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Abstract—Fifth generation and beyond (5G+) systems will
support novel cases, and hence, require new network architecture.
In this work, network flying platforms (NFPs) as aerial hubs
are considered in future 5G+ networks to provide fronthaul
connectivity to small cells (SCs). We aim to find the optimal
association between the NFPs and SCs to maximize the total
sum rate subject to quality-of-service (QoS), bandwidth, and sup-
ported number of links constraints. The formulated optimization
problem is an integer linear program and the optimal association
between the NFPs and SCs is found using numerical solvers at
the expense of high computational complexity. We propose two
algorithms (centralized and distributed) to reach a sub-optimal
association at reduced complexity. Simulation results show that
the performance of the proposed algorithms approaches the
counterpart of its optimal solution and outperforms the state-
of-the-art techniques from the literature.

Index Terms—5G+, integer linear program, network flying
platforms (NFPs), small cells (SCs), unmanned aerial vehicles
(UAVs)

I. INTRODUCTION

In recent years, wireless communication needs have wit-
nessed a continuous growth, which demands more complex
infrastructure to cope with. Fifth generation and beyond (5G+)
systems are expected to adopt several changes in their network
architecture, construction, and deployment to be compatible
with the latest technologies and end users’ needs. 5G+ systems
should support a 10 to 100 times greater number of connected
devices and typical user data rate [1], [2].

Some of the key technologies that can be used in 5G+ wire-
less systems to satisfy the desired performance are massive
MIMO, Device to Device communication, spectrum sharing
with cognitive radio, ultra dense networks, multi-radio ac-
cess technology, full duplex communication, millimeter wave
communication, energy harvesting communication and Cloud
Technologies [3], [4]. Fiber has been used for fronthaul links;
however, it has some issues, such as high cost and the need
to minimize time-to-market [5], [6]. On the other hand, free-
space optical (FSO)/microwave links are cost-effective, easy-
to-deploy and carry traffic for SCs from the core network.
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However, FSO/microwave systems lead to less coverage
due to short-range communication, and are affected by any
obstacles or animals in the environment, which hinders the
transmission. Furthermore, FSO is affected by weather (rain,
snow, and fog). In contrast, NFPs are cost-effective and
scalable. NFPs are capable of hovering at an altitude ranging
from a few hundred meters and up to 20 kms to mitigate
unfavorable weather conditions [7], which cannot be achieved
using a fixed FSO/microwave.

Moreover, the regulators of drone operations can dictate
when to operate the NFPs depending on the weather condi-
tions. An example of practical applications for NFPs that are
capable of operating at different weather conditions is weather
resistant drones equipped with a built in WiFi chip to support
all-time connectivity even in raining, snowing, lightning, and
windy weather [8]. Additionally, waterproof drones in [8]
can assist operation in raining weather. Furthermore, artificial
intelligence can be used to predict weather conditions and
improve the operation of NFPs [9].

As can be seen from the previous discussion, the effect
of the bad weather conditions on the NFPs can be reduced
or at least controlled which is not the case in the FSO/
microwave links. Another advantage of NFPs is that NFPs
can be considered an affordable solution to extend coverage
in rural areas that do not have the required infrastructure [10].
NFPs also assist in maintaining the communications in case of
failure of the existing infrastructure that may happen in case
of disasters such as: earthquakes, tsunami, flooding, and land
sliding [11]–[13]. It is expected that NFPs can overcome the
shortcomings of the fiber and FSO in 5G+ systems [7].

