter3, we havedj, —d;, s dj, —dj, foranyji, josuchthat &< j; < jo. By
Lemmas, this implies thatiy (up) %, = ¢ if and only if v1(v2)%, = ¢. Applying Theoremt9,
we can check whethefi (v2) ¥, = ¢ holds in polynomial time. O

For finite data words, we obtain a polynomial time algoritHsodor binary encoded non-
monotonic data words (assuming again a fixed number of exgiatiables):

5.1 The upper complexity bounds 85

Theorem 21. For every fixed i N, path checking foll PTLy, over finite binary encoded data
words is inP.

Proof. Let the input data wordv be of lengthn and letds, .. ., d, be the data values appearing
in w. Moreover, leix, ..., X be the register variables appearing in the input fornquld hen,
we only have to consider thé many valuation mapping®: {x1,...,% } — {d1,...,dn}. For
each of these mappings every subformulap of , and every position in w we check
whether(w;,i,d) = ¢. This information is computed bottom-up (with respect te structure
of) in the usual way. O

For infinite data words, we have to reduce the number of registriables to one in order
to get a polynomial time complexity for binary encoded noonotonic data words. First we
prove several lemmas in the following.

Let ¢ be aTPTL-formula. We say that a register varialeccurs free inp if there exists
a occurrence ot in ¢ is not within the scope of the corresponding freeze quantéie PTL-
formula ¢ is closedif there are no free register variablesgn We show that when checking
the satisfiability of a formula over a data word only the valier free register variables matter
in the following.

Lemma 17. Let w be a data word and i be a position in w. For dIPTL-formulas¢ and
register valuations/; and vy, if v1(X) = vo(X) for every register variable x that occurs free in

¢, then(w,i,vq) = ¢ if and only if (w,i,v2) = ¢.

Proof. We prove this lemma by induction @gn The proof for the cases thatis T, p, —¢1 or
$1 A ¢ is easy. We only give the proof for the other cases.

o If ¢ isx~c,then(w,i,v1) =X~ cifand only ifd; — v1(X) ~ c. Sincev; andv, coincide
on free register variables if, the latter holds if and only ifi, — vo(x) ~ cif and only if
(W,i,V2) =X~ cC.

o If ¢ isx.¢1, then(w,i,v1) = x. @1 if and only if (w,i, vi[x+— di]) = ¢1. Note thatvy [x —
di] andv,[x — d;] again satisfy the premise of the lemma, by induction hypsithehe
latter holds if and only ifw,i, vo[x — di]) = ¢1 if and only if (w,i,v2) = X.¢1.

o If ¢ is ¢p1Ud2, then(w,i,v1) = ¢1U¢> if and only if there is a position with i < j <
|w| such that(w, j,v1) = @2, and(w,t,v1) = @1 for all positionst with i <t < j. By
induction hypothesis this holds, if and only if there is aipos j with i < j < |w|
such that(w, j,v2) = ¢2, and(w,t, vo) = ¢4 for all positionst with i <t < j. This is
equivalent tqw,i, v2) = ¢1U¢o.

86 The path checking problems for MTL and TPTL

O

Corollary 10. Let w be a data word and i be a position in w, and ¢ebe a closedlPTL-
formula. Then for all register valuationg and v, (w,i,v1) = ¢ if and only if (w,i, v2) = ¢.

Lemma 18. The following problem belongs ®(in fact, toAC!(LogDCFL)):

Input: An LTL-formula ¢, finite words 4, up,...,u;, U1 and numbers N...,N, € N that
are encoded in binary notation.

Question: Does " uh?- - ulN' u® 4 = @ hold?

Proof. The crucial pointis that for all finite words v, every infinite wordv and every number

N > |||| where||g|| is the number of all symbols iy, we haveuw = if and only if
uv?llw = . This can be shown by using the Ehrenfeucht-Fraissé gamd fofrom [37).

It is similar to the EF-game foMTL where we do not need to consider the data values. Let
us briefly explain this game. L&y, w; be two infinite words. A game configuration is a pair
of positions(ip,i1) € N x N, whereig is a position inwp andi; is a position inw;. The game

is played by two players: Spoiler and Duplicator. In eachndguSpoiler chooses an index
a€ {0,1} and a positiorjz > i5. Then Duplicator has to respond with a positijgng > i1_a.
Then Spoiler chooses between one of the following two ogtion

» The new configuration becomég, j1).

« Spoiler chooses a positidn_, < jj_, < j1-a, then Duplicator has to respond with a
positionia < j4 < ja, and the new configuration becong, j}).

Duplicator wins the 0-round EF-game from configurati@i) if wolip] = wa[i1]. Duplicator
wins the(k+ 1)-round EF-gamek(> 0) from configuration(io,i1) if Wolio] = w[i1], and for
every choice of moves of Spoiler in the first round, Duplicats thek-round EF-game from
the successor configuratidiy, j1) (or (jg, j;))- It was shown in37] that Duplicator wins the
k-round EF-game from positiof®, 0) if and only if for everyLTL-formula¢ whose until rank
is at mosk, we havewp = ¢ if and only if wy = ¢.

Now assume thatp = uv™w andw; = uv™w, wheremg, my > k, andu, v are finite words,
andw is an infinite word. It is then obvious that Duplicator can wie k-round EF-game
starting from positior{0, 0). The point is that Duplicator can enforce that after the fiosind
the new configuratiofiip,i1) satisfies one of the following two conditions:

* Wplip :] = wai1 :], which implies that Duplicator can win for every number ofinals
starting from(io, i1).

5.1 The upper complexity bounds 87

* Wolip :] (respectivelyw; [i1 :]) has the formu'vow (respectivelyy'viw), whereng, ng >
k—1. Hence, by induction Duplicator can win tfle— 1)-round EF-game from config-
uration(io,i1).

Hence,uv™w and uv™w satisfy the samé&TL-formulas whose until rank is at mokt It
follows that two infinite wordsif™uz?---u™ u® ; andu*u?---u'u , satisfy the sameTL-
formulas whose until rank is at masif all m,n; (1 <i <) are at leask.

Now, the proof of the lemma is obvious. We can replace therpieacoded exponents
in the wordu)ub? - -~u|N' uf 4 by numbers\/ = min{N;, |||} (1 <i <). By Theorem 3.6 of
[59], infinite path checking foL TL can be reduced to finite path checking fdi_.. And finite
path checking fot TL is in AC'(LogDCFL) [55]. So checking whethasf*u? - -u'u® ; |= ¢

is in ACY(LogDCFL). O

Remark4. One can generalize Lemnis8 to so called exponential expressions of constant
exponentiation depth. Lé? be a finite set of atomic propositions. Exponential expoessi
are inductively defined as follows:

» EveryP C P is an exponential expression.
* If e; ande, are exponential expressions, th@ne, is an exponential expression.
« If eis an exponential expression and 1, thene” is an exponential expression.

In the last pointg” has to be viewed as a formal expression, encoded for instanitee pair
(e,n). The numbenis assumed to be binary encoded. The length of an exponergisdssion
is defined inductively by (i\P| = 1, (i) |e1 - e| = |e1] + |e|, and (iii) |€"| = |e| + [log,n].
The exponentiation deptti(e) of e is defined inductively by (id(P) = 0, (ii) d(e;- &) =
max{d(e;),d(e2)}, and (iii)d(e") = d(e) + 1. Every exponential expression produces a word
val(e) in the obvious way. The length of this word can be exponeittittie length ofe.

The exponential expressions appearing in Lenirf@dave exponentiation depth 1. But
the proof works for exponential expressions of exponeotiadepth at mosd for every fixed
constantd. Hence, path checking fdTL is in AC(LogDCFL) if the input word is given
by an exponential expression of bounded exponentiatiothdefhis is interesting since by
Theorem 5.1 of §9 it was shown that path checking f&TL becomesPSPACE-complete
if the input word is represented by a straight-line confesé grammatr, i.e., a context-free
grammar that produces exactly one string. Every exporeskjaession can be converted
in logarithmic space into an equivalent straight-line exifree grammar. This leaves the
guestion whether path checking fbofL is belowPSPACE if the input word is given by an
exponential expressions of unbounded exponentiatiorhdept

88 The path checking problems for MTL and TPTL

Lemma 19. The following problem belongs ®(in fact, toAC!(LogDCFL)):

Input: A TPTLp-formula g, which only contains free register variables, and an inérbi-
nary encoded data wordl(uz)‘fk.

Question: Does y(uz2)?, = ¢ hold?

Proof. Let w = ug(uz)%,. We reduce the question, whether= ¢ in logarithmic space to
an instance of the succintfL path checking problem from Lemmis8. Let n; = |u;| and
ny = |uz|. We can assume that only one register variatd@pears iny (since we do not use
the freeze quantifier ig all register variables remain at the initial valdg).

In order to construct abTL-formula from, it remains to eliminate occurrences of con-
straintsx ~ cin . We can assume that all constraints are of the forCc Orx > C. Letx ~1
C1,...,X~mCm be a list of all constraints that appearyin We introduce for every £ j <m
a new atomic propositiop; and letP’ = PU{px, ..., pm}, WwhereP is the set of atomic propo-
sitions occurring iny. Let ¢/ be obtained fromy by replacing every occurrence»f-j ¢j by
pj, and lew € (27 be the infinite word such that [ij = RU{p; | 1< j <m,di —do ~j ¢}
Clearlyw = g if and only if w |= ¢/. We will show that the wordV' can be written in the
form considered in Lemmas.

First of all, we can writaV asw’ = uju, o, 1Us 5 -+ -, Where|uy| = m and|uj ,| = np. The
word uj can be computed in logarithmic space by evaluating all caimgs in all positions of
ui. Moreover, every wordy, , is obtained fromu; (without the data values) by adding the new
propositionsp; at the appropriate positions. Consider the equivalenegioel= on N such
thata=bifand onlyifu, , = uf27b. The crucial observations are that (i) every equivalenastl
of = is an interval (let us call these intervasintervals), and (ii) the index of is bounded
by 1+ n,-m (one plus length ofi, times number of constraints). To see this, consider a
position 0< i < np — 1 in the worduy and a constraint ~j ¢; (1 < j <m). Then, the truth
value of “propositionp; is present at thé" position ofu’zyz” switches (fromtrue to false or
from false to true) at most once whemgrows. The reason for this is that the data value in
positionny +i+ny - Zis dn,+itn,.z = dny+i +K-zfor z> 0, i.e., it grows monotonically with
z. Hence, the truth value af, i + k- z—dg ~j cj switches at most once, whemgrows. So,
we get at moshy - m many “switching points” inN which produce at most-% n, - m many
intervals.

Letly,...,1| be a list of all=-intervals, wherea < b wheneverac I, b e |; andi < |
(note thatl; must be infinite). The borders of these intervals can be ctoedpn logarithmic
space using basic arithmetic on binary encoded numbersallReat all arithmetical opera-
tions (addition, subtraction, multiplication and divisiwith remainder) can be carried out in
logarithmic space on binary encoded numbé.[Hence, we can compute in logarithmic

5.1 The upper complexity bounds 89

space the siz&li = |l;| of theith interval, whereN, = w. Also, for every 1< i < | we can
compute in logarithmic space the unique weyrduch that; = uf27a for all a € ;. Finally, we
havew = u’lv’IIl o ~v|N'. We are now in the position to apply Lemrh&. O

We now come to the path checking foPTL' over infinite data words.
Theorem 22. Path checking foﬂ'PTL% over infinite binary encoded data words ishn

Proof. Given aTPTL%-formuIa Y, finite binary encoded data words, up, and binary en-
coded numbek € N. Letw = uy(up)¥,. We give two proofs to show that how to check
in polynomial time whethew = ¢ holds in the following. The first one#(1) is based on
Lemmasl7, 18 and19. The second oné&#(2) is an algorithm-based proof which decides this
problem directly.

1: For a closed formula, by Corollary10, we can write(w,i) = ¢ for (w,i,v) = ¢,
wherev is an arbitrary register valuation. By Lemrhd, we can get the following claim:

Claim 1: If ¢ is closed and > |uy|, then(w,i) = ¢ if and only if (w,i+|up|) = ¢.

