56 research outputs found

    Floating band D2D:exploring and exploiting the potentials of adaptive D2D-enabled networks

    Get PDF
    In this paper, we propose Floating Band D2D, an adaptive framework to exploit the full potential of Device-to-Device (D2D) transmission modes. We show that inband and outband D2D modes exhibit different pros and cons in terms of complexity, interference, and spectral efficiency. Moreover, none of these modes is suitable as a one-size-fits-all solution for today's cellular networks, due to diverse network requirements and variable users' behavior. Therefore, we unveil the need for going beyond traditional single-band mode-selection schemes. Specifically, we model and formulate a general and adaptive multi-band mode selection problem, namely Floating Band D2D. The problem is NP-hard, so we propose simple yet effective heuristics. Our results show the superiority of the Floating Band D2D framework, which dramatically increases network utility and achieves near complete fairness

    Towards D2D-Enhanced Heterogeneous Networks

    Get PDF
    In this paper, we examine upcoming 5G networks where the support of device-to-device (D2D) communication is expected to be a key asset for operators and users alike. Firstly, we argue the need to functionally integrate D2D and infrastructure-to-device (I2D) modes. Next, we address practical issues such as integrated resource scheduling of D2D communication within heterogeneous networks, proposing an extension of the proportional fairness algorithm, which we call multi-modal proportional fairness (MMPF). We evaluate the impact of D2D in a two-tier scenario combining macro- and micro- coverage, finding that, although I2D retains a clear edge for general-purpose downloading, D2D is an appealing solution for localized transfers as well as for viral content

    Radio Resource Sharing for MTC in LTE-A: An Interference-Aware Bipartite Graph Approach

    Get PDF
    International audienceTraditional cellular networks have been considered the most promising candidates to support machine to machine (M2M) communication mainly due to their ubiquitous coverage. Optimally designed to support human to human (H2H) communication, an innovative access to radio resources is required to accommodate M2M unique features such as the massive number of machine type devices (MTDs) as well as the limited data transmission session. In this paper, we consider a simultaneous access to the spectrum in an M2M/H2H coexistence scenario. Taking the advantage of the new device to device (D2D) communication paradigm enabled in long term evolution-advanced (LTE-A), we propose to combine M2M and D2D owing to the MTD low transmit power and thus enabling efficiently the resource sharing. First, we formulate the resource sharing problem as a maximization of the sum-rate, problem for which the optimal solution has been proved to be non deterministic polynomial time hard (NP-Hard). We next model the problem as a novel interference-aware bipartite graph to overcome the computational complexity of the optimal solution. To solve this problem, we consider here a two-phase resource allocation approach. In the first phase, H2H users resource assignment is performed in a conventional way. In the second phase, we introduce two alternative algorithms, one centralized and one semi-distributed to perform M2M resource allocation. The computational complexity of both introduced algorithms whose aim is to solve the M2M resource allocation, is of polynomial complexity. Simulation results show that the semi-distributed M2M resource allocation algorithm achieves quite good performance in terms of network aggregate sum-rate with markedly lower communication overhead compared to the centralized one

    Resource allocation for network-controlled device-to-device communications in LTE-Advanced

    Get PDF
    Network-controlled device-to-device (D2D) communication allows cellular users to communicate directly, i.e., without passing through the eNodeB, while the latter retains control over resource allocation. This allows the same time–frequency resources to be allocated to spatially separated D2D flows simultaneously, thus increasing the cell throughput. This paper presents a framework for: (1) selecting which communications should use the D2D mode, and when, and (2) allocating resources to D2D and non-D2D users, exploiting reuse for the former. We show that the two problems, although apparently similar, should be kept separate and solved at different timescales in order to avoid problems, such as excessive packet loss. We model both as optimization problems, and propose a heuristic solution to the second, which must be solved at millisecond timescales. Simulation results show that our framework is practically viable, it avoids the problem of packet losses, increases throughput and reduces delays

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Performance Analysis for 5G cellular networks: Millimeter Wave and UAV Assisted Communications

    Get PDF
    Recent years have witnessed exponential growth in mobile data and traffic. Limited available spectrum in microwave (μ\muWave) bands does not seem to be capable of meeting this demand in the near future, motivating the move to new frequency bands. Therefore, operating with large available bandwidth at millimeter wave (mmWave) frequency bands, between 30 and 300 GHz, has become an appealing choice for the fifth generation (5G) cellular networks. In addition to mmWave cellular networks, the deployment of unmanned aerial vehicle (UAV) base stations (BSs), also known as drone BSs, has attracted considerable attention recently as a possible solution to meet the increasing data demand. UAV BSs are expected to be deployed in a variety of scenarios including public safety communications, data collection in Internet of Things (IoT) applications, disasters, accidents, and other emergencies and also temporary events requiring substantial network resources in the short-term. In these scenarios, UAVs can provide wireless connectivity rapidly. In this thesis, analytical frameworks are developed to analyze and evaluate the performance of mmWave cellular networks and UAV assisted cellular networks. First, the analysis of average symbol error probability (ASEP) in mmWave cellular networks with Poisson Point Process (PPP) distributed BSs is conducted using tools from stochastic geometry. Secondly, we analyze the energy efficiency of relay-assisted downlink mmWave cellular networks. Then, we provide an stochastic geometry framework to study heterogeneous downlink mmWave cellular networks consisting of KK tiers of randomly located BSs, assuming that each tier operates in a mmWave frequency band. We further study the uplink performance of the mmWave cellular networks by considering the coexistence of cellular and potential D2D user equipments (UEs) in the same band. In addition to mmWave cellular networks, the performance of UAV assisted cellular networks is also studied. Signal-to-interference-plus-noise ratio (SINR) coverage performance analysis for UAV assisted networks with clustered users is provided. Finally, we study the energy coverage performance of UAV energy harvesting networks with clustered users

    An adaptive social-aware device-to-device communication mechanism for wireless networks

    Get PDF
    Device-to-Device (D2D) communication is an essential element in 5G networks, which enables users to communicate either directly without network assistance or with minimum signaling through a base station. For an effective D2D communication, related problems in mode and peer selection need to be addressed. In mode selection, the problem is how to guarantee selection always chooses the best available mode. In peer selection, the problem is how to select optimum peers among surrounding peers in terms of connection conditions and social relationships between peers. The main objectives of this research are to identify mode selection between devices and establishing a connection with the best D2D pair connection without privacy leakage. Multi-Attribute Decision Making and Social Choice theories are applied to achieve the objectives. Mode selection scheme is based on Received Signal Strength (RSS), delay and bandwidth attributes to choose and switch among the available modes intelligently based on the highest ranking. Then, the peering selection scheme is proposed using RSS, delay, bandwidth and power attribute to find an optimum peer with concerning social relationship, by evaluating trust level between peers and excluding the untrusted peers from ranking which will increase the optimum quality of D2D connection. The proposed schemes are validated and tested using MATLAB. Two main scenarios, namely crowded network and user speed were considered to evaluate the proposed mechanism with three existing approaches where the selection is based on a single attribute. The obtained results showed that the proposed mechanism outperforms other approaches in terms of delay, signal to noise ratio, delivery ratio and throughput with better performance up to 70%. The proposed mechanism provides a smooth switching between different modes and employs an automatic peering selection with trusted peers only. It can be applied in different types of network that serves the massive number of users with different movement speed of the user

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675
    • …
    corecore