
Making Metric Temporal Logic Rational∗

Shankara Narayanan Krishna1, Khushraj Madnani1, and
Paritosh K. Pandya3

1 IIT Bombay, Mumbai, India
krishnas@cse.iitb.ac.in

2 IIT Bombay, Mumbai, India
khushraj@cse.iitb.ac.in

3 Tata Institute of Fundamental Research, Mumbai, India
pandya@tifr.res.in

Abstract
We study an extension of MTL in pointwise time with regular expression guarded modality
RatI(re) where re is a rational expression over subformulae. We study the decidability and ex-
pressiveness of this extension (MTL+ URat+Rat), called RatMTL, as well as its fragment SfrMTL
where only star-free rational expressions are allowed. Using the technique of temporal projections,
we show that RatMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL.
We also identify a subclass MITL + URat of RatMTL for which our equisatisfiable reduction gives
rise to formulae of MITL, yielding elementary decidability. As our second main result, we show a
tight automaton-logic connection between SfrMTL and partially ordered (or very weak) 1-clock
alternating timed automata.

1998 ACM Subject Classification F.4.1. Mathematical Logic

Keywords and phrases Metric Temporal Logic, Timed Automata, Regular Expression, Equisat-
isfiability, Expressiveness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.77

1 Introduction

Temporal logics provide constructs to specify qualitative ordering between events in time.
Real time logics are quantitative extensions of temporal logics with the ability to specify
real time constraints amongst events. Logics MTL and TPTL are amongst the prominent
real time logics [2]. Two notions of MTL semantics have been studied in the literature :
continuous and pointwise [5]. The expressiveness and decidability results vary considerably
with the semantics used : while the satisfiability checking of MTL is undecidable in the
continuous semantics even for finite timed words [1], it is decidable in pointwise semantics
with non-primitive recursive complexity over finite timed words [15]. The satisfiability
checking over infinite timed words is undecidable for both the semantics. Due to the hardness
of analysis, quest for a decidable subclass and extension was started.

Related Work. Due to limited expressive power of MTL, several additional modalities
have been proposed : the threshold counting modality [16] C≥nI φ states that in time interval
I relative to current point, φ occurs at least n times. Note that we represent the set of
modalities CI is represented by C. The Pnueli modality [16] PnI(φ1, . . . , φn) states that there

∗ Please refer url <http://arxiv.org/abs/1705.01501> for full version

© Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 77; pp. 77:1–77:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.77
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

77:2 Making Metric Temporal Logic Rational

is a subsequence of n time points inside interval I where at ith point the formula φi holds. In
a recent result, Hunter [10] showed that, in continuous time semantics, MTL enriched with C
modality (denoted MTL + C) is as expressive as FO[<,+1], which is as expressive as TPTL.
Unfortunately, satisfiability and model checking of all these logics are undecidable. This has
led us to focus on the pointwise case with only the until modality, i.e. logic MTL[UI], which
we abbreviate as MTL in rest of the paper.Also, MTL + op means MTL with modalities UI
as well as op.

In pointwise semantics, it can be shown that MTL+C is strictly more expressive than MTL
and remains decidable for finite words (see [12]). In this paper, we propose a generalization of
threshold counting and Pnueli modalities by a rational expression modality RatI re(φ1, . . . , φk),
which specifies that the truth of the subformulae, φ1, . . . , φk, at the set of points within
interval I is in accordance with the regular expression re(φ1, . . . , φk). The resulting logic is
called RatMTL and is the subject of this paper. The inability to specify rational expression
constraints has been an important lacuna of LTL and its practically useful extensions such
as PSL sugar [7], [6] (based on Dynamic Logic [8]) which extend LTL with both counting
and rational expressions were studied. This indicates that our logic RatMTL is a natural and
useful logic for specifying properties. Adding timing constraints to regular expressions was
first given by Asarin, Caspi and Maler in [3] and was called as Timed Regular Expressions.
They also show that these expressions exactly characterize the expressive power of Timed
Automata. But this equivalence relies indispensably on the addition of renaming operation
within there syntax [9] and are not closed under negations. In fact the validity checking for
this extension was undecidable. Thus we propose a boolean closed decidable logic which
can express regular expressions along with timing constraints. To our knowledge, impact of
rational expression constraints on metric temporal modalities have not been studied before.
The expressive power of logic RatMTL raises several points of interest.

As our first main result, we show that satisfiability of RatMTL is decidable by giving an
equisatisfiable reduction to MTL. The reduction makes use of the technique of oversampled
temporal projections which was previously proposed [11], [12] and used for proving the
decidability of MTL + C. The reduction given here has several novel features such as an
MTL encoding of the run tree of an alternating automaton which restarts the DFA of a
given rational expression at each time point (section 3.1). We identify two syntactic subsets
of RatMTL, the first denoted as MITL + URat with 2EXPSPACE easy satisfiability, and its
further subset MITL+UM with EXPSPACE-complete satisfiability. As our second main result,
we show that the star-free fragment SfrMTL of RatMTL characterizes exactly the class of
partially ordered 1-clock alternating timed automata, thereby giving a tight logic automaton
connection. The most non-trivial part of this proof is the construction of SfrMTL formula
equivalent to a given partially ordered 1-clock alternating timed automaton A (Lemma 11).

2 Timed Temporal Logics

This section describes the syntax and semantics of the timed temporal logics needed in this
paper : MTL and TPTL. Let Σ be a finite set of propositions. A finite timed word over
Σ is a tuple ρ = (σ, τ). σ and τ are sequences σ1σ2 . . . σn and τ1τ2 . . . τn respectively, with
σi ∈ P(Σ)− ∅, and τi ∈ R≥0 for 1 ≤ i ≤ n and ∀i ∈ dom(ρ), τi ≤ τi+1, where dom(ρ) is the
set of positions {1, 2, . . . , n} in the timed word. For convenience, we assume τ1 = 0. The
σi’s can be thought of as labelling positions i in dom(ρ). For example, given Σ = {a, b, c},
ρ = ({a, c}, 0)({a}, 0.7)({b}, 1.1) is a timed word. ρ is strictly monotonic iff τi < τi+1 for
all i, i + 1 ∈ dom(ρ). Otherwise, it is weakly monotonic. The set of finite timed words

S.N. Krishna, K. Madnani, and P. K. Pandya 77:3

over Σ is denoted TΣ∗. Given ρ = (σ, τ) with σ = σ1 . . . σn, σsingle denotes the set of words
{w1w2 . . . wn | wi ∈ σi}. For ρ as above, σsingle consists of ({a}, 0)({a}, 0.7)({b}, 1.1) and
({c}, 0)({a}, 0.7)({b}, 1.1). Let Iν be a set of open, half-open or closed time intervals. The
end points of these intervals are in N ∪ {0,∞}. For example, [1, 3), [2,∞). For τ ∈ R≥0 and
interval 〈a, b〉, with <∈ {(, [} and >∈ {],)}, τ + 〈a, b〉 stands for the interval 〈τ + a, τ + b〉.