Letn= |u1| + |uz|. It suffices to compute for every (necessarily closed) subitax.¢ of
i the set of all positionse [0,n— 1] such thaiw,i) = x.¢, or equivalentlyw]i :] = ¢. We do
this in a bottom-up process. Consider a subformxuaof ¢y and a position € [0,n— 1]. We
have to check whether|i :] = ¢. Letx.¢1,...,X.¢; be a list of all subformulas ap that are
not in the scope of another freeze quantifier withinWe can assume that for everyds < |
we have already determined the set of positipas|0,n— 1] such thatw, j) = x.¢s. We can
therefore replace every subformwaps of ¢ by a new atomic propositiops and add in the
data words, (respectivelyu,) the propositiorps to all positionsj; (respectivelyj») such that
(W, j1) = X.¢s (respectively(w, [u1| + j2) = X.@s), wherejs € [0, [us| — 1] andj2 € [0, [uz| —1].
Here, we make use of Claim 1. We denote the resulting formmudgtlae resulting data word
with ¢’ andw = U] (u5)%,, respectively. Next, it is easy to compute frafp andu; new
finite data words/; andva such thawy (v2)%, = w[i :]: If i < |uj| then we takey; = uji :] and
Vo = Uy; If |uj| <i<n—1,then we takey = u,[i ;] andvp = (U,) k. Finally, using Lemma9
we can check in polynomial time whethef]i ;] = ¢’ holds. The first proof is complete.

2: Let v be a register valuation, and l¢tbe aTPTL -formula. We define a tuple of
setsSy.v = (S0, S, - -+, Syy) WhereS C {0, ..., [ug| — 1} and§, € N (1 < h < [up[), such that
forall 0<i < |ui|,i € §ifand only if (wi,v) = ¢, and for each K h < |up| and allj > 0,

j € Sifandonly if (w,|ug|+ J- |uz] +h—=1,v) = ¢, i.e., S, contains all the numberjssuch
that¢ holds in then'™ position of thej™ repetition ofuz in w. We useS} ,, to denote thé'"

90 The path checking problems for MTL and TPTL

(0 < h <|ug|) componen, of § . If ¢ is a closed formula, then by Corollafy, we can
skip the subscript and writeSy (respectiverS,?,) for S v (respectivelyS&v).

For every O<i < |uiuy|, let v; denote the register valuation with(x) = d; (we only
need to consider the valuation for the register variabhere). We will compute for every
0 <i < |uiup| and every subformulé of ¢ the tupleSy \,. Every selSQ,Ni will be represented
by a union of polynomially many intervals that are pairwisgant, each of which is either a
closed intervala, b] or a half closed intervghk, +), wherea,b € N. Note thatw = ¢ if and
only if 0 € %7\,0 (we assume without loss of generality tliatis not the empty word).

ForaseSCN,letS 1 ={a—1|a>1,acS}. We compute the tuples ,, (0 <i < |ugup|)
bottom-up with respect to the structure of the formgilas follows:

Case 1.4 is T. ThenS) = {0,...,|us| — 1}, andSj = Nfor 1 < h < |up).

Case 2.¢ is an atomic propositiop. For each X s< |uy|, s€ S?, if and only if p € uy[g].
For each I h < |up|, S} is eitherN if p € up[h— 1]or 0 otherwise.

Case 3. ¢ is a constraint formula ~ c. For each 0< s < |u|, s€ S&Vi if and only if
(u1,s,Vvi) E x~c. For eachS(?,J,i (1 < h < |up|), note that the sequence of data values
of w in positions|u| +n- |uz| +h—1(n > 0) is a non-decreasing arithmetic progression
iy +h-1, Ay +h-1 + K, djy | 4h-1+ 2K, ... Then, the interval borders f(‘BhJ,i can be easily
computed. For example, suppoge= (x > c¢). We need to find the minimal number> 0
such thaty, | ;h—1 +nk—Vi(X) > ¢, which is

C+ Vi(X) — du1|+h—1-‘ o)

n:max{[”

Then, we ses,?wi = [n, 4o0). Similar calculation works for the other constraint forasil
Case 4.9 = ¢1A¢2. ThenS) , =S} , NS}, .

Case 5.4 = —¢1. Then, S} , = {0,....|us| —1}\ S}, andS} , = N\ Sp, v (L < h < |ug)).

Case 6.0 =x.¢1. ThenS) = {i |0<i<|w|,i€S) ,}and, foreach Kh<|up|, § =N
if ui|+h—1€S} andS) = 0 otherwise.

1,V|ug|+h-1"

Case 7.¢ = ¢1U¢». First, for each 6< s< |up|, we haves € S?,M if and only if one of the
following two cases holds:

» There existy € [s+1,|uz| — 1] such that € S}, , and[s+1,j—1] C S} ,,.

e [s+1,|uy—1] C ng and there arey > 0 and 1< mp < |up| such thafO,m; — 1] C

S%lvvi MA---n gc?)m andm € Sf]ﬁLVi AENE $127‘_/i1ﬂ S;SM'

5.1 The upper complexity bounds 91

Both cases can be easily checked in polynomial time.
In order to compute the se;$7\,i (1<h<|u|), let

1 U 1
Ry =S50 NS N (S N+ N Shy)-1.

1,Vi

LetRE =S ((Sh,)1, if h=]|ug|). Foreach 2 s< |up| —h, let

2,Vi P2, Vi

_ Qw1 +s—1 +S

1,V 2,V *

Let
Up|—h+1 1 u 1
RA‘Z 2 - Sl‘Fl:Vi -0 127|Vi A (S¢2,Vi)—1’

and for eachup| —h+2 <s<|uy|, let
_ ah+1 Uy 1 h—|up|—1 h—|up|
R% — S, NSy M (S¢17Vi M5y v, M3p,,v >*1'
Let
Ry=RbU---URM!
Define

S).v. = ReU|J{[a,b] | [a,b] is contained iRy \ R, andb+ 1 € Ry}.

A numberj is in Ry if and only if ¢1 holds (w.r.t. valuation;) in the interval of lengthuy|
starting at the(h+ 1)™ position of thej™ iteration ofu, in w (or at the first position the
(j + 1) iteration ofup in wif h= |uz|). A numberj is in Ry if and only if ¢ (w.r.t. valuation
vi) holds in a position that is at moBt,| positions after thé" position of thejt" iteration of
uz in w, and¢1 holds (w.r.t. valuatiorv;) between these two positions.

If [a,b] is contained iRy \ R, andb+ 1 € Ry, then it is easily seen thahUg¢, holds
in each positiofjuy|+ j - |uz| +h—1 for j € [a,b]. Conversely, if¢1U¢> holds in position
t = |ui| +] - Jug| + h—1, then either, holds in a position that is at moBt,| positions after
positiont and¢1 holds betweem and that position (hencec Ry), or there exist§’ > j such
thatj’ € R, and¢1 holds from positiort + 1 up to positionus| + ' - |uz| +h—1. In the latter
case, we can choogéminimal with this property. This implieg, j’ — 1] C Ry \ Re.

Finally, we need to show that ea%wi contains only polynomially many intervals. It is
sufficient to show that the number of all interval bordergmalgorithm above is polynomially
bounded. We use four kinds of set operations: union, intésge complementation and
subtraction. Union and intersection do not add any newwatdrorders. So we only need to
consider complementation and subtraction of 1.

92 The path checking problems for MTL and TPTL

ForaseB C Nandk> 1, writeB_y={a—k|a>kacB} andB,x={a+k|ac B}.
Lety,...,yn be all constraintg ~ c that appear inp. Let

luitz|-1 m [u
Bo= |J U U{aeN]aisaborderofaninterval i ,}.
i—0 j=1h=1

Thus,Bg is the set of all interval borders that arise from constrairiiformulas. Without loss
of generality, we assume that0By. Forn > 1 define

Bn=Bn_1U(Bn-1)-1U(Bn-1)+1.

By induction onn, one can show that

n
Bn=BoU | (Bo)-kU (Bo)-«-
k=1

Hence|B,| < (2n+ 1)|Bp|, where|B;| be the cardinality oB;. Subtraction decreases each
interval border by 1, and complementation may decreaseopease an interval border by
1. Suppose that all interval borders areBp If we do complementation or subtraction,
then the new interval borders areBp, 1. There are polynomially many complementation and
subtraction operations amBp| is polynomially bounded. So the number of all interval bosde
is polynomially bounded. O

Since for everyM TLy-formula, we can compute in logarithmic space an equivalentL -
formula. The next corollary follows from Theore?2.

Corollary 11. Path checking foMTLy over infinite binary encoded data words ishn

5.1.3 ACY(logDCFL) upper bound for MTL

By Corollary 11, we know that path checking f8dTL over infinite data words is iR. It is
shown that path checking fé TL over finite monotonic data words is A‘Cl(logDCFL) [21].
In this subsection, we consider path checkingNorL over infinite monotonic data words of
the form(u)%,. We can show that the complexity for this problem is stillG (logDCFL).
First we prove several lemmas.

Lemma 20. Let u be a data word, and let& N. Then for everyMTL-formula¢ and i> 0,
(u,i) = ¢ ifand only if (uyk,i) = ¢.

Proof. The lemma follows by Corollar{ in Chapter3. 0

5.1 The upper complexity bounds 93

Corollary 12. Let u be a finite data word, and letkN. Then for everyTL-formula¢ and
i >0, (UW,i) = ¢ ifand only if ()P, 1+ u]) = ¢.

Lemma 21. Let u be a finite data word, and let&kN. For everyMTL-formula ¢, if there
exists i> 0 such that for all i< j <i+[u], (U)%,) = ¢, thenforall { >0, (W)%,,i) = ¢.

Proof. Let¢ be anMTL-formula. Suppose that there exists 0 such that for ali < j <i+|ul,
(W% 1) = @. Thenforalli’ > 0, there exists < j’ < i+ |u] andn € Z such that’ = ' +n|ul.
By Corollary 12, we have((u)%,,i") = ¢. O

The next several results are proved over monotonic datasvdrdtw ba a monotonic
data word. For everWITL-formula ¢1 U, ¢2, it is easily seen thav = ¢1 U, ¢, if and only
if W= ¢1Uiq04) $2, i.€., we can make the constraint intervabe non-negative. Every
open interval ovef is equivalent to a closed (or half-closed) interval o¥ere.g.,(a,b) =
[a+1,b—1] and(a,+«) = [a+1,+«), wherea,b € Z. So for technical reasons, we assume
all constraint intervals in thMTL-formulas have the forrta, b] or [a,+), wherea,b > 0, in
the following. This restriction does not influence the résul

Lemma 22. Let (u)%, be an infinite monotonic data word. For evewTL-formula ¢, U; ¢2
and i> 0, where | is the infinite intervala, +) or the finite intervalja,b] (0 < a < b), we
have:

(1) (WP1) F 91U}z 4o) 92 if and only if (1), 1) = d1Ufaask P2-
(2) Ifb—a>k, then((u)?,i) = $1Ujap ¢2 if and only if (U)%,, 1) = ¢1Uaatiq P2-

(3) Ifa>Kk, then((u)%,,i) = ¢1U[qp @2 if and only if ((u) 2y, i) = ¢1 Uz 1) 2, where

a =

, k+ (amodk) if (amodKk) # O,
2k otherwise,

andd=a +b—a.

Proof. (1) Becauséa,a+k] C [a,+), the direction “=" is trivial. For the direction ",
suppose((U)%y,i) = ¢1U[a 1) §2. Then there exist§ > i such that((u)?y, j) = ¢2,
dj—di > aand((u)%,,t) = ¢1 foralli <t < j. Since(u)?, is monotonic, there exisis<
j’ <i+|ulandne Nsuch thag’ = j —n|ul, andd; — d; € [a,a+k]. By Corollary12, we
have((u)%, ') = ¢2. In addition, we havé(u)%,,t') = ¢1 foralli <t’ < j’. Therefore,

(WP1) E $1Upaark $2-

94 The path checking problems for MTL and TPTL

(2) The proofis the same as that dj,(where we only need to replage» by b.

