
The Expressive Power, Satisfiability and Path Checking

Problems of MTL and TPTL over Non-Monotonic Data Words

Von der Fakultät für Mathematik und Informatik

der Universität Leipzig
angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

im Fachgebiet
Informatik

Vorgelegt�

von�Shiguang�Feng�

geboren�am�17.01.1984�in�Shandong,�China�

�

Die�Annahme�der�Dissertation�wurde�empfohlen�von:�

� � � 1.�Prof.�Dr.�Markus�Lohrey,�Universität�Siegen�

� � � 2.�Prof.�Dr.�Manfred�Droste,�Universität�Leipzig�

� � � 3.�Prof.�Dr.�Martin�Lange,�Universität�Kassel�

�

Die�Verleihung�des�akademischen�Grades�erfolgt�mit�Bestehen�

der�Verteidigung�am�19.04.2016�mit�dem�Gesamtprädikat�

magna�cum�laude�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226118556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

First of all, I am most grateful to my supervisor Prof. Dr. Markus Lohrey for his patient and

continuous support throughout my work. His illuminating thoughts and insightful remarks

have contributed to this thesis in many ways. His generosityof time and guidance has deeply

informed my development. I have gained much from collaboration with him.

I would like to thank the Deutsche Forschungsgemeinschaft (DFG) Research Training

Group 1763 "Quantitative logics and automata" for giving methe opportunity to pursue my

interests in an inspiring international community and the financial support for me during the

last three years. I also want to thank my second supervisor Prof. Dr. Manfred Droste for

providing an excellent working and learning environment inUniversität Leipzig.

In addition, I am grateful to my colleague Dr. Karin Quaas forintroducing me to the

wonderful topic of temporal logic over non-monotonic data words. Many ideas for this work

are derived from the discussion with her. I have benefited a lot from her insight and patience.

Finally, I would like to thank my colleagues Claudia Carapelle and Oliver Fernández Gil

for their interest and help in my work. The work in this thesishas been co-authored and

discussed with them. I also want to thank Parvaneh Babari Ghorghi, Vitaly Perevoshchikov,

Eric Nöth, Alexander Kartzow and my former Supervisor Prof.Xishun Zhao and colleague

Dr. Yuping Shen for their kind help in my work and daily life.

Table of contents

1 Introduction 1

2 Preliminaries 7

2.1 Data words . 7

2.2 Linear temporal logic .. 8

2.3 Metric temporal logic .. 9

2.4 Timed propositional temporal logic 10

2.5 Expressive power .12

2.6 Computational complexity .. . 13

2.7 Two-counter machines .15

3 The expressive power of MTL and TPTL 17

3.1 The Ehrenfeucht–Fraïssé game for MTL 17

3.2 Application of the EF-game for MTL 22

3.3 MTL with non-strict semantics 32

3.4 The Ehrenfeucht–Fraïssé game for TPTL 36

3.5 Application of the EF-game for TPTL 40

3.6 Summary of the relative expressive power 48

4 The satisfiability problems for MTL and TPTL 49

4.1 The satisfiability problem for MTL 51

4.2 SAT for the positive fragments of MTL and TPTL 53

4.3 SAT for the unary fragments of MTL and TPTL 56

4.4 SAT for the pure fragment of MTL .. 62

4.5 SAT for other fragments of MTL and TPTL 65

4.6 Summary of satisfiability results 76

5 The path checking problems for MTL and TPTL 77

5.1 The upper complexity bounds .. 78

vi Table of contents

5.2 The lower complexity bounds .. . 97

5.3 Summary of path checking results 111

5.4 Model checking for deterministic one-counter machines. 113

6 Conclusion and future work 117

References 121

Chapter 1

Introduction

Recently, verification and analysis of sets of data words have gained a lot of interest [12–

14, 17, 28, 30, 76]. A data word is a sequence overP×D, whereP is a finite set of labels, and

D is a set of data values. One prominent example of data words are timed words, used in the

analysis of real-time systems [3]. Linear-time temporal logic (LTL) is nowadays one of the

main logical formalisms used for the specification and verification of reactive systems, and has

found applications in industrial tools. In this context, satisfiability and model checking are the

main computational problems forLTL. The complexity of these problems in various settings is

well-understood, see e.g. [10] for background. Triggered by applications in real-time systems,

various timed extensions ofLTL have been invented. Two of the most prominent examples

are metric temporal logic (MTL) [54] and timed propositional temporal logic (TPTL) [7]. In

MTL, the temporal operator until (U) is indexed by a time interval. For instance, the formula

pU[2,3)q holds at a certain timet, if there is a timet ′ ∈ [t + 2, t +3), whereq holds, andp

holds during the interval[t, t ′). TPTL is a more powerful logic that is equipped with a freeze

formalism. It uses register variables, which can be set to the current time value and later

these register variables can be compared with the current time value. For instance, the above

MTL-formula pU[2,3)q is equivalent to theTPTL-formulax.(pU(q∧2 ≤ x< 3)). Here, the

constraint 2≤ x< 3 should be read as: The difference of the current time value and the value

stored inx is in the interval[2,3).

For bothMTL andTPTL, two different semantics exist: the continuous semantics,where

the time domain are the real numbers, and the discrete semantics, where the time domain are

the natural numbers. We will be only interested in the discrete semantics, where formulas

are evaluated over finite or infinite sequences(P0,d0)(P1,d1) . . . of pairs(Pi,di). HerePi ⊆ P

is a finite set of atomic propositions (from some pre-specified finite setP) anddi ∈ N is a

time stamp such thatdi ≤ di+1 for all i ≥ 0. The freeze mechanism fromTPTL has also

received attention in connection with non-monotonic data words. A non-monotonic data word

2 Introduction

is a finite or infinite sequence(P0,d0)(P1,d1) . . . of the above form, where we do not require

the data valuesdi to be monotonic. In timed words, intuitively, the sequence of data values

describes the timestamps at which the properties from the labels setP hold. Non-monotonic

sequences of natural numbers, instead, can model the variation of an observed value during

a time elapse: we can think of the heartbeat rate recorded by acardiac monitor, atmospheric

pressure, humidity or temperature measurements obtained from a meteorological station. For

example, letWeather = {sunny,cloudy, rainy} be a set of labels. A data word modeling the

changing of the weather and highest temperature day after day could be:

(rainy,10)(cloudy,8)(sunny,12)(sunny,13) . . .

Applications forMTL andTPTL over non-monotonic data values can be seen in areas, where

data streams of discrete values have to be analyzed and the focus is on the dynamic variation

of the values (e.g. streams of discrete sensor data or stock charts). Both logics, however, have

not gained much attention in the specification of non-monotonic data words, albeit they can

express many interesting properties. The goal of this thesis is to investigateMTL andTPTL

when evaluated over non-monotonic data words: the expressive power, satisfiability problem

and path checking problem.

To continue our example, using theTPTL-formulax.(sunny U (cloudy∧−3 ≤ x ≤ −1))

over the labels setWeather, we can express the following property: It is sunny until it becomes

cloudy and the highest temperature has decreased of 1 to 3 degrees. This formula is equivalent

to theMTL-formula (sunny U[−3,−1] cloudy). The main advantage ofMTL with respect to

TPTL is its concise syntax. It would be practical if we could show thatMTL equalsTPTL

over data words. It is a simple observation that everyMTL-formula can be translated into an

equivalentTPTL-formula with only one register variable. For the other direction, however,

it turns out that the result depends on the data domain. For monotonic data words over the

natural numbers, Alur and Henzinger [6] proved thatMTL andTPTL are equally expressive.

For timed words over the non-negative reals, instead, Bouyer et al. [18] showed thatTPTL is

strictly more expressive thanMTL. We consider the relative expressive power ofTPTL and

MTL over non-monotonic data words, and show thatTPTL is strictly more expressive than

MTL in this setting.

Satisfiability and model checking problem forMTL andTPTL have been studied inten-

sively in the past, see e.g. [6, 7, 20, 21, 28, 31, 56, 63, 65]. On monotonic data words over the

natural numbers, the satisfiability problem for bothMTL andTPTL is EXPSPACE-complete,

and is undecidable forTPTL over non-monotonic data words [6, 7]. However, over timed

words, the satisfiability for both logics is undecidable over infinite timed words [6, 63], there

is a difference in the finite timed words case:TPTL has undecidable satisfiability problem [6],

3

while satisfiability forMTL is decidable (but non-primitive recursive) [65]. The type (finite

or infinite) of data words has influence on the decidability ofsatisfiability and the complexity

of model checking. In this thesis, we considerMTL andTPTL over infinite data words and

finite data words, respectively. We show that over non-monotonic data words, forMTL and

most fragments ofMTL andTPTL, the satisfiability problem is undecidable, which is either

Σ1
1-complete orΣ0

1-complete depending on the data words in consideration are infinite or finite.

As for TPTL, the logic freezeLTL can store the current data value in a registerx. But

in contrast toTPTL, the value ofx can only be compared for equality with the current data

value. Model checking one-counter machines withfreezeLTL is in general undecidable [30],

and so is the satisfiability problem [28]. A good number of recent publications deal with

decidable and undecidable fragments offreezeLTL [28–32]. The authors of [31] consider one-

counter machines (OCM) as a mechanism for generating infinite non-monotonic data words,

where the data values are the counter values along the uniquecomputation path. Whereas

freezeLTL model checking for non-deterministic OCM isΣ1
1-complete, the problem becomes

PSPACE-complete for deterministic OCM [31]. We investigate the complexity of path check-

ing problems forMTL andTPTL over non-monotonic data words. These data words can be

either finite or infinite periodic. Non-monotonic data wordscan be considered as behavioral

models of one-counter machines. Our results strengthens the recent decidability result for

model checking ofTPTL over deterministic OCM [69], and also generalizes thePSPACE-

completeness result forfreezeLTL over deterministic OCM from [31].

Below we give a brief description of the contents of this thesis.

In Chapter2, we give some basic definitions and notations about data words, metric tem-

poral logic, timed propositional temporal logic, the relative expressive power, computational

complexity and two-counter machines.

In Chapter3, we study the relative expressive power ofMTL andTPTL, and the expres-

sive power of several fragments ofMTL andTPTL by restriction of the syntactic resources,

e.g., the number of register variables, the until rank and the set of constraint numbers (or in-

terval borders). As a main tool for showing the results, we introduce quantitative versions of

Ehrenfeucht-Fraïssé games forMTL andTPTL over data words. In model theory, EF-game

is mainly used to prove inexpressibility results for some logics [34], e.g., first-order logic,

monadic second-order logic. Etessami and Wilke [36] introduced the EF-game forLTL and

used it to show that the until hierarchy forLTL is strict. Quantitative EF-games provide a very

general and intuitive mean to prove results concerning the expressive power of quantitative log-

ics. Using the EF-game forMTL, we show thatTPTL is strictly more expressive thanMTL

over both infinite data words and finite data words. In [18], Bouyer et al. used the formula

x.F(b∧F(c∧x≤ 2)) to separate these two logics over timed words. We show that the simpler

4 Introduction

TPTL-formula x.XX(x = 0) is not definable inMTL. Note that this formula is in the unary

fragment offreezeLTL and uses only one register variable, which is very restrictive. Actually,

we proveTPTL1 is strictly more expressive thanMTL. The intuitive reason for the difference

in expressiveness is that, using register variables, we canstore data values at any position of

a word to compare them with a later position, and it is possible to check that other properties

are verified in between. This cannot be done using the constrained temporal operators inMTL.

This does not result in a gap in expressiveness in the monotonic data words setting, because the

monotonicity of the data sequence does not allow arbitrary data values between two positions

of a data word. Furthermore, we show that theMTL definability problem: whether aTPTL-

formula is definable inMTL, is undecidable. We prove the undecidability over infinite and

finite data words by reductions of recurrent state problem and halting problem of two-counter

machines, respectively.

The register variables inTPTL play an important role in reaching its greater expressive

power compared toMTL. When restricting the number of register variables, we are able to

show that there is a strict increase in expressiveness when allowing two register variables

instead of just one, i.e.,TPTL2 is strictly more expressive thanTPTL1. We obtain this result

by proving theTPTL2-formulax1.X(x1 > 0∧x2.F(x1 > 0∧x2< 0)) is not definable inTPTL1.

But it is still open for the general case that whetherTPTLr+1 is strictly more expressive than

TPTLr whenr ≥ 2. We conjecture that the hierarchy about the number of register variables

for TPTL is strict.

We also consider the expressive power of several fragments of MTL andTPTL by restric-

tion of the until rank and the set of constraint numbers (or interval borders). We show that

the until rank hierarchies forMTL andTPTL are strict over both infinite and finite data words.

Similar to theMTL definability problem, for everyk ∈ N, whether anMTL-formula (respec-

tively,TPTL-formula) is definable inMTLk (respectively,TPTLk) is also undecidable. When

the set of constraint numbers (or interval borders) is restricted, we obtain linear constraint

hierarchies and lattice constraint hierarchies for bothMTL andTPTL.

There is an alternative definition forMTL that uses the non-strict semantics for the until

modality. We can show that, over non-monotonic data words,MTL with strict semantics is

strictly more expressive thanMTL with non-strict semantics, whereas these two logics are

equivalent over monotonic data words.

In Chapter4, we study the satisfiability ofMTL andTPTL and some fragments of them

over non-monotonic data words. More detailed, we consider satisfiability over infinite data

words (infinitary SAT) and finite data words (finitary SAT), respectively. We show that for

MTL, the unary fragment ofMTL and the pure fragment ofMTL, infinitary SAT is Σ1
1-

complete and finitary SAT isΣ0
1-complete. This still holds even for the unary fragment of

5

MTL with two propositions and for the unary fragment ofTPTL1 without theX modality.

This is opposed to the decidability result forfreezeLTL with one register variable evaluated

over finite data words [28]. However, it is an open problem whether undecidability also holds

for the unary fragment ofMTL in which theX modality is not allowed. We prove the unde-

cidability of infinitary SAT (respectively, finitary SAT) bya reduction from the recurrent state

problem (respectively, halting problem) of two-counter machines.

We also consider another syntactic restriction of the logics, namely we restrict the negation

operator to propositions and constraint formulas, which results in what we call the positive

fragments of our logics. This excludes the globally modality, which is used in most of the

undecidability proofs. For the positive fragments ofMTL andTPTL, we show that a positive

formula is satisfiable if and only it is satisfied by a finite data word. Finitary SAT and infinitary

SAT coincide for positiveMTL and positiveTPTL. Both of them areΣ0
1-complete. Last but

not least, we study the unary positive fragments ofMTL andTPTL (called existential fragment

in [18]). For existentialTPTL and existentialMTL, we show that SAT isNP-complete.

The main insight of this chapter is that bothMTL andTPTL have a very limited use in

specifying properties over non-monotonic data languages.This adds an important piece to

complete the picture about decidability of satisfiability problems for extensions of temporal

logics.

In Chapter5, we investigate the complexity of path checking problems for MTL andTPTL

over non-monotonic data words. These data words can be either finite or infinite periodic; in

the latter case the data word is specified by two finite data words u = (P1,d1) · · ·(Pm,dm)

and v = (Q1,e1) · · ·(Qn,en), which are the initial part and the period, respectively, and an

offset numberK. The resulting infinite data word isu∏i≥0(v+ iK), wherev+M denotes

the data word(Q1,e1+M) · · ·(Qn,en+M). It can be easily seen that the infinite data word

produced by a deterministic OCM is such a periodic data word.For periodic words without

data values, the complexity ofLTL path checking belongs toAC1(LogDCFL) (a subclass of

NC) [55]. This result solved a long standing open problem. For finitemonotonic data words,

the same complexity bound has been shown forMTL in [21].

We show that the latter result of [21] is quite sharp in the following sense: Path checking

for MTL over non-monotonic (finite or infinite) data words as well as path checking forTPTL

with one register variable over monotonic (finite or infinite) data words isP-complete. More-

over, path checking forTPTL (with an arbitrary number of register variables) over finiteas

well as infinite periodic data words becomesPSPACE-complete. We also show thatPSPACE-

hardness already holds for the fragment ofTPTL with only two register variables and all

constraint numbers are encoded in unary notation. If we onlyconsider finite data words and

6 Introduction

the number of register variables is bounded byr (r ∈N), then the complexity of path checking

for TPTLr becomesP-complete.

For MTL, we prove theP-hardness over non-monotonic data words. This is unavoid-

able by the result in [21] that path checking forMTL over monotonic data words belongs to

AC1(logDCFL). We define the logicSMTL which is a succinct version ofMTL and has the

same expressive power asMTL. For SMTL, we show that patch checking over monotonic

data words isP-complete. We also show that path checking forMTL over infinite monotonic

periodic data words of the form(u)ω
+k (i.e., without the initial part) belongs toAC1(logDCFL).

All these results yield a rather complete picture on the complexity of path checking forMTL

andTPTL.

Since the infinite data word produced by a deterministic OCM is periodic, we can transfer

all complexity results for the infinite periodic case to deterministic OCM. In [69], the author

proved recently that model checking for non-monotonicTPTL over deterministic OCM is

decidable, but the complexity remained open. Our results show that the precise complexity is

PSPACE-complete. This also generalizes thePSPACE-completeness result forfreezeLTL over

deterministic OCM in [31].

Chapter 2

Preliminaries

In this chapter, we give some basic definitions and notationsabout data words, temporal logics,

two-counter machines and computational complexity.

2.1 Data words

We useZ andN to denote the set of integers and the set of natural numbers, respectively. Let

P be a finite set ofatomic propositions. A word overP is a finite or infinite sequenceP0P1 · · · ,

wherePi ⊆ P(i ∈ N). A data wordoverP is a finite or infinite sequence(P0,d0)(P1,d1) · · · ,

where(Pi,di) ∈ (2P×N)(i ∈ N). It is monotonic(strictly monotonic), if di ≤ di+1 (di < di+1)

for all i ∈ N. It is pure, if Pi = /0 for all i ∈ N. A pure data word is just written as a sequence

of natural numbers. We denote with(2P×N)∗ and(2P×N)ω , respectively, the set of finite

and infinite, respectively, data words overP. Let u be a data word. We use min(u) and max(u)

to denotethe minimal data valueandthe maximal data valuein u, respectively. If there is no

maximal data value inu, we set max(u) = +∞. We use|u| to denotethe length of u, i.e., the

number of all pairs(Pi,di) in u. For example,|(P0,d0)(P1,d1) · · ·(Pn,dn)| = n+1. If u is an

infinite data word, we set|u|=+∞. Let u be a finite data word. We use||u|| to denotethe size

of u, i.e., the number of all symbols occurring inu.

Given a data wordu= (P0,d0)(P1,d1) · · · , we use the notationsu[i] ··= (Pi,di),

u[i :] ··= (Pi,di)(Pi+1,di+1) · · · ,

u[: i] ··= (P0,d0)(P1,d1) · · ·(Pi,di),

u[i : j] ··= (Pi,di)(Pi+1,di+1) · · ·(Pj ,d j),

andu+k ··= (P0,d0+k)(P1,d1+k) · · · , wherek∈ N. We useu1u2 to denote the concatenation

of two data wordsu1 andu2, whereu1 has to be finite. For a finite data wordu and numbers

8 Preliminaries

n,k∈ N, we define

un
+k ··= uu+ku+2k u+3k · · ·u+(n−1)k,

uω
+k ··= uu+ku+2k u+3k · · · .

In the pair(Pi,di), if Pi is a singleton set{p}, we write it(p,di) for brevity. Letw0,w1 be two

data words. We will usePi, j anddi, j to denote the set of propositions and data value in the

position j of data wordwi (i ∈ {0,1}, j ∈ N), respectively.

For wordsw,w1,w2 and numbersi,n ∈ N, the notationsw[i], w[: i], w[i :], w1(w2)
nw and

w1(w2)
ω are defined in the expected way, wherew1,w2 have to be finite.

2.2 Linear temporal logic

The set of formulas of linear-time temporal logic (LTL) is built up fromP by Boolean connec-

tives, and theuntil modalityU using the following grammar:

ϕ ····=⊤ | p | ¬ϕ | ϕ ∧ϕ | ϕUϕ

wherep∈ P.

Formulas ofLTL are interpreted overwords. Let w= P0P1P2 · · · be a word, and leti be a

position inw. We define thesatisfaction relation forLTL inductively as follows:

• (w, i) |=⊤.

• (w, i) |= p if and only if p∈ Pi.

• (w, i) |= ¬ϕ if and only if (w, i) 6|= ϕ.

• (w, i) |= ϕ1∧ϕ2 if and only if (w, i) |= ϕ1 and(w, i) |= ϕ2.

• (w, i) |= ϕ1Uϕ2 if and only if there exists a positionj > i in w such that(w, j) |= ϕ2, and

(w, t) |= ϕ1 for all positionst with i < t < j.

We say that a wordsatisfiesan LTL-formula ϕ, written w |= ϕ, if (w,0) |= ϕ. We use the

following standard abbreviations:

2.3 Metric temporal logic 9

⊥ ··= ¬⊤ Fϕ ··=⊤Uϕ

ϕ1∨ϕ2 ··= ¬(¬ϕ1∧¬ϕ2) Gϕ ··= ¬F¬ϕ

ϕ1 → ϕ2 ··= ¬ϕ1∨ϕ2 Xϕ ··=⊥Uϕ

ϕ1Rϕ2 ··= ¬(¬ϕ1U¬ϕ2) Xmϕ ··= X · · ·X
︸ ︷︷ ︸

m

ϕ

The modalitiesX (next), F (eventually) andG (globally) are allunaryoperators, which refer

to the next position, some position in the future and all positions in the future, respectively. The

modalityR is thereleaseoperator, which is useful to transform a formula into negation normal

form, i.e, the negation operator (¬) is only applied to⊤ or atomic propositions.

Example 1. Let w be a word,i a position inw, and letXϕ, Fϕ, Gϕ and ϕ1Rϕ2 be LTL-

formulas. Then

• (w, i) |= Xϕ if and only if i is not the last position ofw and(w, i +1) |= ϕ.

• (w, i) |= Fϕ if and only if there exists a positionj > i in w such that(w, j) |= ϕ.

• (w, i) |= Gϕ if and only if for all positionsj > i in w, (w, j) |= ϕ.

• (w, i) |= ϕ1Rϕ2 if and only if either for all positionsj > i, (w, j) |= ϕ2, or there is a

position j ′ > i such that(w, j ′) |= ϕ1, and for all positionst with i < t ≤ j ′, (w, t) |= ϕ2.

It is easy to check that, ifw is a finite word, then for every formulaϕ, the formulasXϕ and

Fϕ are always false andGϕ is always true at the last position ofw.

We define two quantitative extensions ofLTL: MTL andTPTL, which are evaluated over

data words, in the following.

2.3 Metric temporal logic

Metric temporal logic (MTL) is an extension ofLTL where the until modalityU is augmented

with a constraint interval overZ. More precisely, the formulas ofMTL are built by the follow-

ing grammar:

ϕ ····=⊤ | p | ¬ϕ | ϕ ∧ϕ | ϕUI ϕ

whereI ⊆ Z is an open, closed or half-closed interval. We use pseudo-arithmetic expressions

to denote intervals. For instance,= 2 and≥ 1 denote the intervals[2,2] and[1,∞), respectively.

If I = Z, then we may omit the indexI in UI .

10 Preliminaries

Formulas ofMTL are interpreted over data words. Letw = (P0,d0)(P1,d1) · · · be a data

word, and leti < |w|. We define the satisfaction relation forMTL inductively as follows:

• (w, i) |=⊤.

• (w, i) |= p if and only if p∈ Pi.

• (w, i) |= ¬ϕ if and only if (w, i) 6|= ϕ.

• (w, i) |= ϕ1∧ϕ2 if and only if (w, i) |= ϕ1 and(w, i) |= ϕ2.

• (w, i) |= ϕ1UI ϕ2 if and only if there exists a positionj with i < j < |w| such that(w, j) |=

ϕ2, d j −di ∈ I , and for all positionst with i < t < j, (w, t) |= ϕ1.

We say that a data word satisfies anMTL-formula ϕ, written w |= ϕ, if (w,0) |= ϕ. We

use the same syntactic abbreviations as forLTL where every temporal operator is augmented

with a constraint interval, i.e.,XI ϕ ··= ⊥UI ϕ, FI ϕ ··= ⊤UI ϕ, GI ϕ ··= ¬FI¬ϕ, ϕ1RIϕ2 ··=

¬(¬ϕ1UI¬ϕ2), andXm
I ϕ ··= XI · · ·XI

︸ ︷︷ ︸

m

ϕ.

Example 2. The following formula, over the setWeather = {cloudy, sunny, rainy} of atomic

propositions, expresses the fact that the weather is sunny until it becomes cloudy and the

temperature has decreased by three degrees. Furthermore inthe future it will rain and the

temperature will increase by at least one degree:

sunny U=−3 (cloudy∧F≥1 rainy). (2.1)

We say that anMTL-formulaϕ is pure if there are no atomic propositions inϕ. Thepure

fragment ofMTL, denoted bypureMTL, is the set of all pureMTL-formulas. AnMTL-formula

is unary if it is built from ⊤ and atomic propositions, using the Boolean connectives, and the

unary temporal modalitiesXI andFI . Theunary fragment ofMTL, denoted byunaMTL, is

the set of all unaryMTL-formulas. We usepureUnaMTL to denote the set of all pure unary

MTL-formulas.

2.4 Timed propositional temporal logic

Let V be a countable set ofregister variables. The formulas of timed propositional temporal

logic (TPTL) are built by the following grammar:

ϕ ····=⊤ | p | x∼ c | ¬ϕ | ϕ ∧ϕ | ϕUϕ | x.ϕ

2.4 Timed propositional temporal logic 11

wherex∈V, c∈ Z, and∼∈ {<,≤,=,≥,>}. We may also use formulas of the formx∈ I as

abbreviation for conjunctions of constraints, e.g., we maywrite x∈ [a,b] for x≥ a∧x≤ b.

A register valuationν is a function fromV to Z. Given a register valuationν, a data

valued ∈ Z, and a variablex ∈ V, we define the register valuationsν +d andν[x 7→ d] as

follows: (ν +d)(y) = ν(y)+d for everyy∈ V, (ν[x 7→ d])(y) = ν(y) for everyy ∈ V\{x},

and(ν[x 7→ d])(x) = d. Letw= (P0,d0)(P1,d1) · · · be a data word, letν be a register valuation,

and leti < |w|. The satisfaction relation forTPTL is defined inductively as follows:

• (w, i,ν) |=⊤.

• (w, i,ν) |= p if and only if p∈ Pi.

• (w, i,ν) |= ¬ϕ if and only if (w, i,ν) 6|= ϕ.

• (w, i,ν) |= ϕ1∧ϕ2 if and only if (w, i,ν) |= ϕ1 and(w, i,ν) |= ϕ2.

• (w, i,ν) |= ϕ1Uϕ2 if and only if there exists a positionj with i < j < |w| such that

(w, j,ν) |= ϕ2, and for all positionst with i < t < j, (w, t,ν) |= ϕ1.

• (w, i,ν) |= x∼ c if and only if di −ν(x)∼ c.

• (w, i,ν) |= x.ϕ if and only if (w, i,ν[x 7→ di]) |= ϕ.

Intuitively, x.ϕ, means that we areresetting xto the current data value, andx∼ c means

that, compared to the last time that we resetx, the data value has increased or decreased at least

by c. We say that a data wordw satisfies aTPTL-formulaϕ, writtenw |= ϕ, if (w,0, 0̄) |= ϕ,

where0̄ denotes the valuation that maps all register variables to the initial data valued0.

We use the same syntactic abbreviations as forLTL. The pure and unaryTPTL-formulas

are defined similarly to the pure and unaryMTL-formulas, respectively, but in which we can

use the constraintsx∼ c. We usepureTPTL, unaTPTL andpureUnaTPTL to denote the set

of all pureTPTL-formulas, unaryTPTL-formulas and pure unaryTPTL-formulas, respec-

tively. Moreover, we definefreezeLTL to be the set of allTPTL-formulas that are obtained

by allowing only constraints of the formx= 0(x∈V). Givenr ∈ N, we useTPTLr (respec-

tively, freezeLTLr) to denote the fragment ofTPTL (respectively,freezeLTL) that uses at most

r different register variablesx1, . . . ,xr .

Example 3. TheMTL-formula2.1in Example2 is equivalent to theTPTL1-formula

x.[sunny U (x=−3∧ cloudy∧x.F (x≥ 1∧ rainy))].

The formulasx.((cloudy∧ x ≤ 2)U sunny) andx.F (cloudy∧ F (sunny∧ x ≤ 2)) express the

following properties:

12 Preliminaries

(1) The weather will eventually become sunny. Until then it is cloudy every day and the

temperature is at most two degrees higher than the temperature at the present day.

(2) It will be cloudy in the future, later it will become sunny, and the temperature will have

increased by at most 2 degrees.

2.5 Expressive power

Let C be a class of data words. We say thatC is definableby a formulaϕ if for every data

wordw, w∈ C if and only if w |= ϕ. Two formulasϕ andψ areequivalentoverC if for every

data wordw∈ C we havew |= ϕ if and only if w |= ψ. We say thatϕ andψ are equivalent,

written ϕ ≡ ψ, if they are equivalent over all data words.

Let L1 andL2 be two logics. We say that anL1-formulaϕ is definable inL2 if there is

anL2-formulaψ such thatϕ andψ are equivalent. We say thatL2 is more expressive than

L1, writtenL1 4 L2, if for everyL1-formula, there exists an equivalentL2-formula. L2 is

strictly more expressive thanL1, writtenL1 ≺L2 if, additionally, there is anL2-formula that

does not have any equivalentL1-formula. Further,L1 andL2 areequally expressive, written

L1 ≡ L2, if L1 4 L2 andL2 4 L1. L1 andL2 areincomparable, if neitherL1 4 L2 nor

L2 4 L1.

Remark1. In the definition ofLTL, we use thestrict semanticsfor the until modalityU, i.e.,

a wordw satisfies the formulaϕ1Uϕ2 in a positioni if and only if there is a positionj > i

such thatϕ2 holds in the positionj, andϕ1 holds in all positions betweeni and j. The strict

semantics for the until modalityU is essential to derive the next modalityX. There is an

alternative definition forLTL that uses thenon-strict semanticsfor the until modality [26, 36,

55]. In this definition, a wordw satisfies the formulaϕ1Uϕ2 in a positioni if and only if either

ϕ2 holds in the positioni, or there is a positionj > i such thatϕ2 holds in the positionj and

ϕ1 holds in the positioni and all positions betweeni and j. Since the next modalityX is not

definable by the until modality interpreted by the non-strict semantics, it is given explicitly in

the syntax ofLTL in this definition. More precisely, the interpretations forthe next modality

X and the until modalityU are as follows (we use a dot over the modality operator to denote

that the modality operator is interpreted by the non-strictsemantics):

• (w, i) |= Ẋϕ if and only if i +1< |w| and(w, i +1) |= ϕ.

• (w, i) |= ϕ1U̇ϕ2 if and only if there exists a positionj with i ≤ j < |w| such that(w, j) |=

ϕ2, and for all positionst with i ≤ t < j, (w, t) |= ϕ1.

2.6 Computational complexity 13

There are also definitions forMTL andTPTL that use the non-strict semantics for the until

modalityU, which is defined in a similar way as that forLTL [6, 7]. For LTL andTPTL, both

definitions are equivalent to each other with respect to their expressive power. For example,

we haveẊ p≡ X p, pU̇q≡ q∨ (p∧ (pUq)), andpUq≡ Ẋ(pU̇q), wherep andq are atomic

propositions. But forMTL, we can show that the logicMTL interpreted by the strict semantics

is strictly more expressive than its counterpart interpreted by the non-strict semantics (see

Section3.3).

2.6 Computational complexity

A Turing machineTM contains an infinite tape divided into cells, and a head that can read

and write symbols on the cell and move on the tape. To be more precise, a Turing machine is

a 7-tuple〈Q,Σ,Γ,δ ,q0,qacc,qrej〉 where

(1) Q is a non-empty finite set of states,

(2) Γ is a non-empty finite set of tape symbols where the blank symbol ⊔ ∈ Γ,

(3) Σ = Γ\{⊔} is the set of input symbols,

(4) δ : Q×Γ → Q×Γ×{L,R} is the transition function,

(5) q0 ∈ Q is the initial state,

(6) qacc is the accepting state,

(7) qrej is the rejecting state.

The input ofTM is a finite string s= a0a1 . . .an whereai ∈ Σ(0 ≤ i ≤ n) stored in the

tape. Each cell contains a symbolai . Initially, TM readsa0 with stateq0. ThenTM runs ons

according to the transition functionδ . If TM readsai with stateqi , andδ (ai ,qi) = (a j ,q j ,L)

(respectively,δ (ai ,qi) = (a j ,q j ,R)), thenTM erasesai and writesa j in the same cell, and

changes into stateq j and moves to the left cell (respectively, the right cell). Wesay thatTM

acceptsthe input string if it reaches the stateqacc, andrejectsthe input string if it reaches the

stateqrej.

A problemis a set of strings. We say that a problemP is decidableif there exists a Turing

machineTM 1 such that for every strings, if s belongs toP thenTM 1 acceptss, otherwise,

TM 1 rejectss.

Let f : N → N be a function. We say that problemP is decidable intime f(n) (respec-

tively, space f(n)) if there exists a Turing machineTM 2 which decidesP such that for all

14 Preliminaries

stringss, TM 2 can accept or rejects in f (|s|) many steps (respectively, using at mostf (|s|)

many cells), where|s| is the length ofs, i.e., the number of symbols ins. We will denote by

TIME(f (n)) (respectively,SPACE(f (n))) the class of all problems that are decidable in time

f (n) (respectively, spacef (n)). We define

P=
⋃

k∈N

TIME(nk),

PSPACE=
⋃

k∈N

SPACE(nk).

If the Turing machine contains two tapes: an input tape and a work tape, where the input

tape stores the input and is read-only, and the work tape may be read and written in the usual

way, then we can define a sublinear space complexity class where only the cells used on the

work tape are counted as follows:

LOGSPACE =
⋃

k∈N

SPACE(k · log(n)).

A nondeterministicTuring machine is a variant of Turing machine where at any point in a

computation it has several possibilities to proceed. More precisely, its transition function has

the form

δ : Q×Γ → P(Q×Γ×{L,R})

whereP(Q×Γ×{L,R}) is the set of all subsets ofQ×Γ×{L,R}. LetTM be a nondetermin-

istic Turing machine. In the computation ofTM , if it readsai with stateqi , andδ (ai ,qi) = S

whereS∈ P(Q×Γ×{L,R}), thenTM nondeterministically chooses some(a j ,q j ,D) (D is

L or R) from S, and acts according to(a j ,q j ,D). We say thatTM accept the input if there is

a computation ofTM that can reach the stateqacc, and reject otherwise. We will denote by

NTIME(f (n)) (respectively,NSPACE(f (n))) the class of all problems that are decidable by a

non-deterministic Turing machine in timef (n) (respectively, spacef (n)). We define

NP=
⋃

k∈N

NTIME(nk),

NL =
⋃

k∈N

NSPACE(k · log(n)).

An alternatingTuring machine is an ordinary non-deterministic Turing-machine, whose

states, except forqacc andqrej, are divided into two sets:Q∃ (existential states) andQ∀ (uni-

2.7 Two-counter machines 15

versal states). In the computation of an alternating Turingmachine, we say that a stateq

is acceptingif (i) q = qacc or (ii) q ∈ Q∃ and there exists a transition from the current con-

figuration leading to an accepting state or (iii)q ∈ Q∀ and every transition from the current

configuration leads to an accepting state. The machine accepts an inputs if and only if the

initial state overs is accepting.

We will denote byATIME(f (n)) (respectively,ASPACE(f (n))) the class of all problems

that are decidable by an alternating Turing machine in timef (n) (respectively, spacef (n)).

We define

APTIME=
⋃

k∈N

ATIME(nk),

ALOGSPACE =
⋃

k∈N

ASPACE(k · log(n)).

It is known thatAPTIME= PSPACE andALOGSPACE = PTIME [77].

We say that a problemP is P-hard (NP-hard andPSPACE-hard, respectively) if for every

problemP′ in P (NP andPSPACE, respectively) there is a logarithmic space (polynomial time)

reduction fromP′ to P.

A problemP is P-complete(NP-completeandPSPACE-complete, respectively) if it is in

P (NP andPSPACE, respectively) and isP-hard (NP-hard andPSPACE-hard, respectively).

2.7 Two-counter machines

A two-counter machineM contains two counters denoted byC1 andC2, and a finite set

{I0, . . . , In} of instructions, which operate onC1 andC2. Each instructionI j (0 ≤ j ≤ n) is

one of the following instructions, wherei is 1 or 2:

(1) increment: Ci ··=Ci+1; nondeterministically go to someI k∈Sj , whereSj is a nonempty

subset of{I0, . . . , In}.

(2) decrement: if Ci = 0 then nondeterministically go to someI k ∈S1
j elseCi ··=Ci −1; non-

deterministically go to someIm ∈ S2
j , whereS1

j ,S
2
j are nonempty subsets of{I0, . . . , In}.

(3) halt: M halts.

If for each instructionI j (0 ≤ j ≤ n) the setSj (or S1
j andS2

j) contains exactly one element,

then we say thatM is deterministic. A configurationof a two-counter machineM is a triple

γ = (I j ,c1,c2), whereI j ∈ {I0, . . . , In} andc1,c2∈N. A computationof M is a finite or infinite

16 Preliminaries

sequence(γi)i≥0 of configurations, starting from the initial configurationγ0 = (I0,0,0), such

thatγi+1 is the result of executing the instructionI i on γi for all i ≥ 0.

Thehalting problemfor two-counter machines is defined as follows:

Input: a two-counter machineM

Output: yes if there exists a finite computation ofM that reaches a halting instruction,no

otherwise.

Therecurrent state problemfor two-counter machines is defined as follows:

Input: a two-counter machineM

Output: yes if there exists an infinite computation ofM that visits the initial instructionI0

infinitely often,no otherwise.

Both of these two problems are not decidable. In addition, the halting problem isΣ0
1-complete [60],

and the recurrent state problem isΣ1
1-complete [7].

Chapter 3

The expressive power of MTL and TPTL

In this chapter we introduce the Ehrenfeucht–Fraïssé gamesfor MTL andTPTL, respectively.

We show thatTPTL is strictly more expressive thanMTL over both infinite data words and

finite data words. We also consider the expressive power of several fragments ofTPTL and

MTL by restriction of syntactic resources, e.g., the until rank, the set of constraint numbers

(or interval borders) and the number of register variables.

3.1 The Ehrenfeucht–Fraïssé game for MTL

In this section we define the Ehrenfeucht–Fraïssé game forMTL, and prove two theorems

about the relationship between EF-game and expressive power.

First we give the definition of the until rank of anMTL-formula.

Definition 1. The until rank of anMTL-formulaϕ, denoted byRank(ϕ), is defined inductively

on the structure ofϕ:

• If ϕ is ⊤ or p∈ P, thenRank(ϕ) = 0.