Metric Temporal Logic (MTL). Given a finite alphabet Σ, the formulae of MTL are built
from Σ using boolean connectives and time constrained version of the modality U as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ UIϕ, where I ∈ Iν. For a timed word ρ = (σ, τ) ∈ TΣ∗,
a position i ∈ dom(ρ), and an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ
is denoted (ρ, i) |= ϕ, and is defined as follows: (i) ρ, i |= a ↔ a ∈ σi, (ii) ρ, i |= ¬ϕ ↔
ρ, i 2 ϕ, (iii) ρ, i |= ϕ1 ∧ ϕ2 ↔ ρ, i |= ϕ1 and ρ, i |= ϕ2, (iv) ρ, i |= ϕ1 UIϕ2 ↔ ∃j > i,
ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1 ∀ i < k < j.

The language of a MTL formula ϕ is L(ϕ) = {ρ | ρ, 1 |= ϕ}. Two formulae ϕ and
φ are said to be equivalent denoted as ϕ ≡ φ iff L(ϕ) = L(φ). Additional temporal
connectives are defined in the standard way: we have the constrained future eventuality
operator ♦Ia ≡ true UIa and its dual �Ia ≡ ¬♦I¬a. We also define the next operator as
OIφ ≡ ⊥UIφ. Non-strict versions of operators are defined as ♦ns

I a = a∨♦Ia,�ns
I a ≡ a∧�Ia,

a Uns
I b ≡ b ∨ [a ∧ (a UIb)] if 0 ∈ I, and [a ∧ (a UIb)] if 0 /∈ I. Also, aWb is a shorthand for

�a∨ (aUb). The subclass of MTL obtained by restricting the intervals I in the until modality
to non-punctual intervals is denoted MITL.

Timed Propositional Temporal Logic (TPTL). TPTL is a prominent real time extension
of LTL, where timing constraints are specified with the help of freeze clocks. The set of TPTL
formulas are defined inductively as ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | ϕ Uϕ | y.ϕ | y ∈ I. C is
a set of clock variables progressing at the same rate, y ∈ C, and I is an interval as above.
For a timed word ρ = (σ1, τ1) . . . (σn, τn), we define the satisfiability relation, ρ, i, ν |= φ

saying that the formula φ is true at position i of the timed word ρ with valuation ν of all
the clock variables as follows: (1) ρ, i, ν |= a ↔ a ∈ σi, (2) ρ, i, ν |= ¬ϕ ↔ ρ, i, ν 2 ϕ, (3)
ρ, i, ν |= ϕ1 ∧ ϕ2 ↔ ρ, i, ν |= ϕ1 and ρ, i, ν |= ϕ2, (4) ρ, i, ν |= x.ϕ ↔ ρ, i, ν[x ← τi] |= ϕ,
(5) ρ, i, ν |= x ∈ I ↔ τi − ν(x) ∈ I, (6) ρ, i, ν |= ϕ1 Uϕ2 ↔ ∃j > i, ρ, j, ν |= ϕ2, and
ρ, k, ν |= ϕ1 ∀ i < k < j. ρ satisfies φ denoted ρ |= φ iff ρ, 1, 0̄ |= φ. Here 0̄ is the valuation
obtained by setting all clock variables to 0. We denote by k−TPTL the fragment of TPTL
using at most k clock variables.

I Theorem 1 ([15]). MTL satisfiability is decidable over finite timed words and is non-
primitive recursive.

MTL with Rational Expressions (RatMTL)

We propose an extension of MTL with rational expressions, that forms the core of the paper.
These modalities can assert the truth of a rational expression (over subformulae) within a
particular time interval with respect to the present point. For example, Rat(0,1)(ϕ1.ϕ2)+ when
evaluated at a point i, asserts the existence of 2k points τi < τi+1 < τi+2 < · · · < τi+2k < τi+1,
k > 0, such that ϕ1 evaluates to true at τi+2j+1, and ϕ2 evaluates to true at τi+2j+2, for all
0 ≤ j < k.

RatMTL Syntax Formulae of RatMTL are built from Σ (atomic propositions) as follows:
ϕ ::= a(∈ Σ) |true |ϕ ∧ ϕ | ¬ϕ | RatI re(S) | ϕURatI,re(S)ϕ, where I ∈ Iν and S is a
finite set of formulae of interest generated by this grammar, and re(S) is defined as a

MFCS 2017

77:4 Making Metric Temporal Logic Rational

rational expression over S. re(S) ::= ϕ(∈ S) | re(S).re(S) | re(S) + re(S) | [re(S)]∗. Thus,
RatMTL is MTL + URat + Rat. An atomic rational expression re is any well-formed
formula ϕ ∈ RatMTL.

RatMTL Semantics For a timed word ρ = (σ, τ) ∈ TΣ∗, a position i ∈ dom(ρ), and a
RatMTL formula ϕ, a finite set S of formulae, we define the satisfaction of ϕ at a position
i as follows. For positions i < j ∈ dom(ρ), let Seg(ρ, S, i, j) denote the untimed word over
P(S) obtained by marking the positions k ∈ {i+ 1, . . . , j− 1} of ρ with ψ ∈ S iff ρ, k |= ψ.
For a position i∈dom(ρ) and an interval I, let TSeg(ρ, S, I, i) denote the untimed word
over P(S) obtained by marking all the positions k such that τk − τi ∈ I of ρ with ψ ∈ S
iff ρ, k |= ψ.
1. ρ, i |= ϕ1URatI,re(S)ϕ2 ↔ ∃j>i, ρ, j|= ϕ2, τj − τi∈I, ρ, k |= ϕ1 ∀i<k<j and,

[Seg(ρ,S, i, j)]single ∩ L(re(S)) 6= ∅, where L(re(S)) is the language of the rational
expression re formed over the set S. The subclass of RatMTL using only the URat
modality is denoted RatMTL[URat] or MTL + URat and if only non-punctual intervals
are used, then it is denoted RatMITL[URat] or MITL + URat.