(3) Letd =k+(amodk) andb’ =& +b—a. Supposé(u)?,,i) = $1U[ap ¢2. Then there
existsj > i such thaf(u)?,, j) = ¢2, dj —di € [a,b], and((u)¥,,t) = g1 foralli <t < j.
Since(u)%, is monotonic, there exisis< j’ <i+-|u] andn > 0 such thaf’ = j —n|u],
andd; —d; € [@,0]. By Corollary12, we have((u)?,, j’) = ¢2. In addition, we have
(WPt E o foralli <t' < j’, sincej’ < j. Therefore((u)%,,1) = $1Ujx) P2.

Conversely, i (u)%,,1) = ¢1 Uy 1) $2, then there exist§ > i such tha((u)¥,, j') = 2,
di —di € [@,b] and((u)¥,,t) = g1 for alli <t’ < . Since(u)?, is monotonic, there
existsj > j’ andn > 0 such thaj = j’ 4 n|u|, andd; — d; € [a,b]. By Corollary12, we
have((u)%,]) = ¢2. Sincead’ > k, we see thaf’ > i+ |u|. Because(u)?,,t) = ¢1
foralli <t’ < j’, by Lemma21, we have((u)?,,t) = ¢1 for alli <t < j. Therefore,
(W) E 21U p P2

L

By Lemma22, given an infinite monotonic data wovd= (u)%,, for everyMTL-formula
¢, we can construct an equivalent formglawith respect tav by replacing each constraint
interval | in ¢ by a finite constraint intervdl. More precisely, all numbers iH can be
bounded by B. Becausew is monotonic, when checking the formu¢a U, ¢, overw in
positioni, we only need to consider the positiopwith i < j <i+ 3|u| to check whethep,
holds inj and¢4 holds in the positions betweeémndj.

Given a numbek > 0, we define a functiori, from intervals to finite intervals as follows:

[a,a+k] ifa<k,
fu([a, +)) = _
[a',a + k| otherwise,
and
([a,b] if a<kandb—a<Kk,
[a,a+kK if a<kandb—a>Kk,
fk([av b]) = .
[@,a +b—a] ifa>kandb—a<Kk,
| [@,a +K] if a>kandb—a>k,
where
a pu—

) k+ (amodk) if (amodk) # 0,
2k otherwise.

5.1 The upper complexity bounds 95

It is clear that, for each intervd) f(l) C [0,3k] and fc(k(1)) = fk(l).
By Lemma22, we can obtain the following corollary.

Corollary 13. Let (u)fﬁk be an infinite monotonic data word. For evevi L-formula¢, U; ¢»
and i>0, (U)%,1) = 1V ¢z if and only if ()P, 1) = @1 U, (1) P2

Proof. If | is the infinite intervala, +e0), then by () of Lemma22, ((u)¥,i) = ¢1Uja e $2
if and only if ((U)?y,1) = ¢1Upaark 92 If a> K, by (3) of Lemma22, the latter holds if and
only if (W)%,1) = ¢1 Uz 211 §2, whered' is k+ (amodKk) if (amodk) # O, or X otherwise.
If 1 is the finite intervala, b], a < k andb—a > k, then by @) of Lemma22, ((u)%,i) =
¢1Uap 92 if and only if ()%, 1) = @1Ujqar @2. If | is [a,b] anda > k, then by) of
Lemma22, ((u)%y,i) = ¢1Ujap @2 if and only if (U)%,1) F 91Uz a1b-a 2, Whered' is
k+ (amodkK) if (amodk) # 0, or X otherwise. Ifb—a > k, by (2) of Lemmaz22, the latter

holds if and only if((u)¥,, 1) = ¢1Ujaasi D2 O

Given the functionfy, for everyMTL-formula¢, we recursively build aMTL-formula@g
as follows:

« T=T,

*pP=pn

© S =-9,

* P1AP2=P1NP2,

* Ui §p2=91Ug () 2.

Lemma 23. Let(u)?, be an infinite monotonic data word, for evew L-formula¢ and i> 0,

(WP1) ¢ ifand only if (u)9,,1) = .

Proof. We prove the lemma by induction @n

* If ¢ is T or a propositiorp, then((u)%,,i) = ¢ if and only if (U)%,,i) = 9.

o If ¢ is—¢s, then((u)%,i) = —¢qifand only if ((u)%,i) = g1 ifand only if ((U)%,, 1) 7=
@1 if and only if ((u)%,,i) = —¢1 if and only if ((u)%,1) = =¢1.

o If pisdi Ao, then((u)‘fk, i) E ¢1A¢2if and only if((u)fk, i) E ¢ and((u)fk, i) E @2,
if and only if ((u)%,1) = @1 and ((U)%,,i) = @2, if and only if (u)9,,i) = PLA P2 if
and only if ((u)%,i) = 1A ¢2.

96 The path checking problems for MTL and TPTL

* If ¢ is ¢1U 2, then by Corollaryl3, ((u)%,,i) = ¢1Ui¢2 if and only if ((u)%,i) =

¢1Us)92, if and only if there exist§ > i such that((u)?y,) = ¢2, dj —di € fi(l),
and ((u)9,,t) = ¢1 for all i <t < j. By induction hypothesis this holds, if and only
if there existsj > i such that((u)%, J) = 92, dj —di € fk(I), and ((u)?,,t) = 91 for

alli <t < j. This is equivalent tq(u)%,,i) = 91Us, 1 @2, which holds if and only if
(V1) F ¢1U162.

O

We now reduce path checking fMTL over infinite data words to path checking fdiTL
over finite data words.

Proposition 13. Let (u)%, be an infinite monotonic data word, and letbe anMTL-formula.
For all n > 3Rank(¢)+1and0 <i < |uf, (u)¥,1) = ¢ ifand only if ((u)},,i) = 9.

Proof. By Lemmaz23, it suffices to show thaf(u)?,,i) = ¢ if and only if ((u)},,i) = 9. We
now proceed by induction of.

* If §is T or a propositiorp, then((u)%,,i) = ¢ if and only if (u,i) = 9.

o If @is ¢, then((u)%y,i) = ¢y ifand only if ((u)?,,i) = ¢1. By induction hypothesis
this holds, if and only if((u)?,,i) = ¢1 if and only if ((u)7,,i) = —¢1.

« [fPisp1Ad2, then((U)D,i) = d1A¢2ifand only if ((u)P,, 1) = ¢ and((U)%y, i) = ¢o.
By induction hypothesis, this holds if and only({fu)?,,i) = ¢1 and((u)",,i) = @2, if

and only if ((u)",i) = ¢1 A ¢2.

o If @ is ¢1U1¢2, then((u)?,,1) = ¢1U1¢2 if and only if there exists) > i such that
(WP 1) E 92, dj—di €1, and((u)%,t) = @1 forall i <t < j. Supposg = mju| +
r for somem> 0 and 0<r < |u|. By Corollary12, ((u)%,,]) = ¢2 if and only if
(W%r) = ¢2. Since 0<i < |u[andl C [0,3Kk], we know that 0< j < 4|u, hence
0 <m< 3andn—m2> 3Rank(¢$1U; ¢2) — 2 > 3Rank(¢2) + 1. By induction hypothesis,
(W% r) | ¢2if and only if ((u)h,™,r) = ¢2. By Lemma20this holds, if and only if
(W), miu[+r) |= ¢2ifand only if ((u)7,,) = @2. Therefore, we havg(u)%,, J) = ¢2
if and only if ((u),, j) = ¢2. Similarly, we can show tha(u)%,,t) = ¢1 if and only if
(Wt) = @1 foralli <t < j. Hence((u)¥,,i) = ¢1Ui 92 if and only if ((u)7,,i) =
$1U) ¢2.

5.2 The lower complexity bounds 97

level 1 (\-gates)

level 2 (v-gates)

level 3 (input gates)

Fig. 5.1 An SAM2-circuit

Theorem 23. Path checking foMTLy over infinite monotonic binary encoded data words of
the form(u)%, is in AC*(logDCFL).

Proof. Given an infinite monotonic data woxd)%, and anMTL-formula¢$ where all input
numbers are encoded in binary notation, the finite data \(\m))rejrjiia”k(‘l’)+l and the formula

are computable in logarithmic space. By Propositi@nwe know that(u)?, = ¢ if and only
if (u)i'f(‘%""‘(‘l’)Jrl = ¢@. Since path checking faviTL, over finite monotonic binary encoded

data word is iMC*(logDCFL) [21], andL C AC! C ACY(logDCFL), the theorem follows.]

5.2 The lower complexity bounds

In this section, we will prove severBthardness anBSPACE-hardness results for path check-
ing problems. All lower bounds also hold for non-pure and-namotonic data words (and
we will not mention this explicitly in the theorems). But wave to distinguish (i) whether
data words are unary or binary encoded, and (ii) whether watas are finite or infinite.
And all lower bounds that hold for unary (respectively, #)itlata words also hold for binary
(respectively, infinite) data words.

5.2.1 P-hardness for MTL and TPTL 1

We prove ouiP-hardness results by a reduction from a restricted verditred3oolean circuit
value problem. ABoolean circuitis a finite oriented directed acyclic graph, where each node
is called a gate. Amnput gate is a node with indegree 0. All other gates are labeleld wit
one ofV, A or — (the logical OR, AND and NOT operations). Awutputgate is a node with
outdegree 0. A Boolean circuit)monotonef it does not have- gates.

Definition 12. A synchronous alternating monotone circuit with fanin 2 &mbut 2 (briefly,
SAM2-circuit) is a monotone circuit divided into levels. 1.1 (I > 2) such that the following
properties hold:

98 The path checking problems for MTL and TPTL

All wires go from a gate in leval+ 1 to a gate from leval (1 <i < I).

All output gates are in level 1 and all input gates are inliéve

All gates in the same level are of the same type\(or input) and the levels alternate
between\-levels andv-levels.

All gates except the output gates have outdegree 2 andtak gacept the input gates
have indegree 2. The two input gates for a gate at lliewdl are different.

By the restriction to fanin 2 and fanout 2, we know that eadckell€ontains the same
number of gates. Figh.1shows an example of an SAM2-circuit (the node namds;, ¢; will
be needed later). The circuit value problem for SAM2-citgucalled SAM2CVP in44], is
the following problem:

Input: An SAM2-circuita, inputsxy, ..., X, € {0,1}, and a designated output gate
Output: yes if outputy of a evaluates to 1 on inputs, . .., Xn, no otherwise.

It is shown in j4] that SAM2CVP isP-complete.

Recall that path checking féATL over finite monotonic data words is in the parallel com-
plexity ClaSSAC1(LogDCFL) [21]. We will show that for both (i)MTL, over non-monotonic
data words and (i PTL} over monotonic data words the path checking problem becomes
P-hard (and hencB-complete). Actually, we prove the results for their purayfragments,
where the “pure unary” means that we do not use any proposiamd use only the unary
modalitiesX, F andG instead ofU in the formula.

Theorem 24. Path checking fopureUnaMTL,, over finite unary encoded pure data words is
P-hard.

Proof. We reduce from SAM2CVP. Letr be the input circuit. We first encode each two
consecutive levels aff into a data word, and combine these data words into a data word
which is the encoding of the whole circuit. Then we constayatreUnaMTL,-formulay such
thatw = ¢ if and only if o evaluates to 1. The data wondthat we are constructing contains
gate names ofr (and some copies of the gates) as atomic propositions. Tgrepesitions
will be only needed for the construction. At the end, we canaee all propositions from
the data wordv and hence obtain a pure data word. The whole constructioheatone in
logarithmic space. The reader might look at Exantplehere the construction is carried out
for the circuit from Fig5.1

Let a be an SAM2-circuit with > 2 levels anch gates in each level. By the restriction to
fanin 2 and fanout 2 we know that the induced undirected sigdgwhich contains the nodes

5.2 The lower complexity bounds 99

ar1a12 apj, azi1ap2 R j, an1ah2 ah i,
leveli

leveli+1
bribio byj, boaboo bpj, bribhna bnj, +

Fig. 5.2 The induced subgraph between lexaidi + 1

1812 ALy a1 2 Ajd; @182 8,

T T Y

biibi2 bijbi baibae bajpby; Prabnz bnjibyg

Fig. 5.3 The graph obtained from the induced subgraph

in leveli and leveli+1 (1 <i <) is comprised of several cycles; see FB2 For instance,
for the circuit in Fig.5.1the number of cycles between level 1 and 2 (respectivelg) Band
3)is 2.