• If ϕ is ¬ϕ1, thenRank(ϕ) = Rank(ϕ1).

• If ϕ is ϕ1∧ϕ2, thenRank(ϕ) = max{Rank(ϕ1),Rank(ϕ2)}.

• If ϕ is ϕ1UI ϕ2, thenRank(ϕ) = max{Rank(ϕ1),Rank(ϕ2)}+1.

In the following we define several fragments ofMTL. Let S⊆ Z, and letk∈ N. Define

MTLS= {ϕ ∈MTL | all interval borders inϕ are inS},

MTLk = {ϕ ∈MTL | Rank(ϕ)≤ k},

MTLS
k =MTLS∩MTLk.

18 The expressive power of MTL and TPTL

It is easily seen thatMTL=
⋃

k∈N
⋃

S⊆ZMTLS
k.

Example 4. In MTL /0 we can only use the until modalityUZ (U for short) that is augmented

with the interval of all integers, i.e., ifϕ1UI ϕ2 ∈MTL /0, thenI = Z.

Let S= {1,3}, and letϕ be a formula inMTLS. Then the until modalityU in ϕ can be aug-

mented with the intervalsZ, [1,3],(1,3], [1,3),(1,3) or (−∞, i),(−∞, i], [i, i],(i,+∞), [i,+∞),

wherei is 1 or 3.

If S⊆ Z is a finite set, we can show thatMTLS
k is also finite up to equivalence for every

k∈ N. This result is important for the proofs of Theorems1 and2.

Lemma 1. For every finite S⊆ Z and every k∈ N, there are only finitely many formulas in

MTLS
k up to equivalence.

Proof. Fix a finite setS⊆ Z. We prove this lemma by induction onk.

For k = 0, no until modality will be used, the number of propositional formulas is finite

up to equivalence sinceP is a finite set. Suppose that it holds fork, we will prove it fork+1.

BecauseSis a finite set, the number of different until modalitiesUI is finite, where the borders

of I are inS. So there are finitely many formulas up to equivalence in the set

R= {ϕ1UI ϕ2 | ϕ1,ϕ2 ∈MTLS
k}∪MTLS

k.

The formulas obtained by using Boolean connectives on the formulas inR are also finitely

many up to equivalence. HenceMTLS
k+1 is a finite set up to equivalence.

Definition 2. Let S⊆ Z andk ∈ N. Let w0,w1 be two data words, and leti0, i1 ≥ 0 be two

positions inw0 andw1, respectively. We say thatw0[i0 :] andw1[i1 :] areMTLS
k-equivalent,

written (w0, i0)≡S
k (w1, i1), if for everyϕ ∈MTLS

k, (w0, i0) |= ϕ if and only if (w1, i1) |= ϕ.

We will write w0 ≡
S
k w1 if (w0,0)≡S

k (w1,0) in the following.

Definition 3. Let S⊆ Z be a finite set, and letc1, . . . ,cn be a list of all numbers inSsuch that

ci < ci+1(1≤ i < n). For anya,b∈Z, we say thata
S
≡ b if a= b, or botha andb belong to one

of the intervals(−∞,c1), (cn,+∞), (ci,ci+1)(1≤ i < n) (or belong to the interval(−∞,+∞),

if S= /0).

It is easily seen that for every finiteS⊆ Z the binary relation
S
≡ is an equivalence relation

onZ. The equivalence classes form a partition ofZ.

Example 5. Let S= {1,4,8}. The set of equivalence classes is

{(−∞,1), [1,1],(1,4), [4,4],(4,8), [8,8],(8,+∞)}.

3.1 The Ehrenfeucht–Fraïssé game for MTL 19

We have 2
S
≡ 3, 5

S
≡ 6, a1

S
≡ b1(a1,b1 ≤ 0) anda2

S
≡ b2(a2,b2 ≥ 9).

Let w0,w1 be two data words. Recall that we usePi, j anddi, j (i ∈ {0,1}, j ∈ N) to denote

the set of propositions and data value in the positionj of data wordwi , respectively.

We define the Ehrenfeucht–Fraïssé game forMTL in the following. The EF-game is played

by two players, called Spoiler and Duplicator, on two data wordsw0 andw1 with a finite set

S⊆Z. A game configuration is a pair of positions(i0, i1) ∈N×N, wherei0 is a position inw0

andi1 is a position inw1. In each round of the game, where the current game configuration is

(i0, i1):

(1) Spoiler chooses an indexl ∈ {0,1} and a positionj l > i l in data wordwl .

(2) Duplicator responds with a positionj1−l > i1−l in data wordw1−l such that

• if j l = i l +1, then j1−l = i1−l +1, and

• (dl , j l −dl ,i l)
S
≡ (d1−l , j1−l −d1−l ,i1−l).

Then Spoiler chooses between one of the following two options:

(a) The new configuration becomes(j0, j1).

(b) Spoiler chooses a positioni1−l < j ′1−l < j1−l in w1−l , Duplicator responds with a

positioni l < j ′l < j l in wl , and the new configuration becomes(j ′0, j ′1).

We use MGS
k(w0, i0,w1, i1) to denote thek-round EF-game forMTL starting from the po-

sition i0 in w0 and the positioni1 in w1 with a finite setS⊆ Z.

Thewinning condition for Duplicatoris defined inductively. We say that Duplicator wins

the 0-round EF-game MGS0(w0, i0,w1, i1) if P0,i0 = P1,i1. Duplicator wins the(k+1)-round EF-

game MGS
k+1(w0, i0,w1, i1) if she wins the 0-round EF-game MGS

0(w0, i0,w1, i1), and either

i0 andi1 are the last positions ofw0 andw1, respectively (Spoiler has no position to choose),

or for every choice of moves of Spoiler in the first round, Duplicator can respond correctly

and wins thek-round EF-game MGSk(w0,n0,w1,n1), where(n0,n1) is the new configuration

after the first round. If Duplicator cannot win the game, we say that Spoiler wins the game.

We write (w0, i0) ∼S
k (w1, i1) if Duplicator wins thek-round EF-game MGSk(w0, i0,w1, i1). It

follows easily that if(w0, i0)∼S
k (w1, i1), then for allm< k, (w0, i0)∼S

m (w1, i1). We will write

w0 ∼
S
k w1 if (w0,0)∼S

k (w1,0) in the following.

Theorem 1. Let w0,w1 be two data words, and let i0, i1 be two positions in w0,w1, respectively.

For every finite S⊆ Z and every k∈ N, (w0, i0)≡S
k (w1, i1) if and only if(w0, i0)∼S

k (w1, i1).

20 The expressive power of MTL and TPTL

Proof. Fix a finite setS⊆ Z. We prove this theorem by induction onk. It is clear fork = 0.

Suppose that this theorem holds fork, we show that it also holds fork+1.

For the direction “⇒”, we give a proof by contradiction. Suppose(w0, i0) ≡S
k+1 (w1, i1)

holds and(w0, i0)∼S
k+1 (w1, i1) does not hold. Then Spoiler wins MGS

k+1(w0, i0,w1, i1). With-

out loss of generality suppose that Spoiler choosesw0 and a positioni′0 > i0 in w0. For each

i0 < j ≤ i′0, define

ϕ j =
∧

{ϕ ∈MTLS
k | (w0, j) |= ϕ}.

Note thatϕ j is well-defined since there are only finitely manyMTLS
k-formulas up to equiva-

lence by Lemma1. Define theMTLS
k+1-formula

ϕ = (
∨

i0< j<i′0

ϕ j)UI ϕi′0
1

whered = d0,i′0
−d0,i0 and

I =







[d,d] if d ∈ S,

(−∞,a) if d < a anda is the smallest number inS,

(b,+∞) if d > b andb is the largest number inS,

(a,b) if a,b∈ S,a< d < b and there is noc∈ Ssuch thata< c< b,

Z if S= /0.

Clearly,Rank(ϕ)≤ k+1 and(w0, i0) |= ϕ. We have(w1, i1) |= ϕ since(w0, i0)≡S
k+1 (w1, i1).

Hence there existsi′1 > i1 such that(w1, i′1) |= ϕi′0
andd1,i′1

−d1,i1 ∈ I , and for alli1 < i′′1 < i′1,

(w1, i′′1) |=
∨

i0< j<i′0
ϕ j . So Duplicator can respond with the positioni′1 in w1. Now if they start

a new round from the configuration(i′0, i
′
1), we know by(w1, i′1) |= ϕi′0

and the definition of

ϕi′0
that (w0, i′0) ≡

S
k (w1, i′1). By induction hypothesis,(w0, i′0) ∼

S
k (w1, i′1), which means that

Duplicator wins the remainingk rounds. On the other hand, if Spoiler chooses a position

i1 < i′′1 < i′1 in w1, we know by(w1, i′′1) |=
∨

i0< j<i′0
ϕ j that there is a positioni0 < i′′0 < i′0 such

that(w1, i′′1) |= ϕi′′0
. Hence Duplicator can respond with the positioni′′0 in w0. If they start a new

round from the configuration(i′′0, i
′′
1), we know by the definition ofϕi′′0

that(w0, i′′0)≡
S
k (w1, i′′1),

and thus, by induction hypothesis, that(w0, i′′0)∼
S
k (w1, i′′1), which means that Duplicator wins

the remainingk rounds again. Because(w0, i0)≡S
k+1 (w1, i1), we haveP0,i0 = P1,i1. Finally, we

know that Duplicator wins the game MGS
k+1(w0, i0,w1, i1), which contradicts the assumption.

For the “⇐” direction, suppose that(w0, i0) ∼S
k+1 (w1, i1), i.e., Duplicator wins the game.

We show that(w0, i0) ≡S
k+1 (w1, i1). Let ϕ ∈ MTLS

k+1. If Rank(ϕ) ≤ k, then(w0, i0) |= ϕ
1ϕ =⊥UI ϕi′0

if i′0 = i0+1, i.e., there are no positions between positioni0 and positioni′0.

3.1 The Ehrenfeucht–Fraïssé game for MTL 21

if and only if (w1, i1) |= ϕ, since(w0, i0) ∼S
k+1 (w1, i1) implies (w0, i0) ∼S

k (w1, i1), and by

induction hypothesis,(w0, i0)∼S
k (w1, i1) if and only if (w0, i0)≡S

k (w1, i1). If Rank(ϕ) = k+1,

we prove for the caseϕ = ϕ1UI ϕ2 whereϕ1,ϕ2 ∈ MTLS
k, that (w0, i0) |= ϕ1UI ϕ2 if and

only if (w1, i1) |= ϕ1UI ϕ2. The proof for the other cases is easy. Without loss of generality,

suppose(w0, i0) |= ϕ1UI ϕ2, we show that(w1, i1) |= ϕ1UI ϕ2. The other direction can be

proved analogously.

We have(w0, i0) |= ϕ1UI ϕ2 if and only if there existsi′0 > i0 such that(w0, i′0) |= ϕ2 and

d0,i′0
−d0,i0 ∈ I , and for alli0 < j < i′0, (w0, j) |= ϕ1. Assume Spoiler chooses the positioni′0

in w0. Since Duplicator wins the game, she can respond with a position i′1 > i1 in w1 such that

(d0,i′0
− d0,i0)

S
≡ (d1,i′1

− d1,i1) and (w0, i′0) ∼
S
k (w1, i′1). By induction hypothesis,(w0, i′0) ≡

S
k

(w1, i′1). Thus,(w1, i′1) |= ϕ2. On the other hand, if Spoiler chooses a positioni1 < i′′1 < i′1 in

w1, we know by assumption that Duplicator can respond with a position i0 < i′′0 < i′0 such that

(w0, i′′0) ∼
S
k (w1, i′′1). By induction hypothesis,(w0, i′′0) ≡

S
k (w1, i′′1), and hence(w1, i′′1) |= ϕ1.

Since Spoiler can choose an arbitrary position betweeni1 andi′1, we can know that(w1, j) |=

ϕ1 for every i1 < j < i′1. Adding (d0,i′0
− d0,i0)

S
≡ (d1,i′1

− d1,i1) and (w1, i′1) |= ϕ2 we have

(w1, i1) |= ϕ1UI ϕ2. Finally, we have(w0, i0)≡S
k+1 (w1, i1).

Theorem 2. Let C be a class of data words. The following are equivalent:

(1) C is not definable inMTL.

(2) For every finite S⊆ Z and every k∈ N, there exist two data words w0 ∈ C and w1 6∈ C

such that w0 ∼S
k w1.

Proof. From (1) to (2), we give a proof by contradiction. Assume (1) holds and (2) does not

hold. Then there exist a finite setS⊆ Z and a numberk ∈ N such that for every pair of data

wordsw0,w1, if w0 ∈ C andw1 6∈ C, thenw0 6∼
S
k w1. By Theorem1, this impliesw0 6≡

S
k w1.

So for every pair of data wordsw0,w1, if w0 ≡
S
k w1, thenw0 ∈ C if and only if w1 ∈ C. For a

data wordw, we define

ϕw =
∧

{ϕ ∈MTLS
k | w |= ϕ}.

We define theMTLS
k-formula

Φ =
∨

w∈C

ϕw.

Note that there are only finitely many formulas inMTLS
k up to equivalence, so bothϕw and

Φ are well-defined. We show thatC is definable by the formulaΦ, which contradicts the

assumption. For an arbitrary data wordw, if w ∈ C, thenw |= Φ by the definition ofΦ. If

w |= Φ, there must exists some data wordw′ ∈ C such thatw |= ϕw′. This implies thatw and

w′ satisfy the same formulas inMTLS
k, i.e.,w≡S

k w′. Then we havew∈ C sincew′ ∈ C.

22 The expressive power of MTL and TPTL

From (2) to (1), suppose by contradiction thatC is definable by theMTLS
k-formulaψ for

some finite setS⊆ Z andk ∈ N. We can know that for every pair of data wordsw0,w1, if

w0 ∈ C andw1 6∈ C, thenw0 6≡
S
k w1, sincew0 |= ψ andw1 6|= ψ. By Theorem1, this implies

w0 6∼
S
k w1, contrary to (2).

3.2 Application of the EF-game for MTL

In this section, we present one of our main results:TPTL is strictly more expressive thanMTL

over both infinite data words and finite data words. Furthermore, we show that the problem

which asks whether aTPTL-formula is definable inMTL is undecidable. We also prove

one hierarchy theorem for the fragment ofMTL that restrict the until rank and two hierarchy

theorems for the fragment ofMTL that restrict the set of interval borders.

3.2.1 Relative expressiveness of TPTL and MTL

We first prove two useful lemmas.

Lemma 2. Let S⊆ Z be a finite set, and let w0,w1 be two data words such that|w0|= |w1|. If

for every i≥ 0, P0,i = P1,i and for every j′ > j ≥ 0, (d0, j ′ −d0, j)
S
≡ (d1, j ′ −d1, j), then for every

k∈ N, w0 ∼
S
k w1.

Proof. The proof is straightforward. In each round, Duplicator canalways respond with the

same position that Spoiler chooses in the other data word. Itis easy to check that Duplicator

wins the game MGSk(w0,0,w1,0) for everyk∈ N.

Corollary 1. For every n∈ N, w and w+n satisfy the sameMTL-formulas.

Lemma 3. Let S⊆ Z be a nonempty finite set, and let m be the maximal number in S. Let

u1,u2 be two finite data words and c∈ N such that

min(u2)−max(u1)> m, (3.1)

and

min(u2)+c−max(u2)> m. (3.2)

Then for every k∈ N and every data word w, if either w is empty or

min(w)−max(u2)−kc> m, (3.3)

3.2 Application of the EF-game for MTL 23

then

u1(u2)
k
+cw∼S

k u1(u2)
k+1
+c w.

Proof. Without loss of generality we can assumek≥1 andw is not empty. Letw0=u1(u2)
k
+cw

andw1 = u1(u2)
k+1
+c w. We show that Duplicator wins the game MGS

k(w0,0,w1,0). We only

need to consider the choices of Spoiler in the first round. There are four cases:

(1) Spoiler chooses a position inw from w0 or w1, Duplicator can respond with the same

position inw from the other data word. Letw′ be the suffix ofw from that position.

Suppose that they continue to play the remaining(k−1) rounds on the new data word

w′. Obviously, Duplicator wins the game MGS
k−1(w

′,0,w′,0).

(2) Spoiler chooses a position in the prefixu1u2 of w0 or w1, Duplicator can respond with

the same position inu1u2 from the other data word. Letu′1 be the suffix ofu1u2 from

that position. Suppose that they continue to play the remaining (k− 1) rounds on the

new data wordsw′
0 = u′1(u

′
2)

k−1
+c w andw′

1 = u′1(u
′
2)

k
+cw, whereu′2 = (u2)+c. It is easily

seen thatu′1,u
′
2 also satisfy the premise of the lemma. By induction onk, we can show

that Duplicator wins the game MGSk−1(w
′
0,0,w

′
1,0).

(3) Spoiler chooses a position in theith(2 ≤ i ≤ k) repetition ofu2 in w0, Duplicator can

respond with the same position in the(i+1)th repetition ofu2 in w1. Letw′
0 be the suffix

of w0 from the position that Spoiler chooses inw0, and letw′
1 be the suffix ofw1 from

the position with which Duplicator responds inw1. Suppose that they continue to play

the remaining(k−1) rounds on the new data wordsw′
0 andw′

1. By Lemma2, Duplicator

wins the game MGSk−1(w
′
0,0,w

′
1,0).

(4) Spoiler chooses a position in theith(2 ≤ i ≤ k+1) repetition ofu2 in w1, Duplicator

can respond with the same position in the(i − 1)th repetition ofu2 in w0. Let w′
1 be

the suffix ofw1 from the position that Spoiler chooses inw1, and letw′
0 be the suffix of

w0 from the position with which Duplicator responds inw0. Suppose they continue to

play the remaining(k−1)-round game on the new data wordsw′
0 andw′

1. By Lemma2,

Duplicator wins the game MGSk−1(w
′
0,0,w

′
1,0).

In the first round, whatever Spoiler chooses, Duplicator canrespond according to the above

four cases. It is easily seen that the response of Duplicatorsatisfies the winning condition

about the atomic propositions and the difference of data values by (3.1), (3.2) and (3.3).

In [6], the authors showed thatMTL andTPTL have the same expressive power over

infinite monotonic data words. Letw be a data word, and leti be a position inw. It is easily

seen that(w, i) |= X⊤ if and only if the positioni is not the last position ofw. So a data word

24 The expressive power of MTL and TPTL

w is infinite if and only ifw |= X⊤∧GX⊤. We consider the expressive power over the class

of infinite data words and the class of finite data words separately. In the following we show

thatTPTL is strictly more expressive thanMTL over both infinite and finite data words.

Theorem 3. TPTL1 is strictly more expressive thanMTL over both infinite and finite data

words.

Proof. To show thatMTL4 TPTL1, for everyMTL-formulaψ, we can inductively define an

equivalentTPTL1-formulaψ ′ by the following rules:

• If ψ is⊤ or p∈ P, thenψ ′ = ψ.

• If ψ is¬ψ1, thenψ ′ = ¬ψ ′
1.

• If ψ is ψ1∧ψ2, thenψ ′ = ψ ′
1∧ψ ′

2.

• If ψ is ψ1UI ψ2, thenψ ′ = x.(ψ ′
1U(ψ ′

2∧x∈ I)).

In the following we show that theTPTL1-formula x.XX(x = 0) is not definable inMTL

over both infinite and finite data words.

First we consider the non-definability over infinite data words. For every finiteS⊆ Z, we

define two infinite data wordsw0 andw1 such thatw0 6|= x.XX(x= 0), w1 |= x.XX(x= 0), and

w0 ∼
S
k w1 for everyk∈N. Then, by Theorem2, we can know thatx.XX(x= 0) is not definable

in MTL over infinite data words.

Let S⊆ Z be a finite set, letr > 0 be such that all numbers inSare contained in(−r,+r)

and lets> 2r. Intuitively, we chooser in such a way that a jump of magnitude±r in data

value cannot be detected by a formula inMTLS, as all numbers inSare contained in(−r,+r).

Define two infinite pure data wordsw0 = (s)(s−2r)ω
+r andw1 = (s)(s− r)ω

+r (see Fig.3.1). It

w0
s s−2r s−r s s+r s+2r s+3r . . .

w1
s s−r s s+r s+2r s+3r s+4r . . .

Fig. 3.1 The infinite data wordsw0 andw1

is easily seen thatw0 6|= x.XX(x= 0) andw1 |= x.XX(x = 0). We show that Duplicator wins

the game MGSk(w0,0,w1,0) for everyk∈N. The proof for the casek= 0 is easy. Without loss

3.2 Application of the EF-game for MTL 25

Case 1 Case 2 Case 3 Case 4

Move 1 (1,1) or (1,1) (2,1)
(i, i −1),

i ≥ 3
(i +1, i),

i ≥ 2

Move 2 - -
(j +1, j),

1≤ j ≤ i −2
(1,1) or (j, j −1)

2≤ j ≤ i

Table 3.1 The winning strategy for Duplicator in the first round

of generality, we assumek≥ 1. We give the winning strategy for Duplicator in the first round.

There are four cases (see Table3.12):

(1) Spoiler chooses the position 1 inw0 or w1, Duplicator can respond with the position 1

in the other data word. We have(d0,1−d0,0)
S
≡ (d1,1−d1,0) since(d0,1−d0,0) = −2r

and(d1,1−d1,0) =−r.

(2) Spoiler chooses the position 2 inw0, Duplicator can respond with the position 1 inw1.

We have(d0,2−d0,0)
S
≡ (d1,1−d1,0) since(d0,2−d0,0) = (d1,1−d1,0) =−r.

(3) Spoiler chooses the positioni (i ≥ 3) in w0, Duplicator can respond with the position

i−1 in w1. We have(d0,i −d0,0)
S
≡ (d1,i−1−d1,0) since(d0,i −d0,0) = (d1,i−1−d1,0) =

(i −3)r. In the next move, if Spoiler chooses a position 1≤ j ≤ i −2 in w1, Duplicator

can respond with the positionj +1 in w0.

(4) Spoiler chooses the positioni (i ≥ 2) in w1, Duplicator can respond with the position

i+1 in w0. We have(d0,i+1−d0,0)
S
≡ (d1,i −d1,0) since(d0,i+1−d0,0) = (d1,i −d1,0) =

(i−2)r. In the next move, if Spoiler chooses the position 1 inw0, Duplicator can respond

with the position 1 inw1. If Spoiler chooses a position 2≤ j ≤ i in w0, Duplicator can

respond with the positionj −1 in w1.

After the first round, the new game configuration is either(1,1) or (i +1, i)(i ≥ 1). If the

new configuration is(1,1), we have(w0[1 :])+r = w1[1 :]. By Lemma2, Duplicator wins the

game MGS
k−1(w0,1,w1,1). If the new configuration is(i+1, i)(i ≥ 1), we havew0[(i+1) :] =

w1[i :]. Obviously, Duplicator can win the game MGS
k−1(w0, i +1,w1, i).

In the following we show thatx.XX(x= 0) is not definable inMTL over finite data words.

It is similar to the case for infinite data words. LetS⊆Z be a finite set, letr,s> 0 be defined as

2Let (i0, i1) be a pair of positions, wherei0, i1 are positions inw0,w1, respectively. We underlinei j (j ∈ {0,1})
to denote that Spoiler chooses the positioni j in wj and Duplicator responds with the positioni1− j in w1− j .

26 The expressive power of MTL and TPTL

above. For everyk∈N, define two finite pure data wordsw0 = (s)(s−2r)k+3
+r andw1 = (s)(s−

r)k+2
+r . We show that Duplicator wins the game MGS

k(w0,0,w1,0). Without loss of generality

we assumek≥ 1. We can adapt the winning strategy for Duplicator in Table3.1. After the first

round, if the new configuration is(1,1), we havew0[1 :] = (s−2r)k+3
+r andw1[1 :] = (s− r)k+2

+r .

By Lemma3, (s−2r)k+3
+r ∼S

k−1 (s−2r)k+2
+r , and by Lemma2, (s−2r)k+2

+r ∼S
k−1 (s−r)k+2

+r . This

implies(s−2r)k+3
+r ∼S

k−1 (s− r)k+2
+r . So Duplicator wins the game MGSk−1(w0,1,w1,1). If the

new configuration is(i +1, i)(i ≥ 1), we havew0[(i +1) :] = w1[i :]. Obviously, Duplicator

can win the game MGSk−1(w0, i +1,w1, i).

Remark2. In [18], the authors showed that theTPTL-formula x.F(b∧ F(c∧ x ≤ 2)) is not

definable inMTL over timed words. A timed word is an infinite sequence(P0, t0)(P1, t1) . . . ,

where(Pi, ti) ∈ (2P×R+)(i ∈ N), such that

• t0 = 0,

• ∀i ∈ N, ti+1 ≥ ti ,

• ∀s∈ R+,∃i ∈ N such thatti > s.

We can show that the formulax.F(b∧ F(c∧ x ≤ 2)) is also not definable inMTL over

infinite data words.

For every finite setS⊆ Z, let r > 0 be such that all numbers inSare contained in(−r,+r)

ands> 3r. Define two infinite data words (see Fig.3.2)

w0 = (/0,s)(c,s−3r)(b,s−2r)(c,s− r)((b,s+ r)(c,s+2r))ω
+2r ,

w1 = (/0,s)(c,s−2r)(b,s− r)((c,s+ r)(b,s+2r))ω
+2r ,

whereb,c are atomic propositions. It is easily seen thatw0 |= x.F(b∧F(c∧x≤ 2)) andw1 6|=

x.F(b∧ F(c∧ x ≤ 2)). We leave it to the reader to verify that Duplicator can win the game

MGS
k(w0,0,w1,0) for everyk∈ N.

w0
s

c

s−3r

b

s−2r

c

s−r

b

s+r

c

s+2r

b

s+3r

. . .

w1
s

c

s−2r

b

s−r

c

s+r

b

s+2r

c

s+3r

b

s+4r

. . .

Fig. 3.2 The data wordsw0 andw1

3.2 Application of the EF-game for MTL 27

Corollary 2. TPTL is strictly more expressive thanMTL over both infinite and finite data

words.

3.2.2 The MTL definability decision problem

In the last subsection, we show thatTPTL is strictly more expressive thanMTL. It is natural

to ask: Given aTPTL-formulaϕ, is ϕ definable inMTL? In the following we show that this

problem is undecidable over both infinite and finite data words using the EF-game method.

Theorem 4. The problem that whether aTPTL-formula is definable inMTL is undecidable

over both infinite and finite data words.

Proof. First we show that whether aTPTL-formula is definable inMTL is undecidable over

infinite data words. We reduce the recurrent state problem oftwo-counter machines which is

undecidable to theMTL definability decision problem in the following way: For every two-

counter machineM , we construct aTPTL-formulaψM such thatψM is definable inMTL if

and only ifM is a negative instance of the recurrent state problem.

For every two-counter machineM there is aTPTL-formulaϕinfin such thatM is a positive

instance of the recurrent state problem if and only if there is an infinite data wordw such that

w |= ϕinfin
3. Define

ψM = x.XX(x= 0) ∧ Fϕinfin .

If M is a negative instance, thenϕinfin cannot be satisfied by any infinite data word, henceψM

is equivalent to theMTL-formula⊥ over infinite data words. Otherwise, ifM is a positive

instance, we show that for every finiteS⊆ Z andk ∈ N, there are two infinite data wordsw0

andw1 such thatw0 6|= ψM , w1 |= ψM andw0 ∼
S
k w1. Then by Theorem2, we can know that

ψM is not definable inMTL.

Suppose thatM is a positive instance andϕinfin is satisfied by the infinite data wordw. Let

S⊆ Z be a finite set, and letr,s> 0 be such that all numbers inS are contained in(−r,+r)

ands> 2r. For everyk ∈ N, we define two infinite data wordsw0 = (s)(s−2r)k+3
+r w+m and

w1 = (s)(s− r)k+2
+r w+m, wherem= s+(k+1)r. By Lemma2, we can know thatw+m |= ϕinfin.

It is easily seen thatw0 6|= ψM andw1 |= ψM . We shall show thatw0 ∼
S
k w1. This can easily be

shown by using the winning strategy for Duplicator in the proof of Theorem3.

To prove that whether aTPTL-formula is definable inMTL is undecidable over finite data

words, we use a reduction from the halting problem of two-counter machines. The proof is

similar to the infinite case. For every two-counter machineM there is aTPTL-formulaϕfin

3In [7], the authors constructed aTPTL-formula that can capture the computation of a two-counter machine.
We construct an equivalentMTL-formula. For more details about the formula we refer the reader to Section4.1
in Chapter4.

28 The expressive power of MTL and TPTL

such thatM is a positive instance of halting problem if and only if thereis a finite data word

w′ such thatw′ |= ϕfin (see Chapter4). For every two-counter machineM , we can define the

TPTL-formulaψ ′
M = x.XX(x= 0) ∧ Fϕfin such thatψ ′

M is definable inMTL if and only if M

is a negative instance of the halting problem.

Suppose thatM is a positive instance of the halting problem andϕfin is satisfied by the

finite data wordw′. Let S⊆ Z be a finite set, and letr,s> 0 be such that all numbers in

S are contained in(−r,+r) ands> 2r. For everyk ∈ N, we define two finite data words

w0 = (s)(s−2r)k+3
+r w′

+m andw1 = (s)(s− r)k+2
+r w′

+m, wherem= s+(k+1)r. It is a simple

matter to check thatw0 6|= ψ ′
M , w1 |= ψ ′

M andw0 ∼
S
k w1.

3.2.3 Effects on the expressiveness by restriction of syntactic resources

In this subsection, we consider the expressive power of several fragments ofMTL by restric-

tion of the until rank or the set of interval borders. In [36], the authors showed that the until

rank hierarchy is strict forLTL. In a similar way, we can show that the until rank hierarchy for

MTL is also strict over both infinite and finite data words.

Proposition 1. For every k∈ N, MTLk+1 is strictly more expressive thanMTLk over both

infinite and finite data words.

Proof. Let ϕ1 = (p∧X p), wherep is an atomic proposition. For everyk≥ 1, defineϕk+1 =

(p∧Xϕk). Note that for everyk ≥ 1, ϕk ∈MTLk. We shall show thatϕk is not definable in

MTLk−1 over both infinite and finite data words.

w0
p

0

p

r

p

2r

. . . p

kr

q

(k+1)r

q

(k+2)r

. . .

k+1
︷ ︸︸ ︷

w1
p

0

p

r

. . . p

(k−1)r

q

(k+1)r

q

(k+2)r

q

(k+3)r

. . .

k
︷ ︸︸ ︷

Fig. 3.3 The data wordsw0 andw1

SinceMTLk−1 =
⋃

finite S⊆Z MTLS
k−1, it will thus be sufficient to prove thatϕk is not

definable inMTLS
k−1 for every finiteS⊆ Z. Let S⊆ Z be a finite set, and letr > 0 be

such that all numbers inS are less thanr. First we proveϕk is not definable inMTLS
k−1

over infinite data words. Define two infinite data wordsw0 = (p,0)k+1
+r (q,(k+ 1)r)ω

+r and

w1 = (p,0)k
+r (q,(k+1)r)ω

+r, wherep,q are propositions (see Fig.3.3). We see thatw0 |= ϕk

3.2 Application of the EF-game for MTL 29

andw1 6|= ϕk. By Lemma3, we havew0 ∼
S
k−1 w1, which implies thatϕk is not definable in

MTLS
k−1.

To proveϕk is not definable inMTLS
k−1 over finite data words, we define two finite data

wordsw0 = (p,0)k+1
+r andw1 = (p,0)k

+r . Again, by Lemma3, we havew0 ∼
S
k−1 w1.

Similar to theMTL definability decision problem, we can show that the problem that

whether anMTLk+1-formula is definable inMTLk is also undecidable over both infinite and

finite data words.

Proposition 2. For every k≥ 5 (respectively, k≥ 4), the problem that whether anMTLk+1-

formula is definable inMTLk is undecidable over infinite data words (respectively, finite data

words).

Proof. This proof is adapted from the proof of Theorem4. For every two-counter machine

M there is anMTL-formulaϕinfin (respectively,ϕfin) such thatM is a positive instance of the

recurrent state problem (respectively, the halting problem) if and only if there is an infinite

data wordw such thatw |= ϕinfin (respectively, a finite data wordw′ such thatw′ |= ϕfin).4 We

see thatRank(ϕinfin) = 5 andRank(ϕfin) = 4. Hence,Rank(Fϕinfin) = 6 andRank(Fϕfin) = 5.

Let k≥ 5. First we show that whether anMTLk+1-formula is definable inMTLk is unde-

cidable over infinite data words. Define

ψM = ϕk+1 ∧ Fϕinfin,

whereϕk+1 is the formula defined in the proof of Proposition1, and we assume the proposition

p does not occur inϕinfin. We haveRank(ψM) = k+1. If M is a negative instance, thenψM

cannot be satisfied by any infinite data word, henceψM is equivalent to the formula⊥ over

infinite data words. Otherwise, ifM is a positive instance, we show that for every finiteS⊆ Z,

there are two infinite data wordsw0 andw1 such thatw0 |= ψM , w1 6|= ψM andw0 ∼
S
k w1. Then

we can know thatψM is not definable inMTLk. Let S⊆ Z be a finite set, and letr > 0 be such

that all numbers inSare less thanr. Definew0 =(p,0)k+1
+r w+(k+1)r andw1= (p,0)k

+r w+(k+1)r .

Similar to the proof of Proposition1, we can show thatw0 ∼
S
k w1.

To prove that whether anMTLk+1-formula is definable inMTLk is undecidable over finite

data words, wherek≥ 4, we can define

ψ ′
M = ϕk+1 ∧ Fϕfin.

4For the details ofϕinfin andϕfin we refer the reader to the proof of Theorem10 in Chapter4.

30 The expressive power of MTL and TPTL

For every finiteS⊆ Z, let r > 0 be such that all numbers inS are less thanr. Setw0 =

(p,0)k+1
+r w′

+(k+1)r andw1 = (p,0)k
+r w′

+(k+1)r . It is a simple matter to check thatw0 |= ψM ,

w1 6|= ψM andw0 ∼
S
k w1.

Corollary 3. For every k∈N, the problem that whether anMTL-formula is definable inMTLk

is undecidable over both infinite and finite data words.

Let S1 ⊆ Z and letS2 be a proper subset ofS1. Intuitively, MTLS1 is more expressive

thanMTLS2, e.g.,MTL{0}
4 MTL{0,2}. But this does not hold in general. For example, let

S1 = {0,1,2} andS2 = {0,2}. MTLS1 andMTLS2 have the same expressive power, since we

can replace the interval that uses number 1 as the border by anequivalent interval that uses

number 0 or 2 as the border, e.g., theMTLS1-formula pU[1,1] q is equivalent to theMTLS2-

formula pU(0,2) q, wherep,q are atomic propositions. In the following we study the effects

on the expressive power ofMTL by restriction of the set of interval borders.

Lemma 4. Let S⊆ Z, and let n∈ Z. If {n− 1,n}∩S= /0 or {n,n+ 1}∩S= /0, then the

formulaX=n⊤ is not definable inMTLS over both infinite and finite data words.

Proof. SinceMTLS=
⋃

finite S′⊆S
⋃

k∈N MTLS′
k , it is enough to show thatX=n⊤ is not definable

in MTLS′
k for every finiteS′ ⊆ Sand everyk∈ N.

We first show thatX=n⊤ is not definable inMTLS over infinite data words. LetS′ ⊆ S

be a finite set. If{n,n+1}∩S= /0, then lets, r > 0 be such thats+n > 0 and all numbers

in S′ are less thann+ r. We define two pure infinite data wordsw0 = (s)(s+n)ω
+r andw1 =

(s)(s+n+1)ω
+r (see Fig.3.4). It is easily seen thatw0 |= X=n⊤ andw1 6|= X=n⊤.

w0
s s′ s′+r s′+2r s′+3r s′+4r . . .

(s′ = s+n)

w1
s s′′ s′′+r s′′+2r s′′+3r s′′+4r . . .

(s′′ = s+n+1)

Fig. 3.4 The data wordsw0 andw1

For everyi′ > i ≥ 0, we have

d0,i′ −d0,i =







n if i′ = 1 andi = 0,

n+(i′−1)r if i′ > 1 andi = 0,

(i′− i)r if i′ > i ≥ 1,

3.2 Application of the EF-game for MTL 31

and

d1,i′ −d1,i =







n+1 if i′ = 1 andi = 0,

n+(i′−1)r +1 if i′ > 1 andi = 0,

(i′− i)r if i′ > i ≥ 1.

Since{n,n+1}∩S= /0 and all numbers inS′ are less thann+ r, we have for everyi′ > i ≥ 0,

(d0,i′ − d0,i)
S′
≡ (d1,i′ − d1,i). Then, by Lemma2, we havew0 ∼S′

k w1 for everyk ∈ N. This

implies thatX=n⊤ is not definable inMTLS′.

Similarly, if {n−1,n}∩S= /0, then lets, r > 0 be such thats+n−1> 0 and all numbers

in S′ are less thann+ r −1. We define two pure infinite data wordsw0 = (s)(s+ n)ω
+r and

w1 = (s)(s+ n− 1)ω
+r . We havew0 |= X=n⊤ and w1 6|= X=n⊤, and for everyi′ > i ≥ 0,

(d0,i′ −d0,i)
S′
≡ (d1,i′ −d1,i). By Lemma2 again, we havew0 ∼

S′
k w1 for everyk∈ N.

To proveX=n⊤ is not definable inMTLS over finite data words, letS′ ⊆ Sbe a finite set

and letk∈ N. We can setw0 = (s)(s+n)k+1
+r andw1 = (s)(s+n+1)k+1

+r , if {n,n+1}∩S= /0,

or w0 = (s)(s+n)k+1
+r andw1 = (s)(s+n−1)k+1

+r , if {n−1,n}∩S= /0, wheres, r are defined

as in the infinite case. By Lemma2, we havew0 ∼
S′
k w1.

The following three propositions hold over both infinite data words and finite data words.

Proposition 3. Let S1 ⊆ Z and S2 ⊆ Z. MTLS1 4MTLS2 if and only if for every n∈ S1, either

n∈ S2 or {n−1,n+1} ⊆ S2.

Proof. For the direction “⇒”, suppose that there exists a numberm∈S1 such that{m−1,m}∩

S2 = /0 or{m,m+1}∩S2 = /0. Then by Lemma4, theMTLS1-formulaX=m⊤ is not definable

in MTLS2, contrary toMTLS1 4MTLS2.

For the direction “⇐”, let ϕ be anMTLS1-formula. We can construct an equivalentMTLS2-

formula by replacing every constraint interval inϕ that uses a numberm as the border, where

m∈ S1 andm 6∈ S2, with an equivalent interval that usesm−1 orm+1 as the border.