2. ρ, i |= RatI re ↔ [TSeg(ρ, S, I, i)]single ∩ L(re(S)) 6= ∅.
The language accepted by a RatMTL formula ϕ is given by L(ϕ) = {ρ | ρ, 0 |= ϕ}.

I Example 2. Consider the formula ϕ = aURat(0,1),ab∗b. Then re=ab∗, and the subformulae
of interest are a, b. For ρ=({a}, 0)({a, b}, 0.3)({a, b}, 0.99), ρ, 1 |= ϕ, since a∈σ2, b∈σ3,
τ3−τ1∈(0, 1) and a ∈ [Seg(ρ, {a, b}, 1, 3)]single ∩ L(ab∗). On the other hand, for the word
ρ = ({a}, 0)({a}, 0.3)({a}, 0.5)({a}, 0.9)({b}, 0.99), we know that ρ, 1 2 ϕ, since even though
b ∈ σ5, a ∈ σi for i < 5, [Seg(ρ, {a, b}, 1, 5)]single = aaa and aaa /∈ L(ab∗).

I Example 3. Consider the formula ϕ = Rat(0,1)[Rat(0,1)a]∗.
For ρ = ({a, b}, 0)({a, b}, 0.7)({b}, 0.98)({a, b}, 1.4), we have ρ, 12Rat(0,1)[Rat(0,1)a]∗, since
point 2 is not marked Rat(0,1)a, even though point 3 is.

Generalizing Counting, Pnueli & Mod Counting Modalities. The following reductions
show that RatMTL subsumes most of the extensions of MTL studied in the literature.

(1) Threshold Counting constraints [16], [13], [12] specify the number of times a prop-
erty holds within some time region is at least (or at most) n. These can be ex-
pressed in RatMTL: (i) C≥nI ϕ ≡ RatI(reth), (ii) φ1UTI,ϕ≥nφ2 ≡ φ1URatI,reth

φ2, where
reth = true∗ϕ.true∗.ϕ.true∗︸ ︷︷ ︸

n times

.

(2) Pnueli Modalities1 [16], which enhance the expressiveness of MITL in continuous
semantics preserving the complexity, can be written in RatMTL: PnI(φ1, φ2, . . . , φk) can
be written as RatI(true∗.φ1.true

∗φ2.true
∗.φk.true

∗).

(3) Modulo Counting constraints [4], [14] specify the number of times a property holds
modulo n ∈ N, in some region. We extend these to the timed setting by proposing
two modalities MCk%n

I and UMI,ϕ=k%n. MCk%n
I ϕ checks if the number of times ϕ is

true in interval I is M(n) + k, where M(n) denotes a non-negative integer multiple
of n, and 0 ≤ k ≤ n − 1, while ϕ1UMI,#ψ=k%nϕ2 when asserted at a point i, checks

1 The version of the modality only specified sequences for the next unit interval. We talk about a more
general version of this operator which is appended by timing interval.

S.N. Krishna, K. Madnani, and P. K. Pandya 77:5

the existence of j > i such that τj − τi ∈ I, ϕ2 is true at j, ϕ1 holds between i, j,
and the number of times ψ is true between i, j is M(n) + k, 0 ≤ k ≤ n − 1. As an
example, ψ = trueUM(0,1),#b=1%2(a ∨ b), when asserted at a point i, checks the existence
of a point j > i such that a or b ∈ σj , τj − τi ∈ (0, 1), and the number of points
between i, j where b is true is odd. Both these modalities can be rewritten equivalently
in RatMTL as follows: MCk%n

I ϕ ≡ RatI(remod) and φ1UMI,ϕ=k%nφ2 ≡ φ1URatI,remod
φ2

where remod = ([(¬ϕ)∗.ϕ.(¬ϕ)∗.ϕ︸ ︷︷ ︸
n times

]∗.[(¬ϕ)∗.ϕ.(¬ϕ)∗.ϕ︸ ︷︷ ︸
k times

]. The extension of MTL

(MITL) with only UM is denoted MTL + UM (MITL + UM) while MTL + MC (MITL + MC)
denotes the extension using MC.

3 Satisfiability of RatMTL and Complexity

The main results of this section are as follows.

I Theorem 4. (1) Satisfiability of RatMTL is decidable over finite timed words. (2) Satis-
fiability of MITL + UM is EXPSPACE-complete. (3) Satisfiability of MITL + URat is within
2EXPSPACE. (4) Satisfiability of MITL + MC is Fωω -hard.

Details of 4.2, 4.3, 4.4 are in appendices E.2,E.3 and E.4 of the full version, respectively.

I Theorem 5. MTL + URat ⊆ MTL + Rat, MTL + UM ⊆ MTL + MC.

Theorem 5 shows that the Rat modality can capture URat (and likewise, MC captures UM).
Thus, RatMTL ≡ MTL + Rat. Observe that any re can be decomposed into finitely many
factors, i.e. re =

n∑
i=1

Ri1.R
i
2. Given trueURat[l,u),reφ2, we assert Ri1 within interval (0, l]

and Ri2 in the prefix of the latter part within [l, u), followed by φ2. trueURat[l,u),reφ2 ≡∨
i∈{1,2...,n}

Rat(0,l)R
i
1 ∧ Rat[l,u)R

i
2.φ2.Σ∗. The proofs are in appendix G of the full version.

3.1 Proof of Theorem 4.1
Equisatisfiability. We will use the technique of equisatisfiability modulo oversampling [11]
in the proof of Theorem 4. Using this technique, formulae ϕ in one logic (say RatMTL) can
be transformed into formulae ψ over a simpler logic (say MTL) such that whenever ρ |= ϕ

for a timed word ρ over alphabet Σ, one can construct a timed word ρ′ over an extended
set of positions and an extended alphabet Σ′ such that ρ′ |= ψ and vice-versa [11], [12]. In
oversampling, (i) dom(ρ′) is extended by adding some extra positions between the first and
last point of ρ, (ii) the labeling of a position i ∈ dom(ρ) is over the extended alphabet Σ′ ⊃ Σ
and can be a superset of the previous labeling over Σ, while the new positions are labeled
using only the new symbols Σ′ −Σ. We can recover ρ from ρ′ by erasing the new points and
the new symbols. A restricted use of oversampling, when one only extends the alphabet and
not the set of positions of a timed word ρ is called simple extension. In this case, if ρ′ is a
simple extension of ρ, then dom(ρ) = dom(ρ′), and by erasing the new symbols from ρ′, we
obtain ρ. See Figure 1 for an illustration. The formula ψ over the larger alphabet Σ′ ⊃ Σ
such that ρ′ |= ψ iff ρ |= ϕ is said to be equisatisfiable modulo temporal projections to ϕ.
In particular, ψ is equisatisfiable to ϕ modulo simple extensions or modulo oversampling,
depending on how the word ρ′ is constructed from the word ρ.