We can enumerate in logarithmic space the gates of lemedl leveli + 1 such that they
occur in the order shown in Fi.2 To see this, ledy, ..., a, (respectivelyps,...,by) be the
nodes in level (respectivelyj + 1) in the order in which they occur in the input description.
We start witha; and enumerate the nodes in the cycle contaimin¢from a; we go to the
smaller neighbor amonly,, ..., by, then the next node on the cycle is uniquely determined
since the graph has degree 2). Thereby we store the currdatiméhe cycle and the starting
nodea;. As soon as we come back @@, we know that the first cycle is completed. To find
the next cycle, we search for the first node from thedjst. ., a, that is not reachable fromy
(reachability in undirected graphs isl®GSPACE [71]), and continue in this way.

So, assume that the nodes in levendi + 1 are ordered as in Figh.2 In particular,
we haveh cycles. For each £t < h, we add a new noda{71 (respectivelybal) after a j,
(respectivelyh ;). Then we replace the edga j,,bx 1) by the edgéa j,,b; ;) (L <t <h). In
this way we obtain the graph from Fig.3. Again, the construction can be done in logarithmic
space by adding the new nodes and new edges once a cycle waletsmhin the enumeration
procedure from the previous paragraph.

By adding dummy nodes, we can assume that for evety £ | — 1, the subgraph between
leveli andi + 1 has the same number (sa)yof cycles (this is only done for notational con-
venience, and we still suppose that thereragates in each level). Thus, after the above step

100 The path checking problems for MTL and TPTL

dd+1 ... d+j1 ... d+j1+j2+1 ... d+m—1
dd+1 ... d+j1 ... d+ji+j2+1 ... d+m-1

Fig. 5.4 Labeling the new graph

we havem= n+h many nodes in each level. Lét= (i — 1) - 2mandd’ = d +m. In Fig. 5.3,
we label the nodes in leve(respectivelyj 4+ 1) with the numbersl,d+1,...,d+m—1 (re-
spectivelyd’,d’ +1...,d'+m— 1) in this order, see Fig.4. By this labeling, the difference
between two connected nodes in levahd leveli + 1 is alwaysmor m+ 1. So we can use
the modalityF |, 1) (respectivelyGimms-1) to jump from anv-gate (respectively\-gate) in
leveli to a successor gate in level- 1. We now obtain in logarithmic space the data word
Wi = Wi 1W; 2, where

(a11,d)(ag2,d+1)---(agj,,d+ j1 — 1)

wy = {(@ud+ii+D(@2d+ji1+2)- (8, d+ji+]2) -
h-1 h-1

(ap1,d+ let+h—l)(ah72,d+ let‘i‘h)"‘(ah,jh,d‘i‘m_Z)
& &

\

((by1,d')- - (by j,, 0 + j1 — 1)(11,d + 1)
Wi = (b21,d" +j1+1)--- (b2 j,,d + ji4 j2) (05 1,d + j1+ j2+1) -

h—-1
(bn1,d"+ 21 jt+h—1)---(bnj,. d +m—2)(bf;,d" +m—1)
t=

\

which is the encoding of the wires between levahd leveli + 1 from Fig.5.4. Note that the
new nodesy| 1,a54,...,a,, in leveli of the graph in Fig5.3do not occur inw; 1.

Suppose now that all data words(1 < i <I| — 1) are constructed. We then combine them
to obtain the data word for the whole circuit as follows. Suppose that

Wi 2 = (by,y1) - (bm,ym) andwi 11 = (b1, 21) - (bn, zn).
Note that evenys is either one of thé; or b’j (the copy ofb;). Let

Vit11 = (617 le) T (Bmv Z:‘n)7

5.2 The lower complexity bounds 101

where the data valueg are determined as follows: b = bj or bs = bj, thenz = zj. Then,
the data wordvisw = W1 1W1 2V2 1W2 2 - - - V|1 1W —1 2.

Let us explain the idea. Consider a gajeof level 2<i <1 -1, and assume that level
i consists ofv-gates. Lebj, andbj, (from leveli + 1) be the two input gates fa;. In the
above data word 1 there is a unique position where the propositgroccurs, and possibly
a position where the cop@!j occurs. If both positions exist, then they carry the sama dat
value. Let us point to one of these positions. UsingMifL-formula, we want to branch
(existentially) to the positions in the factqr, 1 1, where the propositiorts, , b’jl, bj,, b’j2 occur
(whereb’jl andb’j2 possibly do not exist). For this, we use the modéfity . 1. By construc-
tion, this modality branches existentially to positionstie factow; >, where the propositions
bj,,bj,,bj,, bj, occur. Then, using the iterated modalky' (which is an abbreviation fom
copies of theMTL-modalityXz), we jump to the corresponding positionsviny ;.

In the above argument, we assumed thatixX | — 1. If i = 1, then we can argue similarly,
if we assume that we are pointing to the unicqjdabeled position of the prefiw, ; of w.

Now consider level — 1. Suppose that
W|,172 = (CTl,Vl) . (6m,Vm).

Let dy,...,d, be the original gates of levé] which all belong to{Jl,...,ch}, and letx; €
{0,1} be the input value for gat&. Define

| ={j|je[Lm,3ie[Ln:de{dd},x=1}. (5.7)

Let the designated output gate be #i&node in level 1. We construct theireUnaMTL-
formulay = X*1¢;, where¢; (1 <i <|—1) is defined inductively as follows:

(

FimmeyX"di1 if i <1 —1and level is aVv-level,

5 Gimm+ g X"Pi+1 if i <I—1and level is an-level,
i = .

Fimmey (Ve XMI-XT) ifi=1—1and level is av-level,

| Gimms (Ve XM™-I1-XT) ifi=1—1and levei is an-level.

The formula—XT is only true in the last position of a data word. Suppose data woislthe
encoding of the circuit. From the above consideration libfes thatw = ¢ if and only if the
circuit a evaluates to 1. Note that we only use the unary modalktj€sX and do not use any
propositions in. So we can ignore the propositional part in the data wotd get a pure
data word. Since the numbseris bounded by &, and all data values w are bounded byrt,

102 The path checking problems for MTL and TPTL

Fig. 5.5 The labeling for level 1 and 2
14 15 16 17 18 19 20
&y @ & @ @ @
21 22 23 24 25 26 27

Fig. 5.6 The labeling for level 2 and 3

wheren is the number of gates in each level dnslthe number of levels. We can compute the
formula ¢ and data wordv where the interval borders and data values are encoded g una
notation in logarithmic space. O

Corollary 14. Path checking foMTL, over finite unary encoded data wordsHshard.

Example 6. Let a be the SAM2-circuit from Fig5.1 It has 3 levels and 5 gates in each level.
Level 1 contains\-gates and level 2 containgsgates. There are 2 cycles in the subgraph
between level 1 and 2, and also 2 cycles in the subgraph betees 2 and 3. The encoding
for level 1 and level 2 is

<a17 0) <a27 1) (&3, 3) (84, 4) (&5, 5)

(5.8)
(b1, 7) (b2, 8) (b, 9) (b3, 10) (bs, 11) (bs, 12) (b5, 13),

which can be obtained from Fi§.5. The new nodea; anda; in level 1 are not used for the
final encoding in the data word. The encoding for level 2 ansl 3 i

(b, 14) (bs, 15) (b, 16) (by, 18) (bs, 19)

(c1,21)(c3,22)(cs,23)(c), 24)(C2,25)(C4q, 26)(CH, 27), (59)

which can be obtained from Fi$.6. We skip the new nodels; andb, in level 2 in this
encoding.

We combine $.8) and 6.9) to obtain the following data wordb(10) which is the encoding
of the circuita. The encoding for level 1 and 2 determines the order of thpgsitional part

5.2 The lower complexity bounds 103

of the third line in £.10, and the encoding for level 2 and 3 determines its data salue

(8.1, O) (3.2, 1) (&3, 3) (84, 4) (3.5, 5)

(b1,7)(b2,8), (b7, 9)(bs, 10) (ba, 11)(bs, 12) (b3, 13) (5.10)

(b1, 14) (b2, 18) (b}, 14) (b3, 16) (bs, 19) (bs, 15) (b}, 16) '
(

(€1,21)(c3,22)(cs,23)(c), 24)(cp, 25)(C4, 26) (CH, 27).
Let the designated output gate bgin level 1, and assume that the input gatescs,Cs

(respectivelycp, c3) receive the value O (respectively, 1). Then thelsebm (5.7) is | =
{2,5,7} and the formulap is

Y =X*(GrgX (Frg(X"I=XT))).
je{2,5.7}

We extend Theoreri4 to path checking foMTL, over infinite data words in the follow-
ing.
Theorem 25. Path checking founaMTL, over infinite unary encoded data wordsHshard.

Proof. The proof is adapted from the proof of Theor@d In that proof, letp be an atomic
proposition that is not used in the data wardDefine the infinite data word' = w(p, 5ml) %,
and redefine the formuld by:

(

FimmyX"Pi11 if i <I—1andlevel is av-level,
5 Gimm- g X" i1 if i < —1and level is an-level,
i = _
Fimmiy (Ve XM (=pAXp)) ifi=1-1and level is av-level,
Gmmi1)(Vjer X™ 1 (=pAXp)) if i=1—1and level is aa-level.
It is easily seen that/ = if and only if the circuita evaluates to 1. O

Corollary 15. Path checking foMTL over infinite unary encoded data wordsHishard.

Note that the construction in the proof of Theor@duses non-monotonic data words.
This is unavoidable since it was shown R1] that path checking foMTL over finite mono-
tonic data words belongs #®C*(LogDCFL). But if we consider a succinct version MTL
that still has the same expressive power, the data wordsrooted can be monotonic.

Our nextP-hardness result will be shown for monotonic data wordsstkie define an
extension oMTL.

104 The path checking problems for MTL and TPTL

Definition 13. In the definition ofMTL, if we replace the modality, by U,ui,u...u1,,, Where
l1UlpU---Ulp a finite union of intervald; C Z (1 <i < n), then we call this logic succinct
MTL (SMTL).

Formally, the syntax and the semanticS®fTL are the same as that fdTL, except that
the setl in U; can be a finite unioh= 11Ul U---Ul, of intervalsl; C Z. We useunaSMTL
to denote the unary fragment 8MTL that uses only the unary modaliti¥sF, G, and use
pureUnaSMTL to denote the pure fragment 0faSMTL, i.e., there are no propositions are
used in the formula.

Letl = li. Itis easily seen that

¢1U|¢2 = \/¢1U|i¢2 = X.¢1U((\/XE |i)/\¢2).

i=1 i=1

We have the following two facts:

Fact 1. EverySMTL-formula is equivalent to aMTL-formula which can be exponentially
larger.

Fact 2. EverySMTL-formula is equivalent to & PTL!-formula of polynomial size, which,
moreover, can be computed in logarithmic space.

By Fact2 and Theoren22, we can know that path checking KM TL, over infinite binary
encoded data words is ih In the following we show that path checking fa¥ITL,, over finite
unary encoded data wordsHshard.

Theorem 26. Path checking fopureUnaSMTL,, over finite unary encoded strictly monotonic
pure data words i®-hard.

Proof. We reduce from SAM2CVP. Let be an SAM2-circuit witH > 2 levels andh gates in
each level. The idea will be to encode the wires between twsecutive levels by a suitably
shifted version of the data word

an_ﬁi~_|ﬂli(n+1) =(4,2,...,n,1-(n+1),2- (n+1),...,n-(n+1)).

Note that for alli1,iz € {1,...,n} andj, jo € {1-(n+1),2- (n+1),...,n-(n+ 1)}, we have
the following: If j1 —i1 = jo—i2 thenip =iz andj; = j2. Thisis best seen by viewing numbers
in their basen+ 1) expansion. Let us denote with= n(n+ 1) — 1 the maximal difference
between a number frofil, ..., n} and a number frol- (n+1),2- (n+1),...,n-(n+1)}.