For everyn∈ Z, letMTL≤n =MTL{m∈Z|m≤n}. The expressive power relation4 defines a

linear order on the set{MTL≤n | n∈ Z} such that ifn1 ≤ n2, thenMTL≤n1 4MTL≤n2. This

gives the following constraint hierarchy forMTL.

Proposition 4. (Linear Constraint Hierarchy ofMTL)

For any n1,n2 ∈ Z, if n1 < n2, thenMTL≤n1 ≺MTL≤n2.

Proof. Obviously,MTL≤n1 4 MTL≤n2. By Lemma4, theMTL≤n2-formula X=n2 ⊤ is not

definable inMTL≤n1. Hence, we haveMTL≤n1 ≺MTL≤n2.

32 The expressive power of MTL and TPTL

Let R⊆ Z be a set such that for everyn∈ Z, n∈ R if and only if n+1 6∈ R, e.g., the set of

all even numbers. By Proposition3, we haveMTLR ≡MTL. For anyS1 ⊆ R andS2 ⊆ R, if

S1 (S2, by Lemma4, we haveMTLS1 ≺MTLS2. The expressive power relation4 defines a

partial order on the set{MTLS | S⊆ R}. In the following we give another constraint hierarchy

for MTL.

Proposition 5. (Lattice Constraint Hierarchy ofMTL)

Let R⊆ Z be a set such that for every n∈ Z, n∈ R if and only if n+1 6∈ R. Then〈{MTLS |

S⊆ R},4〉 constitutes a complete lattice in which

(i) the greatest element isMTLR,

(ii) the least element isMTL /0,

and for every Q⊆ P(R), whereP(R) is the power set of R,

(iii)
∧

S∈QMTLS=MTL
⋂

S∈Q S,

(iv)
∨

S∈QMTLS=MTL
⋃

S∈Q S.

Proof. The proof for (i) and (ii) is easy.

For (iii), it is easily seen thatMTL
⋂

S∈Q S is a lower bound of{MTLS | S∈ Q}. For every

S′ ⊆ R, if MTLS′ is a lower bound of{MTLS | S∈ Q}, then we must haveS′ ⊆
⋂

S∈QS, i.e.,

MTLS′
4MTL

⋂

S∈Q S. Otherwise, there existsm∈ S′ such thatm 6∈
⋂

S∈QS. We can know that

m 6∈ S1 for someS1 ∈ Q. By Lemma4, theMTLS′-formulaX=m⊤ is not definable inMTLS1,

contrary to thatMTLS′ is a lower bound.

For (iv), it is easily seen thatMTL
⋃

S∈QS is an upper bound of{MTLS | S∈ Q}. For every

S′ ⊆ R, if MTLS′ is an upper bound of{MTLS | S∈ Q}, then we must have
⋃

S∈QS⊆ S′, i.e.,

MTL
⋃

S∈Q S
4MTLS′. Otherwise, there existsm∈

⋃

S∈QSsuch thatm 6∈ S′. We can know that

m∈ S1 for someS1 ∈ Q. By Lemma4, theMTLS1-formulaX=m⊤ is not definable inMTLS′,

contrary to thatMTLS′ is an upper bound.

3.3 MTL with non-strict semantics

In the definition ofMTL, we use the strict semantics for the until modality. There isanother

definition forMTL that uses the non-strict semantics (see [6], and we denote this logic by

weakMTL in this section). InweakMTL, the next modalityX is given explicitly in the syntax,

since it is not definable by the until modality interpreted bythe non-strict semantics.

The interpretations for the next modality and the until modality in weakMTL are as follows

(we use a dot over the modality operator to denote that the modality operator is interpreted by

the non-strict semantics):

3.3 MTL with non-strict semantics 33

• (w, i) |= ẊI ϕ if and only if i +1< |w|, (w, i +1) |= ϕ anddi+1−di ∈ I .

• (w, i) |= ϕ1U̇I ϕ2 if and only if there exists a positionj with i ≤ j < |w| such that(w, j) |=

ϕ2, d j −di ∈ I , and for all positionst with i ≤ t < j, (w, t) |= ϕ1.

It is easy to check that everyweakMTL-formula is equivalent to anMTL-formula. Letϕ
be aweakMTL-formula. The equivalentMTL-formula ϕ ′ can be defined inductively by the

following rules:

• If ϕ is ⊤ or p∈ P, thenϕ ′ = ϕ.

• If ϕ is ¬ϕ1, thenϕ ′ = ¬ϕ ′
1.

• If ϕ is ϕ1∧ϕ2, thenϕ ′ = ϕ ′
1∧ϕ ′

2.

• If ϕ is ẊI ϕ1, thenϕ ′ = XI ϕ ′
1.

• If ϕ is ϕ1 U̇I ϕ2, then

ϕ ′ =







ϕ ′
1∧ (ϕ ′

1UI ϕ ′
2) if 0 6∈ I ,

ϕ ′
2∨ (ϕ ′

1 ∧ (ϕ ′
1UI ϕ ′

2)) otherwise.

In [6], the authors showed thatweakMTL andTPTL (with the non-strict semantics) have

the same expressive power over infinite monotonic data words. Since everyMTL-formula

is equivalent to aTPTL-formula (with the strict semantics and over all data words), and

both of the strict and the non-strict semantics are equivalent for TPTL. We can conclude

thatweakMTL andMTL are equivalent over infinite monotonic data words. But over non-

monotonic data words, we can show thatMTL is strictly more expressive thanweakMTL. To

prove this, we first introduce the Ehrenfeucht–Fraïssé gamefor weakMTL.

The EF-game forweakMTL is similar to the EF-game forMTL. Let S⊆ Z be a finite

set, and letw0,w1 be two data words. In each round of the game, suppose the current game

configuration is(i0, i1), wherei0 andi1 are positions inw0 andw1, respectively:

(1) Spoiler chooses an indexl ∈ {0,1} and a positionj l ≥ i l in data wordwl .

(2) Duplicator responds with a positionj1−l ≥ i1−l in data wordw1−l such that

• if j l = i l +1, then j1−l = i1−l +1, and if j l = i l , then j1−l = i1−l ,

• (dl , j l −dl ,i l)
S
≡ (d1−l , j1−l −d1−l ,i1−l).

Then Spoiler chooses between one of the following two options:

34 The expressive power of MTL and TPTL

(a) The new configuration becomes(j0, j1).

(b) Spoiler chooses a positioni1−l ≤ j ′1−l < j1−l in w1−l , Duplicator responds with a

positioni l ≤ j ′l < j l in wl , and the new configuration becomes(j ′0, j ′1).

The difference between the EF-game forweakMTL and the EF-game forMTL is: In the

EF-game forweakMTL, Spoiler can choose the current position inw0 or w1, but in the EF-

game forMTL, Spoiler can only choose a position after the current position inw0 or w1.

We use wMGS
k(w0, i0,w1, i1) to denote thek-round EF-game forweakMTL starting from

the positioni0 in w0 and the positioni1 in w1 with a finite setS⊆ Z. We say that Duplicator

wins the 0-round EF-game wMGS0(w0, i0,w1, i1) if P0,i0 = P1,i1. Duplicator wins the(k+ 1)-

round EF-game wMGSk+1(w0, i0,w1, i1) if she wins the 0-round EF-game wMGS
0(w0, i0,w1, i1),

and for every choice of moves of Spoiler in the first round, Duplicator can respond correctly

and wins thek-round EF-game wMGSk(w0,n0,w1,n1), where(n0,n1) is the new configuration

after the first round.

Let S⊆ Z andk ∈ N. The fragmentsweakMTLS, weakMTLk andweakMTLS
k are defined

in a similar way to that ofMTL. We abuse the notations “(w0, i0)≡S
k (w1, i1)” and “(w0, i0)∼S

k

(w1, i1)” for weakMTL, which are defined in the expected way. It is a simpler matter to check

that Theorems1 and2, Lemmas1, 2 and3 also hold forweakMTL.

In the following we show that theMTL-formulaF=0⊤ is not definable inweakMTL over

both infinite and finite data words. Note that a data wordw satisfies the formulaF=0⊤ if and

only if there is a positionj > 0 such thatd j = d0, whered j andd0 are the data values in the

positionsj and 0, respectively.

Theorem 5. MTL is strictly more expressive thanweakMTL over both infinite and finite data

words.

Proof. We prove the theorem by showing that theMTL-formula F=0⊤ is not definable in

weakMTL over both infinite and finite data words. The proof is similar to the proof of Theo-

rem3. For every finiteS⊆ Z and everyk ∈ N, we construct two data wordsw0,w1 such that

w0 |= F=0⊤, w1 6|= F=0⊤ andw0 ∼S
k w1. Then we can know thatF=0⊤ is not definable in

weakMTLS
k

First we consider the non-definability over infinite data words. LetS⊆ Z be a finite set,

and lets, r > 0 be such that all numbers inSare contained in(−r,+r) and lets> r. Define

two infinite pure data wordsw0 = (s)(s+ r,s)ω
+2r andw1 = (s)(s+2r,s+ r)ω

+2r (see Fig.3.5).

In data wordw0, the data values in position 2 equals to the data value in position 0,

and in data wordw1, all data values after position 0 are greater thans. It is easily seen that

w0 |= F=0⊤ andw1 6|= F=0⊤. We show thatw0 ∼
S
k w1 for everyk ∈ N in the following. We

3.3 MTL with non-strict semantics 35

w0
s s+r s s+3r s+2r s+5r s+4r . . .

w1
s s+2r s+r s+4r s+3r s+6r s+5r . . .

Fig. 3.5 The infinite data wordsw0 andw1

prove by induction onk. It is easy for the casek = 0. Supposek ≥ 1, we give the winning

strategy for Duplicator in the first round. There are five cases (see Table3.25):

(1) Spoiler chooses the position 0 inw j (j ∈ {0,1}), Duplicator can respond with the posi-

tion 0 inw1− j .

(2) Spoiler chooses the position 1 inw j (j ∈ {0,1}), Duplicator can respond with the po-

sition 1 in w1− j . We have(d0,1 − d0,0)
S
≡ (d1,1 − d1,0) since (d0,1 − d0,0) = r and

(d1,1 − d1,0) = 2r. In the next move, if Spoiler chooses the position 0 inw1− j , Du-

plicator can respond with the position 0 inw j .

(3) Spoiler chooses the position 2 inw0, Duplicator can respond with the position 0 inw1.

We have(d0,2−d0,0)
S
≡ (d1,0−d1,0) since(d0,2−d0,0) = (d1,0−d1,0) = 0.

(4) Spoiler chooses the positioni (i ≥ 3) in w0, Duplicator can respond with the position

i −2 in w1. We have(d0,i −d0,0)
S
≡ (d1,i−2−d1,0) since(d0,i −d0,0) ≥ r and(d1,i−2−

d1,0)≥ r. In the next move, if Spoiler chooses a position 0≤ j ≤ i−3 in w1, Duplicator

can respond with the positionj +2 in w0.

(5) Spoiler chooses the positioni (i ≥ 2) in w1, Duplicator can respond with the position

i +2 in w0. We have(d0,i+2−d0,0)
S
≡ (d1,i −d1,0) since(d0,i+2−d0,0) ≥ r and(d1,i −

d1,0) ≥ r. In the next move, if Spoiler chooses the position 0 (respectively, 1) in w0,

Duplicator can respond with the position 0 (respectively, 1) in w1. If Spoiler chooses a

position 2≤ j ≤ i +1 in w0, Duplicator can respond with the positionj −2 in w1.

After the first round, the new game configuration is either(0,0), or (1,1), or (i +2, i)(i ≥

0). We shall show that Duplicator can win the remaining(k−1) rounds from these config-

urations. If the new configuration is(0,0), by induction hypothesis, we havew0 ∼S
k−1 w1,

5Given a pair(i0, i1) of positions, we underlinei l (l ∈ {0,1}) to denote that Spoiler chooses the positioni l in
wl and Duplicator responds with the positioni1−l in w1−l .

36 The expressive power of MTL and TPTL

Case 1 Case 2 Case 3 Case 4 Case 5

Move 1
(0,0)

or (0,0)
(1,1)

or (1,1)
(2,0)

(i, i −2),
i ≥ 3

(i +2, i),
i ≥ 2

Move 2 -
(0,0) if (1,1),
(0,0) if (1,1)

-
(j +2, j),

0≤ j ≤ i −3

(0,0),(1,1)
or (j, j −2),
2≤ j ≤ i +1

Table 3.2 The winning strategy for Duplicator in the first round

which means that Duplicator can win the remaining(k−1) rounds. If the new configuration

is (1,1), we have(w0[1 :])+r = w1[1 :], by Lemma2, we have(w0,1)∼S
k−1 (w1,1). If the new

configuration is(i +2, i)(i ≥ 0), by Lemma2 again, we have(w0, i +2)∼S
k−1 (w1, i).

In the following we show thatF=0⊤ is not definable inweakMTL over finite data words.

It is similar to the case for infinite data words. LetS⊆ Z be a finite set, and letr,s> 0 be

defined as above. For everyk∈ N, definew0 = (s)(s+ r,s)k+1
+2r andw1 = (s)(s+2r,s+ r)k

+2r.

It is easily seen thatw0 |= F=0⊤ andw1 6|= F=0⊤. We shall show thatw0 ∼
S
k w1.

We prove, by induction onk, that for everyl ≥ k, w′
0 ∼

S
k w′

1, wherew′
0 = (s)(s+ r,s)l+1

+2r

andw′
1 = (s)(s+2r,s+ r)l

+2r . It is clear for the casek= 0. Letk≥ 1 andl ≥ k. We show that

Duplicator wins the game wMGSk(w
′
0,0,w

′
1,0). In the first round, we can adapt the winning

strategy for Duplicator in Table3.2. After the first round, if the new configuration is(0,0), by

induction hypothesis, we havew′
0 ∼

S
k−1 w′

1. If the new configuration is(1,1), by Lemma3, we

have(w′
0,1) ∼

S
k−1 (w

′
1,1). If the new configuration is(i +2, i)(i ≥ 0), by Lemma2, we have

(w′
0, i +2)∼S

k−1 (w
′
1, i).

3.4 The Ehrenfeucht–Fraïssé game for TPTL

In Section3.1, we define the Ehrenfeucht–Fraïssé game forMTL. Using it we prove several

results about the expressive power ofMTL. To study the expressive power ofTPTL, we define

the Ehrenfeucht–Fraïssé game forTPTL in this section.

Theuntil rank of aTPTL-formulaϕ, denoted byRank(ϕ), is defined analogously to that

of MTL-formulas, where we additionally defineRank(x∼ c) = 0 andRank(x.ϕ) = Rank(ϕ).
Let S⊆ Z, and letk∈ N, we define

TPTLS= {ϕ ∈ TPTL | for every constraintsx∼ c in ϕ,c∈ S},

TPTLk = {ϕ ∈ TPTL | Rank(ϕ)≤ k}.

3.4 The Ehrenfeucht–Fraïssé game for TPTL 37

Let r ∈ N. Recall that we useTPTLr to denote the fragment ofTPTL that uses at mostr

register variables. We define

TPTLr,S= TPTLr ∩TPTLS,

TPTL
r,S
k = TPTLr ∩TPTLS∩TPTLk,

whereS⊆ Z andr,k∈ N.

Lemma 5. For every finite S⊆ Z, every r∈ N and every k∈ N, there are only finitely many

formulas inTPTLr,S
k up to equivalence.

Proof. This lemma is proved in the much same way as Lemma1. Fix a finite setS⊆ Z and a

numberr ∈ N. So there are only finitely many different constraint formulasx∼ c.

We prove this lemma by induction onk. Fork= 0, no until modality will be used, the num-

ber of formulas built from⊤, propositions and constraint formulas using Boolean connectives

and freeze quantifiers “xi .” (1≤ i ≤ r) is finite up to equivalence. Suppose that it holds fork,

we will prove it fork+1. Define

R= {ϕ1Uϕ2 | ϕ1,ϕ2 ∈ TPTL
r,S
k }∪TPTL

r,S
k .

It is easily seen thatR is a finite set up to equivalence. The formulas obtained by using Boolean

connectives and freeze quantifiers on the formulas inRare also finitely many up to equivalence.

Hence,TPTLr,S
k+1 is a finite set up to equivalence.

Definition 4. Let w0,w1 be two data words, leti0, i1 ≥ 0 be two positions inw0 and w1,

respectively, letν0,ν1 be two register valuations, and letS⊆ Z, r ∈ N, k ∈ N. We say that

(w0[i0 :],ν0) and(w1[i1 :],ν1) areTPTLr,S
k -equivalent, written(w0, i0,ν0) ≡

r,S
k (w1, i1,ν1), if

for everyϕ ∈ TPTL
r,S
k , (w0, i0,ν0) |= ϕ if and only if (w1, i1,ν1) |= ϕ.

We will write w0 ≡
r,S
k w1 if (w0,0, 0̄)≡

r,S
k (w1,0, 0̄) in the following.

The Ehrenfeucht–Fraïssé game forTPTL is played by Spoiler and Duplicator on two data

wordsw0 andw1 with a finite set of register variables{x1, . . . ,xr} and a finite set of constraint

numbersS⊆ Z. A game configuration is a tuple(i0,ν0, i1,ν1), whereν0,ν1 are two register

valuations, andi0, i1 ≥ 0 are positions inw0 andw1, respectively. Letν be a register valuation,

let Y be a set of register variables and letd ∈ N. Define the register valuation

ν[Y 7→ d](x) =







d if x∈Y,

ν(x) otherwise.

In each round of the game (suppose the current game configuration is (i0,ν0, i1,ν1)):

38 The expressive power of MTL and TPTL

(1) Spoiler chooses a subsetY ⊆ {x1, . . . ,xr} and setsν ′
t = νt [Y 7→ dt,it] (t ∈ {0,1}).

(2) Spoiler chooses an indexl ∈ {0,1} and a positionj l > i l in data wordwl .

(3) Duplicator responds with a positionj1−l > i1−l in data wordw1−l such that ifj l = i l +1,

then j1−l = i1−l +1. Then Spoiler chooses between one of the following two options:

• The new configuration becomes(j0,ν ′
0, j1,ν ′

1).

• Spoiler chooses a positioni1−l < j ′1−l < j1−l in w1−l , Duplicator responds with a

positioni l < j ′l < j l in wl , and the new configuration becomes(j ′0,ν
′
0, j ′1,ν

′
1).

We use TGr,S
k (w0, i0,ν0,w1, i1,ν1) to denote thek-round EF-game forTPTL starting from

the positionsi0, i1 with the register valuationsν0,ν1 in data wordsw0 andw1, respectively,

with the register variables set{x1, . . . ,xr} and constraint numbers setS.

The winning condition for Duplicatoris defined inductively. We say that Duplicator

wins the 0-round EF-game TGr,S0 (w0, i0,ν0,w1, i1,ν1) if P0,i0 = P1,i1, and for all constraints

x ∼ c where x ∈ {x1, . . . ,xr} and c ∈ S, (w0, i0,ν0) |= x ∼ c if and only if (w1, i1,ν1) |=

x ∼ c. Duplicator wins the(k+ 1)-round EF-game TGr,Sk+1(w0, i0,ν0,w1, i1,ν1) if she wins

the 0-round EF-game TGr,S0 (w0, i0,ν0,w1, i1,ν1), and eitheri0 and i1 are the last position of

w0 andw1, respectively (Spoiler has no position to choose), or for every choice of moves

of Spoiler in the first round, Duplicator can respond correctly and wins thek-round EF-

game TGr,S
k (w0,n0,ν ′

0,w1,n1,ν ′
1), where(n0,ν ′

0,n1,ν ′
1) is the new configuration after the first

round. If Duplicator cannot win the game, we say that Spoilerwins the game. We write

(w0, i0,ν0)∼
r,S
k (w1, i1,ν1) if Duplicator wins thek-round EF-game TGr,Sk (w0, i0,ν0,w1, i1,ν1).

It follows easily that if(w0, i0,ν0) ∼
r,S
k (w1, i1,ν1), then (w0, i0,ν0) ∼

r,S
m (w1, i1,ν1) for all

m< k. We will write w0 ∼
r,S
k w1 if (w0,0, 0̄)∼

r,S
k (w1,0, 0̄) in the following.

Theorem 6. Let w0,w1 be two data words, let i0, i1 ≥ 0 be two positions in w0 and w1, respec-

tively, and letν0,ν1 be two register valuations. For every finite S⊆ Z, every r∈ N and every

k∈ N, (w0, i0,ν0)≡
r,S
k (w1, i1,ν1) if and only if(w0, i0,ν0)∼

r,S
k (w1, i1,ν1).

Proof. Fix a finite set of register variables{x1, . . . ,xr} and a finite set of constraint numbers

S⊆ Z. We prove this theorem by induction onk. It is clear fork = 0. Suppose that this

theorem holds fork. We prove that it also holds fork+1.

For the direction “⇒”, we give a proof by contradiction. Suppose that(w0, i0,ν0) ≡
r,S
k+1

(w1, i1,ν1) holds and(w0, i0,ν0) ∼
r,S
k+1 (w1, i1,ν1) does not hold. Then Spoiler wins the game

TGr,S
k+1(w0, i0,ν0,w1, i1,ν1). By induction hypothesis, it is easily seen that(w0, i0,ν0) ∼

r,S
0

(w1, i1,ν1), i.e., Duplicator wins the 0-round EF-game from the configuration(i0,ν0, i1,ν1). In

3.4 The Ehrenfeucht–Fraïssé game for TPTL 39

the following we show that Duplicator can always win the remaining k-round EF-game, a con-

tradiction. Without loss of generality suppose that Spoiler chooses a subsetY ⊆ {x1, . . . ,xr}

and setsν ′
0 = ν ′

0[Y 7→ d0,i0] andν ′
1 = ν ′

1[Y 7→ d1,i1], and then chooses a positioni′0 > i0 in w0.

For eachi0 < j ≤ i′0, define

ϕ j =
∧

{ϕ ∈ TPTL
r,S
k | (w0, j,ν ′

0) |= ϕ}.

Note thatϕ j is well-defined sinceTPTLr,S
k is a finite set up to equivalence by Lemma5. Define

theTPTLr,S
k+1-formula

ϕ = y1 . . .yh.



(
∨

i0< j<i′0

ϕ j)Uϕi′0



6

wherey1, . . . ,yh are all register variables inY. Clearly,(w0, i0,ν0) |= ϕ. We have(w1, i1,ν1) |=

ϕ, sinceRank(ϕ) ≤ k+1 and(w0, i0,ν0) ≡
r,S
k+1 (w1, i1,ν1). Hence there existsi′1 > i1 such

that (w1, i′1,ν
′
1) |= ϕi′0

and for all i1 < i′′1 < i′1, (w1, i′′1,ν
′
1) |=

∨

i0< j<i′0
ϕ j . Hence Duplicator

can respond with the positioni′1 in w1. If they start a new round from the configuration

(i′0,ν
′
0, i

′
1,ν

′
1), we know by(w1, i′1,ν

′
1) |= ϕi′0

and the definition ofϕi′0
that (w0, i′0,ν

′
0) ≡

r,S
k

(w1, i′1,ν
′
1). By induction hypothesis,(w0, i′0,ν

′
0)∼

r,S
k (w1, i′1,ν

′
1). On the other hand, if Spoiler

chooses a positioni1 < i′′1 < i′1 in w1, we know by(w1, i′′1,ν
′
1) |=

∨

i0< j<i′0
ϕ j that there is some

i0 < i′′0 < i′0 such that(w1, i′′1,ν
′
1) |= ϕi′′0

. Hence Duplicator can respond with the positioni′′0 in

w0. If they start a new round from the configuration(i′′0,ν
′
0, i

′′
1,ν

′
1), we know by the definition

of ϕi′′0
that(w0, i′′0,ν

′
0)≡

r,S
k (w1, i′′1,ν

′
1), and thus, by induction hypothesis, that(w0, i′′0,ν

′
0)∼

r,S
k

(w1, i′′1,ν
′
1).

For the direction “⇐”, suppose(w0, i0,ν0)∼
r,S
k+1 (w1, i1,ν1), i.e., Duplicator wins the game.

We show that(w0, i0,ν0) ≡
r,S
k+1 (w1, i1,ν1). Let ϕ ∈ TPTL

r,S
k+1. If Rank(ϕ) ≤ k, then, by

induction hypothesis,(w0, i0,ν0) |= ϕ if and only if (w1, i1,ν1) |= ϕ. If Rank(ϕ) = k+1, we

assume thatϕ = y1 . . .yh.(ϕ1Uϕ2), whereϕ1,ϕ2 ∈ TPTL
r,S
k , which is the most interesting

case. The proof for the other cases is easy. We must show that(w0, i0,ν0) |= ϕ if and only if

(w1, i1,ν1) |= ϕ. Suppose(w0, i0,ν0) |= ϕ, we prove(w1, i1,ν1) |= ϕ. The other direction can

be proved analogously.

Let Y = {y1, . . . ,yh}. Then(w0, i0,ν0) |= y1 . . .yh.(ϕ1Uϕ2) if and only if (w0, i0,ν0[Y 7→

d0,i0]) |= ϕ1Uϕ2 if and only if there is a positioni′0 > i0 such that(w0, i′0,ν0[Y 7→ d0,i0]) |= ϕ2,

and for alli0 < j < i′0, (w0, j,ν0[Y 7→ d0,i0]) |= ϕ1.

Assume Spoiler chooses the setY and sets the register valuationsν ′
0 = ν0[Y 7→ d0,d0],ν

′
1 =

ν1[Y 7→ d1,d1], and then choosesi′0> i0 in w0. Since Duplicator wins the game, she can respond

6ϕ = y1 . . .yh.(⊥Uϕi′0
) if i′0 = i0+1, i.e., there are no positions between positioni0 and positioni′0.

40 The expressive power of MTL and TPTL

with a positioni′1 > i1 in w1 such that(w0, i′0,ν
′
0)∼

r,S
k (w1, i′1,ν

′
1). By induction hypothesis, we

have(w1, i′1,ν
′
1) |= ϕ2. On the other hand, if Spoiler chooses a positioni1 < i′′1 < i′1 in w1, Du-

plicator can respond with a positioni0 < i′′0 < i′0 such that(w0, i′′0,ν
′
0)∼

r,S
k (w1, i′′1,ν

′
1). Hence,

by induction hypothesis,(w1, i′′1,ν ′
1) |= ϕ1. Since Spoiler can choose an arbitrary position be-

tweeni1 andi′1, we know that(w1, j,ν ′
1) |= ϕ1 for all i1 < j < i′1. Adding(w1, i′1,ν

′
1) |= ϕ2 we

have(w1, i1,ν ′
1) |= ϕ1Uϕ2, i.e.,(w1, i1,ν1) |= y1 . . .yh.(ϕ1Uϕ2).

Theorem 7. Let C be a class of data words. For every finite S⊆ Z, every r∈ N and every

k∈ N, the following are equivalent:

(1) C is not definable inTPTLr,S
k .

(2) There exist two data words w0 ∈ C and w1 6∈ C such that w0 ∼
r,S
k w1.

Proof. From (1) to (2), we give a proof by contradiction. Assume (1) holds and (2) does not

hold. Then for every pair of data wordsw0 andw1, if w0 ∈ C andw1 6∈ C, thenw0 6∼
r,S
k w1. By

Theorem6, this impliesw0 6≡
r,S
k w1. So if w0 ≡

r,S
k w1, thenw0 ∈ C if and only if w1 ∈ C. Let

w be a data word, we define

ϕw =
∧

{ϕ ∈ TPTL
r,S
k | w |= ϕ},

and

Φ =
∨

w∈C

ϕw.

Note that there are only finitely many formulas inTPTLr,S
k up to equivalence, so bothϕw and

Φ are well-defined. We next show thatC is definable by the formulaΦ, which contradicts the

assumption. For every data wordw, if w∈ C, thenw |= Φ by the definition ofΦ. If w |= Φ,

there must exists some data wordw′ ∈ C such thatw |= ϕw′. This implies thatw andw′ satisfy

the sameTPTLr,S
k -formulas, i.e.,w≡r,S

k w′. Fromw′ ∈ C we can know thatw∈ C.

From (2) to (1), suppose that there are two data wordsw0 ∈ C and w1 6∈ C such that

w0 ∼
r,S
k w1. By Theorem6, we havew0 ≡

r,S
k w1. This means that for everyTPTLr,S

k -formula

ϕ, w0 |= ϕ if and only if w1 |= ϕ. Hence,C is not definable inTPTLr,S
k .

3.5 Application of the EF-game for TPTL

In this section, we consider the expressive power of severalfragments ofTPTL by restriction

of the until rank, the set of constraint numbers and the number of register variables. Similar

to MTL, we show that the until rank hierarchy and the constraint hierarchy are still strict for

TPTL. First we give a lemma that is useful for the proof.

3.5 Application of the EF-game for TPTL 41

Lemma 6. Let S⊆ Z be a finite set, and let r∈ N. Let w0,w1 be two data words such that

|w0|= |w1| and for every i≥ 0, P0,i = P1,i and for every i′ > i ≥ 0,

(d0,i′ −d0,i)
S
≡ (d1,i′ −d1,i). (3.4)

For any two register valuationsν0 andν1, if for every i≥ 0 and every constraint x∼ c, where

x∈ {x1, . . . ,xr} and c∈ S,

(w0, i,v0) |= x∼ c if and only if(w1, i,v1) |= x∼ c, (3.5)

then for every k∈ N, (w0,0,ν0)≡
r,S
k (w1,0,ν1).

Proof. Let k∈ N, we show that Duplicator wins the game TGr,S
k (w0,0,ν0,w1,0,ν1).

In each round, Duplicator can always respond with the same position that Spoiler chooses

in the other data word. After one round, suppose the new game configuration is(j,ν ′
0, j,ν ′

1),

where j > 0. It is easily seen thatP0, j = P1, j , sinceP0,i = P1,i for everyi ≥ 0. We need to show

that (w0, j,ν ′
0) |= x ∼ c if and only if (w1, j,ν ′

1) |= x ∼ c for every constraintx ∼ c, where

x∈ {x1, . . . ,xr} andc∈ S. Let x∼ c be a constraint. There are two cases:

(1) The register variablex is not freezed by Spoiler until now, i.e.,ν ′
0(x)= ν0(x) andν ′

1(x)=

ν1(x), by (3.5), we have(w0, j,ν ′
0) |= x∼ c if and only if (w1, j,ν ′

1) |= x∼ c.

(2) If ν ′
0(x) andν ′

1(x) are obtained by freezingx to the data values in positionj ′ (0≤ j ′ <

j) in w0 andw1, respectively, i.e.,ν ′
0(x) = d0, j ′ and ν ′

1(x) = d1, j ′, by (3.4), we have

(d0, j −d0, j ′)
S
≡ (d1, j −d1, j ′). Hence,(w0, j,ν ′

0) |= x∼ c if and only if (d0, j −d0, j ′) ∼ c

if and only if (d1, j −d1, j ′)∼ c if and only if (w1, j,ν ′
1) |= x∼ c.

Corollary 4. For every n∈ N, w and w+n satisfy the sameTPTL-formulas.

Proposition 6. Let S⊆ Z be a finite set, and let C= max{|c| | c∈ S}. Then for every finite

data word w, there exists a finite data word u such that|w|= |u| and

• all data values in u are bound by|u| · (C+1),

• w and u satisfy the same formulas inTPTLS.

Proof. Suppose that|w| = n. Let π ··= a1, . . . ,an be an enumeration of all data values inw

such thatai ≤ ai+1 for all 1≤ i < n. For each 1< i ≤ n, defineδi = ai −ai−1. We define a

42 The expressive power of MTL and TPTL

new sequenceπ ′ ··= b1, . . . ,bn inductively as follows:b1 = 0 and for all 1< i ≤ n,

bi =







bi−1+δi if δi ≤C,

bi−1+C+1 if δi >C.

Intuitively, the data valuesbi are obtained by shrinking theai so that the largest difference

between two different data values is bounded byC+ 1. We obtain a new data wordu by

replacing inw every data valueai by bi (1≤ i ≤ n). Note thatbn ≤ (n−1)(C+1). Hence, all

data values inu are bound by|u| · (C+1).

Let d j1 andd j2 (respectively,d′
j1 andd′

j2) be the data values in thej1th position andj2th

position ofw (respectively,u), respectively, where 0≤ j1 < j2 < n. Without loss of generality

we can assumed j1 ≤ d j2. Let ai , . . . ,ai+k (respectively,bi, . . . ,bi+k) be the sub-sequence inπ
(respectively,π ′) such thatai = d j1 andai+k = d j2 (respectively,bi = d′

j1
andbi+k = d′

j2
). If

at+1−at ≤C for everyi ≤ t < i+k, then, by the definition ofπ ′, we havebt+1−bt = at+1−at

for everyi ≤ t < i+k, which impliesd j2−d j1 = d′
j2−d′

j1. If at+1−at >C for somei ≤ t < i+k

(hence,d j2 −d j1 >C), then, by the definition ofπ ′, we havebt+1−bt =C+1, which implies

d′
j2 − d′

j1 > C. Finally, we can conclude thatd j2 − d j1
S
≡ d′

j2 − d′
j1 for any j1, j2 such that

0≤ j1 < j2 < n. By Lemma6, this implies thatw≡r,S
k u for everyr ∈ N and everyk∈ N, i.e.,

w andu satisfy the same formulas inTPTLS.

3.5.1 Effects on the expressiveness by restriction of the number of regis-

ter variables

In Section3.2, we show thatTPTL is strictly more expressive thanMTL. The register vari-

ables play a crucial role in reaching this greater expressiveness. We want to explore more

deeply whether the number of register variables allowed in aTPTL-formula has an impact

on the expressive power of the logic. We are able to show that there is a strict increase in

expressiveness when allowing two register variables instead of just one. For the general case,

we conjecture that for everyr ∈ N, TPTLr+1 is strictly more expressive thanTPTLr .

Theorem 8. TPTL2 is strictly more expressive thanTPTL1 over both infinite and finite data

words.

Proof. In the following we show that theTPTL2-formula

ϕ = x1.X(x1 > 0∧x2.F(x1 > 0∧x2 < 0))

3.5 Application of the EF-game for TPTL 43

is not definable inTPTL1 over both infinite and finite data words. To prove this, it is enough

to show thatϕ is not definable inTPTL1,S
k for every finiteS⊆ Z andk∈ N.

We first proveϕ is not definable inTPTL1 over infinite data words. LetS⊆ Z be a finite

set and letk ∈ N. Let s, r > 0 be such that all numbers inS are contained in(−r,+r) and

s−kr > 0. We define two pure infinite data wordsw0 andw1 as follows (see Fig.3.6):

w0 = (s,s+2r)(s−kr)k+2
+r (s+3r)ω

+r ,

w1 = (s,s+2r)(s−kr)k+1
+r (s+3r)ω

+r .

In data wordw0, the data values+2r in position 1 is larger than the data values in position

0, and the data values+r in positionk+3 is betweensands+2r. So we havew0 |= ϕ. In data

word w1, there are no data values betweens ands+2r after position 1. So we havew1 6|= ϕ.

We show thatw0 ∼
1,S
k w1 in the following. By Theorem7, we can know thatϕ is not definable

in TPTL
1,S
k . It is clear for the casek= 0. We assumek≥ 1.

w0
s s+2r s−kr s−(k−1)r · · · s s+r s+3r s+4r . . .

k+2
︷ ︸︸ ︷

w1 s s+2r s−kr s−(k−1)r · · · s s+3r s+4r s+5r . . .

k+1
︷ ︸︸ ︷

Fig. 3.6 The two data wordsw0 andw1

Without loss of generality we use the tuple(i0,n0, i1,n1) to denote the game configuration

(i0,ν0, i1,ν1), wherei0, i1 are positions inw0,w1, respectively, andν0(x1)= n0 andν1(x1)= n1

(note that only one register variablex1 can be used in the game).

The initial game configuration is(0,s,0,s). In the first round, if Spoiler chooses a position

i (i ≥ 1) in wl (l ∈ {0,1}), Duplicator can respond with the same positioni in w1−l . In the next

move, if Spoiler chooses a position 0< j < i in w1−l , Duplicator can respond with the same

position j in wl . After the first round, the new game configuration is either(i,s, i,s)(i ≥ 2),

or (1,s,1,s). If the new configuration is(i,s, i,s)(i ≥ 2), by Lemma6, we can know that

(w0, i,ν ′
0)∼

1,S
k−1 (w1, i,ν ′

1), whereν ′
0(x1)= sandν ′

1(x1)= s, i.e., Duplicator wins the remaining

(k−1) rounds. If the new configuration is(1,s,1,s), there are two cases in the second round:

(1) Spoiler does not freezex1 to the data values+2r in the current position. This case is

easy. Duplicator can always respond with the same position that Spoiler chooses in the

other data word. By Lemma6, Duplicator can win the remaining rounds.

44 The expressive power of MTL and TPTL

(2) Spoiler freezesx1 to the data values+2r, i.e., the configuration becomes(1,s+2r,1,s+

2r). Let ν ′′
0(x1) = s+2r andν ′′

1(x1) = s+2r. We show that(w0,1,ν ′′
0)∼

1,S
k−1 (w1,1,ν ′′

1).

There are three cases in the next round:

(a) Spoiler chooses the position 2 inwl (l ∈ {0,1}), Duplicator can respond with the

same position inw1−l . We shall show that Duplicator wins the remaining(k−2)

rounds from the new configuration(2,s+2r,2,s+2r). This is equivalent to show

that Duplicator wins the game TG1,Sh (w′
0,0,ν

′′
0 ,w

′
1,0,ν

′′
1), whereh= k−2 and

w′
0 = (s− (h+2)r)h+4

+r (s+3r)ω
+r ,

w′
1 = (s− (h+2)r)h+3

+r (s+3r)ω
+r .

By induction onh, we can show that(w′
0,0,ν ′′

0)∼
1,S
h (w′

1,0,ν ′′
1).

(b) Spoiler chooses positioni (i ≥ 3) in w0, Duplicator can respond with the position

i −1 in w1. In the next move, if Spoiler chooses a position 1< j < i −1 in w1,

Duplicator can respond with the positionj +1 in w0. After this round, the new

configuration is(i,s+ 2r, i − 1,s+ 2r)(i ≥ 3). By Lemma6, we can know that

(w0, i,ν ′′
0)∼

1,S
k−2 (w1, i −1,ν ′′

1), i.e., Duplicator wins the remaining(k−2) rounds.

(c) Spoiler chooses positioni (i ≥ 3) in w1, Duplicator can respond with the position

i +1 in w0. In the next move, if Spoiler chooses the position 2 inw0, Duplicator

can also respond with the position 2 inw1. If Spoiler chooses a position 2< j ≤ i in

w0, Duplicator can respond with the positionj −1 in w1. After this round, the new

configuration is either(2,s+ 2r,2,s+ 2r), then by (a) we have(w0,2,ν ′′
0) ∼

1,S
k−2

(w1,2,ν ′′
1), or (i + 1,s+ 2r, i,s+ 2r)(i ≥ 2), then by Lemma6 we have(w0, i +

1,ν ′′
0)∼

1,S
k−2 (w1, i,ν ′′

1).