The oversampling technique is used in the proofs of parts 4.1, 4.3 and 4.4.

MFCS 2017

77:6 Making Metric Temporal Logic Rational

Figure 1 ρ is over Σ = {a} and satisfies ϕ = �(0,1)a. ρ1 is an oversampling of ρ over an
extended alphabet Σ1 = Σ ∪ {b, d} and satisfies ψ1 = �(b ↔ ¬a) ∧ (¬b U(0,1)b). The red points
in ρ1 are the oversampling points. ρ2 is a simple extension of ρ over an extended alphabet
Σ2 = Σ ∪ {c} and satisfies ψ2 = �(c ↔ �(0,1)a) ∧ c. It can be seen that ψ1 is equivalent to ϕ
modulo oversampling, and ψ2 is equivalent to ϕ modulo simple extensions using the (respectively
oversampling, simple) extensions ρ1, ρ2 of ρ. However, ρ3 above, obtained by merging ρ1, ρ2,
eventhough an oversampling of ρ, is not a good model for the formula ψ1 ∧ψ2 over Σ1 ∪Σ2. However,
we can relativize ψ1 and ψ2 with respect to Σ as �(act1→(b↔¬a))∧[(act1→¬b) U(0,1)(b∧act1)], and
�(act2 → (c ↔ �[0,1)(act2 → a))) ∧ (act2 ∧ c) where act1 =

∨
Σ1, act2 =

∨
Σ2. The relativized

formula κ = Rel(ψ1,Σ) ∧ Rel(ψ2,Σ) is then equisatisfiable to ϕ modulo oversampling, and ρ3 is
indeed an oversampling of ρ satisfying κ. This shows that while combining formulae ψ1, ψ2 which
are equivalent to formulae ϕ1, ϕ2 modulo oversampling, we need to relativize ψ1, ψ2 to obtain a
conjunction which will be equisatisfiable to ϕ1 ∧ ϕ2 modulo oversampling. See [11] for details.

Equisatisfiable Reduction : RatMTL to MTL

Let ϕ be a RatMTL formula. To obtain equisatisfiable MTL formula ψ, we do the following.

1. We “flatten” the rational(Rat & URat) modalities to simplify the formulae, eliminating
nested rational modalities by allotting witness variable for each rational subformulae .
Thus the resulting formulae will be of the form prop∧�ns[w1 ↔ RatI ,URat] · · ·∧�ns[wk ↔
RatI ,URat] where prop refers to some boolean formulae over atoms and RatI ,URat denotes
formulae of the form RatI re−atom, propURatI,re−atomprop, respectively. Each conjunct of
the form �ns[w1 ↔ RatI ,URat] is called as temporal definition.

2. The elimination of rational modalities is achieved by obtaining equisatisfiable MTL
formulae ψi over Xi, possibly a larger set of propositions than Σ ∪Wi corresponding to
each temporal definition Ti of ϕflat. Relativizing these MTL formulae and conjuncting
them, we obtain an MTL formula

∧
iRel(ψi,Σ) that is equisatisfiable to ϕ (see Figure 1

for relativization).
The above steps are routine [11], [12]. What remains is to handle the temporal definitions.

Embedding the Runs of the DFA

For any given ρ over Σ∪W , where W is the set of witness propositions used in the temporal
definitions T of the forms �ns[w ↔ RatI re−atom] or �ns[w ↔ xURatI′,re−atomy], the rational
expression re−atom has a corresponding minimal DFA recognizing it. We define an LTL
formula GOODRUN(φe) which takes a formula φe as a parameter with the following behaviour.
ρ, i |= GOODRUN(φe) iff for all k > i, (ρ, k |= φe)→ (ρ[i, k] ∈ L(re−atom)). To achieve this,
we use two new sets of symbols Threads and Merge for this information. This results in the
extended alphabet Σ ∪W ∪ Threads ∪Merge for the simple extension ρ′ of ρ. The behaviour
of Threads and Merge are explained below.

Consider re−atom = re(S). Let Are−atom = (Q, 2S, δ, q1, QF) be the minimal DFA for
re−atom and let Q = {q1, q2, . . . , qm}. Let In = {1, 2, . . . ,m} be the indices of the states.

S.N. Krishna, K. Madnani, and P. K. Pandya 77:7

Figure 2 Depiction of threads and merging. At time point 2.7, thread 2 is merged with 1, since
they both had the same state information. This thread remains inactive till time point 8.8, where it
becomes active, by starting a new run in state q1. At time point 8.8, thread 3 merges with thread 1,
while at time point 11, thread 2 merges with 1, but is reactivated in state q1.

Conceptually, we consider multiple runs of Are−atom with a new run (new thread) started at
each point in ρ. Threads records the state of each previously started run. At each step, each
thread is updated from it previous value according to the transition function δ of Are−atom
and also augmented with a new run in initial state. Potentially, the number of threads would
grow unboundedly in size but notice that once two runs are the same state at position i

they remain identical in future. Hence they can be merged into single thread (see Figure2).
As a result, m threads suffice. We record whether threads are merged in the current state
using variables Merge. An LTL formula records the evolution of Threads and Merge over any
behaviour ρ. We can define formula GOODRUN(φe) in LTL over Threads and Merge.

1. At each position, let Thi(qx) be a proposition that denotes that the ith thread is active
and is in state qx, while Thi(⊥) be a proposition that denotes that the ith thread is not
active. The set Threads consists of propositions Thi(qx),Thi(⊥) for 1 ≤ i, x ≤ m.

2. If at a position e, we have Thi(qx) and Thj(qy) for i < j, and if δ(qx, σe) = δ(qy, σe),
then we can merge the threads i, j at position e+ 1. Let merge(i, j) be a proposition that
signifies that threads i, j have been merged. In this case, merge(i, j) is true at position
e+ 1. Let Merge be the set of all propositions merge(i, j) for 1 ≤ i < j ≤ m.