5.2 The lower complexity bounds 105

We define the pure and strictly monotonic data ward as

-2

Wn = [1(Wn)+j.n(ns2)-
n JI:L n)+j-n(n+2)

The offset numbeij - n(n+ 2) is chosen such that the difference between a number from
{14+j-n(n+2),....,n+j-n(n+2)} and a number frod1+(j+1)-n(n+2),...,n+ (j +
1)-n(n+2)} is larger tham for everyj > 0.

Note that all data values in, | are bounded byl +1)n(n+2). The unary encoding of the
data wordw, | is computable in logarithmic space from the circuit. Forreae< j < |, define

Sj={i2(n+1)—iyq | theil gate in levelj connects to thé' gate in levelj + 1}

Supposey (1 < k < n) is the designated output gate. lldie the set of all € [1,n| such that
thei gate in level is set to the Boolean value 1. We construct phesUnaSMTL-formula
P =XK1, where¢; (1 < j <1 —1)is defined inductively as follows:

(

Fs,X"9j 11 if j <l —1andleveljisaVv-level,

) G X1 if j <I—21and leveljisan-level,
%= Fs (Viet X=X T) if j =1—1 and levelj is av-level,
| Gs; (Vigt X"'=XT) if j =1—1and levelj is aa-level.

The purpose of the prefiX" in front of ¢j1 is to move from a certain position within the
second half of thg™" copy of w, to the corresponding position within the first half of the
(j +1)" copy ofwy, in W . Note that no propositions are used, and only the unary niedal
F,G,X are used inp. It is straightforward to check that, |= ¢ if and only if the circuita
evaluates to 1. O

Corollary 16. Path checking foBMTL,, over finite unary encoded data wordsHshard.
By Fact2, we can obtain the following corollaries.

Corollary 17. Path checking fopureUnaTPTLﬁ over finite unary encoded strictly monotonic
pure data words i$®-hard.

Corollary 18. Path checking fo'n’PTLllJ over finite unary encoded data wordsHshard.

Example 7. Let a be the SAM2-circuit from Fig5.1 The encoding for level 1 and level 2 is

(1,2,3,4,5, 6,12,18,24, 30). (5.11)

106 The path checking problems for MTL and TPTL

The encoding for level 2 and level 3 is
(36,37,38,39,40, 41,47,53,59,65). (5.12)

We concatenate5(11) and 6.12 to obtain the following data worehs 3 which is the
encoding of the circuitr:

ws.3 = (1,2,3,4,5, 6,12, 18, 24,30)(36,37,38,39,40, 41,47,53,59,65).
Define
S = {4,5,10,11,13 15,20, 21, 25, 26}
and

S, = {3,5,8,10,13,17,20,22, 25, 27}.

Let the designated output gate &gin level 1, and assume that the input gatesa, Cs
(respectivelycy, c3) receive the value O (respectively, 1). Then theldgstl = {2,3} and the
pureUnaSMTL-formulay is

P =X3(Gg X°(Fs,(\/ X>71=XT))).
je{2,3}

Similar to the proof of Theorer5, we can adapt the proof of Theoréti and extend the
results to infinite data words.

Theorem 27. Path checking founaSMTL, and unaTPTLﬁ over infinite unary encoded data
words areP-hard.

Corollary 19. Path checking foBMTL,, andTPTLﬁ over infinite unary encoded data words

are P-hard.

5.2.2 PSPACE-hardness for TPTL

In this subsection, we will prove seveRSPACE lower bounds foffPTL andTPTL" (r > 2).
For TPTL andTPTL (r > 2), we prove the lower bounds for their pure unary fragments.

Theorem 28. Path checking fopureUnaTPTL,, over finite unary encoded strictly monotonic
pure data words i®SPACE-hard.

5.2 The lower complexity bounds 107

Proof. We provePSPACE-hardness by a reduction from tiRSPACE-complete quantified
Boolean formula problem (QBF, for short). L#= Q1x; - - - QnXn@ be a quantified Boolean
formula, whereQ; € {V,3} andg is a quantifier-free propositional formula. We construet th
finite pure strictly monotonic data word

w=0,12,....2n—1,2n,2n+ 1.

For everyi € {1,...,n}, the subword P— 1, 2i is used to quantify over the Boolean variable
Xi. We use a corresponding register variaklelf we assign to this register variable the data
value 2 — b, then the corresponding Boolean variaklés set tob € {0,1}.

We define theureUnaTPTL-formulax.W', whereW is defined inductively by the follow-
ing rules.

e If W=Vx®d, thenW =G((x =2 —1Vx =2i) = x.).
o If W=3xd, thenW' =F((x =2i —1Vx =2i) A%.D).

* If Wis a quantifier-free formula, then
W =FXx=2n+1AW[X /X1 =2n,...,% /% =2(N—0)+2,....% /% = 2]).

Here, W[x1/x1 = ap, ..., Xn/X» = an) denotes thel PTL-formula obtained fron¥ by
replacing every occurrence gfby x, = a (1 <i <n).

Recall from the semantics dfPTL that the subformula; = 2i — 1V X = 2i is true if and
only if the difference between the current data value and/@hge to whichx; is bound (which
is initially 0) is 20 — 1 or 4. Hence, the subformula is onbrue at the two positions where
the data values ara 2 1 and 2, respectively. It is easy now to see that the quantified Boole
formulaW is true if and only ifw = x.W'. O

Corollary 20. Path checking fofTPTL, over finite unary encoded data wordsRS PACE-
hard.

It is shown that model checking féreezeLTL over one-deterministic counter machine is
PSPACE-hard [BQ]. Since every infinite computation of a deterministic ormextter machine
is of the formuy (u2)%, (see Sectiorb.4). We can know that path checking foPTL over
infinite data words iSPACE-hard. Moreover, we can show that the path checking is still
PSPACE-hard even over the infinite strictly monotonic pure datadv@?¢%; = 0,1,2,3,4,...

Theorem 29. Path checking folf PTLy over the infinite data word0)%; is PSPACE-hard.

108 The path checking problems for MTL and TPTL

Proof. In the proof of Theoren28, letw =w(2n+2)%; =0,1,2,3,4,... Analysis similar to
that proof shows that the quantified Boolean formi#las true if and only ifw =x.W'. O

Corollary 21. Path checking folT PTL, over infinite unary encoded data wordsHSPACE-
hard.

In the following we consider path checking for the fragmehT@TL where the number
of register variables are bounded by a fixed nuntber2.
The quantified subset sum problem (QSS)$PACE-complete 79):

Input: A sequencey,ay,...,ax,b e N of binary encoded numbers.

Output: yes if ¥x; € {0,a1}3% € {0,a2} -+ -Vxon_1 € {0,a2n_1}TXon € {0,221} such that
52" x = b, no otherwise.

We define a variant of QSS in the following:
Input: A sequencey,ay,...,azx,b e N\ {0} of binary encoded numbers.

Output: yes if Vx; € {1,a1}3% € {1,a2}---V¥on_1 € {1,am_1}3xen € {1,a2} such that
52" x = b, no otherwise.

We call this problem positive quantified subset sum problB@SS). PQSS is alde5PACE-
complete. It is easy to check that for every instaacey, . . . ,ax,, b of QSS, the answer iges
for this input if and only if the answer for the PQSS-inpat + 1,a,+ 1, ... ,ax+1,b+2n)
iS yes.

Theorem 30. Path checking fopureUnaTPTLZ over the infinite data word0)?; is PSPACE-
hard.

Proof. The theorem is proved by a reduction from PQSS. Given annost,ay, ...,ax,b
of PQSS, we construct trpareUnaTPTLZ-formuIax.(pl, where the formulg; (1 <i <2n+1)
is defined inductively by

y.G((y=1vy=a) — ¢i11) fori<2nodd
di=<yF((y=1vy=a)A¢i,1) fori<2neven
X

=b fori=2n+1.
The intuition is the following: Note that in the data wondhe data value is increasing by

one in each step. Assume we want to evalya&ie(y=1Vy=a) — ¢i,1) in a position where
the data value is currently. The initial freeze quantifier setsto d. Then,G((y=1Vvy=

5.2 The lower complexity bounds 109

a) — ¢i-1) means that in every future position, where the current daltaeus eithed + 1 (in
such a positioly = 1 holds by theT PTL-semantics) od + g; (in such a positioly = g holds),
the formulag; 1 has to hold. In this way, we simulate the quantifigr € {1,a;}. At the end,
we have to check that the current data valule swhich can be done with the constrait b
(note thaix is initially set to 0 and never reset). We can show {@a’; = x.¢; if and only if
the answer for the PQSS-inpiay, ap, . . . ,azn,b) is yes. O

Corollary 22. Path checking foﬂ'PTLﬁ over infinite unary encoded strictly monotonic pure
data words iPSPACE-hard.

Recall from Theoren®0 that for every fixedr, path checking fofTPTL{, over infinite
binary encoded quasi-monotonic data words can be solvedlyngmial time. The following
result shows that quasi-monotonicity is important for Tieme20. First we prove a lower
bound forfreezeL TL?, which is a fragment oT PTL2.

Theorem 31. Path checking fofreezeLTL? over infinite binary encoded pure data words is
PSPACE-hard.

Proof. The theorem is proved by a reduction from PQSS.

We first prove the theorem for non-pure data words, and thew $fow to get rid of the
atomic propositions. Given an instanag ay, ..., azn, b of PQSS, we construct the infinite
data word

2n w
W= (0.b) ((q,o> e oeae 0>)

i= +1

and the formula.y.X¢1, where the formulag; (1 <i < 2n+ 1) are defined as follows. First
of all, for a propositiorp and a formulap we use the abbreviations

Fo = pU(pAY) andGpy = —Fpyp.

Thus,Fp holds in positionj means that in the future there is a time paistich thaty holds
at timet and the propositiorp holds at all time pointg < s <t. Similarly, Gpy holds in
position] means that for all future time pointsuch thatp holds at all time pointg < s<t,
Y holds att. Then we define:

X3 -DGpy. F(gAy=0A¢i11) fori<2nodd
¢i = ¢ X3-VFyF(qAy=0A¢i,1) fori <2neven
x=0 fori=2n+1

110 The path checking problems for MTL and TPTL

Let us explain the formulX3(~VFy.F(qAy = 0A ¢i.1). We will only evaluate this formula
in positions where the propositianholds (i.e., the starting positions of the periodic part of
w). Letd be the data value at this position (meaning that we are ati$tepiosition of the
(d+ 1) iteration of the periodic part). WitK3(-1 we move to the positiopwhich precedes
the block(p,1)(p,&)(0,0). The data value at the next positips 1 isd + 1, whereas the data
value at the positiof+ 2 isd + a;. With the modalityF, we either move to the position+ 1

or move to the position + 2; the choice is made existentially (if the modalityds, then the
choice is made universally). Nextjs set to the current data value. Hence, we existentially set
y to eitherd + 1 ord + g;. With the final partfF(QAy = 0A ¢i11) we go to the unique position
in the future, wherg holds and the data value at this position is equal to the walieh was
assigned ty before @ + 1 ord + &). In this way we simulate the quantifiér; € {1,a;}.

Finally, note that initially, the register variableis set tob (the data value at the first
position ofw). Hence, in the formula,, we express by the constraixt= 0 that the current
data value has to e This shows thatv = x.y.X¢ if and only if the instancey, ap, ..., az,b
IS positive.

We can get rid of the propositionsandq by encoding them into a pure data word. We
use(0,1,1) (respectively,(0,0,0)) to denoteq (respectively,p). Then the data word can
be replaced by the following pure data word (for better réddyawe underline the positions
that correspond to the old data wosgi

2n w
V\/ - b <07 17 1797 ﬂ(o7 07 O?l? O? 07 O?g? O)) *
i= +1
Define ¢q = x.X(—=(x = 0) AxX(x = 0)) and ¢p = x.X(x = 0AX(x = 0)). We replace the
formulaFpy by

Fo = [9pV X3 ($p A X=¢p) V X2 (9p AX9p) VX ($p A X=¢p)]U[dp A Y]
and definez,y = —F,—. Then we define:
XY GLX3y F(pgAX*PpAX3(y=0) AX3¢/, ;) fori<2nodd

¢l = { XUV FLX3YF(pg A X p AX3(y=0) AX3¢/, ;) fori< 2neven
Xx=0 fori=2n+1.