To proveϕ is not definable inTPTL1 over finite data words, letS⊆ Z be a finite set, let

k∈ N, and lets, r > 0 be defined as above. Define

w0 = (s,s+2r)(s−kr)k+2
+r (s+3r)k

+r ,

w1 = (s,s+2r)(s−kr)k+1
+r (s+3r)k

+r .

Similar to the proof for the infinite case, it is easy to check thatw0 ∼
1,S
k w1.

3.5 Application of the EF-game for TPTL 45

3.5.2 Effects on the expressiveness by restriction of the until rank and

the set of constraint numbers

In the following proposition we show that the until rank hierarchy forTPTL is strict over both

infinite and finite data words.

Proposition 7. For every k∈ N, TPTLk+1 is strictly more expressive thanTPTLk over both

infinite and finite data words.

Proof. Let ϕ1 = (p∧X p), and for everyk ≥ 1, let ϕk+1 = (p∧Xϕk), wherep is an atomic

proposition. We haveRank(ϕk) = k. We shall show thatϕk is not definable inTPTLk−1 over

both infinite and finite data words. It is enough to show thatϕk is not definable inTPTLr,S
k−1

for every finiteS⊆ Z and everyr ∈ N.

w0
p

0

p

0

p

0

. . . p

0

q

0

q

0

. . .

k+1
︷ ︸︸ ︷

w1
p

0

p

0

. . . p

0

q

0

q

0

q

0

. . .

k
︷ ︸︸ ︷

Fig. 3.7 The data wordsw0 andw1

First we proveϕk is not definable inTPTLr,S
k−1 over infinite data words. Define two infinite

data wordsw0 = (p,0)k+1
+0 (q,0)ω

+0 andw1 = (p,0)k
+0(q,0)

ω
+0, wherep,q are propositions (see

Fig. 3.7). We see thatw0 |= ϕk andw1 6|= ϕk.

In the following we prove by induction onk thatw0 ∼
r,S
k−1 w1, then by Theorem7, we can

know thatϕk is not definable inTPTLr,S
k−1. It is easy for the casek = 1. Supposek ≥ 2. We

give the winning strategy for Duplicator in the first round. There are three cases:

(1) Spoiler chooses the position 1 inw0 or w1, Duplicator can respond with the position 1

in the other data word.

(2) Spoiler chooses the positioni (i ≥ 2) in w0, Duplicator can respond with the position

i−1 in w1. In the next move, if Spoiler chooses a position 0< j < i−1 in w1, Duplicator

can respond with the positionj +1 in w0.

(3) Spoiler chooses the positioni (i ≥ 2) in w1, Duplicator can respond with the positioni+

1 in w0. In the next move, if Spoiler chooses the position 1 inw0, Duplicator can respond

with the position 1 inw1. If Spoiler chooses a position 2≤ j ≤ i in w0, Duplicator can

respond with the positionj −1 in w1.

46 The expressive power of MTL and TPTL

Let υ be the register valuation that maps all register variables to 0. Note that the register

valuation is alwaysυ during the game (all register variables can only be freezed to the value

0). After the first round, the new game configuration is either(1,υ,1,υ), then by induction

hypothesis, we have(w0,1,υ)∼r,S
k−2 (w1,1,υ), or (i+1,υ, i,υ)(i ≥ 1), then by Lemma6, we

have(w0, i +1,υ)∼r,S
k−2 (w1, i,υ).

To proveϕk is not definable inTPTLr,S
k−1 over finite data words, we definew0 = (p,0)k+1

+0

andw1 = (p,0)k
+0. Similar to the infinite case, we can show thatw0 ∼

r,S
k−1 w1.

In Proposition2 we show that the problem that whether anMTLk+1-formula is definable

in MTLk is undecidable. Since everyMTL-formula is equivalent to aTPTL-formula with the

same until rank, we can adapt the proof forTPTL. The following proposition can be proved

in much the same way as Proposition2.

Proposition 8. For every k≥ 5 (respectively, k≥ 4), the problem that whether aTPTLk+1-

formula is definable inTPTLk is undecidable over infinite data words (respectively, finite data

words).

In the following we consider the effects on the expressive power ofTPTL by restriction of

the set of constraint numbers.

Lemma 7. Let S⊆ Z, and let n∈ Z. If {n− 1,n}∩S= /0 or {n,n+ 1}∩S= /0, then the

formula x.X(x= n) is not definable inTPTLS over both infinite and finite data words.

Proof. The proof is similar to the proof of Lemma4. We show that the formulax.X(x= n) is

not definable inTPTLr,S′

k for every finiteS′ ⊆ S, everyr ∈ N and everyk∈ N.

We first show that the formula is not definable inTPTLr,S′

k over infinite data words. If

{n,n+1}∩S= /0, then lets, r > 0 be such thats+n> 0 and all numbers inS′ are less thann+r.

We define two data wordsw0 = (s)(s+n)ω
+r andw1 = (s)(s+n+1)ω

+r. If {n−1,n}∩S= /0,

then lets, r > 0 be such thats+n−1> 0 and all numbers inS′ are less thann+ r −1. We

definew0 = (s)(s+n)ω
+r andw1 = (s)(s+n−1)ω

+r. It is easily seen thatw0 |= x.X(x= n) and

w1 6|= x.X(x= n). By Lemma6, we havew0 ∼
r,S′

k w1 for everyk∈ N. Then by Theorem7, we

can know thatx.X(x= n) is not definable inTPTLr,S′

k for everyk∈ N.

To prove the formula is not definable inTPTLr,S′

k over finite data words, we can adapt the

proof for the infinite case. Letk∈N, we can setw0 = (s)(s+n)k+1
+r andw1 = (s)(s+n+1)k+1

+r ,

if {n,n+1}∩S= /0, or w0 = (s)(s+n)k+1
+r andw1 = (s)(s+n−1)k+1

+r , if {n−1,n}∩S= /0.

By Lemma6, we havew0 ∼
r,S′

k w1.

The following three propositions hold over both infinite data words and finite data words.

3.5 Application of the EF-game for TPTL 47

Proposition 9. Let S1 ⊆ Z and S2 ⊆ Z. TPTLS1 4 TPTLS2 if and only if for every n∈ S1,

either n∈ S2 or {n−1,n+1} ⊆ S2.

Proof. For the direction “⇒”, suppose that there exists a numberm∈ S1 such that{m−

1,m}∩S2 = /0 or{m,m+1}∩S2 = /0. Then by Lemma7, theTPTLS1-formulax.X(x= m) is

not definable inTPTLS2, contrary toTPTLS1 4 TPTLS2.

For the direction “⇐”, let ϕ be aTPTLS1-formula. We can construct an equivalent

TPTLS2-formula by replacing every constraint formulax∼ m in ϕ, wherem∈ S1 andm 6∈ S2,

with an equivalent constraint formulaα, where

α =







x≤ m−1∨x≥ m+1 if x∼ m is x 6= m,

x≥ m+1 if x∼ m is x> m,

x> m−1 if x∼ m is x≥ m,

x≤ m−1 if x∼ m is x< m,

x< m+1 if x∼ m is x≤ m.

For everyn∈ Z, letTPTL≤n =TPTL{m∈Z|m≤n}. By Lemma7 and Proposition9, we have

the following two hierarchies forTPTL.

Proposition 10. (Linear Constraint Hierarchy ofTPTL)

For any n1,n2 ∈ Z, if n1 < n2, thenTPTL≤n1 ≺ TPTL≤n2.

Proposition 11. (Lattice Constraint Hierarchy ofTPTL)

Let R⊆ Z be a set such that for every n∈ Z, n∈ R if and only if n+1 6∈ R. Then〈{TPTLS |

S⊆ R},4〉 constitutes a complete lattice in which

(i) the greatest element isTPTLR,

(ii) the least element isTPTL /0,

and for every Q⊆ P(R), whereP(R) is the power set of R,

(iii)
∧

S∈QTPTLS= TPTL
⋂

S∈QS,

(iv)
∨

S∈QTPTLS= TPTL
⋃

S∈QS.

48 The expressive power of MTL and TPTL

3.6 Summary of the relative expressive power

We conclude the relative expressive power ofweakMTL, MTL andTPTL in Fig. 3.8. ForLTL

andTPTL, the semantics (strict or non-strict) has no effect on theirexpressive power, whereas

MTL with strict semantics is strictly more expressive thanMTL with non-strict semantics

(weakMTL) over all data words.MTL is strictly less expressive thanTPTL on data words.

Actually, MTL is strictly less expressive thanTPTL1, andTPTL1 is strictly less expressive

thanTPTL2. It is still open that whetherTPTLr+1 is strictly more expressive thanTPTLr for

r ≥ 2. The until rank for bothMTL andTPTL is strict.

TPTL

weakMTL (

MTL1

(

MTL2

(

MTL3

(

...

MTL

(

TPTL1
1

(

TPTL1
2

(

TPTL1
3

(

...

TPTL1

(

TPTL2
1

(

TPTL2
2

(

TPTL2
3

(
...

TPTL2

⊆

TPTL3
1

(
TPTL3

2
(

TPTL3
3

(

...

TPTL3

⊆ ·· ·

Fig. 3.8 The relative expressive power ofMTL andTPTL

Chapter 4

The satisfiability problems for MTL and

TPTL

In this chapter, we consider the satisfiability problems (SAT) for MTL andTPTL. A formula

is satisfiable if it is satisfied by a data word. The satisfiability problem asks, given a formula

ϕ, whetherϕ is satisfiable or not. More precisely, letL be a logic and letC be a class of data

words, thesatisfiability problem forL overC is:

Input: A formulaϕ ∈ L .

Output: yes if there existsw∈ C such thatw |= ϕ, no otherwise.

We are interested in infinitary and finitary versions of the satisfiability problem, whereC

is the class of infinite data words and the class of finite data words, respectively.

The arithmetical hierarchy classifies problems based on thecomplexity of first-order arith-

metic formulas that define them. The classΣ0
1 in the arithmetical hierarchy consists of all

problems that can be defined by a formula which begins with a sequence of existential quan-

tifiers and followed by a formula with only bounded quantifiers in it. Σ0
1 contains exactly all

recursively enumerable sets. Analytical hierarchy is an extension of the arithmetical hierarchy,

where second-order arithmetic formulas can be used to classify problems. The classΣ1
1 in the

analytical hierarchy consists of all problems that can be defined by a second-order arithmetic

formula which begins with a sequence of second-order existential quantifiers and followed

by a formula with no second-order quantifiers.Σ1
1 contains highly undecidable problems, in-

cluding nonarithmetical problems. For more details about the arithmetical hierarchy and the

analytical hierarchy we refer the reader to [73].

In [7], Alur and Henzinger proved that infinitary SAT forTPTL is Σ1
1-complete, even if one

does not allow for propositions. The proof in the cited paperis by reduction of the recurrent

50 The satisfiability problems for MTL and TPTL

state problem for two-counter machines. However, one can easily adapt the proof for finitary

SAT using a reduction of the halting problem for two-countermachines.

Theorem 9([7]). For TPTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete.

Proof. We use a reduction of the halting problem for two-counter machines to prove finitary

SAT forTPTL is undecidable. This also implies theΣ0
1-hardness of finitary SAT. To show that

finitary SAT is inΣ0
1, we only need to show that all satisfiableTPTL-formulas over finite data

word are recursively enumerable. Letϕ ba aTPTL-formula. We usePϕ to denote the set of

all propositions occurring inϕ. Observe that for eachn∈ N, there are only finitely many data

wordsw overPϕ such that|w| ≤ n and all data values inw are bounded byn. Define

S= {(ϕ,n) | ϕ is aTPTL-formula andn∈ N}.

It is easily seen thatS is recursively enumerable. Letπ be an enumeration ofS. For each

(ϕ,n) in π , we check for every data wordw overPϕ whetherw |= ϕ, where|w| ≤ n and all

data values inw are bounded byn. If there is a data word that satisfiesϕ, then we outputϕ.

Otherwise, we check the next pair inπ . In this way, we can enumerate all satisfiableTPTL-

formulas. This procedure is effective, since for every pair(ϕ,n) there are only finitely many

data words need to check and the path checking problem forTPTL over finite data words is

decidable by Theorem18 in Chapter5.

Remark3. One can change theTPTL-formulas in the proof of Theorem9 in [7] such that they

only use one register variable. This means that Theorem9 also holds forTPTL1. However,

by the result forMTL in Section4.1, we can also conclude the same result forTPTL1.

Every formula inMTL can effectively be translated into aTPTL-formula. Hence the the

upper bound of infinitary SAT (respectively, finitary SAT) for TPTL also apply to infinitary

SAT (respectively, finitary SAT) forMTL and other fragments ofMTL andTPTL (we will not

prove this in addition in the following proofs). We show that, for most of the logics in this

chapter, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete. We also prove that

finitary SAT and infinitary SAT coincide for positiveTPTL and positiveMTL, and SAT for

existentialTPTL and existentialMTL areNP-complete. As a consequence, theΣ1
1-hardness of

infinitary SAT excludes the possibility to axiomatize validity for MTL andTPTL in a standard

proof calculus system.

Generally, we prove the undecidability of infinitary SAT (respectively, finitary SAT) for

a logicL by a reduction from the recurrent state problem (respectively, halting problem) of

two-counter machines in the following way: For every two-counter machineM , we construct

a formulaϕinfin (respectively,ϕfin) of L such thatϕinfin (respectively,ϕfin) is satisfied by an

4.1 The satisfiability problem for MTL 51

infinite data word (respectively, a finite data word) if and only if M is a positive instance of

the recurrent state problem (respectively, the halting problem).

Let M be a two-counter machine with instructions set{I0, . . . , In}. In this chapter, for

technical reasons, we always assume thatI0 6= In and In is the only halting instructionhalt.

We will write In simplyhalt for readability when no confusion can arise.

4.1 The satisfiability problem for MTL

In this section, we consider infinitary SAT and finitary SAT for MTL. We show that both of

them are not decidable. Since everyMTL-formula is equivalent to aTPTL1-formula, we can

know that this result also holds forTPTL1.

Theorem 10. For MTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete.

Proof. Let M be a two-counter machine with instructionsI0, . . . , In. Define a set of proposi-

tionsP = {I0, . . . , In,C1,C2}. First we show how to encode a computation ofM into a data

word overP. Let (J,c,d) be a configuration ofM , whereJ ∈ {I0, . . . , In} andc,d ∈N. We en-

code it by the data word(J,0)(C1,c)(C2,d). In the encoding of the configuration we store the

number 0 in the pair with an instruction proposition such that we can use it to test whether the

data value stored inC1 or C2 is 0 or not. Letπ = (J0,c0,d0)(J1,c1,d1) . . . be a computation

of M , where(J0,c0,d0) = (I0,0,0), Ji ∈ {I0, . . . , In} andci ,di ∈ N(i ≥ 1). We can encodeπ
into the following data word:

(J0,0)(C1,c0)(C2,d0)(J1,0)(C1,c1)(C2,d1)

In the following we define severalMTL-formulas which express that a data word encodes

a computation ofM properly, whereXm is an abbreviation formcopies of the modalityX.

(1) There is exactly one proposition fromP that holds in each position:

ϕprop ··= (
∨

p∈P

p)∧
∧

p∈P

(p→
∧

q∈P\{p}

¬q).

(2) The sequence of all propositions in the data word is of theform J0,C1,C2,J1,C1,C2, . . . :

ϕseq ··= ((
∨

0≤i≤n

I i)→ (XC1∧X2 C2))∧ (C2 → X
∨

0≤i≤n

I i).

52 The satisfiability problems for MTL and TPTL

(3) The initial configuration is(I0,0,0):

ϕinit ··= I0∧X=0(C1∧X=0C2).

(4) For the halting instructionIn (i.e.,halt), define

ϕhalt ··= halt∧ϕprop∧X(C1∧ϕprop)∧X2(C2∧ϕprop).

(5) For an increment instructionI j : C1 ··= C1 + 1; go to someI k ∈ Sj , whereSj is a

nonempty subset of{I0, . . . , In}, define

ϕI j
··= I j →

∨

Ik∈Sj

[((C1∨C2)U=0 I k)∧X((C2∨ I k)U=1C1)∧X2((I k∨C1)U=0C2)].

If I j operates onC2, then define

ϕI j
··= I j →

∨

Ik∈Sj

[((C1∨C2)U=0 I k)∧X((C2∨ I k)U=0C1)∧X2((I k∨C1)U=1C2)].

(6) For a decrement instructionI j : if C1 = 0 then go to someI k ∈ S1
j elseC1 ··= C1−1; go

to someIm ∈ S2
j , whereS1

j andS2
j are nonempty subsets of{I0, . . . , In}, define

ϕI j
··= (I j ∧X=0C1 → ψzero)∧ (I j ∧X>0 C1 → ψnotzero),

where

ψzero ··=
∨

Ik∈S1
j

[((C1∨C2)U=0 I k)∧X((C2∨ I k)U=0C1)∧X2((I k∨C1)U=0C2)],

ψnotzero ··=
∨

Im∈S2
j

[((C1∨C2)U=0 Im)∧X((C2∨ Im)U=−1C1)∧X2((Im∨C1)U=0C2)].

If I j operates onC2, then define

ϕI j
··= (I j ∧ (C1U=0C2)→ ψzero)∧ (I j ∧ (C1U>0C2)→ ψ ′

notzero),

where

ψ ′
notzero

··=
∨

Im∈S2
j

[((C1∨C2)U=0 Im)∧X((C2∨ Im)U=0C1)∧X2((Im∨C1)U=−1C2)].

4.2 SAT for the positive fragments of MTL and TPTL 53

We define two formulasϕinfin andϕfin in the following such thatϕinfin (respectively,ϕfin) is

satisfiable if and only ifM has a recurring computation (respectively, a halting computation).

ϕinfin ··=ϕinit∧ϕprop∧ϕI0 ∧GF I0∧

G(ϕprop∧ϕseq∧¬halt∧
∧

0≤ j<n

ϕI j),

and

ϕfin ··=ϕinit∧ϕprop∧ϕI0 ∧Fhalt∧

(ϕprop∧ϕseq∧¬halt∧
∧

0≤ j<n

ϕI j)Uϕhalt.

It is easily seen that ifM is a positive instance of the recurrent state problem (respectively,

the halting problem), then there is an infinite data wordw (respectively, a finite data wordw′)

which is the encoding of a recurring computation ofM (respectively, a halting computation of

M) such thatw |= ϕinfin (respectively,w′ |= ϕfin). Conversely, ifϕinfin is satisfiable over infinite

data words, then there is an infinite data word that encodes aninfinite computation ofM , which

visits the instructionI0 infinitely often by the formulaGF I0. Similarly, if ϕfin is satisfiable over

finite data words, then there is a finite data word that encodesa finite computation ofM which

reaches the instructionhalt.

4.2 SAT for the positive fragments of MTL and TPTL

In this section, we consider the satisfiability problem for the positive fragments ofMTL and

TPTL, in which the negation operator¬ is only applied to propositions or atomic constraints.

We show that a positive formula is satisfiable if and only if itis satisfied by a finite data word.

This means that finitary SAT and infinitary SAT coincide for positive formulas. First we give

the definitions for positiveMTL and positiveTPTL in the following.

Definition 5. The set of positiveMTL-formulas (posMTL) is built by the following grammar:

ϕ ····=⊤ | ⊥ | p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | ϕUI ϕ

The set of positiveTPTL-formulas (posTPTL) is built by the following grammar:

ϕ ····=⊤ | ⊥ | p | ¬p | x∼ c | ¬x∼ c | ϕ ∧ϕ | ϕ ∨ϕ | ϕUϕ | x.ϕ

54 The satisfiability problems for MTL and TPTL

In the following, we show that aposTPTL-formula is satisfiable if and only if it is satisfied

by a finite data word. First we prove two lemmas.

Lemma 8. Let u be a finite data word, let i be a position in u and letν be a register valuation.

Then for everyposTPTL-formulaϕ and every data word w, if(u, i,ν) |= ϕ, then(uw, i,ν) |= ϕ.

Proof. We prove the lemma by induction onϕ. The proof for the cases thatϕ is⊤,⊥, p,¬p,x∼

c or¬x∼ c is easy.

• If ϕ is ϕ1∧ϕ2, then(u, i,ν) |= ϕ1∧ϕ2 if and only if (u, i,ν) |= ϕ1 and(u, i,ν) |= ϕ2.

By induction hypothesis, we have(uw, i,ν) |= ϕ1 and (uw, i,ν) |= ϕ2. This implies

(uw, i,ν) |= ϕ1∧ϕ2.

• If ϕ is ϕ1 ∨ϕ2, then(u, i,ν) |= ϕ1∨ϕ2 if and only if (u, i,ν) |= ϕ1 or (u, i,ν) |= ϕ2.

By induction hypothesis, we have(uw, i,ν) |= ϕ1 or (uw, i,ν) |= ϕ2. This implies

(uw, i,ν) |= ϕ1∨ϕ2.

• If ϕ is x.ϕ1, then(u, i,ν) |= x.ϕ1 if and only if (u, i,ν[x 7→ di]) |= ϕ1. By induction

hypothesis, we have(uw, i,ν[x 7→ di]) |= ϕ1. This implies(uw, i,ν) |= x.ϕ1.

• If ϕ is ϕ1Uϕ2, then(u, i,ν) |= ϕ1Uϕ2 if and only if there is a positioni < j < |u| such

that(u, j,ν) |= ϕ2 and for alli < t < j, (u, t,ν) |= ϕ1. By induction hypothesis, we have

(uw, j,ν) |= ϕ2 and for alli < t < j, (uw, t,ν) |= ϕ1. This implies(uw, i,ν) |= ϕ1Uϕ2.

Lemma 9. Let w be a data word, let i be a position in w and letν be a register valuation.

Then for everyposTPTL-formula ϕ, if (w, i,ν) |= ϕ, then there exists a position j≥ i in w

such that(w[0 : j], i,ν) |= ϕ.

Proof. We prove the lemma by induction onϕ.

• If ϕ is ⊤,⊥, p,¬p,x∼ c or¬x∼ c, then(w, i,ν) |= ϕ if and only if (w[0 : i], i,ν) |= ϕ.

• If ϕ is ϕ1∧ϕ2, then(w, i,ν) |= ϕ1∧ϕ2 if and only if (w, i,ν) |= ϕ1 and(w, i,ν) |= ϕ2.

By induction hypothesis, there exist two positionsj1 ≥ i and j2 ≥ i in w such that

(w[0 : j1], i,ν) |= ϕ1 and(w[0 : j2], i,ν) |= ϕ2. Let j = max{ j1, j2}. By Lemma8, we

have(w[0 : j], i,ν) |= ϕ1 and(w[0 : j], i,ν) |= ϕ2. This implies(w[0 : j], i,ν) |= ϕ1∧ϕ2.

• If ϕ is ϕ1∨ϕ2, then(w, i,ν) |= ϕ1∨ϕ2 if and only if (w, i,ν) |= ϕ1 or (w, i,ν) |= ϕ2.

By induction hypothesis, there exist two positionsj1 ≥ i and j2 ≥ i in w such that

(w[0 : j1], i,ν) |= ϕ1 or (w[0 : j2], i,ν) |= ϕ2. Let j = max{ j1, j2}. By Lemma8, we

have(w[0 : j], i,ν) |= ϕ1 or (w[0 : j], i,ν) |= ϕ2. This implies(w[0 : j], i,ν) |= ϕ1∨ϕ2.

4.2 SAT for the positive fragments of MTL and TPTL 55

• If ϕ is x.ϕ1, then(w, i,ν) |= x.ϕ1 if and only if (w, i,ν[x 7→ di]) |= ϕ1. By induction

hypothesis, there exists a positionj ≥ i in w such that(w[0 : j], i,ν[x 7→ di]) |= ϕ1. This

implies(w[0 : j], i,ν) |= x.ϕ1.

• If ϕ is ϕ1Uϕ2, then(w, i,ν) |= ϕ1Uϕ2 if and only if there is a positioni < i′ < |w|

such that(w, i′,ν) |= ϕ2 and for alli < t < i′, (w, t,ν) |= ϕ1. Supposei′ = i +n, where

n≥ 1. By inductive hypothesis, there exist positionsjs ≥ (i +s) in w, where 1≤ s≤ n,

such that(w[0 : jn], i +n,ν) |= ϕ2 and for all 1≤ s< n, (w[0 : js], i + s,ν) |= ϕ1. Let

j =max{ j1, . . . , jn}. By Lemma8, we have(w[0 : j], i+n,ν) |= ϕ2 and for all 1≤ s< n,

(w[0 : j], i +s,ν) |= ϕ1. This implies(w[0 : j], i,ν) |= ϕ1Uϕ2.

Theorem 11. (Finite Model Property for positiveTPTL)

For everyposTPTL-formulaϕ, if ϕ is satisfiable, then it is satisfied by a finite data word.

Proof. Let ϕ be aposTPTL-formula. Suppose that there exists a data wordw such thatw |= ϕ.

By Lemma9, we can know that there exists a positionj in w such thatw[0 : j] |= ϕ. Obviously,

w[0 : j] is a finite data word.

Since everyposMTL-formula is equivalent to aposTPTL-formula, we can get the follow-

ing corollary.

Corollary 5. For everyposMTL-formula ϕ, if ϕ is satisfiable, then it is satisfied by a finite

data word.

Theorem 12. For posMTL andposTPTL, finitary SAT and infinitary SAT coincide, and both

of them areΣ0
1-complete.

Proof. It is easily seen that finitary SAT and infinitary SAT coincidefor posMTL andposTPTL

by Lemma8 and Theorem11.

We show that finitary SAT isΣ0
1-complete forposMTL by a reduction from the halting

problem for two-counter machines. Note that the formulaϕfin constructed in the proof of

Theorem10 is in positive form except the formulasϕI j for decrement instructionsI j in it. We

can construct an equivalentposMTL-formulaϕ ′
fin by replacingϕI j with equivalent formulas.

Let I j be a decrement instruction. IfI j operates onC1, then we can replaceϕI j constructed in

(6) in the proof of Theorem10 with the followingposMTL-formula

ϕ ′
I j
··= (¬I j ∨X>0C1∨ψzero)∧ (¬I j ∨X=0C1∨ψnotzero).

56 The satisfiability problems for MTL and TPTL

If I j operates onC2, then we can replaceϕI j with

ϕ ′
I j
··= (¬I j ∨ (C1U>0C2)∨ψzero)∧ (¬I j ∨ (C1U=0C2)∨ψ ′

notzero).

Clearly, ϕ ′
fin is equivalent to aposTPTL-formula, so finitary SAT forposTPTL is also

Σ0
1-complete.

4.3 SAT for the unary fragments of MTL and TPTL

In this section, we consider the satisfiability problem for the unary fragments ofMTL and

TPTL, in which only the modalitiesF andX are allowed to use. First we give the definitions

for unaMTL andunaTPTL in the following.

Definition 6. The set of unaryMTL-formulas (unaMTL) is built by the following grammar:

ϕ ····=⊤ | p | ¬ϕ | ϕ ∧ϕ | XI ϕ | FI ϕ

The set of unaryTPTL-formulas (unaTPTL) is built by the following grammar:

ϕ ····=⊤ | p | x∼ c | ¬ϕ | ϕ ∧ϕ | Xϕ | Fϕ | x.ϕ

In [28], non-primitive recursive complexity for finitary SAT for unaryfreezeLTL1 is proved.

This result was strengthened to SAT for unaryfreezeLTL1 without theX modality [40]. Unfor-

tunately, if we extendfreezeLTL1 toTPTL1, we can obtain undecidability for the satisfiability

problem, and this still holds even forTPTL1 without theX modality. We also prove undecid-

ability of SAT for unaMTL, however, it is an open problem whether undecidability alsoholds

for theunaMTL fragment in which theX modality is not allowed.

Theorem 13. For unaMTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete.

For unaTPTL1, this is even the case if we do not allow for theX modality.

Proof. Let M be a two-counter machine with instructionsI0, . . . , In. Define a set of proposi-

tionsP= {I0, . . . , In,C1,C2}. First we show how to encode the computation ofM into a data

word overP. Let π = (J0,c0,d0)(J1,c1,d1) . . . be a computation ofM , where(J0,c0,d0) =

(I0,0,0), Ji ∈ {I0, . . . , In} andci ,di ∈ N(i ≥ 1). We can encodeπ as follows:

(J0,0)(C1,c0)(C2,d0)(J1,1)(C1,c1+1)(C2,d1+1) . . . ,

4.3 SAT for the unary fragments of MTL and TPTL 57

i.e., for eachi ≥ 0, theith configuration ofπ is encoded by the data word

(Ji , i)(C1,ci + i)(C2,di + i).

The data values in the positions where instruction propositionsJi hold are strictly monotonic

and increase progressively by exactly 1. We can use these numbers for the zero test operation.

By this encoding we can know that for any two consecutive configurations in the computation,

the subdata word

(J, i)(C1,n1,1)(C2,n2,1)(J
′, i +1)(C1,n1,2)(C2,n2,2),

which is the encoding of them in the data word that encodes thewhole computation, satisfies

the following conditions, wherej is 1 or 2:

• If J setsC j ··= C j +1, thenn j ,2 = n j ,1+2.

• If J setsC j ··= C j −1, thenn j ,2 = n j ,1.

• If C j does not change, thenn j ,2 = n j ,1+1.

Hence, the data values in the positions whereC1 (respectively,C2) holds are also monotonic.

We can exploit this monotonicity property to get rid of theU modality, and also theX modality

for unaTPTL1.

In the following we define severalunaMTL-formulas (respectively,unaTPTL1-formulas

without theX modality) which express that a data word encodes a computation of M prop-

erly. It is easily seen that everyunaMTL-formula without theX modality can effectively be

translated into an equivalentunaTPTL1-formula without theX modality. So we do not define

theunaTPTL1-formulas explicitly where we have theseunaMTL-formulas below. But for the

unaMTL-formulas that use theX modality, we will give the equivalentunaTPTL1-formulas

without theX modality.

(1) There is exactly one proposition fromP that holds in every position:

ϕprop ··= (
∨

p∈P

p)∧
∧

p∈P

(p→
∧

q∈P\{p}

¬q).

(2) The data values in the positions whereI i (0 ≤ i ≤ n) holds are strictly monotonic and

increase progressively by exactly 1. Defineϕdat to be a conjunction of the following

two formulas.

58 The satisfiability problems for MTL and TPTL

• The data values are strictly monotonic:

(
∨

0≤i≤n

I i)→¬F≤0
∨

0≤i≤n

I i.

• The data values increase by 1:

(
∨

0≤i<n

I i)→ F=1
∨

0≤i≤n

I i.

(3) The sequence of all propositions in the data word is of theform J0,C1,C2,J1,C1,C2,

• ForunaMTL, define

ϕseq ··= ((
∨

0≤i≤n

I i)→ (XC1∧X2C2))∧ (C2 → X
∨

0≤i≤n

I i).

• For unaTPTL1 without theX modality, defineϕ ′
seq to be a conjunction of the fol-

lowing two formulas.

– There are two propositionsC1 andC2 between two consecutive instruction

propositions:

(
∨

0≤i≤n

I i)→ x.F[C1∧F(C2∧F(x= 1∧
∨

0≤i≤n

I i))].

– There is only one propositionC1 (respectively,C2) between two consecutive

instruction propositions:

(
∨

0≤i≤n

I i)→¬x.F[C1∧F(C1∧F(x= 1∧
∨

0≤i≤n

I i))]

∧(
∨

0≤i≤n

I i)→¬x.F[C2∧F(C2∧F(x= 1∧
∨

0≤i≤n

I i))].

(4) The data values in the positions whereC1 (respectively,C2) holds are monotonic, and

are no less than the previous data values in the positions where instruction propositions

hold:

ϕcntdat ··=(C1 →¬F<0 C1)∧ (C2 →¬F<0C2)

∧ (
∨

0≤i≤n

I i)→¬(F<0C1∨F<0C2).

4.3 SAT for the unary fragments of MTL and TPTL 59

(5) The initial configuration is(I0,0,0).

• ForunaMTL, define

ϕinit ··= I0∧X=0(C1∧X=0C2).

• ForunaTPTL1 without theX modality, define

ϕ ′
init

··= I0∧x.F[C1∧x= 0∧F(C2∧x= 0∧F(x= 1∧
∨

0≤i≤n

I i))].

(6) For the halting instructionIn (i.e.,halt), define

ϕhalt ··=halt∧ϕprop∧G(ϕprop∧¬
∨

0≤i≤n

I i)∧

F(C1∧FC2)∧G((C1 →¬FC1)∧ (C2 →¬F⊤)).

This formula guarantees that the data word ends with(halt,n1)(C1,n2)(C2,n3), where

n1,n2,n3 ∈ N.

(7) I j is an increment instruction:C1 ··= C1+1; go to someI k ∈ Sj .

• ForunaMTL, define

ϕI j
··= I j → [(F=1

∨

Ik∈Sj

I k)∧X(¬F<2C1∧F=2C1)∧X2(¬F<1C2∧F=1 C2)].

Note that incrementing the counterC1 by 1 corresponds to incrementing the data

value by exactly 2 in the encoding. The value of counterC2 does not change, and

this corresponds to incrementing the data value by exactly 1.

If I j operates onC2, then define

ϕI j
··= I j → [(F=1

∨

Ik∈Sj

I k)∧X(¬F<1C1∧F=1C1)∧X2(¬F<2C2∧F=2 C2)].

• ForunaTPTL1 without theX modality, define

ϕ ′
I j
··= I j →

∨

Ik∈Sj

(ϕC1 ∧ϕC2),

60 The satisfiability problems for MTL and TPTL

where

ϕC1
··=x.F[C1∧F(x= 1∧ I k)∧x.G(C1 → x≥ 2)∧x.F(C1∧x= 2)],

ϕC2
··=x.F[C2∧F(x= 1∧ I k)∧x.G(C2 → x≥ 1)∧x.F(C2∧x= 1)].

Note that the formulaF(x = 1∧ I k) in ϕC j (j ∈ {1,2}) guarantees that theC j in

consideration is exactly the one betweenI j andI k. Hence we can get rid of theX

modality.

If I j operates onC2, then define

ϕ ′
I j
··= I j →

∨

Ik∈Sj

(ϕ ′
C1

∧ϕ ′
C2
),

where

ϕ ′
C1

··=x.F[C1∧F(x= 1∧ I k)∧x.G(C1 → x≥ 1)∧x.F(C1∧x= 1)],

ϕ ′
C2

··=x.F[C2∧F(x= 1∧ I k)∧x.G(C2 → x≥ 2)∧x.F(C2∧x= 2)].

(8) I j is a decrement instruction: ifC1 = 0 then go to someI k ∈ S1
j elseC1 ··= C1−1; go

to someIm ∈ S2
j .

• ForunaMTL, define

ϕI j
··= (I j ∧F=0 C1 → ψzero)∧ (I j ∧¬F=0 C1 → ψnotzero),

where

ψzero ··= X(C1∧¬F<1 C1∧F=1C1)∧X2(C2∧¬F<1 C2∧F=1C2)∧F=1
∨

Ik∈S1
j

I k,

and

ψnotzero ··= X(C1∧F=0C1)∧X2(C2∧¬F<1 C2∧F=1C2)∧F=1
∨

Im∈S2
j

Im.

Note that decrementing the value ofC1 corresponds to not changing the data value

in the encoding.

4.3 SAT for the unary fragments of MTL and TPTL 61

If I j operates onC2, then define

ϕI j
··= (I j ∧F=0 C2 → ψzero)∧ (I j ∧¬F=0 C2 → ψ ′

notzero),

where

ψ ′
notzero

··= X(C1∧¬F<1C1∧F=1 C1)∧X2(C2∧F=0C2)∧F=1
∨

Im∈S2
j

Im.

• ForunaTPTL1 without theX modality, define

ϕ ′
I j
··= (I j ∧x.F(x= 0∧C1)→ φzero)∧ (I j ∧¬x.F(x= 0∧C1)→ φnotzero),

where

φzero ··=
∨

Ik∈S1
j

〈x.F[C1∧F(x= 1∧ I k)∧x.G(C1 → x≥ 1)∧x.F(C1∧x= 1)]

∧x.F[C2∧F(x= 1∧ I k)∧x.G(C2 → x≥ 1)∧x.F(C2∧x= 1)]〉,

φnotzero ··=
∨

Im∈S2
j

〈x.F[C1∧F(x= 1∧ Im)∧x.F(C1∧x= 0)]

∧x.F[C2∧F(x= 1∧ Im)∧x.G(C2 → x≥ 1)∧x.F(C2∧x= 1)]〉.

If I j operates onC2, then define

ϕ ′
I j
··= (I j ∧x.F(x= 0∧C2)→ φzero)∧ (I j ∧¬x.F(x= 0∧C2)→ φ ′

notzero),

where

φ ′
notzero

··=
∨

Im∈S2
j

〈x.F[C2∧F(x= 1∧ Im)∧x.F(C2∧x= 0)]

∧x.F[C1∧F(x= 1∧ Im)∧x.G(C1 → x≥ 1)∧x.F(C1∧x= 1)]〉.

In the following we define two formulasϕinfin andϕfin (respectively,ϕ ′
infin andϕ ′

fin) for

unaMTL (respectively,unaTPTL1 without theX modality) that can capture the infinite com-

putation ofM that visits the initial instructionI0 infinitely often and the finite computation of

M that reaches the halting instructionhalt, respectively.

62 The satisfiability problems for MTL and TPTL

ForunaMTL, define

ϕinfin ··=ϕinit∧ϕprop∧ϕI0 ∧ϕdat∧ϕcntdat∧GF I0∧

G(ϕprop∧ϕseq∧ϕdat∧ϕcntdat∧¬halt∧
∧

0≤ j<n

ϕI j),

and

ϕfin ··=ϕinit∧ϕprop∧ϕI0 ∧ϕdat∧ϕcntdat∧Fϕhalt∧

G(Fϕhalt → ϕprop∧ϕseq∧ϕdat∧ϕcntdat∧
∧

0≤ j<n

ϕI j).

ForunaTPTL1 without theX modality, define

ϕ ′
infin

··=ϕ ′
init∧ϕprop∧ϕ ′

seq∧ϕ ′
I0 ∧ϕdat∧ϕcntdat∧GF I0∧

G(ϕprop∧ϕ ′
seq∧ϕdat∧ϕcntdat∧¬halt∧

∧

0≤ j<n

ϕ ′
I j
),

and

ϕ ′
fin

··=ϕ ′
init∧ϕprop∧ϕ ′

seq∧ϕ ′
I0 ∧ϕdat∧ϕcntdat∧Fϕhalt∧

G(Fϕhalt → ϕprop∧ϕ ′
seq∧ϕdat∧ϕcntdat∧

∧

0≤ j<n

ϕ ′
I j
).

We see at once thatϕinfin andϕ ′
infin (respectively,ϕfin andϕ ′

fin) are satisfiable if and only if

M has a recurring computation (respectively, a halting computation).

Corollary 6. For unaTPTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete.