We now describe the conditions to be checked in ρ′.
Initial condition(ϕinit)- At the first point of the word, we start the first thread and
initialize all other threads as ⊥ : ϕinit = ((Th1(q1)) ∧

∧
1<i≤m

Thi(⊥)).

Initiating runs at all points(ϕstart)- To check the rational expression within an
arbitrary interval, we need to start a new run from every point. ϕstart = �ns(

∨
i≤m

Thi(q1))

Disallowing Redundancy(ϕno−red)- At any point of the word, if i < j and Thi(qx)
and Thj(qx) are both true, qx 6= qy. ϕno−red =

∧
x∈In
�ns[¬

∨
1≤i<j≤m

(Thi(qx) ∧ Thj(qx))]

Merging Runs(ϕmerge)- If two different threads Thi,Thj(i < j) reach the same state qx on
reading the input at the present point, then we merge thread Thj with Thi. We remember
the merge with the proposition merge(i, j). We define a macro Nxt(Thi(qx)) which is true
at a point e if and only if Thi(qy) is true at e and δ(qy, σe) = qx, where σe ⊆ AP is the
maximal set of propositions true at e:

∨
{(qy,prop)∈(Q,2AP)|δ(qy,prop)=qx}

[prop∧Thi(qy)].

Let ψ(i, j, k, qx) be a formula that says that at the next position, Thi(qx) and Thk(qx)
are true for k > i, but for all j < i, Thj(qx) is not. ψ(i, j, k, qx) is given by
Nxt(Thi(qx))∧

∧
j<i

¬Nxt(Thj(qx))∧Nxt(Thk(qx)). In this case, we merge threads Thi,Thk,

and either restart Thk in the initial state, or deactivate the kth thread at the next position.
This is given by the formula NextMerge(i, k) = O[merge(i, k)∧(Thk(⊥)∨Thk(q1))∧Thi(qx)].
ϕmerge =

∧
x,i,k∈In∧k>i

�ns[ψ(i, j, k, qx)→ NextMerge(i, k)].

MFCS 2017

77:8 Making Metric Temporal Logic Rational

Figure 3 The linking thread at cj⊕u. The points in red are the oversampling integer points, and
so are τv + l and τv + u.

Propagating runs(ϕpro, ϕNO−pro)- If Nxt(Thi(qx)) is true at a point, and if for all
j < i, ¬Nxt(Thj(qx)) is true, then at the next point, we have Thi(qx). Let NextTh(i, j, qx)
denote the formula Nxt(Thi(qx)) ∧ ¬Nxt(Thj(qx)). The formula ϕpro is given by∧
i,j∈In∧i<j

�ns[NextTh(i, j, qx)→O[Thi(qx)∧¬merge(i, j)]]. If Thi(⊥) is true at the current

point, then at the next point, either Thi(⊥) or Thi(q1). The latter condition corresponds
to starting a new run on thread Thi. ϕNO−pro=

∧
i∈In
�ns{Thi(⊥)→O(Thi(⊥) ∨ Thi(q1))}

Let Run be the formula obtained by conjuncting all formulae explained above. Once we
construct the simple extension ρ′, checking whether the rational expression re−atom holds
in some interval I in the timed word ρ, is equivalent to checking that if u is the first
action point within I, and if Thi(q1) holds at u, then after a series of merges of the form
merge(i1, i),merge(i2, i1), . . .merge(j, in), at the last point v in the interval I, Thj(qf) is true,
for some final state qf . This is encoded as GOODRUN(qf). It can be seen that the number
of possible sequences of merges are bounded. Figure 2 illustrates the threads and merging.
To write an MTL formula that checks the truth of Rat[l,u)re−atom at a point v, we need to
oversample ρ′ as shown below.

I Lemma 6. Let T = �ns[w ↔ RatI re−atom] be a temporal definition built from Σ ∪W .
Then we synthesize a formula ψ ∈ MTL over Σ ∪W ∪ X such that T is equivalent to ψ
modulo oversampling.

Proof. Lets first consider the case when the interval I is bounded of the form [l, u). Consider
a point in ρ′ with time stamp τv. To assert w at τv, we look at the first action point after
time point τv + l, and check that GOODRUN(last(qf)) holds, where last(qf) identifies the
last action point just before τv + u. The first difficulty is the possible absence of time points
τv + l and τv + u. To overcome this difficulty, we oversample ρ′ by introducing points at
times t+ l, t+ u, whenever t is a time point in ρ′. These new points are labelled with a new
proposition ovs. Sadly, last(qf) cannot be written in MTL.

To address this, we introduce new time points at every integer point of ρ′. The starting
point 0 is labelled c0. Consecutive integer time points are marked ci, ci⊕1, where ⊕ is addition
modulo the maximum constant used in the time interval in the RatMTL formula. This helps
in measuring the time elapse since the first action point after τv + l, till the last action point
before τv + u as follows: if τv + l lies between points marked cj , cj⊕1, then the last integer
point before τv + u is uniquely marked cj⊕u.

Anchoring at τv, we assert the following at distance l: no action points are seen until
the first action point where Thi(q1) is true for some thread Thi. Consider the next point

S.N. Krishna, K. Madnani, and P. K. Pandya 77:9

where cj⊕u is seen. Let Thik1
be the thread to which Thi has merged at the last action

point just before cj⊕u. Let us call Thik1
the “last merged thread” before cj⊕u. The

sequence of merges from Thi till Thik1
asserts a prefix of the run that we are looking for

between τv + l and τv + u. To complete the run we mention the sequence of merges from
Thik1

which culminates in some Thik (qf) at the last action point before τv + u.
Anchoring at τv, we assert the following at distance u: we see no action points since
Thik (qf) at the action point before τv+u for some thread Thik , and there is a path linking
thread Thik1

to Thik since the point cj⊕u. We assert that the “last merged thread”, Thik1

is active at cj⊕u : this is the linking thread which is last merged into before cj⊕u, and
which is the first thread which merges into another thread after cj⊕u.

These two formulae thus “stitch” the actual run observed between points τv + l and τv + u.
The formal technical details can be seen in Appendix D in the full version. If I was an
unbounded interval of the form [l,∞), then we will go all the way till the end of the word,
and assert Thik (qf) at the last action point of the word. Thus, for unbounded intervals, we
do not need any oversampling at integer points. J

In a similar manner, we can eliminate the URat modality, the proof of which can be found
in Appendix E in the full version. If we choose to work on logic MITL + URat, we obtain
a 2EXPSPACE upper bound for satisfiability checking, since elimination of URat results in
an equisatisfiable MITL formula. This is an interesting consequence of the oversampling
technique; without oversampling, we can eliminate URat obtaining 1-TPTL (Appendix C,
full version). However, 1-TPTL does not enjoy the benefits of non-punctuality, and is
non-primitive recursive (Appendix F, full version).