Analysis similar to above shows that = x.y.X* ¢; if and only if the instancey, ay,,azn, b
IS positive. O

5.3 Summary of path checking results 111

Corollary 23. Path checking fof PTL],(r > 2) over infinite binary encoded pure data words
is PSPACE-hard.

Remark5. Theorems24, 26 and 28 are showed for the logic where all constraint numbers
(or interval borders) are encoded in unary notation, and latdd if all constraint numbers
(or interval borders) are given in binary notation. The d¢argions in the proofs of these
theorems use only finite data words, and are easily adaptedinide data words. Whereas
Theorems30, 31 and Corollary23 only hold for infinite data words, since by Theor&hthe
path checking foiTPTL" over finite data words is iff. Furthermore, by Theorem9, the
constraint numbers in the logic of Theor&fiand the data words in Theoredd have to be
encoded in binary notation.

It is interesting to note that all lower bounds hold for theresponding unary fragments
except Theoren31 and Corollary23. The proof for TheorenB1 for freezeLTL? needs the
until operator. Itis not clear, whether path checking far tinary fragment offeezeL TL? over
infinite binary encoded data words is sibPACE-hard.

5.3 Summary of path checking results

We prove several upper and lower complexity bounds in Seé&tiband Sectiorb.2, respec-
tively. We summarizes our complexity results in this settio

Table5.1is an overview of our complexity results. We see thatf&TL, TPTLY, SMTL
and MTL, the type (finite or infinite) of the input data words, and timeading (unary or
binary) of data values and constraint numbers (or intergadiérs) do not influence the com-
plexity. In fact, the complexity results still hold for thainary fragments, and if we con-
sider the infinite monotonic data words of the fo(m%,, then path checking dfITL is in
ACY(logDCFL). For TPTL' (r > 2), the complexity depends on the input data words, and the
encoding of the data words and constraint numbers.

Fig. 5.7 shows our complexity results, which depicts the relatignst different logics
with respect to their expressive power (here the supetserip is a place holder for any
numbermr > 2), over different classes of data words. Whether data warelpure or not does
not change the complexity in all cases. Moreover, for finagadvords, the complexity does
not depend upon the encoding of data words (unary or binag/jtee fact whether data words
are monotonic or non-monotonic (faPTL andSMTL). On the other hand, for infinite data
words, these distinctions influence the complexity: Foabyrand non-monotonic data words
we get another picture than for unary encoded or (quasi-ptoonc data words.

112 The path checking problems for MTL and TPTL

infinite data words,
unary or quasi-monotonic

finite data words

TPTLy TPTLy
TPTL, TPTLZ
PSPACE-compl.
P-compl.
TPTLG® TPTL;
\\\\\\ ///// TPTLE™
\
TPTLL TPTLL
infinite data words, finite or infinite data words,
binary and non-monotonic non-monotonic
TPTLy

| SMTLp

TPTLZ
|
TPTL2

TPTLE P-compl.

Fig. 5.7 Complexity results of path checking

5.4 Model checking for deterministic one-counter machines 113

TPTL TPTLL(r>2) | TPTLL(r>2) | TPTLY,SMTL,MTL
L
'c | PSPACE-compl. P-compl. P-compl. P-compl.
o>
=
Eg PSPACE-compl. | PSPACE-compl. P-compl. P-compl.
L
.Eg
€5 PSPACE-compl. | PSPACE-compl. | PSPACE-compl. P-compl.

Table 5.1 Complexity results of path checking

5.4 Model checking for deterministic one-counter machines

In this section, we consider the model checking problem de¢erministic one-counter ma-
chines. We show that it is equivalent to the path checkinglpra over infinite unary encoded
data words with respect to logarithmic space reductions.

A one-counter machinfOCM) 7 is a triple«Z = (Q,qp,A), whereQ is a finite set of
states,gp € Q is the initial state, and = Q x {—1,0,1} x Q is the transition relation. A
configuration is a paifg,n) € Q x N. For configurationgp, m) and(q,n) we write (p, m) k-,
(g, n) if one of the following three cases holds:

* (p,—1,9 eAandn=m-1
* (p,1,g) eAandn=m+1
« (p,0,g)eAandn=m=0
An infinite run of &7 is an infinite sequence
(00,0) oy (Q1,M) oy (G2, M2) b (G, N3) oy -+ - .
A finite run of <7 is a finite sequence

(00,0) For (O1,N1) For (O2,N2) oy -+ - o7 (Qr, 1Y)

114 The path checking problems for MTL and TPTL

such that there does not exist a configuratigm) with (q;,n)) k., (g,n). We identify this
run with the finite data worddo,0)(g1,n1)(dz,n2) - -- (g, n), and an infinite run is viewed as
an infinite data word in the same way.

An OCM is deterministic(and called a DOCM) if for every state € Q, either there is
exactly one outgoing transitiofp, a,q) or there are exactly two outgoing transitions, which
have to be of the fornip,0,q;) and(p, —1,qz) for states;, g2 € Q. This implies thater' has
a unique run (either finite or infinite), which we denote witih(.<7) and is viewed as a data
word as explained above.

Lemma 24. For a given DOCMg7 one can check in logarithmic space, whethet (<) is
finite or infinite. Moreover, the following holds:

* If run(e/) is finite, then the corresponding data word in unary encodiag be com-
puted in logarithmic space.

* If run(«?) is infinite, then one can compute in logarithmic space tworyrencoded
data words @ and and a unary encoded number k such thai(.«7) = uy (u)%.

Proof. In [31], the following statement was shown: ffin(.<7) is infinite, thenrun(«/) =

ug (Uz)%, with k < [Q[and|uyup| < |QI3. Hence, in order to check whethein(.«7) is infinite,
we have to simulate” for at most Q| many steps. Thereby we check whether a configuration
(g,n) is reached such that before, already a configurdiipm) with m < n has been reached.
We store the current configuration with the counter valuanaty together with a step counter
t, which only needs logarithmic space (since the counter la@dtep counter are bounded by
|QI%). Each time we produce a new configurati@pn) (at stept), we have to check whether
we have seen a configuratidg, m) with m < n before. Since we cannot store the whole
sequence of configuration, we have to “freeze” the simutatifoe” at the configuratioriq, n)
and then start a new simulation from the initial configunatior at most steps. Thereby, the
current configuration is compared witt, n).

In a similar way, we can produce the data weud (<) itself in logarithmic space. We
only have to print out the current configuration. Internadlyr machine stores counter values
in binary encoding. Since we want the output data word to keyuencoded, we have to
transform the binary encoded counter values into unaryaingpwhich can be done with a
logarithmic space machine. O

Let.Z be a logic. Thanodel checking problem fa¥ over DOCMis defined as follows:
Input: A DOCM & and aformulap € .Z.

Output: yes if run(«?) = ¢, no otherwise.

5.4 Model checking for deterministic one-counter machines 115

Theorem 32. Let . be one of the logi@PTL, TPTL",SMTL or MTL. The model checking
problem for.Z over DOCM is equivalent with respect to logarithmic spacgueions to the
path checking problem fo#” over infinite unary encoded data words.

Proof. The reduction from the model checking problem fgrover DOCM to the path check-
ing problem for.Z over infinite unary encoded data words follows from Lem2da For the
other direction take a unary encoded infinite data werd ul(uz)‘fk and a formulap € .Z.
Of coursew does not have to be of the formn (<) for a DOCM <7, since in a data word
run(«/) the data value can only change by at most 1 for neighboringipas. On the other
hand, the latter can be easily enforced by inserting dumrsitipas in between the positions
of w. Letw = vi(v2)%, be the resulting data words. Then, we can easily construcigin
arithmic space a DOCMyY such that the sequence of counter values produced’ by the
sequence of data valueswf Moreover, no state of/ repeats among the firs vo| — 1 many
positions. It is then straightforward to construct a foregl € .# such thaww = ¢ if and
only if run(«) E /. O

By Theorem32, the complexity results from Tabke.1 and Fig.5.7 proved for. over
infinite unary encoded data words also shows the complekityanlel checking forZ over
DOCM.

Chapter 6
Conclusion and future work

In this thesis, we studied the expressive power, satisfyapiloblems and path checking prob-
lems forMTL andTPTL over data words. Ing], the authors showed that over infinite mono-
tonic data wordsMTL andTPTL have the same expressive power and the satisfiability prob-
lem is decidable. We consider®til' L andTPTL over infinite data words and finite data words
separately. Now we briefly summarize the contents of thisisrend mention some directions
for the future work.

In Chapter2, we gave some basic definitions and notations about datasyworetric tem-
poral logic, timed propositional temporal logic, the relatexpressive power, computational
complexity and two-counter machines.

In Chapter3, we introduced Ehrenfeucht—Fraissé gamesMadi. and TPTL over data
words, respectively, which are quantitative extensiornthefEF-game fotTL over words de-
fined in [36]. Every MTL-formula is equivalent to &8 PTL-formula where only one register
variable is used. Using the EF-game f1T L, we showed thal PTL is strictly more expres-
sive thanMTL over both infinite data words and finite data words. Actuallg,showed that
TPTL! is strictly more expressive thaiTL by proving that thél PTL-formulax.XX(x = 0)
is not definable iMTL. Furthermore, we showed that thel'L definability problem: whether
a TPTL-formula is definable itMTL, is undecidable over both infinite and finite data words
by reductions of recurrent state problem and halting pralié¢ two-counter machines. The
register variables iTPTL play an important role in reaching its greater expressiwegno
compared taMTL. When restricting the number of register variables, we vedde to show
that there is a strict increase in expressiveness whenialjowo register variables instead of
just one, i.e..;TPTL? is strictly more expressive thanPTLL. It is still open for the general
case that whetheFPTL" < TPTL'*!, wherer > 2. We conjecture that the register variable
hierarchy forTPTL is strict.

118 Conclusion and future work

We considered the expressive power of several fragmemtSafandTPTL by restriction
of the until rank and the set of constraint numbers (or irgEperders). We showed that the un-
til rank hierarchies foMTL andTPTL are strict over both infinite and finite data words, and
whether anMTL-formula (respectivelyTPTL-formula) is definable inMTLy (respectively,
TPTLy) is undecidable for everly € N. We also obtained linear constraint hierarchies and lat-
tice constraint hierarchies féATL and TPTL when the set of constraint numbers (or interval
borders) is restricted.

We also considered the expressive powevldilL that uses the non-strict semantics for the
until modality. We showed that, over non-monotonic datadsok TL with strict semantics
is strictly more expressive thaiTL with non-strict semantics.

In Chapter, we considered infinitary SAT and finitary SAT fMTL and some fragments
of MTL and TPTL. We showed that foMTL, the unary fragment oMTL and the pure
fragment ofMTL, infinitary SAT is Z%-complete and finitary SAT ii(l’-complete. This still
holds even for the unary fragmentMfT L with two propositions and for the unary fragment of
TPTL! without theX modality. We proved the undecidability of infinitary SAT $pectively,
finitary SAT) by a reduction from the recurrent state problgespectively, halting problem)
of two-counter machines. However, it is an open problem tdretindecidability also holds
for the unary fragment dfATL in which theX modality is not allowed.

For the positive fragments &iTL andTPTL, we showed that a positive formula is satis-
fiable if and only it is satisfied by a finite data word. Finit&%T and infinitary SAT coincide
for positive MTL and positiveTPTL. Both of them arei(f-complete. For existential PTL
(respectively, existentidVITL) that is the fragment of positiv€PTL (respectively, positive
MTL) in which we only use thé andX modalities, we showed that SAT MP-complete.