Network flying platforms (NFPs) such as unmanned aerial
vehicles (UAVs), drones, and unmanned balloons systems have
attracted industry and academic attention in the last couple of
years [14], [15] as candidate solutions to support coverage
of dense networks. The integration of NFPs with 5G+ capa-
bilities will allow much greater connectivity, lower latency,
and quick transfer of high-precision data. This aggregation of
5G+ networks and NFPs is powerful, giving way to many
new capabilities and improvements in wireless applications.
In comparing with the static ground macro base station NFP
is more scalable. the integration of NFPs with wireless and
mobile networks is expected to bring very high spectral
efficiency and solves many communication challenges. The
rapid and dynamic deployment of NFPs and their reliable line-
of-sight (LoS) communication links are the main advantages
of NFP-based communications.
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Naqvi et al. [16] presented a case study of combining UAVs
in a wireless network, with both high- and low-power BSs.
The objective was to investigate if UAV deployment could
fulfill higher data rate requirements in a 5G network utilizing
mmWave technology while ensuring an acceptable level of the
power consumed. They concluded that using UAVs with the
conventional cellular network improved the energy efficiency
while sustaining the QoS requirements.

Ahmadi et al. [14] has presented a novel layered architecture
of the future cellular networks. NFPs of various types flying
in low / medium / high layers are considered to provide
additional capacity and expand the coverage. In [17], NFPs
are employed as fronthaul hubs to connect SCs with the
core network and a greedy algorithm was designed to solve
the association problem of NFPs and SCs. Utilizing drone
small cells (DSCs) as aerial base stations to support cellular
networks was proposed in [18], where the optimal height of
DSCs to minimize the required transmit power for covering
a target area was found. A drone-BSs deployment plan was
provided in [19] to serve the users based on their traffic
requirements while minimizing the number of required drones.
In particular, the number of drone-BSs and their 3D placement
was estimated while satisfying the coverage and capacity
constraints of the system.

Few algorithms (centralized and distributed) have been
proposed to connect air drones and balloons with traditional
small cells of the cellular network while maximizing the
system capacity. In this work, a heterogeneous network that
consists of SCs, NFPs, and the ground core network is studied
as well as; the association problem between NFPs with SCs
to maximize the network total sum rate is also studied. Two
algorithms (centralized and distributed) are proposed, where
each NFP is associated with one or more SCs. We ensure that
necessary quality-of-service (QoS) requirements are met.

Practical constraints were included in our optimization prob-
lem, such as considering interference between NFPs and SCs,
the maximum number of links and the maximum bandwidth
that the NFP can support. NFPs act as a hub to provide
fronthaul connectivity between the SCs and the core network.
Hence, the association problem of SCs and NFPs is an
important problem to enhance the performance of the system.
These algorithms enhance the running time speed and perform
a greedy search with higher data rate demands.

The main contributions of this work can be summarized as
follows.
• We design a centralized resource allocation based on a

weighted bipartite matching algorithm (Hungarian algo-
rithm) to find the best association between NFPs and SCs
that maximizes the system’s total sum rate subject to QoS
constraints (the SINR). This guarantees the performance
while satisfying all constraints and notably outperforming
other existing algorithms.

• We design a distributed algorithm based on a stable
marriage matching scheme to maximize the total sum
rate, while requiring only local information of NFPs and
SCs, subject to QoS constraints. The main advantage
of this distributed algorithm is the reduction of the

necessary feedback overhead, hence reducing the system
complexity.

• Furthermore, we compare our work with what is studied
in [20]. Indeed, our solution is different from [20] and
this difference can be explained as follows. The SCs
in [20] send association requests to the NFP with the
highest SINR. Each NFP selects the SCs depending on its
available bandwidth and number of links. The distributed
algorithm in [20] does not re-associate the rejected SCs
with other NFPs. To overcome this drawback, in our pro-
posed distributed algorithm we used the staple marriage
matching algorithm which guarantees that each SC is
matched with one NFP (either real or dummy).

• Finally, we provide extensive simulation results to assess
the performance of the proposed algorithms in realistic
conditions.

The rest of this paper is organized as follows. Related
works are presented in Section II. A description of the system
model and the problem formulation is provided in Section III.
We discuss existing algorithm in IV. Section V discusses the
proposed algorithms. In Section VI, the performance of the
proposed algorithms is presented. Finally, our conclusion is
presented in Section VII.