4.4 SAT for the pure fragment of MTL

In Theorem 5 of [7], the authors proved that infinitary SAT is undecidable for the pure frag-

ment ofTPTL. In this section, we consider the satisfiability problem forthe pure fragment

of MTL. We show that both of infinitary SAT and finitary SAT are not decidable for the pure

fragment ofMTL. First we give the definition forpureMTL in the following.

4.4 SAT for the pure fragment of MTL 63

Definition 7. The set of pureMTL-formulas (pureMTL) is built by the following grammar:

ϕ ····=⊤ | ¬ϕ | ϕ ∧ϕ | ϕUI ϕ

In the theorem blew, we show that the propositions are not necessary to get the undecid-

ability. The satisfiability problem is still undecidable for MTL even without any propositions.

Theorem 14. For pureMTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete.

Proof. Let M be a two-counter machine with instructionsI0, . . . , In. For each configuration

(I j ,c,d) of M , where j ∈ {0, . . . ,n} andc,d ∈ N, we encode it into the following pure data

word (we put the numbers into pairs for readability of the proof)

(0,3)

n+1
︷ ︸︸ ︷

(0,1) · · ·(0,1)(0,2)(0,1) · · ·(0,1)
︸ ︷︷ ︸

I j

(0,4+c)
︸ ︷︷ ︸

C1

(0,4+d)
︸ ︷︷ ︸

C2

.

It starts with the pair(0,3), and followed byn+1 pairs: one is(0,2), and the remaining are

(0,1). The pair(0,2) is the(j +1)th pair after the pair(0,3). Thesen+2 pairs encode the

instructionI j . After that, the pair(0,4+ c) encodes the value ofC1 and the pair(0,4+d)

encodes the value ofC2. The encoding of a computation ofM is a sequence of encodings for

each configuration of it.

In the following we define severalpureMTL-formulas which express that a pure data word

encodes a computation ofM properly.

(1) The pair(0,3) identifies an instruction (i.e., the beginning of the encoding of a configu-

ration):

ϕinst ··= X=3X=−3⊤.

(2) For each instructionI j (j ∈ {0, ...,n}), define

ψ j ··= X=3X=−3(X=1X=−1)
j X=2X=−2(X=1X=−1)

n− j X≥4X≤4X≥4⊤,

where(X=1X=−1)
k is an abbreviation fork copies ofX=1X=−1.

(3) The data word is a concatenation of encodings of configurations:

ϕstruct ··= (
∨

0≤ j≤n

ψ j)→ X2n+8(
∨

0≤ j≤n

ψ j).

64 The satisfiability problems for MTL and TPTL

(4) The initial configuration is(I0,0,0):

ϕinit ··= ψ0∧X2+4n(X=4X=−4)
2⊤.

(5) For the halting instructionIn (i.e.,halt), define

ϕhalt ··= X=3X=−3(X=1X=−1)
nX=2X=−2X≥4X≤4X≥4(¬X⊤).

(6) For an increment instructionI j : C1 ··= C1+1; go to someIk ∈ Sj , define

ϕI j
··= ψ j → (¬ϕinstU=0

∨

Ik∈Sj

ψk)∧ϕC1 ∧ϕC2,

where

ϕC1
··=X2n+5[(¬X3ϕinst)U=1(X

3ϕinst)],

ϕC2
··=X2n+7[(¬Xϕinst)U=0(Xϕinst)].

If I j operates onC2, then define:

ϕI j
··= ψ j → (¬ϕinstU=0

∨

Ik∈Sj

ψk)∧ϕ ′
C1

∧ϕ ′
C2
,

where

ϕC1
··=X2n+5[(¬X3ϕinst)U=0(X

3ϕinst)],

ϕC2
··=X2n+7[(¬Xϕinst)U=1(Xϕinst)].

(7) For a decrement instructionI j : if C1 = 0 then go to someIk ∈ S1
j elseC1 ··= C1−1; go

to someIm ∈ S2
j , define

ϕI j
··= ψ j →〈[¬ϕinstU=4X

3 ϕinst → (¬ϕinstU=0
∨

Ik∈S1
j

ψk)∧ϕzero]∧

[¬ϕinstU>4X
3 ϕinst → (¬ϕinstU=0

∨

Im∈S2
j

ψm)∧ϕnotzero]〉,

4.5 SAT for other fragments of MTL and TPTL 65

where

ϕzero ··= X2n+5[(¬X3ϕinst)U=0(X
3ϕinst)]∧X2n+7[(¬Xϕinst)U=0(Xϕinst)],

ϕnotzero ··= X2n+5[(¬X3ϕinst)U=−1(X
3 ϕinst)]∧X2n+7[(¬Xϕinst)U=0(Xϕinst)].

If I j operates onC2, then define:

ϕI j
··= ψ j →〈[¬ϕinstU=4Xϕinst → (¬ϕinstU=0

∨

Ik∈S1
j

ψk)∧ϕzero]∧

[¬ϕinstU>4Xϕinst → (¬ϕinstU=0
∨

Im∈S2
j

ψm)∧ϕ ′
notzero]〉,

where

ϕ ′
notzero

··= X2n+5[(¬X3ϕinst)U=0(X
3 ϕinst)]∧X2n+7[(¬Xϕinst)U=−1(Xϕinst)].

We define twopureMTL-formulasϕinfin andϕfin in the following:

ϕinfin ··= ϕinit∧ϕI0 ∧ϕstruct∧GFψ0 ∧G(ϕstruct∧
∧

0≤ j<n

ϕI j),

ϕfin ··= ϕinit∧ϕI0 ∧ϕstruct∧Fϕhalt ∧G(Fϕhalt → ϕstruct∧
∧

0≤ j<n

ϕI j).

It is easy to check thatϕinfin (respectively,ϕfin) is satisfiable if and only ifM has a recurring

computation (respectively, a halting computation).

4.5 SAT for other fragments of MTL and TPTL

In this section, we consider the satisfiability problem for some other fragments ofMTL and

TPTL. We show that SAT is still undecidable even for unary MTL withtwo propositions, but

for existentialTPTL, SAT isNP-complete.

4.5.1 The satisfiability problem for unary MTL with two propo sitions

By an observation of the proof for Theorem 5 in [7], we see that no until modality is used in

it. It means that this theorem also holds for the pure unary fragment ofTPTL. It is of interest

66 The satisfiability problems for MTL and TPTL

to consider the satisfiability problem for the pure unary fragment ofMTL. In Theorem13and

Theorem14, we show that SAT is undecidable forunaMTL andpureMTL, respectively. But

in the proofs of them, we either use propositions (the numberof propositions depends on the

number of instructions, which is not fixed) or use the until modality. In the following we show

that two propositions are enough forunaMTL to get the undecidability.

Theorem 15. For the fragment ofunaMTL with at least two propositions, infinitary SAT is

Σ1
1-complete and finitary SAT isΣ0

1-complete.

Proof. First we give a proof for the theorem that uses four propositions, then we show how to

reduce the number of propositions to two. LetP= {Zero, Instr ,C1,C2}. Suppose thatM is a

two-counter machine with instructionsI0, . . . , In, andπ =(I j0,c0,d0)(I j1,c1,d1)(I j2,c2,d2) . . .

is a computation ofM , where(I j0,c0,d0) = (I0,0,0), j i ∈ {0, . . . ,n} andci ,di ∈N(i ≥ 1). We

encodeπ into a data word overP as follows:

(Zero,0)(Instr ,0)(C1,0)(C2,0)

(Zero,n),(Instr ,n+ j1),(C1,n+n ·c1)(C2,n+n ·d1)

(Zero,2n)(Instr ,2n+ j2)(C1,2n+n ·c2)(C2,2n+n ·d2)

· · ·

i.e., for eachi ≥ 0, theith configuration is encoded by

(Zero, i ·n),(Instr , i ·n+ j i),(C1, i ·n+n ·ci)(C2, i ·n+n ·di).

The data values in the positions whereZero holds are strictly monotonic and increase progres-

sively by exactlyn. We use these numbers for the zero test operation. If counterCi (i ∈ {1,2})

is increased by 1 (decreased by 1, not changed, respectively), then the corresponding data

value in the encoding is increased by 2n (not changed, increased byn, respectively). Hence,

the data values in the positions whereC1 (respectively,C2) holds are also monotonic. We

exploit this monotonicity property to get rid of theU modality.

In the following we define severalunaMTL-formulas which express that a data word en-

codes a computation ofM properly.

(1) There is exactly one proposition fromP that holds in every position:

ϕprop ··= (
∨

p∈P

p)∧
∧

p∈P

(p→
∧

q∈P\{p}

¬q).

4.5 SAT for other fragments of MTL and TPTL 67

(2) The sequence of all propositions in the data word is of theform

Zero, Instr ,C1C2,Zero, Instr ,C1C2, . . . :

ϕseq ··= (Zero → X Instr ∧X2C1∧X3 C2)∧ (C2 → XZero).

(3) The data values in the positions whereZero holds are increasing exactly byn:

ϕdat ··= Zero → (F=nZero∧¬F<nZero).

(4) The data value in the position whereInstr holds encodes an instructionI j (0≤ j ≤ n):

ϕinstr ··= Zero → X[0,n]Instr .

(5) The data values in the positions whereC1 (respectively,C2) holds are monotonic, and

are no less than the previous data values in the positions whereZero holds:

ϕcntdat ··=(C1 →¬(F<0C1))∧ (C2 →¬(F<0C2))

∧ (Zero →¬(F<0C1∨F<0C2)).

(6) The initial configuration is(I0,0,0):

ϕinit ··= Zero∧X=0(Instr ∧X=0(C1∧X=0C2)).

(7) For the halting instructionIn (i.e.,halt), define

ϕhalt ··=Zero∧ϕprop∧X=n[Instr ∧ϕprop∧X(ϕprop∧C1∧X(ϕprop∧C2∧¬X⊤))].

This formula says that the data word ends with(Zero,d)(Instr ,d+n)(C1,d1)(C2,d2),

whered,d1,d2 ∈ N.

(8) For an increment instructionI j : C1 ··= C1+1; go to someIk ∈ Sj , define

ϕI j
··= Zero∧X= j Instr → (F=n(Zero∧

∨

Ik∈Sj

X=k Instr)∧ϕC1 ∧ϕC2),

68 The satisfiability problems for MTL and TPTL

where

ϕC1
··=X2(C1∧F=2n C1∧¬F<2n C1),

ϕC2
··=X3(C2∧F=nC2∧¬F<nC2).

If I j operates onC2, then define:

ϕI j
··= Zero∧X= j Instr → (F=n(Zero∧

∨

Ik∈Sj

X=k Instr)∧ϕ ′
C1

∧ϕ ′
C2
),

where

ϕ ′
C1

··=X2(C1∧F=nC1∧¬F<nC1),

ϕ ′
C2

··=X3(C2∧F=2n C2∧¬F<2n C2).

(9) For a decrement instructionI j : if C1 = 0 then go to someIk ∈ S1
j elseC1 ··= C1−1; go

to someIm ∈ S2
j , define

ϕI j
··=Zero∧X= j Instr →

[(F=0C1 → F=n(Zero∧
∨

Ik∈S1
j

X=k Instr)∧ϕzero)∧

(¬F=0C1 → F=n(Zero∧
∨

Im∈S2
j

X=mInstr)∧ϕnotzero)],

where

ϕzero ··= X2(C1∧F=nC1∧¬F<nC1)∧X3(C2∧F=nC2∧¬F<nC2),

ϕnotzero ··= X2(C1∧F=0C1)∧X3(C2∧F=nC2∧¬F<nC2).

If I j operates onC2, then define:

ϕI j
··=Zero∧X= j Instr →

[(F=0C2 → F=n(Zero∧
∨

Ik∈S1
j

X=k Instr)∧ϕzero)∧

(¬F=0C2 → F=n(Zero∧
∨

Im∈S2
j

X=mInstr)∧ϕ ′
notzero)],

4.5 SAT for other fragments of MTL and TPTL 69

where

ϕ ′
notzero

··= X2(C1∧F=nC1∧¬F<n C1)∧X3(C2∧F=0C2).

We define two formulasϕinfin andϕfin in the following:

ϕinfin ··=ϕinit∧ϕprop∧ϕI0 ∧ϕdat∧ϕcntdat∧GF(Zero∧X=0 Instr)∧

G(ϕprop∧ϕinstr∧ϕseq∧ϕdat∧ϕcntdat∧
∧

0≤ j<n

ϕI j),

and

ϕfin ··=ϕinit∧ϕprop∧ϕI0 ∧ϕdat∧ϕcntdat∧Fϕhalt∧

G(Fϕhalt → ϕprop∧ϕinstr∧ϕseq∧ϕdat∧ϕcntdat∧
∧

0≤ j<n

ϕI j).

It is easy to check thatϕinfin (respectively,ϕfin) is satisfiable if and only ifM has a recurring

computation (respectively, a halting computation).

We next show how to reduce the number of propositions to two. Let p,q be two proposi-

tions. We can replace the propositionsZero, Instr ,C1,C2 by ¬p∧¬q, p∧q, p∧¬q,¬p∧q

in the formulasϕinfin andϕfin, respectively, and remove the formulaϕprop. We can get two

new formulasϕ ′
infin andϕ ′

fin. Then, we replaceZero, Instr ,C1,C2 by /0,{p,q},{p},{q} in

the data word, respectively. It is easily seen thatϕ ′
infin andϕ ′

fin can also capture the recurring

computation and halting computation ofM over the new data word, respectively.

4.5.2 The satisfiability problem for existential TPTL

In this subsection, we consider the satisfiability problem of the existential fragment ofTPTL,

in which we only use theF andX modalities, and the negation operator (¬) is only applied

to atomic propositions and constraintsx ∼ c. This fragment has also been considered for

MTL andTPTL over monotonic timed words [18]. In this setting, SAT for both logics is

NP-complete. Here, we show that this applies also to the setting of non-monotonic data words.

Without explicit state, all data words in this subsection are finite.

Definition 8. The formulas of the existential fragment ofTPTL (extTPTL) is defined by the

following grammar:

ϕ ····=⊤ | ⊥ | p | ¬p | x∼ c | ¬x∼ c | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | Fϕ | x.ϕ

By a reduction from the propositional satisfiability problem, we see at once that SAT for

extTPTL is NP-hard. Actually, we can show that SAT for the fragment ofextTPTL with two

70 The satisfiability problems for MTL and TPTL

register variables and without any propositions is stillNP-hard. We use a reduction from the

subset sum problem, which is defined as:

Input: A sequencea1, . . . ,an,b∈ N of binary encoded numbers.

Output: yes if ∃{b1, . . . ,bm} ⊆ {a1, . . . ,an} such that∑m
i=1bi = b, no otherwise.

It is well known that the subset sum problem isNP-complete [77].

Proposition 12. For the pure fragment ofextTPTL2, SAT isNP-hard.

Proof. We prove the proposition by a reduction from the subset sum problem. Leta1, . . . ,an,b

ba an instance of this problem, we construct the formulax.y.Fϕ1, whereϕi (1 ≤ i ≤ n) is

defined inductively by

ϕi =







(x= 0∨x= ai)∧x.Fϕi+1 if 1 ≤ i < n,

(x= 0∨x= an)∧y= b if i = n.

If x.y.Fϕ1 is satisfiable, then there is a data wordw such thatw |= x.y.Fϕ1. We define a subset

Sof {a1, . . . ,an} such that for eachai (1≤ i ≤ n), ai is in S if and only if the constraintx= ai

holds when we evaluatex.y.Fϕ1 overw. By the constrainty = b we can see that the sum of

all numbers inS is b. Conversely, ifa1, . . . ,an,b is a positive instance, it is easy to construct a

data wordw such thatw |= x.y.Fϕ1.

Let ϕ be anextTPTL-formula. We define the setΓ(ϕ) for ϕ such that it contains exactly

all those formulas that can be obtained fromϕ by resolving the non-determinism induced by

the occurrences of the boolean operator∨. More precisely,Γ(ϕ) is defined inductively by the

following rules:

• Γ(ϕ) := {ϕ} if ϕ is⊤,⊥, p,¬p,x∼ c or¬x∼ c.

• Γ(ϕ1∧ϕ2) := {ψ1∧ψ2 | ψ1 ∈ Γ(ϕ1) andψ2 ∈ Γ(ϕ2)}.

• Γ(ϕ1∨ϕ2) := Γ(ϕ1)∪Γ(ϕ2).

• Γ(x.ϕ1) := {x.ψ1 | ψ1 ∈ Γ(ϕ1)}.

• Γ(Fϕ1) := {Fψ1 | ψ1 ∈ Γ(ϕ1)}.

• Γ(Xϕ1) := {Xψ1 |1 ψ ∈ Γ(ϕ1)}.

Let ||ϕ|| be the size ofϕ, i.e., the number of all symbols inϕ. It is easily seen thatΓ(ϕ) is a

finite set (maybe exponentially larger with respect to||ϕ||), and for each formulaψ in Γ(ϕ),
||ψ|| ≤ ||ϕ||.

4.5 SAT for other fragments of MTL and TPTL 71

Lemma 10. Let w be a data word. Then for everyextTPTL-formulaϕ, every position i in w

and every register valuationν,

(w, i,ν) |= ϕ if and only if(w, i,ν) |= ψ for someψ ∈ Γ(ϕ).

Proof. We prove the lemma by induction onϕ. It is easy for the cases thatϕ is ⊤,⊥, p,¬p,

x∼ c or¬x∼ c.

• If ϕ is ϕ1∧ϕ2, then(w, i,ν) |= ϕ1∧ϕ2 if and only if (w, i,ν) |= ϕ1 and(w, i,ν) |= ϕ2, by

induction hypothesis, if and only if(w, i,ν) |= ψ1 for someψ1 ∈ Γ(ϕ1) and(w, i,ν) |=
ψ2 for someψ2 ∈ Γ(ϕ2), if and only if (w, i,ν) |= ψ1∧ψ2 for someψ1 ∈ Γ(ϕ1) and

ψ2 ∈ Γ(ϕ2). By the definition ofΓ(ϕ1∧ϕ2), we know thatψ1∧ψ2 ∈ Γ(ϕ1∧ϕ2).

• If ϕ is ϕ1∨ϕ2, then(w, i,ν) |= ϕ1∨ϕ2 if and only if (w, i,ν) |= ϕ1 or (w, i,ν) |= ϕ2, by

induction hypothesis, if and only if(w, i,ν) |= ψ1 for someψ1 ∈ Γ(ϕ1) or (w, i,ν) |= ψ2

for someψ2 ∈ Γ(ϕ2). By the definition ofΓ(ϕ1∨ϕ2), we know thatψ1 andψ2 are in

Γ(ϕ1∨ϕ2).

• If ϕ is x.ϕ1, then (w, i,ν) |= x.ϕ1 if and only if (w, i,ν[x 7→ di]) |= ϕ1, by induction

hypothesis, if and only if(w, i,ν[x 7→ di]) |= ψ1 for someψ1 ∈ Γ(ϕ1), if and only if

(w, i,ν) |= x.ψ1 for someψ1 ∈ Γ(ϕ1). By the definition ofΓ(x.ϕ1), we know thatx.ψ1 ∈

Γ(x.ϕ1).

• If ϕ is Fϕ1, then (w, i,ν) |= Fϕ1 if and only if ∃ j > i such that(w, j,ν) |= ϕ1, by

induction hypothesis, if and only if∃ j > i such that(w, j,ν) |= ψ1 for someψ1 ∈ Γ(ϕ1),

if and only if (w, i,ν) |= Fψ1 for someψ1 ∈ Γ(ϕ1). By the definition ofΓ(Fϕ1), we

know thatFψ1 ∈ Γ(Fϕ1).

• If ϕ isXϕ1, then(w, i,ν) |=Xϕ1 if and only if (w, i+1,ν) |=ϕ1, by induction hypothesis,

if and only if (w, i +1,ν) |= ψ1 for someψ1 ∈ Γ(ϕ1), if and only if (w, i,ν) |= Xψ1 for

someψ1 ∈ Γ(ϕ1). By the definition ofΓ(Xϕ1), we know thatXψ1 ∈ Γ(Xϕ1).

By the definition ofΓ(ϕ), all formulas in it do not contain any occurrence of∨. We say

that anextTPTL-formula issimpleif it does not contain any occurrence of∨. Let ψ be a

simpleextTPTL-formula. We definesub(ψ) to be the multiset of all subformulas ofψ, where

two syntactically equally subformulas occurring in different positions inψ are considered as

different. Furthermore, letVal be the set of all register valuations.

72 The satisfiability problems for MTL and TPTL

Definition 9. Let w be a data word,i a position inw, let ν0 be a register valuation, and let

ψ be a simpleextTPTL-formula. A mappingθ : sub(ψ) 7→ ({0, . . . , |w|}×Val) is awitness

mappingfor (w, i,ν0) andψ, if it satisfies the following conditions:

(1) θ(ψ) = (i,ν0).

(2) If ψ1∧ψ2 ∈ sub(ψ) andθ(ψ1∧ψ2) = (j,ν), thenθ(ψ1) = (j,ν) andθ(ψ2) = (j,ν).

(3) If Fψ1 ∈ sub(ψ) andθ(Fψ1) = (j1,ν), thenθ(ψ1) = (j2,ν) for somej2 > j1.

(4) If Xψ1 ∈ sub(ψ) andθ(Xψ1) = (j,ν), thenθ(ψ1) = (j +1,ν).

(5) If x.ψ1 ∈ sub(ψ) andθ(x.ψ1) = (j,ν), thenθ(ψ1) = (j,ν[x 7→ d j]).

(6) If ψ1 ∈ sub(ψ), whereψ1 is⊤,⊥, p or¬p, andθ(ψ1) = (j,ν), then(w, j,ν) |= ψ1.

(7) If ψ1 ∈ sub(ψ), whereψ1 is x∼ c or¬x∼ c, andθ(ψ1) = (j,ν) then(w, j,ν) |= ψ1.

Intuitively, a witness mappingθ captures the satisfaction relation between the data wordw

and the formulaψ, i.e., if ψ1 ∈ sub(ψ) andθ(ψ1) = (j,ν), then(w, j,ν) |= ψ1. The witness

mappingθ ispreserved under subformulas, i.e., if ψ1 is a subformula ofψ andθ(ψ1)= (j,ν ′),

then the restriction ofθ to sub(ψ1) is also a witness mapping for(w, j,ν ′) andψ1.

Lemma 11. For every triple(w, i,ν0), where w is a data word, i is a position in w,ν0 is a

register valuation, and every simpleextTPTL-formula ψ, (w, i,ν0) |= ψ if and only if there

exists a witness mappingθ : sub(ψ) 7→ ({0, . . . , |w|}×Val) for (w, i,ν0) andψ.

Proof. If (w, i,ν0) |= ψ, then there exists a witness mappingθ , as is easy to check. Con-

versely, suppose that there exists a witness mappingθ for (w, i,ν0) andψ, we shall show that

(w, i,ν0) |= ψ. We now proceed by induction onψ. The proof is easy for the cases thatψ is

⊤,⊥, p,¬p,x∼ c or¬x∼ c.

• If ψ is ψ1∧ψ2, then(w, i,ν0) |= ψ1∧ψ2 if and only if (w, i,ν0) |=ψ1 and(w, i,ν0) |=ψ2.

By the conditions (1) and (2) above we haveθ(ψ1) = (i,ν0) andθ(ψ2) = (i,ν0). Note

thatθ is preserved under subformulas. Hence, by induction hypothesis, we can obtain

(w, i,ν0) |= ψ1 and(w, i,ν0) |= ψ2.

• If ψ is x.ψ1, then(w, i,ν0) |= x.ψ1 if and only if (w, i,ν0[x 7→ di]) |= ψ1. By the condi-

tions (1) and (5) above we haveθ(ψ1) = (i,ν0[x 7→ di]), and by induction hypothesis,

we can obtain(w, i,ν0[x 7→ di]) |= ψ1.

4.5 SAT for other fragments of MTL and TPTL 73

• If ψ is Fψ1, then(w, i,ν0) |= Fψ1 if and only if ∃ j > i such that(w, j,ν0) |= ψ1. By

the conditions (1) and (3) above we haveθ(ψ1) = (j,ν0) for some j > i, by induction

hypothesis, we can obtain(w, j,ν0) |= ψ1 for somej > i.

• If ψ is Xψ1, then(w, i,ν0) |= Xψ1 if and only if (w, i +1,ν0) |= ψ1. By the conditions

(1) and (4) above we haveθ(ψ1) = (i + 1,ν0), and by induction hypothesis, we can

obtain(w, i +1,ν0) |= ψ1.

In Theorem11 we show that if a positiveTPTL-formula is satisfiable, then it is satisfied

by a finite data word. In the following we show that for a simpleextTPTL-formulaψ, if ψ is

satisfiable, then it is satisfied by a data word whose length isbounded by||ψ||.

Lemma 12. Let ψ be a simpleextTPTL-formula. If ψ is satisfiable, then it is satisfied by a

data word u such that|u| ≤ ||ψ||.

Proof. Suppose thatψ is satisfiable, then there is a data wordw such thatw |= ψ. By

Lemma11, there is a witness mappingθ : sub(ψ) 7→ ({0, . . . , |w|}×Val) for (w,0, 0̄) and

ψ. Let π ··= i0, i1, . . . , in be a sequence of numbers such thati0 = 0, i j < i j+1(0≤ j < n), and

a numberi is in π if and only if there exist a formulaφ ∈ sub(ψ) and a valuationν such that

θ(φ)= (i,ν). Letwπ be the data word(Pi0,di0)(Pi1,di1) · · ·(Pin,din), where(Pi j ,di j)(0≤ j ≤n)

is the(i j)
th pair in w. By the definition ofθ , we see that the length|wπ | of wπ is less than or

equal to the size||ψ|| of ψ. If we show that(wπ ,0, 0̄) |= ψ, then the lemma follows. We prove

it by showing that a more general claim:

If φ ∈ sub(ψ) andθ(φ) = (i j ,ν), then(wπ , j,ν) |= φ .

We prove the claim in a bottom-up process: Suppose that it holds for all subformulas ofφ , we

show that it also holds forφ .

• If φ is p,¬p or x∼ c, by the definition ofθ , the claim holds forφ .

• If φ is ψ1 ∧ ψ2 and θ(ψ1 ∧ψ2) = (i j ,ν), then θ(ψ1) = (i j ,ν) and θ(ψ2) = (i j ,ν).
By induction, we have(wπ , j,ν) |= ψ1 and(wπ , j,ν) |= ψ2. This implies(wπ , j,ν) |=
ψ1∧ψ2.

• If φ is x.ψ1 andθ(x.ψ1) = (i j ,ν), thenθ(ψ1) = (i j ,ν[x 7→ di j]). By induction, we have

(wπ , j,ν[x 7→ di j]) |= ψ1. This implies(wπ , j,ν) |= x.ψ1.

74 The satisfiability problems for MTL and TPTL

• If φ is Fψ1 andθ(Fψ1) = (i j ,ν), thenθ(ψ1) = (i j ′,ν) for somei j ′ > i j . By induction,

we have(wπ , j ′,ν) |= ψ1. By the definition ofπ , we know thatj ′ > j. Hence, we have

(wπ , j,ν) |= Fψ1.

• If φ is Xψ1 and θ(Xψ1) = (i j ,ν), thenθ(ψ1) = (i j + 1,ν). By the definition ofπ
we can know thati j + 1 = i j+1. Hence,θ(ψ1) = (i j+1,ν). By induction, we have

(wπ , j +1,ν) |= ψ1. This implies(wπ , j,ν) |= Xψ1.

Corollary 7. Let ϕ be anextTPTL-formula. If ϕ is satisfiable, then it is satisfied by a data

word w such that|u| ≤ ||ϕ||.

Proof. If ϕ is satisfiable, then by Lemma10, there exists a simpleextTPTL-formulaψ ∈ Γ(ϕ)
such thatψ is also satisfiable. By Lemma12, there is a data wordu such thatu |= ψ and

|u| ≤ ||ψ||. By Lemma10 again, we haveu |= ϕ. Clearly,|u| ≤ ||ϕ||.

Theorem 16. For extTPTL, SAT isNP-complete.

Proof. The lower bound for this problem follows by Proposition12. For the upper bound, we

give two algorithms that can decide this problem inNP in the following.

Let ϕ be anextTPTL-formula, and letn = ||ϕ||. By Corollary7 we can know that ifϕ
is satisfiable, then it is satisfied by a data word whose lengthis bounded byn. We defineP

to be the set of all propositions occurring inϕ, and defineVal′ to be the set of all mappings

from {x1, . . . ,xk} to {d̃0, . . . , d̃n−1}, wherex1, . . . ,xk are all register variables occurring inϕ
andd̃0, . . . , d̃n−1 are auxiliary variables.

For technical reasons, we assume that all constraints inϕ are in positive form, i.e., the

negation operator (¬) can only be applied to atomic propositions. Note that we canreplace

every¬(x∼ c) by an equivalent constraint or a disjunction of two constraints, e.g,¬(x< a)≡

(x≥ a), ¬(x> a)≡ x≤ a and¬(x= a)≡ (x> a∨x< a).

Algorithm 1:

1. Guess a formulaψ in Γ(ϕ).

2. Guess a sequence of pairs(P0, d̃0)(P1, d̃1) . . .(Pn−1, d̃n−1), wherePi ⊆ P(0≤ i < n).

3. Guess a mappingθ : sub(ψ) 7→ ({0, . . . ,n−1}×Val′).

4.5 SAT for other fragments of MTL and TPTL 75

4. Check whetherθ satisfies the conditions (1) - (6) in Definition9 for the witness mapping,

reject if no.

5. Build a set of linear inequalitiesC such that ifx∼ c∈ sub(ψ) andθ(x ∼ c) = (i,ν ′),

whereν ′(x) = d̃ j , thend̃i − d̃ j ∼ c is in C .

6. Check whetherC has a solution onN, acceptif yes, otherwisereject.

In Step 1, guessing a formula inΓ(ϕ) can be done in polynomial time because it amounts

to select which disjunct to remove fromϕ1 ∨ ϕ2 for each subformulaϕ1 ∨ ϕ2 of ϕ. It is

easy to check that Steps 2 - 5 can be done in polynomial time. Finally, we need to show

that whetherC has a solution onN can be checked in polynomial time. The set of linear

inequalitiesC can be treated as a system of difference constraints (see Section 24.4 in [27]).

By Theorem 24.9 in [27], we can use the Bellman-Ford algorithm to check whether a system of

difference constraints has a feasible solution, and Bellman-Ford algorithm runs in polynomial

time. If the algorithm accepts, then it means that there is a data word that satisfiesψ. By

Lemma10, we know that this data word also satisfiesϕ.

LetC= max{|c| | x∼ c is a constraint inϕ}. By Proposition6 in Chapter3, we can know

that if ϕ is satisfiable, then it is satisfied by a data word whose data values are all bounded by

C · ||ϕ||. Using this fact we give another algorithm that computes thedata word directly ifϕ
is satisfiable. LetVal′′ be the set of all mappings from{x1, . . . ,xk} to {0, . . . ,C · ||ϕ||}.

Algorithm 2:

(1) Guess a formulaψ in Γ(ϕ).

(2) Guess a data wordw ··= (P0,d0)(P1,d1) . . .(Pn−1,dn−1), wherePi ⊆ P anddi ≤C · ||ϕ||
for each 0≤ i < n.

(3) Guess a mappingθ : sub(ψ) 7→ ({0, . . . ,n−1}×Val′′).

(4) Check whetherθ is a witness mapping for(w,0, 0̄) and ψ, acceptif yes, otherwise

reject.

If the algorithm accepts, then by Lemma11 we can know thatw |= ψ, and by Lemma10

we havew |= ϕ.

76 The satisfiability problems for MTL and TPTL

Define the existential fragment ofMTL (extMTL) to be the set ofMTL-formulas built by

following grammar:

ϕ ····=⊤ | ⊥ | p | ¬p | ϕ ∧ϕ | ϕ ∨ϕ | XI ϕ | FI ϕ

It is obvious that everyextMTL-formula is equivalent to anextTPTL-formula. So we can get

the following corollary.

Corollary 8. For extMTL, SAT isNP-complete.

Proof. The lower bound can be obtained by a reduction from the propositional satisfiability

problem. The upper bound follows from Theorem16.

4.6 Summary of satisfiability results

In this section, we give a summary of the computational complexity of satisfiability for dif-

ferent fragments ofMTL andTPTL in Table4.1. On finite data words, the satisfiability of

most fragments ofMTL andTPTL is Σ0
1-complete. On infinite data words, the satisfiability of

most fragments ofMTL andTPTL is Σ1
1-complete, whereas for the positive fragments is still

Σ0
1-complete. Additionally, for the unary fragments, the sameresults can also be obtained for

unaTPTL where only one register variable and theF modality are allowed, and forunaMTL

where at most two propositions are allowed. For the existential fragment ofMTL andTPTL,

satisfiability over both finite and infinite data words isNP-complete.

MTL pureMTL
unaMTL,
unaTPTL

posMTL,
posTPTL

extMTL,
extTPTL

fin
ite Σ0

1-complete Σ0
1-complete Σ0

1-complete Σ0
1-complete NP-complete

in
fin

ite

Σ1
1-complete Σ1

1-complete Σ1
1-complete Σ0

1-complete NP-complete

Table 4.1 Computational complexity of satisfiability

Chapter 5

The path checking problems for MTL and

TPTL

In this chapter, we study the complexity of path checking problems forMTL andTPTL over

data words. In Section5.1we prove several upper complexity bounds, and in Section5.2we

prove several lower complexity bounds. In Section5.4, we extend these results to deterministic

one-counter machines. For a logicL and a class of data wordsC, we consider thepath

checking problem forL overC:

Input: A data wordw∈ C and a formulaϕ ∈ L .

Output: yes if w |= ϕ, no otherwise.

Data words can be (i) finite or infinite, (ii) monotonic or non-monotonic, (iii) pure or non-

pure, and (iv) unary encoded or binary encoded. All infinite data words in this chapter are

of the formu1(u2)
ω
+k, whereu1,u2 are finite data words andk ∈ N, unless explicitly stated

otherwise. For complexity considerations, it makes a difference, whether the numbersc in

constraintsx∼ c are encoded in binary or unary notation, and similarly for the interval borders

in MTL. We writeTPTLr
u, TPTLu, andMTLu (respectively,TPTLr

b, TPTLb, andMTLb) if

we want to emphasize that numbers in constraints are encodedin unary (respectively, binary)

notation. All upper bounds that hold for a logicL where constraint numbers (or interval

borders) are encoded in binary notation also hold forL if constraint numbers (or interval

borders) are given in unary notation. Conversely, all lowerbounds that hold forL where

constraint numbers (or interval borders) are encoded in unary notation also hold forL if

constraint numbers (or interval borders) are given in binary notation.

78 The path checking problems for MTL and TPTL

5.1 The upper complexity bounds

In this section we prove our upper complexity bounds forTPTL, TPTLr andMTL. All upper

bounds that hold for infinite (respectively, binary encoded) data words also hold for finite

(respectively, unary encoded) data words.

5.1.1 Polynomial space upper bound for TPTL

For technical reasons, we define arelative semanticsfor TPTL in the following.

Definition 10. Let w be a data word andi ∈ N be a position inw, and letδ be a register

valuation. The relative satisfaction relation forTPTL, denoted by|=rel, is defined as follows:

• (w, i,δ) |=rel ⊤.

• (w, i,δ) |=rel p if and only if p∈ Pi.

• (w, i,δ) |=rel ¬ϕ if and only if (w, i,ν) 6|=rel ϕ.

• (w, i,δ) |=rel ϕ1∧ϕ2 if and only if (w, i,ν) |=rel ϕ1 and(w, i,ν) |=rel ϕ2.

• (w, i,δ) |=rel ϕ1Uϕ2 if and only if there is a positionj with i < j < |w| such that(w, j,δ +

(d j −di)) |=
rel ϕ2, and for all positionst with i < t < j, (w, t,δ +(dt −di)) |=

rel ϕ1.

• (w, i,δ) |=rel x∼ c if and only if δ (x) ∼ c.

• (w, i,δ) |=rel x.ϕ if and only if (w, i,δ [x 7→ 0]) |=rel ϕ.

We say that data wordw satisfies formulaϕ under the relative semantics, writtenw |=rel ϕ,

if (w,0, 0̃) |= ϕ, where0̃ denotes the valuation function that maps all register variables to 0.

We show below thatw |= ϕ if and only if w |=rel ϕ, which allows to work with the relative

semantics. Its main advantage is the following: InTPTL, a constraintx∼ c is true under a

valuationν in a position with data valued, if d−ν(x)∼ c holds. In contrast, under the relative

semantics, a constraintx∼ c is true under a valuationδ , if δ (x)∼ c holds.

Lemma 13. Let w be a data word and di be the data value in position i, and letδ , ν be two

valuations. Ifδ (x) = di − ν(x) for all register variables x, then for allTPTL-formulasϕ,

(w, i,ν) |= ϕ if and only if(w, i,δ) |=rel ϕ.

Proof. We prove this lemma by induction on the formulaϕ.

• If ϕ is ⊤ or a propositionp, then(w, i,ν) |= ϕ if and only if (w, i,δ) |=rel ϕ.

5.1 The upper complexity bounds 79

• If ϕ is¬ϕ1, then(w, i,ν) |=¬ϕ1 if and only if (w, i,ν) 6|=ϕ1 if and only if (w, i,δ) 6|=rel ϕ1

if and only if (w, i,δ) |=rel ¬ϕ1.

• If ϕ is ϕ1∧ϕ2, then(w, i,ν) |= ϕ1∧ϕ2 if and only if (w, i,ν) |= ϕ1 and(w, i,ν) |= ϕ2, if

and only if(w, i,δ) |=rel ϕ1 and(w, i,δ) |=rel ϕ2 if and only if (w, i,δ) |=rel ϕ1∧ϕ2.

• If ϕ = x∼ c, then(w, i,ν) |= x∼ c if and only if di −ν(x) ∼ c. Sinceδ (x) = di −ν(x),
the latter holds if and only ifδ (x) ∼ c, if and only if (w, i,δ) |=rel x∼ c.

• If ϕ = x.ϕ1, then(w, i,ν) |= x.ϕ1 if and only if (w, i,ν[x 7→ di]) |= ϕ1. Sincedi −ν[x 7→
di](x) = 0, δ [x 7→ 0](x) = 0, andδ [x 7→ 0](y) = di −ν[x 7→ di](y) for all y 6= x. By induc-

tion hypothesis, the latter holds if and only if(w, i,δ [x 7→ 0]) |=rel ϕ1, i.e.,(w, i,δ) |=rel

x.ϕ1.

• If ϕ = ϕ1Uϕ2, then(w, i,ν) |= ϕ1Uϕ2 if and only if there is a positionj with i < j <

|w| such that(w, j,ν) |= ϕ2 and (w, t,ν) |= ϕ1 for all positionst with i < t < j. By

induction hypothesis, this holds if and only if there is a position j with i < j < |w| such

that(w, j,δ +(d j −di)) |=
rel ϕ2 and(w, t,δ +(dt −di)) |=

rel ϕ1 for all positionst with

i < t < j. This is equivalent to(w, i,δ) |=rel ϕ1Uϕ2.