4 Automaton-Metric Temporal Logic-Freeze Logic Equivalences

The focus of this section is to obtain equivalences between automata, temporal and freeze
logics. First of all, we identify a fragment of RatMTL denoted SfrMTL, where the rational
expressions in the formulae are all star-free. We then show the equivalence between po-1-clock
ATA, 1−TPTL, and SfrMTL (po-1-clock ATA ⊆ SfrMTL ⊆ 1−TPTL ≡ po-1-clock ATA). The
main result of this section gives a tight automaton-logic connection in Theorem 7, and is
proved using Lemmas 9, 10 and 11.

I Theorem 7. 1−TPTL, SfrMTL and po-1-clock ATA are all equivalent.

We first show that partially ordered 1-clock alternating timed automata (po-1-clock ATA)
capture exactly the same class of languages as 1−TPTL. We also show that 1−TPTL is
equivalent to the subclass SfrMTL of RatMTL where the rational expressions re involved in
the formulae are such that L(re) is star-free.

A 1-clock ATA [15] is a tuple A = (Σ, S, s0, F, δ), where Σ is a finite alphabet, S is a
finite set of locations, s0 ∈ S is the initial location and F ⊆ S is the set of final locations.
Let x denote the clock variable in the 1-clock ATA, and x ./ c denote a clock constraint
where c ∈ N and ./∈ {<,≤, >,≥}. Let X denote a finite set of clock constraints of the form
x ./ c. The transition function is defined as δ : S × Σ→ Φ(S ∪ Σ ∪X) where Φ(S ∪ Σ ∪X)
is a set of formulae defined by the grammar ϕ ::= >|⊥|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|s|x ./ c|x.ϕ where
s ∈ S, and x.ϕ is a binding construct corresponding to resetting the clock x to 0.

The notation Φ(S∪Σ∪X) thus allows boolean combinations as defined above of locations,
symbols of Σ, clock constraints and >,⊥, with or without the binding construct (x.). A
configuration of a 1-clock ATA is a set consisting of locations along with their clock valuation.
Given a configuration C, we denote by δ(C, a) the configuration D obtained by applying

MFCS 2017

77:10 Making Metric Temporal Logic Rational

δ(s, a) to each location s such that (s, ν) ∈ C. A run of the 1-clock ATA starts from the
initial configuration {(s0, 0)}, and proceeds with alternating time elapse transitions and
discrete transitions obtained on reading a symbol from Σ. A configuration is accepting iff it
is either empty, or is of the form {(s, ν) | s ∈ F}. The language accepted by a 1-clock ATA
A, denoted L(A) is the set of all timed words ρ such that starting from {(s0, 0)}, reading ρ
leads to an accepting configuration. A po-1-clock ATA is one in which (i) there is a partial
order denoted ≺ on the locations, such that whenever sj appears in Φ(si), sj ≺ si, or sj = si.
Let ↓ si = {sj | sj ≺ si}, (ii) x.s does not appear in δ(s, a) for all s ∈ S, a ∈ Σ.

I Example 8. Consider the po-1-clock ATA A = ({a, b}, {s0, sa, s`}, s0, {s0, s`}, δ) with
transitions δ(s0, b) = s0, δ(s0, a) = (s0∧x.sa)∨s`, δ(sa, a) = (sa∧x < 1)∨(x > 1) = δ(sa, b),
and δ(s`, b) = s`, δ(s`, a) = ⊥. The automaton accepts all strings where every non-last a has
no symbols at distance 1 from it, and has some symbol at distance > 1 from it.

I Lemma 9. po-1-clock ATA and 1−TPTL are equivalent in expressive power.

The translation from 1−TPTL to po-1-clock ATA is easy, as in the translation from MTL to po-
1-clock ATA. For the reverse direction, we start from the lowest location (say s) in the partial
order, and replace the transitions of s by a 1-TPTL formula that models timed words which
are accepted, when started in s. The accepting behaviours of each location s, denoted Beh(s)
is computed bottom up. The 1-TPTL formula that we are looking for is Beh(s0) where s0 is
the initial location. In example 8, Beh(s`) = �nsb, Beh(sa)=(x < 1) Uns(x > 1), Beh(s0) =
[(a ∧ x.OBeh(sa)) ∨ b] W(a ∧OBeh(s`)) =((a ∧ (x.O[(x < 1) Unsx > 1])) ∨ b) W(a ∧O�nsb).
Step by step details for Lemma 9 can be seen in Appendix H of the full version.

I Lemma 10. SfrMTL ⊆ 1− TPTL.

The proof of Lemma 10 can be found in Appendix I of the full version. The intuition is to
freeze a clock x at the current point, and write an LTL formula equivalent to the star-free
expression over an interval I which can be constrained checking x ∈ I in the LTL formula.

I Lemma 11. (po-1-clock ATA to SfrMTL) Given a po-1-clock ATA A, we can construct a
SfrMTL formula ϕ such that L(A) = L(ϕ).

Proof. (Sketch) We give a proof sketch here, a detailed proof can be found in Appendix
J of the full version. Let A be a po-1-clock ATA with locations S = {s0, s1, . . . , sn}. Let
K be the maximal constant used in the guards x ∼ c occurring in the transitions. Let
R2i = [i, i], R2i+1 = (i, i + 1), 0 ≤ i < K and R+

K = (K,∞) be the regions R of x. Let
Rh ≺ Rk denote that region Rh precedes region Rk. For each location s,Beh(s) as computed in
Lemma 9 is a 1-TPTL formula that gives the timed behaviour starting at s, using constraints
x ∼ c since the point where x was frozen. In example 8, Beh(sa)=(x < 1) Uns(x > 1), allows
symbols a, b as long as x < 1 keeping the control in sa, has no behaviour at x = 1, and allows
control to leave sa when x > 1. For any s, we “distribute” Beh(s) across regions by untiming
it. In example 8, Beh(sa) is �ns(a∨ b) for regions R0, R1, it is ⊥ for R2 and is (a∨ b) for R+

1 .
Given any Beh(s), and a pair of regions Rj � Rk, such that s has a non-empty behaviour in
region Rj , and control leaves s in Rk, the untimed behaviour of s between regions Rj , . . . , Rk
is written as LTL formulae ϕj , . . . , ϕk. This results in a “behaviour description” (or BD
for short) denoted BD(s,Rj , Rk) = {BD1,BD2, . . . ,BDw}2 where each BDi is a 2K + 1

2 Note that if s is one of the lowest locations in the partial order, this is a singleton set. We will denote
the elements of BD(s,Rj , Rk) as BDno..