II. RELATED WORK

5G and 5G+ aim for systems with higher capacity, increased
data rate, reduced latency and cost. Moreover these systems
are expected to be energy efficient and capable of handling
massive device connectivity [21].

Yu et al. [22], proposed a new paradigm of the 5G-enabled
vehicular network, to provide efficient and elastic services for
mobile applications which require vast bandwidth resource
and high computing capability. They discussed the cloudlet
resource management approach which includes resource allo-
cation and sharing. Furthermore, they employed a matrix game
to solve the problem and use Karush-Kuhn-Tucker conditions
to work out the explicit solutions of global optimization.

Lotfi et al. [23], studied a cell planning problem in 5G to
determine the number and the location of base stations (BSs)
with fiber backhaul and BSs with wireless self-backhauled.
They proposed an algorithm to minimize deployment costs
to meet coverage and capacity constraints with the minimum
number of BSs. Furthermore, they applied a meta-heuristic
algorithm to solve the proposed cell planning problem. They
further developed an efficient meta-heuristic algorithm.

Shah et al. [20] employed NFP at different altitudes, as
aerial backhaul hubs. The association problem of NFP-hubs
and small-cells was solved while taking into consideration
backhaul links and NFP related constraints. These include the
maximum number of supported links and bandwidth. They
presented a distributed solution, which performed a greedy
search to maximize the total sum rate of the overall network,
where they depended on the preferred SINR as the first step
to associate the SCs and NFPs. A drawback of this approach
is that if more than one SC try to associate with a single NFP,
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and that NFP cannot associate with all of the SCs; then the
unassigned SC will not try to associate with another NFP.

Shah et al. [17], solved the association problem of NFPs and
SCs for the network. The objective was to serve the maximum
number of SCs without any consideration (like the total sum
rate). Their work presented two simple greedy algorithms, cen-
tralized and distributed algorithms. Thus, centralization was
used when the system needed to decrease power consumption
and distribution was used when it needed to reduce latency.

Mozaffari et al. [24] proposed an approach for deploying
UAVs to provide wireless service to ground users while
minimizing the overall UAV transmit power needed to satisfy
the users data rate. Hence, they tried to derive the optimal
coverage area and locations of UAVs that minimize the re-
quired transmit power. Furthermore, Mlika et al. [25], studied
the user association problem under QoS requirements in a
heterogeneous and small cells network (HetSNet). This piece
of work proposed a completely distributed algorithm which
assumes no coordination between the base stations. Their
ultimate goal was to design a fully distributed algorithm to
maximizes the number of associated users.

In [26], they proposed low-complexity Subgrouping algo-
rithm, to effectively perform subgroup formation in Satellite-
Long Term Evolution systems. The goals of their algorithm
were achieving high scalability; the computational cost didn’t
depend on the available resources, and reaching close to
optimum performance through a novel resource allocation
strategy.

AlQerm et al. [27] studied the power allocation problem
for the downlink transmission in a spectrum sharing multi-
tier 5G environment. They proposed an online learning based
approach to assigning transmission power to reduce the overall
power consumption while maintaining QoS. Also, the scheme
employed an approximation mechanism for the Q-value, which
reduced the state/action space and accelerate the speed of
convergence.

Abdelhadi et al. [28] introduced an approach for optimal
resource allocation from multiple carriers for users in fourth
generation long term evolution (4G-LTE) system. They used
logarithmic and sigmoidal-like utility functions to represent
the user applications running on different user equipment
(UE)s. To solve the problem, they implemented a distributed
rate allocation algorithm that approximated the optimal rate
and optimal price. All UEs requested for resources from the
nearby Evolved NodeBs (eNodeBs). eNodeB set a price for
resource based on the sent UE requests. In case UE had more
than one nearby eNodeB, it chose the one with the lowest
price and started requesting resources. If the allocated rate
was not enough or the price of the resources increased, the
UE began to allocate the rest of the required resources from
another eNodeB. This was done iteratively until the optimal
rates were allocated in the 4G-LTE mobile network.