Corollary 9. For all data words w and allTPTL-formulasϕ, we have w|= ϕ if and only if

w |=rel ϕ.

Lemma 14. Let w be a data word, and let k∈ N. Then for all register valuationsν, all

TPTL-formulasϕ and all positions i in w,(w, i,ν) |= ϕ if and only if(w+k, i,ν +k) |= ϕ.

Proof. Given an arbitraryTPTL-formulaϕ, supposeϕ ∈TPTLr,S, wherer ∈N andS⊆Z is a

finite set. By Lemma6 in Chapter3, we have(w, i,ν)≡r,S
n (w+k, i,ν+k) for every valuationν,

everyi ∈ N and everyn∈ N. This implies(w, i,ν) |= ϕ if and only if (w+k, i,ν +k) |= ϕ.

For the next two lemmas, we always assume thatu1 andu2 are finite data words,k ≥ 0,

w := u1(u2)
ω
+k, i ≥ |u1|, andφ is aTPTL-formula.

Lemma 15. For all register valuationsδ , (w, i,δ) |=rel φ if and only if(w, i + |u2|,δ) |=rel φ .

Proof. Let δ be a register valuation. Define two register valuationsν,ν ′ by ν(x) = di −δ (x)
andν ′(x) = ν(x)+k for every register variablex. By Lemma13, we have(w, i,δ) |=rel φ if

and only if (w, i,ν) |= φ , and(w, i + |u2|,δ) |=rel φ if and only if (w, i + |u2|,ν ′) |= φ , since

ν ′(x) = ν(x) + k = di − δ (x) + k = di+|u2| − δ (x). We prove that(w, i,ν) |= φ if and only

80 The path checking problems for MTL and TPTL

if (w, i + |u2|,ν ′) |= φ ; the lemma then follows. By Lemma14, (w, i,ν) |= φ if and only if

(w+k, i,ν +k) |= φ . Sincei ≥ |u1|, we havew+k[i :] = w[(i + |u2|) :]. So the latter holds if and

only if (w, i + |u2|,ν ′) |= φ .

For aTPTL-formulaφ and a finite data wordv we define:

Cφ = max{c∈ Z | x∼ c is a constraint inφ} (5.1)

Mv = max{di −d j | di andd j are data values inv} ≥ 0 (5.2)

We may always assume thatCφ ≥ 0 (we can add a dummy constraintx≥ 0). Note that in the

infinite data wordvω
+k, for all positionsj ≥ i we haved j −di +Mv ≥ 0 (where as usualdl is

the data value in positionl).

Lemma 16. Let δ be a register valuation and define the register valuationδ ′ by δ ′(x) =

min{δ (x),Cφ +Mu2 +1} for all x. For every subformulaθ of φ , we have(w, i,δ) |=rel θ if and

only if (w, i,δ ′) |=rel θ .

Proof. Define two register valuationsν,ν ′ by ν(x) = di − δ (x) and ν ′(x) = di − δ ′(x) for

every register variablex. Let j ≥ i. For every constraintx∼ c in φ , by Lemma13, we have

(w, j,ν) |= x∼ c if and only if (w, j,d j −di +δ) |=rel x∼ c if and only if (d j −di +δ)∼ c, and

(w, j,ν ′) |= x∼ c if and only if (w, j,d j −di +δ ′) |=rel x∼ c if and only if (d j −di +δ ′)∼ c.

We prove that(w, j,ν) |= x ∼ c if and only if (w, j,ν ′) |= x ∼ c, then by Lemma6, this

lemma follows. Ifδ (x) ≤Cφ +Mu2 +1, thenδ ′(x) = δ (x). So assumeδ (x) >Cφ +Mu2 +1,

and henceδ ′(x) =Cφ +Mu2 +1. Thend j −di +δ (x) > d j −di +Cφ +Mu2 +1≥Cφ +1 and

d j −di +δ ′(x) = d j −di +Cφ +Mu2 +1≥Cφ +1. This implies(d j −di +δ) ∼ c if and only

if (d j −di +δ ′)∼ c sincec≤Cφ .

We can now prove aPSPACE upper bound for our most general path checking problem:

path checking forTPTLb over infinite binary encoded data words.

Theorem 17.Path checking forTPTLb over infinite binary encoded data words is inPSPACE.

Proof. Fix two finite data wordsu1,u2, a numberk ∈ N and aTPTL-formula ψ, and let

w= u1(u2)
ω
+k. We show that one can decide inAPTIME (= PSPACE) whetherw |= ψ holds.

We first deal with the casek > 0 and later sketch the necessary adaptations for the (simpler)

casek = 0. Without loss of generality, we further assumeψ to be in negation normal form,

i.e., negations only appear in front of atomic propositions. Recall that we defineϕ1Rϕ2 ··=

¬(¬ϕ1U¬ϕ2). So we can use the release operatorR to translate aTPTL-formula into negation

normal form. DefineC :=Cψ andM := Mu2 by (5.1) and (5.2).

5.1 The upper complexity bounds 81

The non-trivial cases in our alternating polynomial time algorithm are the ones for the

formulas of formϕ1Uϕ2 andϕ1Rϕ2. Consider a positioni and a register valuationδ . We have

(w, i,δ) |=rel ϕ1Uϕ2 if and only if there existsj > i such that(w, j,δ +d j −di) |=
rel ϕ2 and for

all i < t < j, (w, t,δ +dt −di) |=
rel ϕ1. Becausew is an infinite word,j could be arbitrarily

large. Our first goal is to derive a bound onj. Suppose that 0≤ i ≤ |u1|+ |u2|−1; this is no

restriction by Lemma15. Define

mδ = min{δ (x) | x is a register variable inψ}, (5.3)

m1 = max{di −d j | di andd j are data values inu1u2} and (5.4)

m2 = min{d | d is a data value inu2}. (5.5)

Let n≥ 2 be the minimal number such thatmδ +m2+(n−1)k−di ≥ C+M+1, i.e. (here

we assumek> 0),

n= max{2,

⌈
C+M+1+di −mδ −m2

k

⌉

+1}. (5.6)

Let h≥ |u1|+(n−1)|u2|, then for every register variablex from ψ we have

δ (x)+dh−di ≥ mδ +dh−di ≥ mδ +m2+(n−1)k−di ≥C+M+1.

By Lemmas15 and16, for everyh≥ |u1|+(n−1)|u2| we have

(w,h,δ +dh−di) |=
rel ϕ2 ⇔ (w,h+ |u2|,δ +dh+|u2|−di) |=

rel ϕ2.

Therefore, the positionj witnessing(w, j,δ +d j −di) |=
rel ϕ2 can be bounded by|u1|+n|u2|.

Similarly, we can get the same result forϕ1Rϕ2.

We sketch an alternating Turing machineTM that, given aTPTLb-formulaψ and a data

word w, has an accepting run if and only ifw |= ψ. The machineTM first computes and

stores the valueC+M +1. In every configuration,TM stores a triple(i,δ ,ϕ), wherei is a

position in the data word,δ is a register valuation (with respect to the relative semantics), and

ϕ is a subformula ofψ. By Lemma15, we can restricti to the interval[0, |u1|+ |u2| − 1],

and by Lemma16, we can restrict the range ofδ to the interval[−m1,max{m1,C+M+1}].

The machineTM starts with the triple(0, 0̃,ψ), where0̃(x) = 0 for each register variablex.

Then,TM branches according to the following rules, where we define the functionρ : N →

[0, |u1|+ |u2|−1] by

82 The path checking problems for MTL and TPTL

ρ(z) =







z if z< |u1|,

((z−|u1|)mod|u2|)+ |u1| otherwise.

If ϕ is of the form⊤, ⊥, p, ¬p, or x∼ c, then accept if(w, i,δ) |=rel ϕ, and reject otherwise.

If ϕ = ϕ1∧ϕ2, then branch universally to(i,δ ,ϕ1) and(i,δ ,ϕ2).

If ϕ = ϕ1∨ϕ2, then branch existentially to(i,δ ,ϕ1) and(i,δ ,ϕ2).

If ϕ = x.ϕ1, then go to(i,δ [x 7→ 0],ϕ1).

If ϕ = ϕ1Uϕ2, then first compute the valuen according to (5.3), (5.5), and (5.6), and then

branch existentially to each valuej ∈ [i + 1, |u1|+ n|u2|], and finally branch universally to

each triple from{(ρ(t),δt,ϕ1) | i < t < j}∪{(ρ(j),δ j ,ϕ2)}, where for all register variablesx

in ψ:

δ j(x) =







min{δ (x)+d j −di ,C+M+1} if j ≥ |u1|,

δ (x)+d j −di otherwise,

δt(x) =







min{δ (x)+dt −di ,C+M+1} if t ≥ |u1|,

δ (x)+dt −di otherwise.

If ϕ = ϕ1Rϕ2, then first compute the valuen according to (5.3), (5.5), and (5.6) and then

branch existentially to the following two alternatives:

• Branch universally to all triples from{(ρ(j),δ j ,ϕ2) | i < j ≤ |u1|+n|u2|}, where

δ j(x) =







min{δ (x)+d j −di ,C+M+1} if j ≥ |u1|,

δ (x)+d j −di otherwise.

• Branch existentially to each valuej ∈ [i +1, |u1|+n|u2|], and then branch universally

to all triples from{(ρ(t),δt,ϕ2) | i < t ≤ j} ∪ {(ρ(j),δ j ,ϕ1)}, where for all register

variablesx in ψ:

δ j(x) =







min{δ (x)+d j −di ,C+M+1} if j ≥ |u1|,

δ (x)+d j −di otherwise,

δt(x) =







min{δ (x)+dt −di ,C+M+1} if t ≥ |u1|,

δ (x)+dt −di otherwise.

5.1 The upper complexity bounds 83

The machineTM clearly works in polynomial time.

Let us briefly discuss the necessary changes for the casek = 0 (i.e.,w = u1(u2)
ω). The

main difficulty in the above algorithm is to find the upper bound of the witnessing position

j for the formulasϕ1Uϕ2 andϕ1Rϕ2. If k = 0, then it is easily seen that for all positions

i ≥ |u1|, formulasϕ and valuationsν, (w, i,ν) |= ϕ if and only if (w, i + |u2|,ν) |= ϕ. We see

at once that the witnessing positionj can be bounded by|u1|+2|u2|. It is straightforward to

implement the necessary changes in the above algorithm.

It is easy to adapt the proof in the above theorem to finite datawords. We have the follow-

ing theorem.

Theorem 18. Path checking forTPTLb over finite data words is inPSPACE.

5.1.2 Polynomial time upper bound for TPTLr

In this subsection, we consider the complexity of path checking for the logicTPTLr (r ∈ N),

which is a fragment ofTPTL where the number of register variables is bounded byr.

In Theorem17, we show that path checking forTPTLb over infinite binary encoded data

words is inPSPACE. ForTPTLr , if all input numbers are encoded in unary notation, then we

can show that the path checking problem is inP.

Theorem 19. For every fixed r∈ N, path checking forTPTLr
u over infinite unary encoded

data words is inP.

Proof. In the algorithm from the proof of Theorem17, if all numbers are given in unary,

then the numbersC+M + 1, m1, m2 andn can be computed in logarithmic space and are

bounded polynomially in the input size. Moreover, a configuration triple(i,δ ,ϕ) needs only

logarithmic space: Clearly, the positioni ∈ [0, |u1|+ |u2|−1] and the subformulaϕ only need

logarithmic space. The valuationδ is anr-tuple over[−m1,max{m1,C+M+1}] and hence

needs logarithmic space too, sincer is a constant. Hence, the alternating machine from the

proof of Theorem17works in logarithmic space. The theorem follows, sinceALOGSPACE=

P.

Later (see Theorem31), we will see that path checking forTPTL2
u over infinite binary

encoded data words isPSPACE-complete. Hence, we cannot (unlessP = PSPACE) extend

Theorem19 to infinite binary encoded data words. But if we consider infinite binary encoded

monotonic data words, then we can do so. Actually, a condition slightly weaker than mono-

tonicity suffices. We define quasi-monotonic data words in the following. Recall that we use

min(u) and max(u) to denote the minimal data value and the maximal data value inthe data

word u, respectively.

84 The path checking problems for MTL and TPTL

Definition 11. Let u1 andu2 be two finite data words, and letk ∈ N. The infinite data word

u1(u2)
ω
+k is quasi-monotonic if max(u1)≤ max(u2)≤ min(u2)+k.

Note that ifu1(u2)
ω
+k is monotonic, thenu1(u2)

ω
+k is also quasi-monotonic.

Theorem 20. For every fixed r∈ N, path checking forTPTLr
u over infinite binary encoded

quasi-monotonic data words is inP.

Proof. Let ψ be aTPTLr
u-formula,k∈ N, andu1,u2 two finite data words such thatu1(u2)

ω
+k

is quasi-monotonic. We construct in polynomial time two unary encoded finite data words

v1,v2 and a numberl ∈ N encoded in unary notation such thatu1(u2)
ω
+k |= ψ if and only if

v1(v2)
ω
+l |= ψ. Then we can apply Theorem19.

DefineS= {c | x∼ c is a constraint inψ} andC=max{|c| | c∈S}. Suppose that|u1u2|=

n. Let a1, . . . ,an be an enumeration of all data values inu1u2 such thata j ≤ a j+1 for all

1 ≤ j < n. For each 1< i ≤ n, defineδi = di − di−1. We define a new sequenceb1, . . . ,bn

inductively as follows:b1 = 0 and for all 1< i ≤ n,

bi =







bi−1+δi if δi ≤C,

bi−1+C+1 if δi >C.

We obtain the new data wordsv1 and v2 by replacing inu1 and u2 every data valueai by

bi (1 ≤ i ≤ n). Note thatbn ≤ (C+1) · (n−1). SinceC is given in unary notation, we can

compute in polynomial time the unary encodings of the numbersb1, . . . ,bn.

To define the numberl , note thatδ = min(u2)+k−max(u2) is the difference between the

smallest data value in(u2)+k and the largest data value inu2 (which is also the largest data

value ofu1u2). Sinceu1(u2)
ω
+k is quasi-monotonic, we haveδ ≥ 0. We define the numberl as

l =







max(v2)−min(v2)+δ if δ ≤C,

max(v2)−min(v2)+C+1 if δ >C.

Again, the unary encoding ofl can be computed in polynomial time. Letdi (respectively,d′
i)

be the data value in theith position ofu1(u2)
ω
+k (respectively,v1(v2)

ω
+l). Similar to the proof of

Proposition6 in Chapter3, we haved j2−d j1
S
≡d′

j2
−d′

j1
for any j1, j2 such that 0≤ j1< j2. By

Lemma6, this implies thatu1(u2)
ω
+k |= ψ if and only if v1(v2)

ω
+l |= ψ. Applying Theorem19,

we can check whetherv1(v2)
ω
+l |= ψ holds in polynomial time.

For finite data words, we obtain a polynomial time algorithm also for binary encoded non-

monotonic data words (assuming again a fixed number of register variables):

5.1 The upper complexity bounds 85

Theorem 21.For every fixed r∈N, path checking forTPTLr
b over finite binary encoded data

words is inP.

Proof. Let the input data wordw be of lengthn and letd1, . . . ,dn be the data values appearing

in w. Moreover, letx1, . . . ,xr be the register variables appearing in the input formulaψ. Then,

we only have to consider thenr many valuation mappingsδ : {x1, . . . ,xr}→ {d1, . . . ,dn}. For

each of these mappingsδ , every subformulaϕ of ψ, and every positioni in w we check

whether(w, i,δ) |= ϕ. This information is computed bottom-up (with respect to the structure

of ψ) in the usual way.

For infinite data words, we have to reduce the number of register variables to one in order

to get a polynomial time complexity for binary encoded non-monotonic data words. First we

prove several lemmas in the following.

Let ϕ be aTPTL-formula. We say that a register variablex occurs free inϕ if there exists

a occurrence ofx in ϕ is not within the scope of the corresponding freeze quantifier. A TPTL-

formulaϕ is closedif there are no free register variables inϕ. We show that when checking

the satisfiability of a formula over a data word only the values for free register variables matter

in the following.

Lemma 17. Let w be a data word and i be a position in w. For allTPTL-formulasϕ and

register valuationsν1 andν2, if ν1(x) = ν2(x) for every register variable x that occurs free in

ϕ, then(w, i,ν1) |= ϕ if and only if(w, i,ν2) |= ϕ.

Proof. We prove this lemma by induction onϕ. The proof for the cases thatϕ is⊤, p, ¬ϕ1 or

ϕ1∧ϕ2 is easy. We only give the proof for the other cases.

• If ϕ is x∼ c, then(w, i,ν1) |= x∼ c if and only if di −ν1(x)∼ c. Sinceν1 andν2 coincide

on free register variables inϕ, the latter holds if and only ifdi −ν2(x)∼ c if and only if

(w, i,ν2) |= x∼ c.

• If ϕ is x.ϕ1, then(w, i,ν1) |= x.ϕ1 if and only if (w, i,ν1[x 7→ di]) |= ϕ1. Note thatν1[x 7→

di] andν2[x 7→ di] again satisfy the premise of the lemma, by induction hypothesis, the

latter holds if and only if(w, i,ν2[x 7→ di]) |= ϕ1 if and only if (w, i,ν2) |= x.ϕ1.

• If ϕ is ϕ1Uϕ2, then(w, i,ν1) |= ϕ1Uϕ2 if and only if there is a positionj with i < j <

|w| such that(w, j,ν1) |= ϕ2, and(w, t,ν1) |= ϕ1 for all positionst with i < t < j. By

induction hypothesis this holds, if and only if there is a position j with i < j < |w|

such that(w, j,ν2) |= ϕ2, and(w, t,ν2) |= ϕ1 for all positionst with i < t < j. This is

equivalent to(w, i,ν2) |= ϕ1Uϕ2.

86 The path checking problems for MTL and TPTL

Corollary 10. Let w be a data word and i be a position in w, and letϕ be a closedTPTL-

formula. Then for all register valuationsν1 andν2, (w, i,ν1) |= ϕ if and only if(w, i,ν2) |= ϕ.

Lemma 18. The following problem belongs toP (in fact, toAC1(LogDCFL)):

Input: An LTL-formula ψ, finite words u1,u2, . . . ,ul ,ul+1 and numbers N1, . . . ,Nl ∈ N that

are encoded in binary notation.

Question: Does uN1
1 uN2

2 · · ·uNl
l uω

l+1 |= ψ hold?

Proof. The crucial point is that for all finite wordsu,v, every infinite wordw and every number

N ≥ ||ψ|| where||ψ|| is the number of all symbols inψ, we haveuvNw |= ψ if and only if

uv||ψ||w |= ψ. This can be shown by using the Ehrenfeucht-Fraïssé game forLTL from [37].

It is similar to the EF-game forMTL where we do not need to consider the data values. Let

us briefly explain this game. Letw0,w1 be two infinite words. A game configuration is a pair

of positions(i0, i1) ∈ N×N, wherei0 is a position inw0 andi1 is a position inw1. The game

is played by two players: Spoiler and Duplicator. In each round, Spoiler chooses an index

a∈ {0,1} and a positionja > ia. Then Duplicator has to respond with a positionj1−a > i1−a.

Then Spoiler chooses between one of the following two options:

• The new configuration becomes(j0, j1).

• Spoiler chooses a positioni1−a < j ′1−a < j1−a, then Duplicator has to respond with a

positionia < j ′a < ja, and the new configuration becomes(j ′0, j ′1).

Duplicator wins the 0-round EF-game from configuration(i0, i1) if w0[i0] = w1[i1]. Duplicator

wins the(k+1)-round EF-game (k ≥ 0) from configuration(i0, i1) if w0[i0] = w1[i1], and for

every choice of moves of Spoiler in the first round, Duplicator wins thek-round EF-game from

the successor configuration(j0, j1) (or (j ′0, j ′1)). It was shown in [37] that Duplicator wins the

k-round EF-game from position(0,0) if and only if for everyLTL-formulaϕ whose until rank

is at mostk, we havew0 |= ϕ if and only if w1 |= ϕ.

Now assume thatw0 = uvm0w andw1 = uvm1w, wherem0,m1 ≥ k, andu,v are finite words,

andw is an infinite word. It is then obvious that Duplicator can winthe k-round EF-game

starting from position(0,0). The point is that Duplicator can enforce that after the firstround

the new configuration(i0, i1) satisfies one of the following two conditions:

• w0[i0 :] = w1[i1 :], which implies that Duplicator can win for every number of rounds

starting from(i0, i1).

5.1 The upper complexity bounds 87

• w0[i0 :] (respectively,w1[i1 :]) has the formu′vn0w (respectively,u′vn1w), wheren0,n1 ≥

k−1. Hence, by induction Duplicator can win the(k−1)-round EF-game from config-

uration(i0, i1).

Hence,uvm0w anduvm1w satisfy the sameLTL-formulas whose until rank is at mostk. It

follows that two infinite wordsum1
1 um2

2 · · ·uml
l uω

l+1 andun1
1 un2

2 · · ·unl
l uω

l+1 satisfy the sameLTL-

formulas whose until rank is at mostk if all mi ,ni (1≤ i ≤ l) are at leastk.

Now, the proof of the lemma is obvious. We can replace the binary encoded exponentsNi

in the worduN1
1 uN2

2 · · ·uNl
l uω

l+1 by numbersN′
i = min{Ni, ||ψ||}(1≤ i ≤ l). By Theorem 3.6 of

[59], infinite path checking forLTL can be reduced to finite path checking forLTL. And finite

path checking forLTL is inAC1(LogDCFL) [55]. So checking whetherun1
1 un2

2 · · ·unl
l uω

l+1 |= ψ
is in AC1(LogDCFL).

Remark4. One can generalize Lemma18 to so called exponential expressions of constant

exponentiation depth. LetP be a finite set of atomic propositions. Exponential expressions

are inductively defined as follows:

• EveryP⊆ P is an exponential expression.

• If e1 ande2 are exponential expressions, thene1 ·e2 is an exponential expression.

• If e is an exponential expression andn≥ 1, thenen is an exponential expression.

In the last point,en has to be viewed as a formal expression, encoded for instanceby the pair

(e,n). The numbern is assumed to be binary encoded. The length of an exponentialexpression

is defined inductively by (i)|P| = 1, (ii) |e1 ·e2| = |e1|+ |e2|, and (iii) |en| = |e|+ ⌈log2n⌉.

The exponentiation depthd(e) of e is defined inductively by (i)d(P) = 0, (ii) d(e1 · e2) =

max{d(e1),d(e2)}, and (iii) d(en) = d(e)+1. Every exponential expression produces a word

val(e) in the obvious way. The length of this word can be exponentialin the length ofe.

The exponential expressions appearing in Lemma18 have exponentiation depth 1. But

the proof works for exponential expressions of exponentiation depth at mostd for every fixed

constantd. Hence, path checking forLTL is in AC1(LogDCFL) if the input word is given

by an exponential expression of bounded exponentiation depth. This is interesting since by

Theorem 5.1 of [59] it was shown that path checking forLTL becomesPSPACE-complete

if the input word is represented by a straight-line context-free grammar, i.e., a context-free

grammar that produces exactly one string. Every exponential expression can be converted

in logarithmic space into an equivalent straight-line context-free grammar. This leaves the

question whether path checking forLTL is belowPSPACE if the input word is given by an

exponential expressions of unbounded exponentiation depth.

88 The path checking problems for MTL and TPTL

Lemma 19. The following problem belongs toP (in fact, toAC1(LogDCFL)):

Input: A TPTLb-formula ψ, which only contains free register variables, and an infinite bi-

nary encoded data word u1(u2)
ω
+k.

Question: Does u1(u2)
ω
+k |= ψ hold?

Proof. Let w = u1(u2)
ω
+k. We reduce the question, whetherw |= ψ in logarithmic space to

an instance of the succinctLTL path checking problem from Lemma18. Let n1 = |u1| and

n2 = |u2|. We can assume that only one register variablex appears inψ (since we do not use

the freeze quantifier inψ all register variables remain at the initial valued0).

In order to construct anLTL-formula fromψ, it remains to eliminate occurrences of con-

straintsx∼ c in ψ. We can assume that all constraints are of the formx< c or x> c. Let x∼1

c1, . . . ,x∼m cm be a list of all constraints that appear inψ. We introduce for every 1≤ j ≤ m

a new atomic propositionp j and letP′ = P∪{p1, . . . , pm}, whereP is the set of atomic propo-

sitions occurring inψ. Let ψ ′ be obtained fromψ by replacing every occurrence ofx∼ j c j by

p j , and letw′ ∈ (2P′
)ω be the infinite word such thatw′[i] = Pi ∪{p j | 1≤ j ≤ m,di−d0 ∼ j c j}.

Clearly w |= ψ if and only if w′ |= ψ ′. We will show that the wordw′ can be written in the

form considered in Lemma18.

First of all, we can writew′ asw′ = u′1u′2,0u′2,1u′2,2 · · · , where|u′1|= n1 and|u′2,z|= n2. The

word u′1 can be computed in logarithmic space by evaluating all constraints in all positions of

u1. Moreover, every wordu′2,z is obtained fromu2 (without the data values) by adding the new

propositionsp j at the appropriate positions. Consider the equivalence relation≡ onN such

thata≡b if and only if u′2,a= u′2,b. The crucial observations are that (i) every equivalence class

of ≡ is an interval (let us call these intervals≡-intervals), and (ii) the index of≡ is bounded

by 1+ n2 ·m (one plus length ofu2 times number of constraints). To see this, consider a

position 0≤ i ≤ n2−1 in the wordu2 and a constraintx∼ j c j (1 ≤ j ≤ m). Then, the truth

value of “propositionp j is present at theith position ofu′2,z” switches (fromtrue to false or

from false to true) at most once whenz grows. The reason for this is that the data value in

positionn1+ i +n2 · z is dn1+i+n2·z = dn1+i +k · z for z≥ 0, i.e., it grows monotonically with

z. Hence, the truth value ofdn1+i +k · z−d0 ∼ j c j switches at most once, whenz grows. So,

we get at mostn2 ·m many “switching points” inN which produce at most 1+n2 ·m many

intervals.

Let I1, . . . , Il be a list of all≡-intervals, wherea < b whenevera ∈ Ii , b ∈ I j and i < j

(note thatIl must be infinite). The borders of these intervals can be computed in logarithmic

space using basic arithmetic on binary encoded numbers. Recall that all arithmetical opera-

tions (addition, subtraction, multiplication and division with remainder) can be carried out in

logarithmic space on binary encoded numbers [46]. Hence, we can compute in logarithmic

5.1 The upper complexity bounds 89

space the sizeNi = |Ii| of the ith interval, whereNl = ω. Also, for every 1≤ i ≤ l we can

compute in logarithmic space the unique wordvi such thatvi = u′2,a for all a∈ Ii . Finally, we

havew′ = u′1vN1
1 · · ·vNl

l . We are now in the position to apply Lemma18.

We now come to the path checking forTPTL1 over infinite data words.

Theorem 22. Path checking forTPTL1
b over infinite binary encoded data words is inP.

Proof. Given aTPTL1
b-formula ψ, finite binary encoded data wordsu1,u2, and binary en-

coded numberk ∈ N. Let w = u1(u2)
ω
+k. We give two proofs to show that how to check

in polynomial time whetherw |= ψ holds in the following. The first one (# 1) is based on

Lemmas17, 18 and19. The second one (# 2) is an algorithm-based proof which decides this

problem directly.

1: For a closed formulaϕ, by Corollary10, we can write(w, i) |= ϕ for (w, i,ν) |= ϕ,

whereν is an arbitrary register valuation. By Lemma14, we can get the following claim:

Claim 1: If ϕ is closed andi ≥ |u1|, then(w, i) |= ϕ if and only if (w, i + |u2|) |= ϕ.

Let n= |u1|+ |u2|. It suffices to compute for every (necessarily closed) subformulax.ϕ of

ψ the set of all positionsi ∈ [0,n−1] such that(w, i) |= x.ϕ, or equivalentlyw[i :] |= ϕ. We do

this in a bottom-up process. Consider a subformulax.ϕ of ψ and a positioni ∈ [0,n−1]. We

have to check whetherw[i :] |= ϕ. Let x.ϕ1, . . . ,x.ϕl be a list of all subformulas ofϕ that are

not in the scope of another freeze quantifier withinϕ. We can assume that for every 1≤ s≤ l

we have already determined the set of positionsj ∈ [0,n−1] such that(w, j) |= x.ϕs. We can

therefore replace every subformulax.ϕs of ϕ by a new atomic propositionps and add in the

data wordsu1 (respectively,u2) the propositionps to all positionsj1 (respectively,j2) such that

(w, j1) |= x.ϕs (respectively,(w, |u1|+ j2) |= x.ϕs), wherej1 ∈ [0, |u1|−1] and j2 ∈ [0, |u2|−1].

Here, we make use of Claim 1. We denote the resulting formula and the resulting data word

with ϕ ′ andw′ = u′1(u
′
2)

ω
+k, respectively. Next, it is easy to compute fromu′1 andu′2 new

finite data wordsv1 andv2 such thatv1(v2)
ω
+k = w′[i :]: If i < |u′1| then we takev1 = u′1[i :] and

v2 = u′2; If |u′1| ≤ i ≤ n−1, then we takev1 = u′2[i :] andv2 = (u′2)+k. Finally, using Lemma19

we can check in polynomial time whetherw′[i :] |= ϕ ′ holds. The first proof is complete.

2: Let ν be a register valuation, and letϕ be aTPTL1-formula. We define a tuple of

setsSϕ,ν = (S0,S1, . . . ,S|u2|) whereS0 ⊆ {0, . . . , |u1|−1} andSh ⊆ N(1≤ h≤ |u2|), such that

for all 0≤ i < |u1|, i ∈ S0 if and only if (w, i,ν) |= ϕ, and for each 1≤ h≤ |u2| and all j ≥ 0,

j ∈ Sh if and only if (w, |u1|+ j · |u2|+h−1,ν) |= ϕ, i.e.,Sh contains all the numbersj such

thatϕ holds in thehth position of thej th repetition ofu2 in w. We useSh
ϕ,ν to denote thehth

90 The path checking problems for MTL and TPTL

(0≤ h≤ |u2|) componentSh of Sϕ,ν . If ϕ is a closed formula, then by Corollary10, we can

skip the subscriptν and writeSϕ (respectively,Sh
ϕ) for Sϕ,ν (respectively,Sh

ϕ,ν).

For every 0≤ i < |u1u2|, let νi denote the register valuation withνi(x) = di (we only

need to consider the valuation for the register variablex here). We will compute for every

0≤ i < |u1u2| and every subformulaϕ of ψ the tupleSϕ,νi . Every setSh
ϕ,νi

will be represented

by a union of polynomially many intervals that are pairwise disjoint, each of which is either a

closed interval[a,b] or a half closed interval[a,+∞), wherea,b∈ N. Note thatw |= ψ if and

only if 0 ∈ S0
ψ,ν0

(we assume without loss of generality thatu1 is not the empty word).

For a setS⊆N, letS−1= {a−1 |a≥1,a∈S}. We compute the tuplesSϕ,νi (0≤ i < |u1u2|)

bottom-up with respect to the structure of the formulaϕ as follows:

Case 1.ϕ is⊤. ThenS0
ϕ = {0, . . . , |u1|−1}, andSh

ϕ = N for 1≤ h≤ |u2|.

Case 2.ϕ is an atomic propositionp. For each 0≤ s< |u1|, s∈ S0
ϕ if and only if p ∈ u1[s].

For each 1≤ h≤ |u2|, Sh
ϕ is eitherN if p∈ u2[h−1]or /0 otherwise.

Case 3. ϕ is a constraint formulax ∼ c. For each 0≤ s< |u1|, s∈ S0
ϕ,νi

if and only if

(u1,s,νi) |= x ∼ c. For eachSh
ϕ,νi

(1 ≤ h ≤ |u2|), note that the sequence of data values

of w in positions|u1|+ n · |u2|+ h− 1(n ≥ 0) is a non-decreasing arithmetic progression

d|u1|+h−1,d|u1|+h−1+ k,d|u1|+h−1+2k, Then, the interval borders forSh
ϕ,νi

can be easily

computed. For example, supposeϕ = (x ≥ c). We need to find the minimal numbern ≥ 0

such thatd|u1|+h−1+nk−νi(x)≥ c, which is

n= max{

⌈
c+νi(x)−d|u1|+h−1

k

⌉

,0}.

Then, we setSh
ϕ,νi

= [n,+∞). Similar calculation works for the other constraint formulas.

Case 4.ϕ = ϕ1∧ϕ2. ThenSh
ϕ,νi

= Sh
ϕ1,νi

∩Sh
ϕ2,νi

.

Case 5.ϕ = ¬ϕ1. Then,S0
ϕ,νi

= {0, . . . , |u1|−1}\S0
ϕ1,νi

andSh
ϕ,νi

= N\Sj
ϕ1,νi (1≤ h≤ |u2|).

Case 6.ϕ = x.ϕ1. ThenS0
ϕ = {i | 0≤ i < |u1|, i ∈ S0

ϕ1,νi
} and, for each 1≤ h≤ |u2|, Sh

ϕ = N

if |u1|+h−1∈ Sh
ϕ1,ν|u1|+h−1

, andSh
ϕ = /0 otherwise.

Case 7.ϕ = ϕ1Uϕ2. First, for each 0≤ s< |u1|, we haves∈ S0
ϕ,νi

if and only if one of the

following two cases holds:

• There existsj ∈ [s+1, |u1|−1] such thatj ∈ S0
ϕ2,νi

and[s+1, j −1]⊆ S0
ϕ1,νi

.

• [s+1, |u1|−1]⊆ S0
ϕ1,νi

and there arem1 ≥ 0 and 1≤ m2 ≤ |u2| such that[0,m1−1] ⊆

S1
ϕ1,νi

∩· · ·∩Sh
ϕ1,νi

andm1 ∈ S1
ϕ1,νi

∩· · ·∩Sm2−1
ϕ1,νi ∩Sm2

ϕ2,νi .

5.1 The upper complexity bounds 91

Both cases can be easily checked in polynomial time.

In order to compute the setsSh
ϕ,νi

(1≤ h≤ |u2|), let

R1 = Sh+1
ϕ1,νi

∩· · ·∩S|u2|
ϕ1,νi

∩ (S1
ϕ1,νi

∩· · ·∩Sh
ϕ1,νi

)−1.

Let R1
2 = Sh+1

ϕ2,νi
((S1

ϕ2,νi
)−1, if h= |u2|). For each 2≤ s≤ |u2|−h, let

Rs
2 = Sh+1

ϕ1,νi
∩· · ·∩Sh+s−1

ϕ1,νi
∩Sh+s

ϕ2,νi
.

Let

R|u2|−h+1
2 = Sh+1

ϕ1,νi
∩· · ·∩S|u2|

ϕ1,νi ∩ (S1
ϕ2,νi

)−1,

and for each|u2|−h+2≤ s≤ |u2|, let

Rs
2 = Sh+1

ϕ1,νi
∩· · ·∩S|u2|

ϕ1,νi
∩ (S1

ϕ1,νi
∩· · ·∩Ss+h−|u2|−1

ϕ1,νi
∩Ss+h−|u2|

ϕ2,νi
)−1.

Let

R2 = R1
2∪· · ·∪R|u2|

2 .

Define

Sh
ϕ,νi

= R2∪
⋃

{[a,b] | [a,b] is contained inR1\R2 andb+1∈ R2}.

A number j is in R1 if and only if ϕ1 holds (w.r.t. valuationνi) in the interval of length|u2|

starting at the(h+ 1)th position of the j th iteration of u2 in w (or at the first position the

(j +1)th iteration ofu2 in w if h= |u2|). A number j is in R2 if and only if ϕ2 (w.r.t. valuation

νi) holds in a position that is at most|u2| positions after thehth position of thej th iteration of

u2 in w, andϕ1 holds (w.r.t. valuationνi) between these two positions.

If [a,b] is contained inR1 \R2 andb+ 1 ∈ R2, then it is easily seen thatϕ1Uϕ2 holds

in each position|u1|+ j · |u2|+h− 1 for j ∈ [a,b]. Conversely, ifϕ1Uϕ2 holds in position

t = |u1|+ j · |u2|+h−1, then eitherϕ2 holds in a position that is at most|u2| positions after

positiont andϕ1 holds betweent and that position (hencej ∈ R2), or there existsj ′ > j such

that j ′ ∈ R2 andϕ1 holds from positiont +1 up to position|u1|+ j ′ · |u2|+h−1. In the latter

case, we can choosej ′ minimal with this property. This implies[j, j ′−1]⊆ R1\R2.

Finally, we need to show that eachSh
ϕ,νi

contains only polynomially many intervals. It is

sufficient to show that the number of all interval borders in the algorithm above is polynomially

bounded. We use four kinds of set operations: union, intersection, complementation and

subtraction. Union and intersection do not add any new interval borders. So we only need to

consider complementation and subtraction of 1.

92 The path checking problems for MTL and TPTL

For a setB⊆ N andk≥ 1, writeB−k = {a−k | a≥ k,a∈ B} andB+k = {a+k | a∈ B}.

Let γ1, . . . ,γm be all constraintsx∼ c that appear inψ. Let

B0 =

|u1u2|−1
⋃

i=0

m⋃

j=1

|u2|⋃

h=1

{a∈ N | a is a border of an interval inSh
γ j ,νi

}.

Thus,B0 is the set of all interval borders that arise from constraintsubformulas. Without loss

of generality, we assume that 0∈ B0. Forn≥ 1 define

Bn = Bn−1∪ (Bn−1)−1∪ (Bn−1)+1.

By induction onn, one can show that

Bn = B0∪
n⋃

k=1

(B0)−k∪ (B0)+k.

Hence|Bn| ≤ (2n+ 1)|B0|, where|Bi| be the cardinality ofBi . Subtraction decreases each

interval border by 1, and complementation may decrease or increase an interval border by

1. Suppose that all interval borders are inBn. If we do complementation or subtraction,

then the new interval borders are inBn+1. There are polynomially many complementation and

subtraction operations and|B0| is polynomially bounded. So the number of all interval borders

is polynomially bounded.

Since for everyMTLb-formula, we can compute in logarithmic space an equivalentTPTL1
b-

formula. The next corollary follows from Theorem22.

Corollary 11. Path checking forMTLb over infinite binary encoded data words is inP.

5.1.3 AC1(logDCFL) upper bound for MTL

By Corollary11, we know that path checking forMTL over infinite data words is inP. It is

shown that path checking forMTL over finite monotonic data words is inAC1(logDCFL) [21].

In this subsection, we consider path checking forMTL over infinite monotonic data words of

the form(u)ω
+k. We can show that the complexity for this problem is still inAC1(logDCFL).

First we prove several lemmas.