S.N. Krishna, K. Madnani, and P. K. Pandya 77:11

Figure 4 A po-1-clock ATA with initial location s1 and s2, s3 are accepting.

tuples with BDi[Rl] = ϕl for j ≤ l ≤ k, and BD[R] = > denoting “dont care” for the other
regions. Let BDSet(s) denote the union of all BDs for a location s. For the initial location
s0, consider all BDi ∈ BD(s0, Rj , Rk) that have a behaviour starting in Rj , and ends in
an accepting configuration in Rk. Each LTL formula BDi[Ri] is replaced with a star-free
rational expression denoted re(BD(s0, Rj , Rk)[Ri]). Then BD(s0, Rj , Rk) is transformed into
a SfrMTL formula ϕ(s0, Rj , Rk) =

∨
BDi∈BD(s0,Rj ,Rk)

∧
j≤g≤k RatRg

re(BDi[Rg]). The language

accepted by the po-1-clock ATA A is then given by
∨

0≤j≤k≤2K ϕ(s0, Rj , Rk).

Computing BD(s, Ri, Rj) for a location s and pair of regions Ri � Rj . We first
compute BD(s,Ri, Rj) for locations s which are lowest in the partial order, followed by
computing BD(s′, Ri, Rj) for locations s′ which are higher in the order. For any location s,
Beh(s) has the form ϕ or ϕ1 Wϕ2 or ϕ1 Unsϕ2, where ϕ,ϕ1, ϕ2 are disjunctions of conjunctions
over Φ(S ∪ Σ ∪X), where S is the set of locations with or without the binding construct
x., and X is a set of clock constraints of the form x ∼ c. Each conjunct has the form
ψ ∧ x ∈ R where ψ ∈ Φ(Σ ∪ S) and R ∈ R. Let ϕ1 =

∨
(Pi ∧ Ci), ϕ2 =

∨
(Qj ∧ Ej) where

Pi, Qj ∈ Φ(Σ ∪ S) and Ci, Ej ∈ R. Let C and E be shorthands for any Ck, El.
If Beh(s) is an expression without U,W (the case of ϕ above), then BD(s,Ri, Ri) is

defined for a region Ri if ϕ =
∨

(Qj ∧ Ej) and there is some El with x ∈ Ri. It is a
2K + 1 tuple with BD(s,Ri, Ri)[Ri] = Ql

3we know that , and the rest of the entries are
> (for dont care). If Beh(s) has the form ϕ1 Wϕ2 or ϕ1 Unsϕ2, then for Ri � Rj , and
a location s, BD(s,Ri, Rj) = {BD1} where BD1 is a 2K + 1 tuple with (i) formula > in
regions R0, . . . , Ri−1, Rj+1, . . . , R

+
K , (ii) If Ck = El = (x ∈ Rj) for some Ck, El, then the

LTL formula in region Rj is Pk UQl if s is not accepting, and is Pk WQl if s is accepting, (iii)
If no Ck is equal to any El, and if El = (x ∈ Rj) for some l, then the formula in region Rj is
Ql. If Cm = (x ∈ Ri) for some m, then the formula for region Ri is �nsPm. If there is some
Ch = (x ∈ Rw) for i < w < j, then the formula in region Rw is �nsPh ∨ ε, where ε signifies
that there may be no points in regions Rw. If there are no Cm’s such that Cm = (x ∈ Rw)
for Ri ≺ Rw ≺ Rj , then the formula in region Rw is ε. ε is used as a special symbol in LTL
whenever there is no behaviour in a region.

BD(s, Ri, Rj) for location s lowest in po. Let s be a location that is lowest in the partial
order. In general, if s is the lowest in the partial order, then Beh(s) has the form ϕ1 Wϕ2
or ϕ1 Unsϕ2 or ϕ where ϕ,ϕ1, ϕ2 are disjunctions of conjunctions over Φ(Σ ∪ X). Each
conjunct has the form ψ ∧ x ∈ R where ψ ∈ Φ(Σ) and R ∈ R. See Figure 4, with regions

3 We abuse the notation by indexing the BD(s,Ri, Ri)[Ri] instead of BD when it is a singleton set.

MFCS 2017

77:12 Making Metric Temporal Logic Rational

Figure 5 Combining BDs

R0, R1, R2, R
+
1 , and some example BDs. In Figure 4, using the BDs of the lowest location s3,

we write the SfrMTL formula for Beh(s3) : ψ(s3) = ϕR0(s3) ∧ ϕR1(s3) ∧ ϕR2(s3) ∧ ϕR+
1

(s3),
where each ϕR describes the behaviour of s3 starting from region R. For a fixed region
Ri, ϕRi

(s3) is
∧
Rg≺Ri

RatRg
ε ∧ RatRi

Σ+ → {
∨
Ri≺Rj

ϕ(s3, Ri, Rj)}, where ϕ(s3, Ri, Rj) is
described above. RatRg

ε means that there is no behaviour in Rg. ϕR0(s3) is given by
RatR0Σ+ → {(RatR0a

∗ ∧ RatR1 [a∗ + ε] ∧ RatR2 [a∗ + ε] ∧ RatR+
1

[a∗ + a∗b])}.

BD(s, Ri, Rj) for a location s which is higher up . If s is not the lowest in the partial
order, then Beh(s) can have locations s′ ∈↓ s. s′ occurs as O(s′) or x.O(s′) in Beh(s). For
x.OBeh(s3) in BD(s,Ri, Rj), since the clock is frozen, we plug-in the SfrMTL formula ψ(s3)
computed above for x.OBeh(s3) in BD(s1, Ri, Rj). For instance, in figure 4, x.OBeh(s3)
appears in BD(s2, R2, R2)[R2]. We simply plug in the SfrMTL formula ψ(s3) in its place.
Likewise, for locations s, t, if OBeh(t) occurs in BD(s,Ri, Rj)[Rk], we look up BD(t, Rk, Rl) ∈
BDSet(t) for all Rk � Rl and combine BD(s,Ri, Rj),BD(t, Rk, Rl) in a manner described
below. This is done to detect if the “next point” for t has a behaviour in Rk or later.