Abdelhadi et al. [29] discussed another resource allocation
optimization problem in 4G-LTE with users running multiple
applications. Where the objective was to allocate the resources

optimally with a utility proportional fairness policy, they
solved the problem by implementing a two-stage algorithm.
First-stage allocated the rates to the UEs. Each UE started with
sending an initial request wi(n) to the eNodeB. The eNodeB
calculated the difference between the received request wi(n)
and the previously received request wi(n1), if the difference
was less than a pre-specified threshold the algorithm exited. If
the value was greater than the threshold, eNodeB calculated
the shadow price and sent it to all the UEs. Each UE received
the shadow price to solve the rate. The rate was used to
calculate the new request wi(n). This process was repeated
until |wi(n)wi(n1)| was less than the threshold. In the second
stage of resource allocation, the rates to the jth application in
ith UE ri, j were allocated internally in the UE. The UE used
the allocated rate in the first-stage and solved the problem.

Zulhasnine et al. [30] proposed a greedy heuristic algorithm
that could mitigate interference to the primary cellular network
using channel gain information. They provided two phases
downlink (DL) and uplink (UL) algorithm to maximize the
sum rate of the primary cellular UEs and secondary D2D
UEs while maintaining a minimum SINR. Both in the UL
and DL phases, the algorithm sorted the cellular user list C
in descending order based on the channel quality indicator
(CQI). After that, the algorithm repeated the following until
there was no more D2D or cellular users in the list: first, the
algorithm selected the resource blocks (RBs) with cth largest
value and found the D2D transmitter d for which the channel
gain was minimum. Then, the algorithm found the SINR of
the cellular UE and D2D communication, respectively. If the
SINR guaranteed the target SINR, then share all RBs of the
UE c with D2D connection d.

Liang et al. [31] defined a utility function to refer to a
user’s benefit from all possible resource allocation amounts.
They denoted the utility functions as U(x) where x was
the amount of resource and U(x) was the utility obtained
from that allocation. They proposed a Maximum Segmental
Slope (MSS) Resource Allocation Algorithm to maximize the
utility derived by user’s flow for a bandwidth allocation while
the total bandwidth did not exceed the total link capacity.
MSS started by initializing the flow bandwidth to zero; then
it initialized the remaining bandwidth to channel capacity.
After that, the algorithm kept repeating the following until
the remained bandwidth equalled zero: first, for each flow, it
considered a line on the utility function graph and determined
the point to which a line would connect to the highest slope
on the Utility Function graph. Second, the algorithm selected
the flow that had the most lucrative incremental allocation. If
the remaining bandwidth was less than the purchasing band-
width, the algorithm repeated the second point. Otherwise, the
algorithm would update the flow and remaining bandwidth.

Padaganur et al. [32] Proposed an optimal resource and
power allocation using a Feed Forward Neural Network. They
defined the communication radius of the covered area by
the evolved node base station (eNB) nodes as Femtocells
to improve the effective throughput of the system. In their
algorithm, each Femtocell operated different subcarriers and
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had different allocated power. A mobile device accessed the
service through Femtocells. The user could be assigned to
different subcarriers based on his demand. The appropriate
cells selected based on the quality of transmission. When
the base station found that SNR was low for a mobiles
transmission specified to a cell, it assigned the mobile to
another cell.

Wen et al. [33] proposed joint mode selection and resource
allocation (JMSRA) schemes to maximize the throughput of
the hybrid network. JMSRA had two scheduling schemes one
for dedicated users, and the other one underlay users. The
DMSRA scheme was designed for dedicated users, including
cellular users and dedicated D2D users, while the UMSRA
scheme was for underlay users, who shared resources with
other dedicated or underlay users.