In Chaptel5, we considered the complexity of path checking problem&fot. andTPTL
over data words. We showed that path checkingrier L is PSPACE-complete, and foMTL
is P-complete. The type (finite or infinite) of the input data wardnd the encoding (unary
or binary) of data values and constraint numbers (or intdseaders) do not influence the
complexity. If the number of register variables allowed ifmanula is restricted, we obtained
path checking fof PTL! is P-complete over both infinite and finite data words; T TL? is
PSPACE-complete over infinite data words; and foPTL" (r > 2) is P-complete over finite
data words. If the encoding of constraint numbers of the inNRITL-formula is in unary
notation, we showed that path checking T TL' (r > 2) is P-complete over infinite unary
encoded data words or infinite binary encoded quasi-morotiata words.

For MTL, we proved theP-hardness over non-monotonic data words. This is unavoid-
able by the result in41] that path checking foMTL over monotonic data words belongs
to ACY(logDCFL). We introducedSMTL which is a succinct version d¥ITL. For SMTL,

119

we showed that path checking over monotonic data wordsdaemplete. We also showed
that path checking foMTL over infinite monotonic data words of the forfu)?, belongs to
ACY(logDCFL).

In the last section of this chapter, we extended these seguthodel checking over deter-
ministic one-counter machines.

References

[1] Parosh Aziz Abdulla and Karlis Cerans. Simulation isidable for one-counter nets
(extended abstract). [@oncurrency Theory, 9th International Conference, Niganke,
September 8-11, 1998olume 1466 of NCS pages 253-268. Springer, 1998.

[2] Sara Adams, Joél Ouaknine, and James Worrell. Undeiityads universality for timed
automata with minimal resources. Formal Modeling and Analysis of Timed Systems,
5th International Conference, FORMATS 2007, SalzburgiriayOctober 3-5, 2007
volume 4763 oLNCS pages 25-37. Springer, 2007.

[3] Rajeev Alur and David L. Dill. A theory of timed automataTheor. Comput. Sgi.
126(2):183-235, 1994.

[4] Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. Theefiks of relaxing punctu-
ality. J. ACM 43(1):116-146, January 1996.

[5] Rajeev Alur and Thomas A. Henzinger. Logics and modelseafl time: A survey.
In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, &mdegorz Rozenberg,
editors,REX Workshopvolume 600 oLLNCS pages 74-106. Springer, 1991.

[6] Rajeev Alur and Thomas A. Henzinger. Real-time logicanplexity and expressive-
ness.Inf. Comput, 104(1):390-401, 1993.

[7] Rajeev Alur and Thomas A. Henzinger. A really temporglito J. ACM 41(1):181-204,
1994.

[8] Rajeev Alur, Thomas A. Henzinger, and Orna Kupfermanteilating-time temporal
logic. J. ACM 49(5):672—-713, September 2002.

[9] Rajeev Alur and P. Madhusudan. Decision problems foetirmutomata: A survey. In
Formal Methods for the Design of Real-Time Systems, Intenmal School on Formal
Methods for the Design of Computer, Communication and aoftW@ystems, SFM-RT
2004, Bertinoro, Italy, September 13-18, 2004, Revisetuies volume 3185 oL NCS
pages 1-24. Springer, 2004.

[10] Christel Baier and Joost-Pieter Katod?rinciples of model checkindgMIT Press, 2008.

[11] Mikolaj Bojanczyk. The common fragment of ACTL and LTIn Foundations of Soft-
ware Science and Computational Structures, 11th Inteomati Conference, FOSSACS
2008, Budapest, Hungary, March 29 - April 6, 20@8lume 4962 o NCS pages 172—
185. Springer, 2008.

122 References

[12] Mikolaj Bojanczyk, Claire David, Anca Muscholl, ThomaSchwentick, and Luc
Segoufin. Two-variable logic on data wordsCM Trans. Comput. Log12(4):27, 2011.

[13] Benedikt Bollig. An automaton over data words that caps EMSO logic. InCon-
currency Theory - 22nd International Conference, CONCUR12(achen, Germany,
September 6-9, 201%olume 6901 oL NCS pages 171-186. Springer, 2011.

[14] Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and Kafdyan Kumar. Model check-
ing languages of data words. Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS ZUdlinn, Estonia, March 24
- April 1, 2012 volume 7213 o NCS pages 391-405. Springer, 2012.

[15] Rémi Bonnet. Decidability of LTL for vector addition sems with one zero-test. In
Reachability Problems - 5th International Workshop, Genlbaly, September 28-30,
2011 volume 6945 oL NCS pages 85-95. Springer, 2011.

[16] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Raaitity analysis of pushdown
automata: Application to model-checking. GONCUR '97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 19®Iume 1243 o NCS pages
135-150. Springer, 1997.

[17] Patricia Bouyer. A logical characterization of datadaages. Inf. Process. Letf.
84(2):75-85, 2002.

[18] Patricia Bouyer, Fabrice Chevalier, and Nicolas Mgrken the expressiveness of TPTL
and MTL. Inf. Comput, 208(2):97-116, 2010.

[19] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, anddis Markey. Timed automata
with observers under energy constraints Phoceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, GZI3@L0, Stockholm, Swe-
den, April 12-15, 2010pages 61-70. ACM, 2010.

[20] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolasrkég. Model checking one-
clock priced timed automaté.ogical Methods in Computer Scienek2), 2008.

[21] Daniel Bundala and Joél Ouaknine. On the complexityeaiporal-logic path checking.
In Automata, Languages, and Programming - 41st Internatid@@®@loquium, Copen-
hagen, Denmark, July 8-11, 201vblume 8573 oL NCS pages 86-97, 2014.

[22] John P. Burgess and Yuri Gurevich. The decision problenlinear temporal logic.
Notre Dame Journal of Formal Logi26(2):115-128, 04 1985.

[23] Claudia Carapelle, Shiguang Feng, Oliver Fernanddz &&id Karin Quaas. On the
expressiveness of TPTL and MTL owerdata words. IProceedings 14th International
Conference on Automata and Formal Languages, AFL 2014 e8zétungary, May 27-
29, 2014 volume 151 oEPTCS pages 174-187, 2014.

[24] Claudia Carapelle, Shiguang Feng, Oliver FernandézaGd Karin Quaas. Satisfiability
for MTL and TPTL over non-monotonic data words.llanguage and Automata Theory
and Applications - 8th International Conference, LATA 20%&drid, Spain, March 10-
14, 2014 volume 8370 oLNCS pages 248-259, 2014.

References 123

[25] Claudia Carapelle, Shiguang Feng, Alexander Kartzowg Markus Lohrey. Satisfia-
bility of ECTL* with tree constraints. In Lev D. Beklemishand Daniil V. Musatov,
editors,Computer Science - Theory and Applications - 10th Inteomati Computer Sci-
ence Symposium in Russia, CSR 2015, Listvyanka, Russfal3ul7, 2015volume
9139 ofLNCS pages 94-108. Springer, 2015.

[26] Joelle Cohen, Dominique Perrin, and Jean-Eric Pin.l@rekpressive power of temporal
logic. J. COMPUT. SYSTEM S(16:271-294, 1993.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rieesl Clifford SteinIntroduc-
tion to Algorithms, Second EditioriThe MIT Press and McGraw-Hill Book Company,
2001.

[28] Stéphane Demri and Ranko Lazic. LTL with the freeze ¢ifianand register automata.
ACM Trans. Comput. Log10(3), 20009.

[29] Stéphane Demri, Ranko Lazic, and David Nowak. On thezZeequantifier in constraint
LTL: Decidability and complexitylnf. Comput, 205(1):2—-24, 2007.

[30] Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Mclakecking freeze LTL over
one-counter automata. Foundations of Software Science and Computational Struc-
tures, 11th International Conference, FOSSACS 2008, Bestaplungary, March 29 -
April 6, 2008 volume 4962 of. NCS pages 490-504. Springer, 2008.

[31] Stéphane Demri, Ranko L&ziand Arnaud Sangnier. Model checking memoryful linear-
time logics over one-counter automat&eoretical Computer Sciencg&l1(22-24):2298—
2316, 2010.

[32] Stéphane Demri and Arnaud Sangnier. When model-chgdkeeze LTL over counter
machines becomes decidable. Roundations of Software Science and Computational
Structures, 13th International Conference, FOSSACS 2B4phos, Cyprus, March 20-
28, 2010 volume 6014 oL NCS pages 176-190. Springer, 2010.

[33] Deepak D’'Souza and Pavithra Prabhakar. On the expessss of MTL in the pointwise
and continuous semanticSTTT 9(1):1-4, 2007.

[34] H.-D. Ebbinghaus and J. Flurkinite Model Theory Springer, 1999.

[35] Javier Esparza. Decidability and complexity of Pett problems - an introduction. In
Lectures on Petri Nets |: Basic Models, Advances in PetrsNitte volumes are based
on the Advanced Course on Petri Nets, held in Dagstuhl, Sdme1996volume 1491
of LNCS pages 374-428. Springer, 1996.

[36] Kousha Etessami and Thomas Wilke. An until hierarchiyt@mporal logic. Inllth
Annual IEEE Symposium on Logic in Computer Science, NewsBiigk, New Jersey,
USA, July 27-30, 1996ages 108-117. IEEE Computer Society, 1996.

[37] Kousha Etessami and Thomas Wilke. An until hierarchg ather applications of an
Ehrenfeucht-Fraissé game for temporal logit. Comput, 160(1-2):88-108, 2000.

124

References

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

John Fearnley and Marcin Jurdgki. Reachability in two-clock timed automata is
PSPACE-complete. IRroceedings of the 40th International Conference on Autama
Languages, and Programming - Volume PartiCALP’13, pages 212-223, Berlin, Hei-
delberg, 2013. Springer-Verlag.

Shiguang Feng, Markus Lohrey, and Karin Quaas. Patbkihg for MTL and TPTL
over data words. In Igor Potapov, edit@evelopments in Language Theory - 19th
International Conference, DLT 2015, Liverpool, UK, July-20, 2015 volume 9168 of
LNCS pages 326—339. Springer, 2015.

Diego Figueira and Luc Segoufin. Future-looking logicsdata words and trees. In
Mathematical Foundations of Computer Science 2009, 34irnational Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slovakia, Augug822009 volume 5734
of LNCS pages 331-343. Springer, 2009.

Carlo Alberto Furia and Matteo Rossi. On the expressrgs of MTL variants over
dense time. IfProceedings of the 5th International Conference on Formatidling and
Analysis of Timed SystemSORMATS’07, pages 163-178, Berlin, Heidelberg, 2007.
Springer-Verlag.

Stefan Goller, Christoph Haase, Joél Ouaknine, andedawbrrell. Model checking
succinct and parametric one-counter automataAutomata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeakrance, July 6-10, 2010
volume 6199 oL NCS pages 575-586. Springer, 2010.

V. Goranko. Hierarchies of modal and temporal logictweference pointerslournal
of Logic, Language and InformatioB(1):1-24, 1996.

Raymond Greenlaw, H. James Hoover, and Walter L. Ruz4mits to Parallel Com-
putation: P-completeness Theor@xford University Press, Inc., New York, NY, USA,
1995.

Tom Henzinger and Vinayak Prabhu. Timed alternatingettemporal logic. In Patri-
cia Asarin, Eugene; Bouyer, editdfprmal Modeling and Analysis of Timed Systems,
4th International Conference, FORMATS 2006, Paris, Frah€NS 4202pages 1-17,
September 2006.

William Hesse, Eric Allender, and David A. Mix Barringt. Uniform constant-
depth threshold circuits for division and iterated multption. J. Comput. Syst. S¢i.
65(4):695-716, 2002.

Yoram Hirshfeld and Alexander Rabinovich. Continutiose temporal logic with count-
ing. Inf. Comput, 214:1-9, May 2012.

Yoram Hirshfeld and Alexander Moshe Rabinovich. Lagior real time: Decidability
and complexityFundam. Inform.62(1):1-28, 2004.

Yoram Hirshfeld and Alexander Moshe Rabinovich. Exgsigeness of metric modalities
for continuous time. IlComputer Science - Theory and Applications, First Inteioval
Computer Science Symposium in Russia, CSR 2006, St. PeggrRioissia, June 8-12,
2006 volume 3967 oL.NCS pages 211-220. Springer, 2006.