Lemma 20. Let u be a data word, and let k∈ N. Then for everyMTL-formulaϕ and i≥ 0,

(u, i) |= ϕ if and only if(u+k, i) |= ϕ.

Proof. The lemma follows by Corollary1 in Chapter3.

5.1 The upper complexity bounds 93

Corollary 12. Let u be a finite data word, and let k∈ N. Then for everyMTL-formulaϕ and

i ≥ 0, ((u)ω
+k, i) |= ϕ if and only if((u)ω

+k, i + |u|) |= ϕ.

Lemma 21. Let u be a finite data word, and let k∈ N. For everyMTL-formula ϕ, if there

exists i≥ 0 such that for all i≤ j < i + |u|, ((u)ω
+k, j) |= ϕ, then for all i′ ≥ 0, ((u)ω

+k, i
′) |= ϕ.

Proof. Let ϕ be anMTL-formula. Suppose that there existsi ≥0 such that for alli ≤ j < i+|u|,

((u)ω
+k, j) |= ϕ. Then for alli′ ≥ 0, there existsi ≤ j ′ < i+ |u| andn∈Z such thati′ = j ′+n|u|.

By Corollary12, we have((u)ω
+k, i

′) |= ϕ.

The next several results are proved over monotonic data words. Let w ba a monotonic

data word. For everyMTL-formula ϕ1UI ϕ2, it is easily seen thatw |= ϕ1UI ϕ2 if and only

if w |= ϕ1UI∩[0,+∞)ϕ2, i.e., we can make the constraint intervalI be non-negative. Every

open interval overZ is equivalent to a closed (or half-closed) interval overZ, e.g.,(a,b) =

[a+1,b−1] and(a,+∞) = [a+1,+∞), wherea,b∈ Z. So for technical reasons, we assume

all constraint intervals in theMTL-formulas have the form[a,b] or [a,+∞), wherea,b≥ 0, in

the following. This restriction does not influence the results.

Lemma 22. Let (u)ω
+k be an infinite monotonic data word. For everyMTL-formulaϕ1UI ϕ2

and i≥ 0, where I is the infinite interval[a,+∞) or the finite interval[a,b] (0 ≤ a ≤ b), we

have:

(1) ((u)ω
+k, i) |= ϕ1U[a,+∞)ϕ2 if and only if((u)ω

+k, i) |= ϕ1U[a,a+k] ϕ2.

(2) If b−a> k, then((u)ω
+k, i) |= ϕ1U[a,b] ϕ2 if and only if((u)ω

+k, i) |= ϕ1U[a,a+k] ϕ2.

(3) If a> k, then((u)ω
+k, i) |= ϕ1U[a,b] ϕ2 if and only if((u)ω

+k, i) |= ϕ1U[a′,b′]ϕ2, where

a′ =







k+(amodk) if (amodk) 6= 0,

2k otherwise,

and b′ = a′+b−a.

Proof. (1) Because[a,a+k]⊆ [a,+∞), the direction “⇐” is trivial. For the direction “⇒”,

suppose((u)ω
+k, i) |= ϕ1U[a,+∞) ϕ2. Then there existsj > i such that((u)ω

+k, j) |= ϕ2,

d j −di ≥aand((u)ω
+k, t) |=ϕ1 for all i < t < j. Since(u)ω

+k is monotonic, there existsi <

j ′ ≤ i+ |u| andn∈N such thatj ′ = j−n|u|, andd j ′−di ∈ [a,a+k]. By Corollary12, we

have((u)ω
+k, j ′) |= ϕ2. In addition, we have((u)ω

+k, t
′) |= ϕ1 for all i < t ′ < j ′. Therefore,

((u)ω
+k, i) |= ϕ1U[a,a+k] ϕ2.

94 The path checking problems for MTL and TPTL

(2) The proof is the same as that of (1), where we only need to replace+∞ by b.

(3) Let a′ = k+(amodk) andb′ = a′+b−a. Suppose((u)ω
+k, i) |= ϕ1U[a,b]ϕ2. Then there

existsj > i such that((u)ω
+k, j) |= ϕ2, d j −di ∈ [a,b], and((u)ω

+k, t) |=ϕ1 for all i < t < j.

Since(u)ω
+k is monotonic, there existsi < j ′ ≤ i + |u| andn≥ 0 such thatj ′ = j −n|u|,

andd j ′ −di ∈ [a′,b′]. By Corollary12, we have((u)ω
+k, j ′) |= ϕ2. In addition, we have

((u)ω
+k, t

′) |= ϕ1 for all i < t ′ < j ′, since j ′ ≤ j. Therefore,((u)ω
+k, i) |= ϕ1U[a′,b′]ϕ2.

Conversely, if((u)ω
+k, i) |=ϕ1U[a′,b′]ϕ2, then there existsj ′> i such that((u)ω

+k, j ′) |=ϕ2,

d j ′ −di ∈ [a′,b′] and((u)ω
+k, t

′) |= ϕ1 for all i < t ′ < j ′. Since(u)ω
+k is monotonic, there

exists j ≥ j ′ andn≥ 0 such thatj = j ′+n|u|, andd j −di ∈ [a,b]. By Corollary12, we

have((u)ω
+k, j) |= ϕ2. Sincea′ > k, we see thatj ′ > i + |u|. Because((u)ω

+k, t
′) |= ϕ1

for all i < t ′ < j ′, by Lemma21, we have((u)ω
+k, t) |= ϕ1 for all i < t < j. Therefore,

((u)ω
+k, i) |= ϕ1U[a,b]ϕ2.

By Lemma22, given an infinite monotonic data wordw= (u)ω
+k, for everyMTL-formula

ϕ, we can construct an equivalent formulaϕ ′ with respect tow by replacing each constraint

interval I in ϕ by a finite constraint intervalI ′. More precisely, all numbers inI ′ can be

bounded by 3k. Becausew is monotonic, when checking the formulaϕ1UI ′ϕ2 over w in

positioni, we only need to consider the positionsj with i < j ≤ i +3|u| to check whetherϕ2

holds in j andϕ1 holds in the positions betweeni and j.

Given a numberk> 0, we define a functionfk from intervals to finite intervals as follows:

fk([a,+∞)) =







[a,a+k] if a≤ k,

[a′,a′+k] otherwise,

and

fk([a,b]) =







[a,b] if a≤ k andb−a≤ k,

[a,a+k] if a≤ k andb−a> k,

[a′,a′+b−a] if a> k andb−a≤ k,

[a′,a′+k] if a> k andb−a> k,

where

a′ =







k+(amodk) if (amodk) 6= 0,

2k otherwise.

5.1 The upper complexity bounds 95

It is clear that, for each intervalI , fk(I)⊆ [0,3k] and fk(fk(I)) = fk(I).

By Lemma22, we can obtain the following corollary.

Corollary 13. Let(u)ω
+k be an infinite monotonic data word. For everyMTL-formulaϕ1UI ϕ2

and i≥ 0, ((u)ω
+k, i) |= ϕ1UI ϕ2 if and only if((u)ω

+k, i) |= ϕ1U fk(I)ϕ2.

Proof. If I is the infinite interval[a,+∞), then by (1) of Lemma22, ((u)ω
+k, i) |= ϕ1U[a,+∞) ϕ2

if and only if ((u)ω
+k, i) |= ϕ1U[a,a+k] ϕ2. If a> k, by (3) of Lemma22, the latter holds if and

only if ((u)ω
+k, i) |= ϕ1U[a′,a′+k] ϕ2, wherea′ is k+(amodk) if (amodk) 6= 0, or 2k otherwise.

If I is the finite interval[a,b], a≤ k andb−a> k, then by (2) of Lemma22, ((u)ω
+k, i) |=

ϕ1U[a,b]ϕ2 if and only if ((u)ω
+k, i) |= ϕ1U[a,a+k] ϕ2. If I is [a,b] anda > k, then by (3) of

Lemma22, ((u)ω
+k, i) |= ϕ1U[a,b] ϕ2 if and only if ((u)ω

+k, i) |= ϕ1U[a′,a′+b−a] ϕ2, wherea′ is

k+(amodk) if (amodk) 6= 0, or 2k otherwise. Ifb−a> k, by (2) of Lemma22, the latter

holds if and only if((u)ω
+k, i) |= ϕ1U[a,a+k] ϕ2.

Given the functionfk, for everyMTL-formulaϕ, we recursively build anMTL-formulaϕ
as follows:

• ⊤=⊤,

• p= p,

• ¬ϕ = ¬ϕ ,

• ϕ1∧ϕ2 = ϕ1∧ϕ2,

• ϕ1UI ϕ2 = ϕ1U fk(I)ϕ2.

Lemma 23. Let(u)ω
+k be an infinite monotonic data word, for everyMTL-formulaϕ and i≥ 0,

((u)ω
+k, i) |= ϕ if and only if((u)ω

+k, i) |= ϕ.

Proof. We prove the lemma by induction onϕ.

• If ϕ is ⊤ or a propositionp, then((u)ω
+k, i) |= ϕ if and only if ((u)ω

+k, i) |= ϕ .

• If ϕ is¬ϕ1, then((u)ω
+k, i) |=¬ϕ1 if and only if ((u)ω

+k, i) 6|=ϕ1 if and only if ((u)ω
+k, i) 6|=

ϕ1 if and only if ((u)ω
+k, i) |= ¬ϕ1 if and only if ((u)ω

+k, i) |= ¬ϕ1.

• If ϕ is ϕ1∧ϕ2, then((u)ω
+k, i) |=ϕ1∧ϕ2 if and only if ((u)ω

+k, i) |=ϕ1 and((u)ω
+k, i) |=ϕ2,

if and only if ((u)ω
+k, i) |= ϕ1 and((u)ω

+k, i) |= ϕ2, if and only if ((u)ω
+k, i) |= ϕ1∧ϕ2 if

and only if((u)ω
+k, i) |= ϕ1∧ϕ2.

96 The path checking problems for MTL and TPTL

• If ϕ is ϕ1UI ϕ2, then by Corollary13, ((u)ω
+k, i) |= ϕ1UI ϕ2 if and only if ((u)ω

+k, i) |=

ϕ1U fk(I)ϕ2, if and only if there existsj > i such that((u)ω
+k, j) |= ϕ2, d j − di ∈ fk(I),

and((u)ω
+k, t) |= ϕ1 for all i < t < j. By induction hypothesis this holds, if and only

if there existsj > i such that((u)ω
+k, j) |= ϕ2, d j −di ∈ fk(I), and((u)ω

+k, t) |= ϕ1 for

all i < t < j. This is equivalent to((u)ω
+k, i) |= ϕ1U fk(I)ϕ2, which holds if and only if

((u)ω
+k, i) |= ϕ1UI ϕ2.

We now reduce path checking forMTL over infinite data words to path checking forMTL

over finite data words.

Proposition 13. Let (u)ω
+k be an infinite monotonic data word, and letϕ be anMTL-formula.

For all n ≥ 3Rank(ϕ)+1 and0≤ i < |u|, ((u)ω
+k, i) |= ϕ if and only if((u)n

+k, i) |= ϕ.

Proof. By Lemma23, it suffices to show that((u)ω
+k, i) |= ϕ if and only if ((u)n

+k, i) |= ϕ. We

now proceed by induction onϕ.

• If ϕ is ⊤ or a propositionp, then((u)ω
+k, i) |= ϕ if and only if (u, i) |= ϕ .

• If ϕ is¬ϕ1, then((u)ω
+k, i) |=¬ϕ1 if and only if ((u)ω

+k, i) 6|=ϕ1. By induction hypothesis

this holds, if and only if((u)n
+k, i) 6|= ϕ1 if and only if ((u)n

+k, i) |= ¬ϕ1.

• If ϕ is ϕ1∧ϕ2, then((u)ω
+k, i) |=ϕ1∧ϕ2 if and only if ((u)ω

+k, i) |=ϕ1 and((u)ω
+k, i) |=ϕ2.

By induction hypothesis, this holds if and only if((u)n
+k, i) |= ϕ1 and((u)n

+k, i) |= ϕ2, if

and only if((u)n
+k, i) |= ϕ1∧ϕ2.

• If ϕ is ϕ1UI ϕ2, then ((u)ω
+k, i) |= ϕ1UI ϕ2 if and only if there existsj > i such that

((u)ω
+k, j) |= ϕ2, d j −di ∈ I , and((u)ω

+k, t) |= ϕ1 for all i < t < j. Supposej = m|u|+

r for somem≥ 0 and 0≤ r < |u|. By Corollary 12, ((u)ω
+k, j) |= ϕ2 if and only if

((u)ω
+k, r) |= ϕ2. Since 0≤ i < |u| and I ⊆ [0,3k], we know that 0≤ j < 4|u|, hence

0≤ m≤ 3 andn−m≥ 3Rank(ϕ1UI ϕ2)−2≥ 3Rank(ϕ2)+1. By induction hypothesis,

((u)ω
+k, r) |= ϕ2 if and only if ((u)n−m

+k , r) |= ϕ2. By Lemma20 this holds, if and only if

((u)n
+k,m|u|+r) |= ϕ2 if and only if ((u)n

+k, j) |= ϕ2. Therefore, we have((u)ω
+k, j) |=ϕ2

if and only if ((u)n
+k, j) |= ϕ2. Similarly, we can show that((u)ω

+k, t) |= ϕ1 if and only if

((u)n
+k, t) |= ϕ1 for all i < t < j. Hence((u)ω

+k, i) |= ϕ1UI ϕ2 if and only if ((u)n
+k, i) |=

ϕ1UI ϕ2.

5.2 The lower complexity bounds 97

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

level 1 (∧-gates)

level 2 (∨-gates)

level 3 (input gates)

Fig. 5.1 An SAM2-circuit

Theorem 23. Path checking forMTLb over infinite monotonic binary encoded data words of

the form(u)ω
+k is inAC1(logDCFL).

Proof. Given an infinite monotonic data word(u)ω
+k and anMTL-formulaϕ where all input

numbers are encoded in binary notation, the finite data word(u)3Rank(ϕ)+1
+k and the formulaϕ

are computable in logarithmic space. By Proposition13, we know that(u)ω
+k |= ϕ if and only

if (u)3Rank(ϕ)+1
+k |= ϕ . Since path checking forMTLb over finite monotonic binary encoded

data word is inAC1(logDCFL) [21], andL⊆ AC1 ⊆ AC1(logDCFL), the theorem follows.

5.2 The lower complexity bounds

In this section, we will prove severalP-hardness andPSPACE-hardness results for path check-

ing problems. All lower bounds also hold for non-pure and non-monotonic data words (and

we will not mention this explicitly in the theorems). But we have to distinguish (i) whether

data words are unary or binary encoded, and (ii) whether datawords are finite or infinite.

And all lower bounds that hold for unary (respectively, finite) data words also hold for binary

(respectively, infinite) data words.

5.2.1 P-hardness for MTL and TPTL 1

We prove ourP-hardness results by a reduction from a restricted version of the Boolean circuit

value problem. ABoolean circuitis a finite oriented directed acyclic graph, where each node

is called a gate. Aninput gate is a node with indegree 0. All other gates are labeled with

one of∨, ∧ or ¬ (the logical OR, AND and NOT operations). Anoutputgate is a node with

outdegree 0. A Boolean circuit ismonotoneif it does not have¬ gates.

Definition 12. A synchronous alternating monotone circuit with fanin 2 andfanout 2 (briefly,

SAM2-circuit) is a monotone circuit divided into levels 1, . . . , l (l ≥ 2) such that the following

properties hold:

98 The path checking problems for MTL and TPTL

• All wires go from a gate in leveli +1 to a gate from leveli (1≤ i < l).

• All output gates are in level 1 and all input gates are in level l .

• All gates in the same level are of the same type (∧, ∨ or input) and the levels alternate

between∧-levels and∨-levels.

• All gates except the output gates have outdegree 2 and all gates except the input gates

have indegree 2. The two input gates for a gate at leveli < l are different.

By the restriction to fanin 2 and fanout 2, we know that each level contains the same

number of gates. Fig.5.1shows an example of an SAM2-circuit (the node namesai ,bi,ci will

be needed later). The circuit value problem for SAM2-circuits, called SAM2CVP in [44], is

the following problem:

Input: An SAM2-circuitα, inputsx1, . . . ,xn ∈ {0,1}, and a designated output gatey.

Output: yes if outputy of α evaluates to 1 on inputsx1, . . . ,xn, no otherwise.

It is shown in [44] that SAM2CVP isP-complete.

Recall that path checking forMTL over finite monotonic data words is in the parallel com-

plexity classAC1(LogDCFL) [21]. We will show that for both (i)MTLu over non-monotonic

data words and (ii)TPTL1
u over monotonic data words the path checking problem becomes

P-hard (and henceP-complete). Actually, we prove the results for their pure unary fragments,

where the “pure unary” means that we do not use any propositions and use only the unary

modalitiesX, F andG instead ofU in the formula.

Theorem 24. Path checking forpureUnaMTLu over finite unary encoded pure data words is

P-hard.

Proof. We reduce from SAM2CVP. Letα be the input circuit. We first encode each two

consecutive levels ofα into a data word, and combine these data words into a data wordw,

which is the encoding of the whole circuit. Then we constructapureUnaMTLu-formulaψ such

thatw |= ψ if and only if α evaluates to 1. The data wordw that we are constructing contains

gate names ofα (and some copies of the gates) as atomic propositions. Thesepropositions

will be only needed for the construction. At the end, we can remove all propositions from

the data wordw and hence obtain a pure data word. The whole construction canbe done in

logarithmic space. The reader might look at Example6, where the construction is carried out

for the circuit from Fig.5.1.

Let α be an SAM2-circuit withl ≥ 2 levels andn gates in each level. By the restriction to

fanin 2 and fanout 2 we know that the induced undirected subgraph which contains the nodes

5.2 The lower complexity bounds 99

a1,1 a1,2 a1, j1

b1,1 b1,2 b1, j1

a2,1 a2,2 a2, j2

b2,1 b2,2 b2, j2

ah,1 ah,2 ah, jh
level i

bh,1 bh,2 bh, jh
level i+1

Fig. 5.2 The induced subgraph between leveli andi +1

a1,1 a1,2 a1, j1a′1,1

b1,1 b1,2 b1, j1b′1,1

a2,1 a2,2 a2, j2a′2,1

b2,1 b2,2 b2, j2b′2,1

ah,1 ah,2 ah, jha′h,1

bh,1 bh,2 bh, jhb′h,1

Fig. 5.3 The graph obtained from the induced subgraph

in level i and leveli +1 (1≤ i < l) is comprised of several cycles; see Fig.5.2. For instance,

for the circuit in Fig.5.1the number of cycles between level 1 and 2 (respectively, level 2 and

3) is 2.

We can enumerate in logarithmic space the gates of leveli and leveli +1 such that they

occur in the order shown in Fig.5.2. To see this, leta1, . . . ,an (respectively,b1, . . . ,bn) be the

nodes in leveli (respectively,i +1) in the order in which they occur in the input description.

We start witha1 and enumerate the nodes in the cycle containinga1 (from a1 we go to the

smaller neighbor amongb1, . . . ,bn, then the next node on the cycle is uniquely determined

since the graph has degree 2). Thereby we store the current node in the cycle and the starting

nodea1. As soon as we come back toa1, we know that the first cycle is completed. To find

the next cycle, we search for the first node from the lista2, . . . ,an that is not reachable froma1

(reachability in undirected graphs is inLOGSPACE [71]), and continue in this way.

So, assume that the nodes in leveli and i + 1 are ordered as in Fig.5.2. In particular,

we haveh cycles. For each 1≤ t ≤ h, we add a new nodea′t,1 (respectively,b′t,1) after at, jt

(respectively,bt, jt). Then we replace the edge(at, jt ,bt,1) by the edge(at, jt ,b
′
t,1)(1≤ t ≤ h). In

this way we obtain the graph from Fig.5.3. Again, the construction can be done in logarithmic

space by adding the new nodes and new edges once a cycle was completed in the enumeration

procedure from the previous paragraph.

By adding dummy nodes, we can assume that for every 1≤ i ≤ l −1, the subgraph between

level i and i +1 has the same number (sayh) of cycles (this is only done for notational con-

venience, and we still suppose that there aren gates in each level). Thus, after the above step

100 The path checking problems for MTL and TPTL

d d+1 · · · d+ j1

d′d′+1 · · · d′+ j1

· · · d+ j1+ j2+1

· · · d′+ j1+ j2+1

· · · d+m−1

· · · d′+m−1

Fig. 5.4 Labeling the new graph

we havem= n+h many nodes in each level. Letd = (i −1) ·2mandd′ = d+m. In Fig. 5.3,

we label the nodes in leveli (respectively,i +1) with the numbersd,d+1, . . . ,d+m−1 (re-

spectivelyd′,d′+1. . . ,d′+m−1) in this order, see Fig.5.4. By this labeling, the difference

between two connected nodes in leveli and leveli +1 is alwaysm or m+1. So we can use

the modalityF[m,m+1] (respectively,G[m,m+1]) to jump from an∨-gate (respectively,∧-gate) in

level i to a successor gate in leveli +1. We now obtain in logarithmic space the data word

wi = wi,1wi,2, where

wi,1 =







(a1,1,d)(a1,2,d+1) · · ·(a1, j1,d+ j1−1)

(a2,1,d+ j1+1)(a2,2,d+ j1+2) · · ·(a2, j2,d+ j1+ j2) · · ·

(ah,1,d+
h−1

∑
t=1

jt +h−1)(ah,2,d+
h−1

∑
t=1

jt +h) · · ·(ah, jh,d+m−2)

wi,2 =







(b1,1,d
′) · · ·(b1, j1,d

′+ j1−1)(b′1,1,d
′+ j1)

(b2,1,d
′+ j1+1) · · ·(b2, j2,d

′+ j1+ j2)(b
′
2,1,d

′+ j1+ j2+1) · · ·

(bh,1,d
′+

h−1

∑
t=1

jt +h−1) · · ·(bh, jh,d
′+m−2)(b′h,1,d

′+m−1)

which is the encoding of the wires between leveli and leveli +1 from Fig.5.4. Note that the

new nodesa′1,1,a
′
2,1, . . . ,a

′
h,1 in level i of the graph in Fig.5.3do not occur inwi,1.

Suppose now that all data wordswi (1≤ i ≤ l −1) are constructed. We then combine them

to obtain the data wordw for the whole circuit as follows. Suppose that

wi,2 = (b̃1,y1) · · ·(b̃m,ym) andwi+1,1 = (b1,z1) · · ·(bn,zn).

Note that everỹbs is either one of theb j or b′j (the copy ofb j). Let

vi+1,1 = (b̃1,z
′
1) · · ·(b̃m,z

′
m),

5.2 The lower complexity bounds 101

where the data valuesz′s are determined as follows: If̃bs = b j or b̃s = b′j , thenz′s = zj . Then,

the data wordw is w= w1,1w1,2v2,1w2,2 · · ·vl−1,1wl−1,2.

Let us explain the idea. Consider a gatea j of level 2≤ i ≤ l −1, and assume that level

i consists of∨-gates. Letb j1 andb j2 (from level i +1) be the two input gates fora j . In the

above data wordvi,1 there is a unique position where the propositiona j occurs, and possibly

a position where the copya′j occurs. If both positions exist, then they carry the same data

value. Let us point to one of these positions. Using anMTL-formula, we want to branch

(existentially) to the positions in the factorvi+1,1, where the propositionsb j1,b
′
j1,b j2,b

′
j2 occur

(whereb′j1 andb′j2 possibly do not exist). For this, we use the modalityF[m,m+1]. By construc-

tion, this modality branches existentially to positions inthe factorwi,2, where the propositions

b j1,b
′
j1,b j2,b

′
j2 occur. Then, using the iterated modalityXm (which is an abbreviation form

copies of theMTL-modalityXZ), we jump to the corresponding positions invi+1,1.

In the above argument, we assumed that 2≤ i ≤ l −1. If i = 1, then we can argue similarly,

if we assume that we are pointing to the uniquea j -labeled position of the prefixw1,1 of w.

Now consider levell −1. Suppose that

wl−1,2 = (d̃1,v1) . . .(d̃m,vm).

Let d1, . . . ,dn be the original gates of levell , which all belong to{d̃1, . . . , d̃m}, and letxi ∈

{0,1} be the input value for gatedi . Define

I = { j | j ∈ [1,m],∃i ∈ [1,n] : d̃ j ∈ {di,d
′
i},xi = 1}. (5.7)

Let the designated output gate be thekth node in level 1. We construct thepureUnaMTL-

formulaψ = Xk−1ϕ1, whereϕi (1≤ i ≤ l −1) is defined inductively as follows:

ϕi =







F[m,m+1]X
mϕi+1 if i < l −1 and leveli is a∨-level,

G[m,m+1]X
mϕi+1 if i < l −1 and leveli is a∧-level,

F[m,m+1](
∨

j∈I X
m− j¬X⊤) if i = l −1 and leveli is a∨-level,

G[m,m+1](
∨

j∈I X
m− j¬X⊤) if i = l −1 and leveli is a∧-level.

The formula¬X⊤ is onlytrue in the last position of a data word. Suppose data wordw is the

encoding of the circuit. From the above consideration, it follows thatw |= ψ if and only if the

circuit α evaluates to 1. Note that we only use the unary modalitiesF,G,X and do not use any

propositions inψ. So we can ignore the propositional part in the data wordw to get a pure

data word. Since the numberm is bounded by 2n, and all data values inw are bounded by 4nl,

102 The path checking problems for MTL and TPTL

a1 a2 a′1 a3 a4 a5 a′3

0 1 2 3 4 5 6

7 8 9 10 11 12 13
b1 b2 b′1 b3 b4 b5 b′3

Fig. 5.5 The labeling for level 1 and 2

b1 b5 b3 b′1 b2 b4 b′2

14 15 16 17 18 19 20

21 22 23 24 25 26 27
c1 c3 c5 c′1 c2 c4 c′2

Fig. 5.6 The labeling for level 2 and 3

wheren is the number of gates in each level andl is the number of levels. We can compute the

formulaψ and data wordw where the interval borders and data values are encoded in unary

notation in logarithmic space.

Corollary 14. Path checking forMTLu over finite unary encoded data words isP-hard.

Example 6. Let α be the SAM2-circuit from Fig.5.1. It has 3 levels and 5 gates in each level.

Level 1 contains∧-gates and level 2 contains∨-gates. There are 2 cycles in the subgraph

between level 1 and 2, and also 2 cycles in the subgraph between level 2 and 3. The encoding

for level 1 and level 2 is

(a1,0)(a2,1)(a3,3)(a4,4)(a5,5)

(b1,7)(b2,8)(b
′
1,9)(b3,10)(b4,11)(b5,12)(b′3,13),

(5.8)

which can be obtained from Fig.5.5. The new nodesa′1 anda′3 in level 1 are not used for the

final encoding in the data word. The encoding for level 2 and 3 is

(b1,14)(b5,15)(b3,16)(b2,18)(b4,19)

(c1,21)(c3,22)(c5,23)(c′1,24)(c2,25)(c4,26)(c′2,27),
(5.9)

which can be obtained from Fig.5.6. We skip the new nodesb′1 and b′2 in level 2 in this

encoding.

We combine (5.8) and (5.9) to obtain the following data word (5.10) which is the encoding

of the circuitα. The encoding for level 1 and 2 determines the order of the propositional part

5.2 The lower complexity bounds 103

of the third line in (5.10), and the encoding for level 2 and 3 determines its data values.

(a1,0)(a2,1)(a3,3)(a4,4)(a5,5)

(b1,7)(b2,8),(b
′
1,9)(b3,10)(b4,11)(b5,12)(b′3,13)

(b1,14)(b2,18)(b′1,14)(b3,16)(b4,19)(b5,15)(b′3,16)

(c1,21)(c3,22)(c5,23)(c′1,24)(c2,25)(c4,26)(c′2,27).

(5.10)

Let the designated output gate bea3 in level 1, and assume that the input gatesc1,c4,c5

(respectively,c2,c3) receive the value 0 (respectively, 1). Then the setI from (5.7) is I =

{2,5,7} and the formulaψ is

ψ = X2(G[7,8]X
7(F[7,8](

∨

j∈{2,5,7}

X7− j¬X⊤))).

We extend Theorem24 to path checking forMTLu over infinite data words in the follow-

ing.

Theorem 25. Path checking forunaMTLu over infinite unary encoded data words isP-hard.

Proof. The proof is adapted from the proof of Theorem24. In that proof, letp be an atomic

proposition that is not used in the data wordw. Define the infinite data wordw′ =w(p,5ml)ω
+0,

and redefine the formulaϕi by:

ϕi =







F[m,m+1]X
mϕi+1 if i < l −1 and leveli is a∨-level,

G[m,m+1]X
mϕi+1 if i < l −1 and leveli is a∧-level,

F[m,m+1](
∨

j∈I X
m− j(¬p∧Xp)) if i = l −1 and leveli is a∨-level,

G[m,m+1](
∨

j∈I X
m− j(¬p∧Xp)) if i = l −1 and leveli is a∧-level.

It is easily seen thatw′ |= ψ if and only if the circuitα evaluates to 1.

Corollary 15. Path checking forMTLu over infinite unary encoded data words isP-hard.

Note that the construction in the proof of Theorem24 uses non-monotonic data words.

This is unavoidable since it was shown in [21] that path checking forMTL over finite mono-

tonic data words belongs toAC1(LogDCFL). But if we consider a succinct version ofMTL

that still has the same expressive power, the data words constructed can be monotonic.

Our nextP-hardness result will be shown for monotonic data words. First we define an

extension ofMTL.

104 The path checking problems for MTL and TPTL

Definition 13. In the definition ofMTL, if we replace the modalityUI by UI1∪I2∪···∪In, where

I1∪ I2∪ · · · ∪ In a finite union of intervalsIi ⊆ Z(1 ≤ i ≤ n), then we call this logic succinct

MTL (SMTL).

Formally, the syntax and the semantics ofSMTL are the same as that forMTL, except that

the setI in UI can be a finite unionI = I1∪ I2∪· · · ∪ In of intervalsIi ⊆ Z. We useunaSMTL

to denote the unary fragment ofSMTL that uses only the unary modalitiesX,F,G, and use

pureUnaSMTL to denote the pure fragment ofunaSMTL, i.e., there are no propositions are

used in the formula.

Let I =
⋃n

i=1 Ii . It is easily seen that

ϕ1UI ϕ2 ≡
n∨

i=1

ϕ1UIi ϕ2 ≡ x.ϕ1U((
n∨

i=1

x∈ Ii)∧ϕ2).

We have the following two facts:

Fact 1. EverySMTL-formula is equivalent to anMTL-formula which can be exponentially

larger.

Fact 2. EverySMTL-formula is equivalent to aTPTL1-formula of polynomial size, which,

moreover, can be computed in logarithmic space.

By Fact2 and Theorem22, we can know that path checking forSMTLb over infinite binary

encoded data words is inP. In the following we show that path checking forSMTLu over finite

unary encoded data words isP-hard.

Theorem 26. Path checking forpureUnaSMTLu over finite unary encoded strictly monotonic

pure data words isP-hard.

Proof. We reduce from SAM2CVP. Letα be an SAM2-circuit withl ≥ 2 levels andn gates in

each level. The idea will be to encode the wires between two consecutive levels by a suitably

shifted version of the data word

wn =
n

∏
i=1

i ·
n

∏
i=1

i(n+1) = (1,2, . . . ,n, 1 · (n+1),2 · (n+1), . . .,n · (n+1)).

Note that for alli1, i2 ∈ {1, . . . ,n} and j1, j2 ∈ {1 · (n+1),2 · (n+1), . . .,n · (n+1)}, we have

the following: If j1− i1= j2− i2 theni1= i2 and j1= j2. This is best seen by viewing numbers

in their base(n+1) expansion. Let us denote with∆ = n(n+1)−1 the maximal difference

between a number from{1, . . . ,n} and a number from{1 · (n+1),2 · (n+1), . . .,n · (n+1)}.

5.2 The lower complexity bounds 105

We define the pure and strictly monotonic data wordwn,l as

wn,l =
l−2

∏
j=0

(wn)+ j ·n(n+2).

The offset numberj · n(n+ 2) is chosen such that the difference between a number from

{1+ j ·n(n+2), . . . ,n+ j ·n(n+2)} and a number from{1+(j +1) ·n(n+2), . . .,n+(j +

1) ·n(n+2)} is larger than∆ for every j ≥ 0.

Note that all data values inwn,l are bounded by(l +1)n(n+2). The unary encoding of the

data wordwn,l is computable in logarithmic space from the circuit. For each 1≤ j < l , define

Sj = {i2(n+1)− i1 | the ith1 gate in levelj connects to theith2 gate in levelj +1}.

Supposeok (1≤ k≤ n) is the designated output gate. LetI be the set of alli ∈ [1,n] such that

the ith gate in levell is set to the Boolean value 1. We construct thepureUnaSMTL-formula

ψ = Xk−1ϕ1, whereϕ j (1≤ j ≤ l −1) is defined inductively as follows:

ϕ j =







FSjX
nϕ j+1 if j < l −1 and levelj is a∨-level,

GSjX
nϕ j+1 if j < l −1 and levelj is a∧-level,

FSj (
∨

i∈I X
n−i¬X⊤) if j = l −1 and levelj is a∨-level,

GSj (
∨

i∈I X
n−i¬X⊤) if j = l −1 and levelj is a∧-level.

The purpose of the prefixXn in front of ϕ j+1 is to move from a certain position within the

second half of thej th copy of wn to the corresponding position within the first half of the

(j +1)th copy ofwn in wn,l . Note that no propositions are used, and only the unary modalities

F,G,X are used inψ. It is straightforward to check thatwn,l |= ψ if and only if the circuitα
evaluates to 1.

Corollary 16. Path checking forSMTLu over finite unary encoded data words isP-hard.

By Fact2, we can obtain the following corollaries.

Corollary 17. Path checking forpureUnaTPTL1
u over finite unary encoded strictly monotonic

pure data words isP-hard.

Corollary 18. Path checking forTPTL1
u over finite unary encoded data words isP-hard.

Example 7. Let α be the SAM2-circuit from Fig.5.1. The encoding for level 1 and level 2 is

(1,2,3,4,5, 6,12,18,24,30). (5.11)

106 The path checking problems for MTL and TPTL

The encoding for level 2 and level 3 is

(36,37,38,39,40, 41,47,53,59,65). (5.12)

We concatenate (5.11) and (5.12) to obtain the following data wordw5,3 which is the

encoding of the circuitα:

w5,3 = (1,2,3,4,5, 6,12,18,24,30)(36,37,38,39,40, 41,47,53,59,65).

Define

S1 = {4,5,10,11,13,15,20,21,25,26}

and

S2 = {3,5,8,10,13,17,20,22,25,27}.

Let the designated output gate bea3 in level 1, and assume that the input gatesc1,c4,c5

(respectively,c2,c3) receive the value 0 (respectively, 1). Then the setI is I = {2,3} and the

pureUnaSMTL-formulaψ is

ψ = X2(GS1X
5(FS2(

∨

j∈{2,3}

X5− j¬X⊤))).

Similar to the proof of Theorem25, we can adapt the proof of Theorem26 and extend the

results to infinite data words.

Theorem 27. Path checking forunaSMTLu andunaTPTL1
u over infinite unary encoded data

words areP-hard.

Corollary 19. Path checking forSMTLu andTPTL1
u over infinite unary encoded data words

areP-hard.

5.2.2 PSPACE-hardness for TPTL

In this subsection, we will prove severalPSPACE lower bounds forTPTL andTPTLr (r ≥ 2).

ForTPTL andTPTLr
b(r ≥ 2), we prove the lower bounds for their pure unary fragments.

Theorem 28. Path checking forpureUnaTPTLu over finite unary encoded strictly monotonic

pure data words isPSPACE-hard.

5.2 The lower complexity bounds 107

Proof. We provePSPACE-hardness by a reduction from thePSPACE-complete quantified

Boolean formula problem (QBF, for short). LetΨ = Q1x1 · · ·Qnxnφ be a quantified Boolean

formula, whereQi ∈ {∀,∃} andφ is a quantifier-free propositional formula. We construct the

finite pure strictly monotonic data word

w= 0,1,2, . . . ,2n−1,2n,2n+1.

For everyi ∈ {1, . . . ,n}, the subword 2i −1,2i is used to quantify over the Boolean variable

xi . We use a corresponding register variablexi . If we assign to this register variable the data

value 2i −b, then the corresponding Boolean variablexi is set tob∈ {0,1}.

We define thepureUnaTPTL-formulax.Ψ′, whereΨ′ is defined inductively by the follow-

ing rules.

• If Ψ = ∀xiΦ, thenΨ′ = G((xi = 2i −1∨xi = 2i)→ xi .Φ′).

• If Ψ = ∃xiΦ, thenΨ′ = F((xi = 2i −1∨xi = 2i)∧xi .Φ′).

• If Ψ is a quantifier-free formula, then

Ψ′ = F(x= 2n+1∧Ψ[x1/x1 = 2n, . . . ,xi/xi = 2(n− i)+2, . . . ,xn/xn = 2]).

Here, Ψ[x1/x1 = a0, . . . ,xn/xn = an] denotes theTPTL-formula obtained fromΨ by

replacing every occurrence ofxi by xi = ai (1≤ i ≤ n).

Recall from the semantics ofTPTL that the subformulaxi = 2i −1∨ xi = 2i is true if and

only if the difference between the current data value and thevalue to whichxi is bound (which

is initially 0) is 2i −1 or 2i. Hence, the subformula is onlytrue at the two positions where

the data values are 2i−1 and 2i, respectively. It is easy now to see that the quantified Boolean

formulaΨ is true if and only if w |= x.Ψ′.

Corollary 20. Path checking forTPTLu over finite unary encoded data words isPSPACE-

hard.

It is shown that model checking forfreezeLTL over one-deterministic counter machine is

PSPACE-hard [30]. Since every infinite computation of a deterministic one-counter machine

is of the formu1(u2)
ω
+k (see Section5.4). We can know that path checking forTPTL over

infinite data words isPSPACE-hard. Moreover, we can show that the path checking is still

PSPACE-hard even over the infinite strictly monotonic pure data word (0)ω
+1 = 0,1,2,3,4, . . .

Theorem 29. Path checking forTPTLu over the infinite data word(0)ω
+1 is PSPACE-hard.

108 The path checking problems for MTL and TPTL

Proof. In the proof of Theorem28, let w′ = w(2n+2)ω
+1 = 0,1,2,3,4, . . . Analysis similar to

that proof shows that the quantified Boolean formulaΨ is true if and only if w′ |= x.Ψ′.

Corollary 21. Path checking forTPTLu over infinite unary encoded data words isPSPACE-

hard.

In the following we consider path checking for the fragment of TPTL where the number

of register variables are bounded by a fixed numberr ≥ 2.

The quantified subset sum problem (QSS) isPSPACE-complete [79]:

Input: A sequencea1,a2, . . . ,a2n,b∈ N of binary encoded numbers.