(a) If the next point for t is in Rk itself, then we combine all BD1 ∈ BD(s,Ri, Rj) with every
BD2 ∈

⋃
Rk�Rl

BD(t, Rk, Rl) ⊆ BDSet(t) as follows4. combine(BD1,BD2) results in BD3

such that BD3[R]=BD1[R] for R ≺ Rk, BD3[R]=BD1[R] ∧ BD2[R] for Rk ≺ R, where
∧ denotes component wise conjunction. BD3[Rk] is obtained by replacing OBeh(s2) in
BD1[Rk] with BD2[Rk]. Doing so enables the next point in Rk, emulating the behaviour
of t in Rk.

(b) Assume the next point for t lies in Rb, Rk ≺ Rb. The difference with case (a) is that
we combine BD1 ∈ BD(s,Ri, Rj) with BD2∈

⋃
Rk�Rl

BD(t, Rk, Rl) ⊆ BDSet(t). Then

combine(BD1,BD2) results in a BD, say BD3 such that BD3[R] = BD1[R] for R ≺ Rk,
BD3[R] = BD1[R] ∧ BD2[R] for all Rb � R, and BD3[R] = ε for Rk ≺ R ≺ Rb. The
OBeh(t) in BD1[Rk] is replaced with �⊥ to signify that the next point is not enabled
for t. See Figure 5 where Rb = R2. The conjunction with �⊥ in R0 signifies that the
next point for s2 is not in R0; the ε in R1 signifies that there are no points in R1 for s2.
Conjuncting �⊥ in a region signifies that the next point does not lie in this region.

We look at the “accepting” BDs in BDSet(s0), viz., all BD(s0, Rj , Rk), such that acceptance
happens in Rk, and s0 has a behaviour starting in Rj . The LTL formulae BDi[R] [where
BDi ∈ BDSet(s0)] is replaced with star-free expression re(BDi[R]). BDSet(s0) gives an SfrMTL
formula ϕ=

∨
BDi∈BDSet(s0)

∧
Rj�R�Rk

RatRre(BDi[R]) whose language is L(ϕ)=L(A). J

4 Take cross product of two sets and then applying combine operation

S.N. Krishna, K. Madnani, and P. K. Pandya 77:13

5 Discussion

We propose RatMTL which significantly increases the expressive power of MTL and yet
retains decidability over pointwise finite words. The Rat operator added to MTL syntactically
subsumes several other modalities in literature including threshold counting, modulo counting
and the Pnueli modality. The reduction of RatMTL to equisatisfiable MTL has element-
ary complexity and allows us to identify two fragments of RatMTL with 2EXPSPACE and
EXPSPACE satisfiability. In [11], oversampled temporal projections were used to reduce MTL
with punctual future and non-punctual past to MTL. Our reduction can be combined with
the one in [11] to obtain decidability of RatMTL and elementary decidability of MITL + URat
+ non-punctual past. These are amongst the most expressive decidable extensions of MTL
known so far. The exact complexity class for satisfiability of MITL + URat is an interesting
open question. We also show an exact logic-automaton correspondence between the fragment
SfrMTL and po-1-clock ATA. It is not difficult to see that full RatMTL can be reduced to
equivalent 1 clock ATA. This provides an alternative proof of decidability of RatMTL but the
proof will not extend to decidability of RatMTL+ non-punctual past, nor prove elementary
decidability of MITL + URat+non-punctual past. Hence, we believe that our proof technique
has some advantages. An interesting related formalism of timed regular expressions was
defined by Asarin, Maler, Caspi, and shown to be expressively equivalent to timed automata.
Our RatMTL has orthogonal expressive power, and it is boolean closed (thus the decidability
of universality checking comes for free). The exact expressive power of RatMTL which is
between 1-clock ATA and po-1-clock ATA is open.

References
1 R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. J.ACM,

43(1):116–146, 1996.
2 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.

Inf. Comput., 104(1):35–77, 1993. doi:10.1006/inco.1993.1025.
3 Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,

49(2):172–206, 2002. doi:10.1145/506147.506151.
4 Augustin Baziramwabo, Pierre McKenzie, and Denis Thérien. Modular temporal logic. In

14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 344–351, 1999. doi:10.1109/LICS.1999.782629.

5 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL
and MTL. In FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December 15-18, 2005,
Proceedings, pages 432–443, 2005. doi:10.1007/11590156_35.

6 Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Springer, 2006.
7 IEEE P1850-Standard for PSL-Property Specification Language, 2005.
8 Jesper G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Ann.

Pure Appl. Logic, 96(1-3):187–207, 1999. doi:10.1016/S0168-0072(98)00039-6.
9 Philippe Herrmann. Renaming is necessary in timed regular expressions. In Foundations of

Software Technology and Theoretical Computer Science, 19th Conference, Chennai, India,
December 13-15, 1999, Proceedings, pages 47–59, 1999. doi:10.1007/3-540-46691-6_4.

10 P. Hunter. When is metric temporal logic expressively complete? In CSL, pages 380–394,
2013.

11 S. N. Krishna K. Madnani and P. K. Pandya. Partially punctual metric temporal logic is
decidable. In TIME, pages 174–183, 2014.

MFCS 2017

http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1145/506147.506151
http://dx.doi.org/10.1109/LICS.1999.782629
http://dx.doi.org/10.1007/11590156_35
http://dx.doi.org/10.1016/S0168-0072(98)00039-6
http://dx.doi.org/10.1007/3-540-46691-6_4

77:14 Making Metric Temporal Logic Rational

12 Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric tem-
poral logic with counting. In Foundations of Software Science and Computation Structures
- 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, pages 335–352, 2016.

13 F. Laroussinie, A. Meyer, and E. Petonnet. Counting ltl. In TIME, pages 51–58, 2010.
14 K. Lodaya and A. V. Sreejith. Ltl can be more succinct. In ATVA, pages 245–258, 2010.
15 J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages

188–197, 2005.
16 A. Rabinovich. Complexity of metric temporal logic with counting and pnueli modalities.

In FORMATS, pages 93–108, 2008.

	Introduction
	Timed Temporal Logics
	Satisfiability of RatMTL and Complexity
	Proof of Theorem 4.1

	Automaton-Metric Temporal Logic-Freeze Logic Equivalences
	Discussion