References 125

[50] lan Hodkinson, Frank Wolter, and Michael Zakharyasclizecidable fragments of first-
order temporal logicsAnnals of Pure and Applied Logi@06(1-3):85-134, 2000.

[51] Paul Hunter. When is metric temporal logic expressieeimplete? IlComputer Science
Logic 2013, CSL 2013, September 2-5, 2013, Torino, ltallume 23 ofLIPIcs, pages
380-394. Schloss Dagstuhl - Leibniz-Zentrum fur Informa2013.

[52] Paul Hunter, Joél Ouaknine, and James Worrell. Expresompleteness for metric
temporal logic. In28th Annual ACM/IEEE Symposium on Logic in Computer Scjence
LICS 2013, New Orleans, LA, USA, June 25-28, 2@Hges 349-357. IEEE Computer
Society, 2013.

[53] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, aridriRoH. C. Yap. Beyond finite
domains. InPrinciples and Practice of Constraint Programming, Secameérnational
Workshop, PPCP’94, Rosario, Orcas Island, Washington, \\N&y 2-4, 1994volume
874 of LNCS pages 86—94. Springer, 1994.

[54] Ron Koymans. Specifying real-time properties with neetemporal logic. Real-Time
Systems2(4):255-299, 1990.

[55] Lars Kuhtz and Bernd Finkbeiner. Efficient parallelipahecking for linear-time tempo-
ral logic with past and bound$.ogical Methods in Computer Scien@&£4), 2012.

[56] Francois Laroussinie, Nicolas Markey, and Ph. Schet&h On model checking dura-
tional Kripke structures. IRoundations of Software Science and Computation Strugture
5th International Conference, FOSSACS 20@&@ume 2303 olLNCS pages 264-279.
Springer, 2002.

[57] Etienne Lozes. Adjuncts elimination in the static aerttilogic. Electr. Notes Theor.
Comput. Scj.96:51-72, 2004.

[58] Monika Maidl. The common fragment of CTL and LTL. #1st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 Nove?d9€, Redondo Beach,
California, USA pages 643—-652. IEEE Computer Society, 2000.

[59] Nicolas Markey and Ph. Schnoebelen. Model checkingth. pa Concurrency Theory,
14th International Conference, Marseille, France, Segien8-5, 2003volume 2761 of
LNCS pages 248-262. Springer, 2003.

[60] Marvin L. Minsky. Recursive unsolvability of Post'sqislem of tag and other topics in
theory of Turing machinesAnnals of Mathemati¢c§4(3):437-455, November 1961.

[61] Marvin L. Minsky. Computation: Finite and Infinite MachinesPrentice-Hall, Engle-
wood Cliffs, NJ, 1967.

[62] Joél Ouaknine and James Worrell. On the language imeiysroblem for timed au-
tomata: Closing a decidability gap. @Bth IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finlapdges 54-63. IEEE Computer
Society, 2004.

126 References

[63] Joél Ouaknine and James Worrell. On metric temporatlagd faulty Turing machines.
In Foundations of Software Science and Computation Strust@té International Con-
ference, FOSSACS 2006, Vienna, Austria, March 25-31, 2aflame 3921 olLNCS
pages 217-230. Springer, 2006.

[64] Joél Ouaknine and James Worrell. Safety metric tempogic is fully decidable. In
Tools and Algorithms for the Construction and Analysis dt&ys, 12th International
Conference, TACAS 2006, Vienna, Austria, March 25 - Apr@@)§ volume 3920 of
LNCS pages 411-425. Springer, 2006.

[65] Joél Ouaknine and James Worrell. On the decidability@mplexity of metric temporal
logic over finite wordsLogical Methods in Computer Scien&§1), 2007.

[66] Paritosh K. Pandya and Simoni S. Shah. On expressivesoaf timed logics: Com-
paring boundedness, non-punctuality, and deterministiezing. InConcurrency The-
ory - 22nd International Conference, CONCUR 2011, Aacherntany, September 6-9,
2011 volume 6901 oL NCS pages 60-75. Springer, 2011.

[67] Pawel Parys and Igor Walukiewicz. Weak alternatingethautomatal.ogical Methods
in Computer Scien¢&(3), 2012.

[68] Pavithra Prabhakar and Deepak D’Souza. On the expessss of MTL with past oper-
ators. InFormal Modeling and Analysis of Timed Systems, 4th Intéonat Conference,
FORMATS 2006, Paris, France, September 25-27, 200lme 4202 oLLNCS pages
322-336. Springer, 2006.

[69] Karin Quaas. Model checking metric temporal logic ogetomata with one counter. In
Language and Automata Theory and Applications - 7th Inteonal Conference, LATA
2013, Bilbao, Spain, April 2-5, 201%olume 7810 olLNCS pages 468-479. Springer,
2013.

[70] Alexander Rabinovich. Complexity of metric temporabics with counting and the
pnueli modalitiesTheor. Comput. SGi411(22-24):2331-2342, May 2010.

[71] Omer Reingold. Undirected connectivity in log-spacd. ACM 55(4):17:1-17:24,
September 2008.

[72] M. Reynolds. The complexity of the temporal logic withritil* over general linear time.
J. Comput. Syst. S¢b6(2):393-426, March 2003.

[73] Hartley Rogers, Jr.Theory of Recursive Functions and Effective ComputabildyT
Press, Cambridge, MA, USA, 1987.

[74] Kristin Y. Rozier. Survey: Linear temporal logic symlmamodel checkingComput. Sci.
Rev, 5(2):163-203, May 2011.

[75] Ozlem Salehi, Abuzer Yakaryilmaz, and A. C. Cem Say. |Rese vector automata.
In Fundamentals of Computation Theory - 19th Internationahfgsium, FCT 2013,
Liverpool, UK, August 19-21, 201%olume 8070 ofLNCS pages 293-304. Springer,
2013.

References 127

[76] Luc Segoufin. Automata and logics for words and trees amenfinite alphabet. I€om-
puter Science Logic, 20th International Workshop, CSL 2088 Annual Conference
of the EACSL, Szeged, Hungary, September 25-29,, 2008ne 4207 oLNCS pages
41-57. Springer, 2006.

[77] Michael Sipser. Introduction to the Theory of Computationinternational Thomson
Publishing, 1st edition, 1996.

[78] A. P. Sistla and E. M. Clarke. The complexity of propasital linear temporal logics].
ACM, 32(3):733-749, July 1985.

[79] Stephen Travers. The complexity of membership proklé@n circuits over sets of inte-
gers.Theor. Comput. S¢i369(1):211-229, December 2006.

[80] Moshe Y. Vardi. An automata-theoretic approach todintemporal logic. InLogics
for Concurrency: Structure versus Automatalume 1043 ofLNCS pages 238-266.
Springer, 1996.

[81] Thomas Wilke. Specifying timed state sequences in pfuvdecidable logics and timed
automata. IrFormal Techniques in Real-Time and Fault-Tolerant Systédimsd Interna-
tional Symposium Organized Jointly with the Working GrowgvBbly Correct Systems
- ProCoS, Lubeck, Germany, September 19:28ume 863 ofLNCS pages 694-715.
Springer, 1994.

[82] Pierre Wolper. Temporal logic can be more expressiaérmation and Contrql56(1-
2):72-99, 1983.

Selbststandigkeitserklarung

Hiermit erklére ich, die vorliegende Dissertation selbstdndig und ohne un-
zuléssige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die ange-
fiihrten Quellen und Hilfsmittel benutzt und sdmtliche Textstellen, die wortlich
oder sinngeméf aus verdffentlichten oder unverdffentlichten Schriften entnom-
men wurden, und alle Angaben, die auf miindlichen Auskiinften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestell-
ten Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, 06.01.2016

Shiguang Feng

Scientific Career Experience

Aug. 1999 — Jul. 2002 Qingzhou No.1 senior middle school, P.R. China
Sep. 2002 — Jul. 2006 Shandong Agricultural University

e Major: Pharmaceutical Engineering
e Minor: Computer Science and Technology

e received Bachelor’s Degree of Engineering in July 2006
Sep. 2006 — Jul. 2012 Sun Yat-sen University

e Master-doctoral student of Institute of Logic and Cognition
e Major: Mathematical Logic, Supervisor: Prof. Dr. Xishun Zhao

e Thesis "The Complexity and Expressive Power of Second-Order HORN
Logic"

e received Doctor’s Degree of Philosophy in July 2012
Since Oct. 2012 Universitit Leipzig

e Doctoral student of Institut fiir Informatik,
e Research direction: Quantitative temporal logic
e Supervisor: Prof. Dr. Markus Lohrey & Prof. Dr. Manfred Droste

List of Publications

1. C. Carapelle, S. Feng, A. Kartzow, and M. Lohrey: Satisfiability of ECTL*
with tree constraints. In 10th International Computer Science Symposium
in Russia (CSR 2015), volume 9139 of LNCS, pages 94-108. Springer,
2015.

2. S. Feng, M. Lohrey, and K. Quaas: Path checking for MTL and TPTL over
data words. In 19th International Conference on Developments in Lan-
guage Theory (DLT 2015), volume 9168 of LNCS, pages 326-339. Springer,
2015.

3. C. Carapelle, S. Feng, O. F. Gil, and K. Quaas: Satisfiability for MTL
and TPTL over Non-monotonic Data Words. In 8th International Confer-
ence on Language and Automata Theory and Applications(LATA 2014),
volume 8370 of LNCS, pages 248-259. Springer, 2014.

4. C. Carapelle and S. Feng, O. F. Gil, and K. Quaas: On the Expressiveness
of TPTL and MTL over w-Data Words. In 14th International Conference
on Automata and Formal Languages(AFL 2014), Szeged, Hungary, May
27-29, 2014, volume 151 of EPTCS, pages 174-187, 2014.

5. S. Feng and X. Zhao. Complexity and Expressive Power of Second-Order
Extended Horn Logic, Mathematical Logic Quarterly, 59. 1-2(2013):4-11.

6. S. Feng and X. Zhao. The Complexity and Expressive Power of Second-
Order Extended Logic, Studies in Logic, 2012, 5(1):11-34.

List of Talks

1. Ehrenfeucht-Fraissé Games for Metric Temporal Logic on Data Words.
Highlights of Logics, Games and Automata 2013, Paris, 21.09.2013.

2. On the Expressiveness of TPTL and MTL over w-Data Words. AFL 2014,
Szeged, 28.05.2014.

3. Satisfiability of ECTL* with tree constraints. CSR 2015, Listvyanka,
13.07.2015.

4. The Complexity of Path Checking for MTL and TPTL over Data Words.
DLT 2015, Liverpool, 29.07.2015.

5. The Complexity of Path Checking for MTL and TPTL over Data Words.
Highlights of Logics, Games and Automata 2015, Prague, 18.09.2015.

	Table of contents
	1 Introduction
	2 Preliminaries
	2.1 Data words
	2.2 Linear temporal logic
	2.3 Metric temporal logic
	2.4 Timed propositional temporal logic
	2.5 Expressive power
	2.6 Computational complexity
	2.7 Two-counter machines

	3 The expressive power of MTL and TPTL
	3.1 The Ehrenfeucht–Fraïssé game for MTL
	3.2 Application of the EF-game for MTL
	3.3 MTL with non-strict semantics
	3.4 The Ehrenfeucht–Fraïssé game for TPTL
	3.5 Application of the EF-game for TPTL
	3.6 Summary of the relative expressive power

	4 The satisfiability problems for MTL and TPTL
	4.1 The satisfiability problem for MTL
	4.2 SAT for the positive fragments of MTL and TPTL
	4.3 SAT for the unary fragments of MTL and TPTL
	4.4 SAT for the pure fragment of MTL
	4.5 SAT for other fragments of MTL and TPTL
	4.6 Summary of satisfiability results

	5 The path checking problems for MTL and TPTL
	5.1 The upper complexity bounds
	5.2 The lower complexity bounds
	5.3 Summary of path checking results
	5.4 Model checking for deterministic one-counter machines

	6 Conclusion and future work
	References