Output: yes if ∀x1 ∈ {0,a1}∃x2 ∈ {0,a2}· · ·∀x2n−1 ∈ {0,a2n−1}∃x2n ∈ {0,a2n} such that

∑2n
i=1xi = b, no otherwise.

We define a variant of QSS in the following:

Input: A sequencea1,a2, . . . ,a2n,b∈ N\{0} of binary encoded numbers.

Output: yes if ∀x1 ∈ {1,a1}∃x2 ∈ {1,a2}· · ·∀x2n−1 ∈ {1,a2n−1}∃x2n ∈ {1,a2n} such that

∑2n
i=1xi = b, no otherwise.

We call this problem positive quantified subset sum problem (PQSS). PQSS is alsoPSPACE-

complete. It is easy to check that for every instancea1,a2, . . . ,a2n,b of QSS, the answer isyes

for this input if and only if the answer for the PQSS-input(a1+1,a2+1, . . . ,a2n+1,b+2n)

is yes.

Theorem 30.Path checking forpureUnaTPTL2
b over the infinite data word(0)ω

+1 isPSPACE-

hard.

Proof. The theorem is proved by a reduction from PQSS. Given an instancea1,a2, . . . ,a2n,b

of PQSS, we construct thepureUnaTPTL2-formulax.ϕ1, where the formulaϕi (1≤ i ≤ 2n+1)

is defined inductively by

ϕi =







y.G((y= 1∨y= ai)→ ϕi+1) for i < 2n odd,

y.F((y= 1∨y= ai)∧ϕi+1) for i ≤ 2n even,

x= b for i = 2n+1.

The intuition is the following: Note that in the data wordw the data value is increasing by

one in each step. Assume we want to evaluatey.G((y= 1∨y= ai)→ ϕi+1) in a position where

the data value is currentlyd. The initial freeze quantifier setsy to d. Then,G((y = 1∨ y =

5.2 The lower complexity bounds 109

ai)→ ϕi+1) means that in every future position, where the current data value is eitherd+1 (in

such a positiony= 1 holds by theTPTL-semantics) ord+ai (in such a positiony= ai holds),

the formulaϕi+1 has to hold. In this way, we simulate the quantifier∀xi ∈ {1,ai}. At the end,

we have to check that the current data value isb, which can be done with the constraintx= b

(note thatx is initially set to 0 and never reset). We can show that(0)ω
+1 |= x.ϕ1 if and only if

the answer for the PQSS-input(a1,a2, . . . ,a2n,b) is yes.

Corollary 22. Path checking forTPTL2
b over infinite unary encoded strictly monotonic pure

data words isPSPACE-hard.

Recall from Theorem20 that for every fixedr, path checking forTPTLr
u over infinite

binary encoded quasi-monotonic data words can be solved in polynomial time. The following

result shows that quasi-monotonicity is important for Theorem 20. First we prove a lower

bound forfreezeLTL2, which is a fragment ofTPTL2
u.

Theorem 31. Path checking forfreezeLTL2 over infinite binary encoded pure data words is

PSPACE-hard.

Proof. The theorem is proved by a reduction from PQSS.

We first prove the theorem for non-pure data words, and then show how to get rid of the

atomic propositions. Given an instancea1,a2, . . . ,a2n,b of PQSS, we construct the infinite

data word

w= (/0,b)

(

(q,0)
2n

∏
i=1

(p,1)(p,ai)(/0,0)

)ω

+1

and the formulax.y.Xϕ1, where the formulasϕi (1≤ i ≤ 2n+1) are defined as follows. First

of all, for a propositionp and a formulaψ we use the abbreviations

Fpψ = pU(p∧ψ) andGpψ = ¬Fp¬ψ.

Thus,Fpψ holds in positionj means that in the future there is a time pointt such thatψ holds

at time t and the propositionp holds at all time pointsj < s≤ t. Similarly, Gpψ holds in

position j means that for all future time pointst such thatp holds at all time pointsj < s≤ t,

ψ holds att. Then we define:

ϕi =







X3(i−1)Gpy.F(q∧y= 0∧ϕi+1) for i < 2n odd,

X3(i−1)Fpy.F(q∧y= 0∧ϕi+1) for i ≤ 2n even,

x= 0 for i = 2n+1.

110 The path checking problems for MTL and TPTL

Let us explain the formulaX3(i−1)Fpy.F(q∧y= 0∧ϕi+1). We will only evaluate this formula

in positions where the propositionq holds (i.e., the starting positions of the periodic part of

w). Let d be the data value at this position (meaning that we are at the first position of the

(d+1)th iteration of the periodic part). WithX3(i−1) we move to the positionj which precedes

the block(p,1)(p,ai)(/0,0). The data value at the next positionj +1 isd+1, whereas the data

value at the positionj +2 isd+ai . With the modalityFp we either move to the positionj +1

or move to the positionj +2; the choice is made existentially (if the modality isGp, then the

choice is made universally). Next,y is set to the current data value. Hence, we existentially set

y to eitherd+1 ord+ai . With the final partF(q∧y= 0∧ϕi+1) we go to the unique position

in the future, whereq holds and the data value at this position is equal to the valuewhich was

assigned toy before (d+1 ord+ai). In this way we simulate the quantifier∃xi ∈ {1,ai}.

Finally, note that initially, the register variablex is set tob (the data value at the first

position ofw). Hence, in the formulaϕ2n we express by the constraintx= 0 that the current

data value has to beb. This shows thatw |= x.y.Xϕ1 if and only if the instancea1,a2, . . . ,a2n,b

is positive.

We can get rid of the propositionsp andq by encoding them into a pure data word. We

use(0,1,1) (respectively,(0,0,0)) to denoteq (respectively,p). Then the data wordw can

be replaced by the following pure data word (for better readability we underline the positions

that correspond to the old data wordw)

w′ = b

(

0,1,1,0,
2n

∏
i=1

(0,0,0,1,0,0,0,ai,0)

)ω

+1
.

Defineϕq = x.X(¬(x = 0)∧ x.X(x = 0)) andϕp = x.X(x = 0∧X(x = 0)). We replace the

formulaFpψ by

F′pψ = [ϕp∨X3(ϕp∧X¬ϕp)∨X2(ϕp∧X¬ϕp)∨X(ϕp∧X¬ϕp)]U[ϕp∧ψ]

and defineG′
pψ = ¬F′p¬ψ. Then we define:

ϕ ′
i =







X9(i−1)G′
pX

3y.F(ϕq∧X4ϕp∧X3(y= 0)∧X3ϕ ′
i+1) for i < 2n odd,

X9(i−1)F′pX
3y.F(ϕq∧X4ϕp∧X3(y= 0)∧X3ϕ ′

i+1) for i ≤ 2n even,

x= 0 for i = 2n+1.

Analysis similar to above shows thatw′ |= x.y.X4ϕ ′
1 if and only if the instancea1,a2, . . . ,a2n,b

is positive.

5.3 Summary of path checking results 111

Corollary 23. Path checking forTPTLr
u(r ≥ 2) over infinite binary encoded pure data words

is PSPACE-hard.

Remark5. Theorems24, 26 and28 are showed for the logic where all constraint numbers

(or interval borders) are encoded in unary notation, and also hold if all constraint numbers

(or interval borders) are given in binary notation. The constructions in the proofs of these

theorems use only finite data words, and are easily adapted toinfinite data words. Whereas

Theorems30, 31and Corollary23only hold for infinite data words, since by Theorem21 the

path checking forTPTLr over finite data words is inP. Furthermore, by Theorem19, the

constraint numbers in the logic of Theorem30 and the data words in Theorem31 have to be

encoded in binary notation.

It is interesting to note that all lower bounds hold for the corresponding unary fragments

except Theorem31 and Corollary23. The proof for Theorem31 for freezeLTL2 needs the

until operator. It is not clear, whether path checking for the unary fragment offreezeLTL2 over

infinite binary encoded data words is stillPSPACE-hard.

5.3 Summary of path checking results

We prove several upper and lower complexity bounds in Section 5.1 and Section5.2, respec-

tively. We summarizes our complexity results in this section.

Table5.1 is an overview of our complexity results. We see that forTPTL,TPTL1,SMTL

andMTL, the type (finite or infinite) of the input data words, and the encoding (unary or

binary) of data values and constraint numbers (or interval borders) do not influence the com-

plexity. In fact, the complexity results still hold for their unary fragments, and if we con-

sider the infinite monotonic data words of the form(u)ω
+k, then path checking ofMTL is in

AC1(logDCFL). ForTPTLr (r ≥ 2), the complexity depends on the input data words, and the

encoding of the data words and constraint numbers.

Fig. 5.7 shows our complexity results, which depicts the relationship of different logics

with respect to their expressive power (here the superscript <∞ is a place holder for any

numberr ≥ 2), over different classes of data words. Whether data wordsare pure or not does

not change the complexity in all cases. Moreover, for finite data words, the complexity does

not depend upon the encoding of data words (unary or binary) and the fact whether data words

are monotonic or non-monotonic (forTPTL andSMTL). On the other hand, for infinite data

words, these distinctions influence the complexity: For binary and non-monotonic data words

we get another picture than for unary encoded or (quasi-)monotonic data words.

112 The path checking problems for MTL and TPTL

TPTL1
u

TPTL<∞
u TPTL1

b

TPTLu TPTL2
b

TPTLb

infinite data words,
unary or quasi-monotonic

infinite data words,
binary and non-monotonic

finite data words

P-compl. P-compl.

P-compl.

PSPACE-compl. PSPACE-compl.

PSPACE-compl.

P-compl.

finite or infinite data words,
non-monotonic

SMTLb

SMTLuMTLb

MTLu

TPTL1
u

TPTL<∞
u

TPTL<∞
b

TPTLu

TPTLb

TPTL1
u

TPTL1
b

TPTL2
u

TPTL2
b

TPTLb

Fig. 5.7 Complexity results of path checking

5.4 Model checking for deterministic one-counter machines 113

TPTL TPTLr
b(r ≥ 2) TPTLr

u(r ≥ 2) TPTL1,SMTL,MTL

fin
ite PSPACE-compl. P-compl. P-compl. P-compl.

in
fin

ite
u

n
ar

y

PSPACE-compl. PSPACE-compl. P-compl. P-compl.

in
fin

ite
b

in
ar

y

PSPACE-compl. PSPACE-compl. PSPACE-compl. P-compl.

Table 5.1 Complexity results of path checking

5.4 Model checking for deterministic one-counter machines

In this section, we consider the model checking problem overdeterministic one-counter ma-

chines. We show that it is equivalent to the path checking problem over infinite unary encoded

data words with respect to logarithmic space reductions.

A one-counter machine(OCM) A is a tripleA = (Q,q0,∆), whereQ is a finite set of

states,q0 ∈ Q is the initial state, and∆ = Q×{−1,0,1}×Q is the transition relation. A

configuration is a pair(q,n)∈ Q×N. For configurations(p,m) and(q,n) we write(p,m) ⊢A

(q,n) if one of the following three cases holds:

• (p,−1,q) ∈ ∆ andn= m−1

• (p,1,q) ∈ ∆ andn= m+1

• (p,0,q) ∈ ∆ andn= m= 0

An infinite run ofA is an infinite sequence

(q0,0) ⊢A (q1,n1) ⊢A (q2,n2) ⊢A (q3,n3) ⊢A · · · .

A finite run ofA is a finite sequence

(q0,0) ⊢A (q1,n1) ⊢A (q2,n2) ⊢A · · · ⊢A (ql ,nl)

114 The path checking problems for MTL and TPTL

such that there does not exist a configuration(q,n) with (ql ,nl) ⊢A (q,n). We identify this

run with the finite data word(q0,0)(q1,n1)(q2,n2) · · ·(ql ,nl), and an infinite run is viewed as

an infinite data word in the same way.

An OCM is deterministic(and called a DOCM) if for every statep ∈ Q, either there is

exactly one outgoing transition(p,a,q) or there are exactly two outgoing transitions, which

have to be of the form(p,0,q1) and(p,−1,q2) for statesq1,q2 ∈ Q. This implies thatA has

a unique run (either finite or infinite), which we denote withrun(A) and is viewed as a data

word as explained above.

Lemma 24. For a given DOCMA one can check in logarithmic space, whetherrun(A) is

finite or infinite. Moreover, the following holds:

• If run(A) is finite, then the corresponding data word in unary encodingcan be com-

puted in logarithmic space.

• If run(A) is infinite, then one can compute in logarithmic space two unary encoded

data words u1 and u2 and a unary encoded number k such thatrun(A) = u1(u2)
ω
+k.

Proof. In [31], the following statement was shown: Ifrun(A) is infinite, thenrun(A) =

u1(u2)
ω
+k with k≤ |Q| and|u1u2| ≤ |Q|3. Hence, in order to check whetherrun(A) is infinite,

we have to simulateA for at most|Q|3 many steps. Thereby we check whether a configuration

(q,n) is reached such that before, already a configuration(q,m) with m< n has been reached.

We store the current configuration with the counter value in binary together with a step counter

t, which only needs logarithmic space (since the counter and the step counter are bounded by

|Q|3). Each time we produce a new configuration(q,n) (at stept), we have to check whether

we have seen a configuration(q,m) with m< n before. Since we cannot store the whole

sequence of configuration, we have to “freeze” the simulation of A at the configuration(q,n)

and then start a new simulation from the initial configuration for at mostt steps. Thereby, the

current configuration is compared with(q,n).

In a similar way, we can produce the data wordrun(A) itself in logarithmic space. We

only have to print out the current configuration. Internally, our machine stores counter values

in binary encoding. Since we want the output data word to be unary encoded, we have to

transform the binary encoded counter values into unary encoding, which can be done with a

logarithmic space machine.

Let L be a logic. Themodel checking problem forL over DOCMis defined as follows:

Input: A DOCM A and a formulaϕ ∈ L .

Output: yes if run(A) |= ϕ, no otherwise.

5.4 Model checking for deterministic one-counter machines 115

Theorem 32. Let L be one of the logicTPTL,TPTLr ,SMTL or MTL. The model checking

problem forL over DOCM is equivalent with respect to logarithmic space reductions to the

path checking problem forL over infinite unary encoded data words.

Proof. The reduction from the model checking problem forL over DOCM to the path check-

ing problem forL over infinite unary encoded data words follows from Lemma24. For the

other direction take a unary encoded infinite data wordw= u1(u2)
ω
+k and a formulaψ ∈ L .

Of course,w does not have to be of the formrun(A) for a DOCMA , since in a data word

run(A) the data value can only change by at most 1 for neighboring positions. On the other

hand, the latter can be easily enforced by inserting dummy positions in between the positions

of w. Let w′ = v1(v2)
ω
+k be the resulting data words. Then, we can easily construct inlog-

arithmic space a DOCMA such that the sequence of counter values produced byA is the

sequence of data values ofw′. Moreover, no state ofA repeats among the first|v1v2|−1 many

positions. It is then straightforward to construct a formula ψ ′ ∈ L such thatw |= ψ if and

only if run(A) |= ψ ′.

By Theorem32, the complexity results from Table5.1 and Fig.5.7 proved forL over

infinite unary encoded data words also shows the complexity of model checking forL over

DOCM.

Chapter 6

Conclusion and future work

In this thesis, we studied the expressive power, satisfiability problems and path checking prob-

lems forMTL andTPTL over data words. In [6], the authors showed that over infinite mono-

tonic data words,MTL andTPTL have the same expressive power and the satisfiability prob-

lem is decidable. We consideredMTL andTPTL over infinite data words and finite data words

separately. Now we briefly summarize the contents of this thesis and mention some directions

for the future work.

In Chapter2, we gave some basic definitions and notations about data words, metric tem-

poral logic, timed propositional temporal logic, the relative expressive power, computational

complexity and two-counter machines.

In Chapter3, we introduced Ehrenfeucht–Fraïssé games forMTL andTPTL over data

words, respectively, which are quantitative extensions ofthe EF-game forLTL over words de-

fined in [36]. EveryMTL-formula is equivalent to aTPTL-formula where only one register

variable is used. Using the EF-game forMTL, we showed thatTPTL is strictly more expres-

sive thanMTL over both infinite data words and finite data words. Actually,we showed that

TPTL1 is strictly more expressive thanMTL by proving that theTPTL1-formulax.XX(x= 0)

is not definable inMTL. Furthermore, we showed that theMTL definability problem: whether

aTPTL-formula is definable inMTL, is undecidable over both infinite and finite data words

by reductions of recurrent state problem and halting problem of two-counter machines. The

register variables inTPTL play an important role in reaching its greater expressive power

compared toMTL. When restricting the number of register variables, we wereable to show

that there is a strict increase in expressiveness when allowing two register variables instead of

just one, i.e.,TPTL2 is strictly more expressive thanTPTL1. It is still open for the general

case that whetherTPTLr ≺ TPTLr+1, wherer ≥ 2. We conjecture that the register variable

hierarchy forTPTL is strict.

118 Conclusion and future work

We considered the expressive power of several fragments ofMTL andTPTL by restriction

of the until rank and the set of constraint numbers (or interval borders). We showed that the un-

til rank hierarchies forMTL andTPTL are strict over both infinite and finite data words, and

whether anMTL-formula (respectively,TPTL-formula) is definable inMTLk (respectively,

TPTLk) is undecidable for everyk∈N. We also obtained linear constraint hierarchies and lat-

tice constraint hierarchies forMTL andTPTL when the set of constraint numbers (or interval

borders) is restricted.

We also considered the expressive power ofMTL that uses the non-strict semantics for the

until modality. We showed that, over non-monotonic data words,MTL with strict semantics

is strictly more expressive thanMTL with non-strict semantics.

In Chapter4, we considered infinitary SAT and finitary SAT forMTL and some fragments

of MTL andTPTL. We showed that forMTL, the unary fragment ofMTL and the pure

fragment ofMTL, infinitary SAT isΣ1
1-complete and finitary SAT isΣ0

1-complete. This still

holds even for the unary fragment ofMTL with two propositions and for the unary fragment of

TPTL1 without theX modality. We proved the undecidability of infinitary SAT (respectively,

finitary SAT) by a reduction from the recurrent state problem(respectively, halting problem)

of two-counter machines. However, it is an open problem whether undecidability also holds

for the unary fragment ofMTL in which theX modality is not allowed.

For the positive fragments ofMTL andTPTL, we showed that a positive formula is satis-

fiable if and only it is satisfied by a finite data word. FinitarySAT and infinitary SAT coincide

for positiveMTL and positiveTPTL. Both of them areΣ0
1-complete. For existentialTPTL

(respectively, existentialMTL) that is the fragment of positiveTPTL (respectively, positive

MTL) in which we only use theF andX modalities, we showed that SAT isNP-complete.

In Chapter5, we considered the complexity of path checking problems forMTL andTPTL

over data words. We showed that path checking forTPTL isPSPACE-complete, and forMTL

is P-complete. The type (finite or infinite) of the input data words, and the encoding (unary

or binary) of data values and constraint numbers (or interval borders) do not influence the

complexity. If the number of register variables allowed in aformula is restricted, we obtained

path checking forTPTL1 is P-complete over both infinite and finite data words; forTPTL2 is

PSPACE-complete over infinite data words; and forTPTLr (r ≥ 2) is P-complete over finite

data words. If the encoding of constraint numbers of the input TPTL-formula is in unary

notation, we showed that path checking forTPTLr (r ≥ 2) is P-complete over infinite unary

encoded data words or infinite binary encoded quasi-monotonic data words.

For MTL, we proved theP-hardness over non-monotonic data words. This is unavoid-

able by the result in [21] that path checking forMTL over monotonic data words belongs

to AC1(logDCFL). We introducedSMTL which is a succinct version ofMTL. For SMTL,

119

we showed that path checking over monotonic data words isP-complete. We also showed

that path checking forMTL over infinite monotonic data words of the form(u)ω
+k belongs to

AC1(logDCFL).

In the last section of this chapter, we extended these results to model checking over deter-

ministic one-counter machines.

References

[1] Parosh Aziz Abdulla and Karlis Cerans. Simulation is decidable for one-counter nets
(extended abstract). InConcurrency Theory, 9th International Conference, Nice, France,
September 8-11, 1998, volume 1466 ofLNCS, pages 253–268. Springer, 1998.

[2] Sara Adams, Joël Ouaknine, and James Worrell. Undecidability of universality for timed
automata with minimal resources. InFormal Modeling and Analysis of Timed Systems,
5th International Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007,
volume 4763 ofLNCS, pages 25–37. Springer, 2007.

[3] Rajeev Alur and David L. Dill. A theory of timed automata.Theor. Comput. Sci.,
126(2):183–235, 1994.

[4] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctu-
ality. J. ACM, 43(1):116–146, January 1996.

[5] Rajeev Alur and Thomas A. Henzinger. Logics and models ofreal time: A survey.
In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, andGrzegorz Rozenberg,
editors,REX Workshop, volume 600 ofLNCS, pages 74–106. Springer, 1991.

[6] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressive-
ness.Inf. Comput., 104(1):390–401, 1993.

[7] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204,
1994.

[8] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. J. ACM, 49(5):672–713, September 2002.

[9] Rajeev Alur and P. Madhusudan. Decision problems for timed automata: A survey. In
Formal Methods for the Design of Real-Time Systems, International School on Formal
Methods for the Design of Computer, Communication and Software Systems, SFM-RT
2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185 ofLNCS,
pages 1–24. Springer, 2004.

[10] Christel Baier and Joost-Pieter Katoen.Principles of model checking. MIT Press, 2008.

[11] Mikolaj Bojanczyk. The common fragment of ACTL and LTL.In Foundations of Soft-
ware Science and Computational Structures, 11th International Conference, FOSSACS
2008, Budapest, Hungary, March 29 - April 6, 2008, volume 4962 ofLNCS, pages 172–
185. Springer, 2008.

122 References

[12] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data words.ACM Trans. Comput. Log., 12(4):27, 2011.

[13] Benedikt Bollig. An automaton over data words that captures EMSO logic. InCon-
currency Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany,
September 6-9, 2011, volume 6901 ofLNCS, pages 171–186. Springer, 2011.

[14] Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. Model check-
ing languages of data words. InFoundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012,Tallinn, Estonia, March 24
- April 1, 2012, volume 7213 ofLNCS, pages 391–405. Springer, 2012.

[15] Rémi Bonnet. Decidability of LTL for vector addition systems with one zero-test. In
Reachability Problems - 5th International Workshop, Genoa, Italy, September 28-30,
2011, volume 6945 ofLNCS, pages 85–95. Springer, 2011.

[16] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. InCONCUR ’97: Concurrency Theory, 8th
International Conference, Warsaw, Poland, July 1-4, 1997, volume 1243 ofLNCS, pages
135–150. Springer, 1997.

[17] Patricia Bouyer. A logical characterization of data languages. Inf. Process. Lett.,
84(2):75–85, 2002.

[18] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL
and MTL. Inf. Comput., 208(2):97–116, 2010.

[19] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Timed automata
with observers under energy constraints. InProceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Swe-
den, April 12-15, 2010, pages 61–70. ACM, 2010.

[20] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model checking one-
clock priced timed automata.Logical Methods in Computer Science, 4(2), 2008.

[21] Daniel Bundala and Joël Ouaknine. On the complexity of temporal-logic path checking.
In Automata, Languages, and Programming - 41st InternationalColloquium, Copen-
hagen, Denmark, July 8-11, 2014, volume 8573 ofLNCS, pages 86–97, 2014.

[22] John P. Burgess and Yuri Gurevich. The decision problemfor linear temporal logic.
Notre Dame Journal of Formal Logic, 26(2):115–128, 04 1985.

[23] Claudia Carapelle, Shiguang Feng, Oliver Fernandez Gil, and Karin Quaas. On the
expressiveness of TPTL and MTL overω-data words. InProceedings 14th International
Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-
29, 2014, volume 151 ofEPTCS, pages 174–187, 2014.

[24] Claudia Carapelle, Shiguang Feng, Oliver Fernandez Gil, and Karin Quaas. Satisfiability
for MTL and TPTL over non-monotonic data words. InLanguage and Automata Theory
and Applications - 8th International Conference, LATA 2014, Madrid, Spain, March 10-
14, 2014, volume 8370 ofLNCS, pages 248–259, 2014.

References 123

[25] Claudia Carapelle, Shiguang Feng, Alexander Kartzow,and Markus Lohrey. Satisfia-
bility of ECTL* with tree constraints. In Lev D. Beklemishevand Daniil V. Musatov,
editors,Computer Science - Theory and Applications - 10th International Computer Sci-
ence Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17, 2015, volume
9139 ofLNCS, pages 94–108. Springer, 2015.

[26] Joelle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power of temporal
logic. J. COMPUT. SYSTEM SCI, 46:271–294, 1993.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.Introduc-
tion to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company,
2001.

[28] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
ACM Trans. Comput. Log., 10(3), 2009.

[29] Stéphane Demri, Ranko Lazic, and David Nowak. On the freeze quantifier in constraint
LTL: Decidability and complexity.Inf. Comput., 205(1):2–24, 2007.

[30] Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking freeze LTL over
one-counter automata. InFoundations of Software Science and Computational Struc-
tures, 11th International Conference, FOSSACS 2008, Budapest, Hungary, March 29 -
April 6, 2008, volume 4962 ofLNCS, pages 490–504. Springer, 2008.

[31] Stéphane Demri, Ranko Lazić, and Arnaud Sangnier. Model checking memoryful linear-
time logics over one-counter automata.Theoretical Computer Science, 411(22-24):2298–
2316, 2010.

[32] Stéphane Demri and Arnaud Sangnier. When model-checking freeze LTL over counter
machines becomes decidable. InFoundations of Software Science and Computational
Structures, 13th International Conference, FOSSACS 2010,Paphos, Cyprus, March 20-
28, 2010, volume 6014 ofLNCS, pages 176–190. Springer, 2010.

[33] Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the pointwise
and continuous semantics.STTT, 9(1):1–4, 2007.

[34] H.-D. Ebbinghaus and J. Flum.Finite Model Theory. Springer, 1999.

[35] Javier Esparza. Decidability and complexity of Petri net problems - an introduction. In
Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based
on the Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491
of LNCS, pages 374–428. Springer, 1996.

[36] Kousha Etessami and Thomas Wilke. An until hierarchy for temporal logic. In11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996, pages 108–117. IEEE Computer Society, 1996.

[37] Kousha Etessami and Thomas Wilke. An until hierarchy and other applications of an
Ehrenfeucht-Fraïssé game for temporal logic.Inf. Comput., 160(1-2):88–108, 2000.

124 References

[38] John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is
PSPACE-complete. InProceedings of the 40th International Conference on Automata,
Languages, and Programming - Volume Part II, ICALP’13, pages 212–223, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[39] Shiguang Feng, Markus Lohrey, and Karin Quaas. Path checking for MTL and TPTL
over data words. In Igor Potapov, editor,Developments in Language Theory - 19th
International Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, volume 9168 of
LNCS, pages 326–339. Springer, 2015.

[40] Diego Figueira and Luc Segoufin. Future-looking logicson data words and trees. In
Mathematical Foundations of Computer Science 2009, 34th International Symposium,
MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009, volume 5734
of LNCS, pages 331–343. Springer, 2009.

[41] Carlo Alberto Furia and Matteo Rossi. On the expressiveness of MTL variants over
dense time. InProceedings of the 5th International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS’07, pages 163–178, Berlin, Heidelberg, 2007.
Springer-Verlag.

[42] Stefan Göller, Christoph Haase, Joël Ouaknine, and James Worrell. Model checking
succinct and parametric one-counter automata. InAutomata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,
volume 6199 ofLNCS, pages 575–586. Springer, 2010.

[43] V. Goranko. Hierarchies of modal and temporal logics with reference pointers.Journal
of Logic, Language and Information, 5(1):1–24, 1996.

[44] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo.Limits to Parallel Com-
putation: P-completeness Theory. Oxford University Press, Inc., New York, NY, USA,
1995.

[45] Tom Henzinger and Vinayak Prabhu. Timed alternating-time temporal logic. In Patri-
cia Asarin, Eugene; Bouyer, editor,Formal Modeling and Analysis of Timed Systems,
4th International Conference, FORMATS 2006, Paris, France, LCNS 4202, pages 1–17,
September 2006.

[46] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci.,
65(4):695–716, 2002.

[47] Yoram Hirshfeld and Alexander Rabinovich. Continuoustime temporal logic with count-
ing. Inf. Comput., 214:1–9, May 2012.

[48] Yoram Hirshfeld and Alexander Moshe Rabinovich. Logics for real time: Decidability
and complexity.Fundam. Inform., 62(1):1–28, 2004.

[49] Yoram Hirshfeld and Alexander Moshe Rabinovich. Expressiveness of metric modalities
for continuous time. InComputer Science - Theory and Applications, First International
Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-12,
2006, volume 3967 ofLNCS, pages 211–220. Springer, 2006.

References 125

[50] Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable fragments of first-
order temporal logics.Annals of Pure and Applied Logic, 106(1-3):85–134, 2000.

[51] Paul Hunter. When is metric temporal logic expressively complete? InComputer Science
Logic 2013, CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 ofLIPIcs, pages
380–394. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

[52] Paul Hunter, Joël Ouaknine, and James Worrell. Expressive completeness for metric
temporal logic. In28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 349–357. IEEE Computer
Society, 2013.

[53] Joxan Jaffar, Michael J. Maher, Peter J. Stuckey, and Roland H. C. Yap. Beyond finite
domains. InPrinciples and Practice of Constraint Programming, SecondInternational
Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2-4, 1994, volume
874 ofLNCS, pages 86–94. Springer, 1994.

[54] Ron Koymans. Specifying real-time properties with metric temporal logic.Real-Time
Systems, 2(4):255–299, 1990.

[55] Lars Kuhtz and Bernd Finkbeiner. Efficient parallel path checking for linear-time tempo-
ral logic with past and bounds.Logical Methods in Computer Science, 8(4), 2012.

[56] François Laroussinie, Nicolas Markey, and Ph. Schnoebelen. On model checking dura-
tional Kripke structures. InFoundations of Software Science and Computation Structures,
5th International Conference, FOSSACS 2002, volume 2303 ofLNCS, pages 264–279.
Springer, 2002.

[57] Étienne Lozes. Adjuncts elimination in the static ambient logic. Electr. Notes Theor.
Comput. Sci., 96:51–72, 2004.

[58] Monika Maidl. The common fragment of CTL and LTL. In41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November2000, Redondo Beach,
California, USA, pages 643–652. IEEE Computer Society, 2000.

[59] Nicolas Markey and Ph. Schnoebelen. Model checking a path. In Concurrency Theory,
14th International Conference, Marseille, France, September 3-5, 2003, volume 2761 of
LNCS, pages 248–262. Springer, 2003.

[60] Marvin L. Minsky. Recursive unsolvability of Post’s problem of tag and other topics in
theory of Turing machines.Annals of Mathematics, 74(3):437–455, November 1961.

[61] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, NJ, 1967.

[62] Joël Ouaknine and James Worrell. On the language inclusion problem for timed au-
tomata: Closing a decidability gap. In19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, pages 54–63. IEEE Computer
Society, 2004.

126 References

[63] Joël Ouaknine and James Worrell. On metric temporal logic and faulty Turing machines.
In Foundations of Software Science and Computation Structures, 9th International Con-
ference, FOSSACS 2006, Vienna, Austria, March 25-31, 2006, volume 3921 ofLNCS,
pages 217–230. Springer, 2006.

[64] Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In
Tools and Algorithms for the Construction and Analysis of Systems, 12th International
Conference, TACAS 2006, Vienna, Austria, March 25 - April 2,2006, volume 3920 of
LNCS, pages 411–425. Springer, 2006.

[65] Joël Ouaknine and James Worrell. On the decidability and complexity of metric temporal
logic over finite words.Logical Methods in Computer Science, 3(1), 2007.

[66] Paritosh K. Pandya and Simoni S. Shah. On expressive powers of timed logics: Com-
paring boundedness, non-punctuality, and deterministic freezing. InConcurrency The-
ory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9,
2011, volume 6901 ofLNCS, pages 60–75. Springer, 2011.

[67] Pawel Parys and Igor Walukiewicz. Weak alternating timed automata.Logical Methods
in Computer Science, 8(3), 2012.

[68] Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past oper-
ators. InFormal Modeling and Analysis of Timed Systems, 4th International Conference,
FORMATS 2006, Paris, France, September 25-27, 2006, volume 4202 ofLNCS, pages
322–336. Springer, 2006.

[69] Karin Quaas. Model checking metric temporal logic overautomata with one counter. In
Language and Automata Theory and Applications - 7th International Conference, LATA
2013, Bilbao, Spain, April 2-5, 2013, volume 7810 ofLNCS, pages 468–479. Springer,
2013.

[70] Alexander Rabinovich. Complexity of metric temporal logics with counting and the
pnueli modalities.Theor. Comput. Sci., 411(22-24):2331–2342, May 2010.

[71] Omer Reingold. Undirected connectivity in log-space.J. ACM, 55(4):17:1–17:24,
September 2008.

[72] M. Reynolds. The complexity of the temporal logic with "until" over general linear time.
J. Comput. Syst. Sci., 66(2):393–426, March 2003.

[73] Hartley Rogers, Jr.Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge, MA, USA, 1987.

[74] Kristin Y. Rozier. Survey: Linear temporal logic symbolic model checking.Comput. Sci.
Rev., 5(2):163–203, May 2011.

[75] Özlem Salehi, Abuzer Yakaryilmaz, and A. C. Cem Say. Real-time vector automata.
In Fundamentals of Computation Theory - 19th International Symposium, FCT 2013,
Liverpool, UK, August 19-21, 2013, volume 8070 ofLNCS, pages 293–304. Springer,
2013.

References 127

[76] Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. InCom-
puter Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference
of the EACSL, Szeged, Hungary, September 25-29, 2006, volume 4207 ofLNCS, pages
41–57. Springer, 2006.

[77] Michael Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1st edition, 1996.

[78] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.J.
ACM, 32(3):733–749, July 1985.

[79] Stephen Travers. The complexity of membership problems for circuits over sets of inte-
gers.Theor. Comput. Sci., 369(1):211–229, December 2006.

[80] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. InLogics
for Concurrency: Structure versus Automata, volume 1043 ofLNCS, pages 238–266.
Springer, 1996.

[81] Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. InFormal Techniques in Real-Time and Fault-Tolerant Systems, Third Interna-
tional Symposium Organized Jointly with the Working Group Provably Correct Systems
- ProCoS, Lübeck, Germany, September 19-23, volume 863 ofLNCS, pages 694–715.
Springer, 1994.

[82] Pierre Wolper. Temporal logic can be more expressive.Information and Control, 56(1-
2):72–99, 1983.

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne un-
zulässige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die ange-
führten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich
oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnom-
men wurden, und alle Angaben, die auf mündlichen Auskünften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestell-
ten Materialien oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, 06.01.2016

Shiguang Feng

Scientific Career Experience

Aug. 1999 – Jul. 2002 Qingzhou No.1 senior middle school, P.R. China

Sep. 2002 – Jul. 2006 Shandong Agricultural University

• Major: Pharmaceutical Engineering

• Minor: Computer Science and Technology

• received Bachelor’s Degree of Engineering in July 2006

Sep. 2006 – Jul. 2012 Sun Yat-sen University

• Master-doctoral student of Institute of Logic and Cognition

• Major: Mathematical Logic, Supervisor: Prof. Dr. Xishun Zhao

• Thesis "The Complexity and Expressive Power of Second-Order HORN
Logic"

• received Doctor’s Degree of Philosophy in July 2012

Since Oct. 2012 Universität Leipzig

• Doctoral student of Institut für Informatik,

• Research direction: Quantitative temporal logic

• Supervisor: Prof. Dr. Markus Lohrey & Prof. Dr. Manfred Droste

List of Publications

1. C. Carapelle, S. Feng, A. Kartzow, and M. Lohrey: Satisfiability of ECTL∗

with tree constraints. In 10th International Computer Science Symposium
in Russia (CSR 2015), volume 9139 of LNCS, pages 94-108. Springer,
2015.

2. S. Feng, M. Lohrey, and K. Quaas: Path checking for MTL and TPTL over
data words. In 19th International Conference on Developments in Lan-
guage Theory (DLT 2015), volume 9168 of LNCS, pages 326-339. Springer,
2015.

3. C. Carapelle, S. Feng, O. F. Gil, and K. Quaas: Satisfiability for MTL
and TPTL over Non-monotonic Data Words. In 8th International Confer-
ence on Language and Automata Theory and Applications(LATA 2014),
volume 8370 of LNCS, pages 248-259. Springer, 2014.

4. C. Carapelle and S. Feng, O. F. Gil, and K. Quaas: On the Expressiveness
of TPTL and MTL over ω-Data Words. In 14th International Conference
on Automata and Formal Languages(AFL 2014), Szeged, Hungary, May
27-29, 2014, volume 151 of EPTCS, pages 174-187, 2014.

5. S. Feng and X. Zhao. Complexity and Expressive Power of Second-Order
Extended Horn Logic, Mathematical Logic Quarterly, 59. 1-2(2013):4-11.

6. S. Feng and X. Zhao. The Complexity and Expressive Power of Second-
Order Extended Logic, Studies in Logic, 2012, 5(1):11-34.

List of Talks

1. Ehrenfeucht-Fraïssé Games for Metric Temporal Logic on Data Words.
Highlights of Logics, Games and Automata 2013, Paris, 21.09.2013.

2. On the Expressiveness of TPTL and MTL over ω-Data Words. AFL 2014,
Szeged, 28.05.2014.

3. Satisfiability of ECTL* with tree constraints. CSR 2015, Listvyanka,
13.07.2015.

4. The Complexity of Path Checking for MTL and TPTL over Data Words.
DLT 2015, Liverpool, 29.07.2015.

5. The Complexity of Path Checking for MTL and TPTL over Data Words.
Highlights of Logics, Games and Automata 2015, Prague, 18.09.2015.

	Table of contents
	1 Introduction
	2 Preliminaries
	2.1 Data words
	2.2 Linear temporal logic
	2.3 Metric temporal logic
	2.4 Timed propositional temporal logic
	2.5 Expressive power
	2.6 Computational complexity
	2.7 Two-counter machines

	3 The expressive power of MTL and TPTL
	3.1 The Ehrenfeucht–Fraïssé game for MTL
	3.2 Application of the EF-game for MTL
	3.3 MTL with non-strict semantics
	3.4 The Ehrenfeucht–Fraïssé game for TPTL
	3.5 Application of the EF-game for TPTL
	3.6 Summary of the relative expressive power

	4 The satisfiability problems for MTL and TPTL
	4.1 The satisfiability problem for MTL
	4.2 SAT for the positive fragments of MTL and TPTL
	4.3 SAT for the unary fragments of MTL and TPTL
	4.4 SAT for the pure fragment of MTL
	4.5 SAT for other fragments of MTL and TPTL
	4.6 Summary of satisfiability results

	5 The path checking problems for MTL and TPTL
	5.1 The upper complexity bounds
	5.2 The lower complexity bounds
	5.3 Summary of path checking results
	5.4 Model checking for deterministic one-counter machines

	6 Conclusion and future work
	References