They divided users into two sets, i.e., Sd for dedicated users
and Su for underlay users. Cellular and D2D users with poor
direct-link gain were added to Sd while other D2D users were
classified into Su. After the initialization phase in DMSRA
algorithm, the scheduler assigned RBs in sequential order. The
scheduler assigned feasible RBs to the user with the highest
priority, which is calculated by Proportional Fair (PF) function
Qd(i) = Ari/Ri where A was service modified factors (if A
was not available at the beginning, priority was randomized).
The scheduling process was terminated when all the RBs were
allocated, or users with requests were all scheduled. In case
the number of RBs was not enough, the scheduler added the
remaining users into Su.

On the other hand, After the initialization phase in UMSRA,
each user in Su was measured and scheduled in descending
order of Qu(i) = delayiPLu,ii/PLb. It would give higher
priority to users with poor satisfaction and channel state
since the scheduler could record average rate and delay. If
there was no dedicated user on the feasible RB group, the
scheduler decided the best link mode for UEi, which was
measured by the received SINR of the cellular and direct links.
Otherwise UEi would choose underlay D2D mode and limited
the transmit power to avoid interference to the cellular link.
If there was no feasible RB group meeting the throughput
requirement, UEi added to Sd and had a high fairness priority
among dedicated users.

Alamouti et al. [34] proposed an energy-efficient resource
allocation scheme for D2D communications as an underlay
of LTE-A (4G) cellular network. They considered a scenario
where at most one CU and one D2D pair shared the same
uplink channel. They solved the optimization problem by first
utilizing the scheme proposed in [35] for admissibility and
determining candidate CU reused partners. They found the
minimum transmit power levels for CU i as a candidate reused
partner and for D2D pair j that satisfy their required SINRs
from [35].

After that, they used the Hungarian algorithm to solve
this problem. However, the Hungarian algorithm needed the
bipartite graph to be symmetric. To satisfy this, they added
CS virtual vertices to the set of admissible D2D pairs S,
where C was the union of all candidate reused partner sets
for all D2D pairs. If the vertex i was not connected to the

Fig. 1. Graphical illustration of NFPs and SCs in 5G+.

vertex j, they connected them with a large-valued weighted
edge. After that, they used the Hungarian algorithm to solve
the minimum weighted matching problem on the transformed
bipartite graph.

As shown, there are a lot of works that tried to solve
different resource allocation problems in 4G-LTE and 5G.
However, they had a different system model and problem
formulation than here, and their solutions may not suit our
problem. Most of the work related to NFPs use them to
enhance the network coverage and other arguments. To the
best of the authors’ knowledge, [20] is the only work which
designed the association problem of NFP and SCs and they
provided a distributed greedy solution of the optimization
problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

As shown in Fig. 1, a heterogeneous network is investigated,
which includes three categories of wireless nodes: ground SCs,
NFP-hubs, and the ground core network. The SCs carry the
traffic directly between the end users and the core network
using fronthaul links; while the NFPs act as a hub to provide
additional fronthaul connectivity between SCs and the core
network. The system model in [17] and [20] is considerably
similar to ours, but it is worth mentioning that our proposed
algorithms are divergent. In particular, [20] proposed a dis-
tributed algorithm to solve the association problem between
NFPs and SCs; however, in our work we proposed a more
efficient distributed algorithm and a centralized algorithm to
address the same association problem.

On the other hand, the problem formulation in [17] max-
imizes the number of associated SCs and NFPs which is
different than our problem formulation that targets maximizing
the total sum rate. NFPs can be considered an affordable
solution to extend coverage in rural areas that do not have
the required infrastructure [10]. NFPs also assist in main-
taining the communications in case of failure of the existing
infrastructure that may happen in case of disasters such as:
earthquakes, tsunami, flooding, and land sliding [11]–[13].
Hence, the association between the SCs and NFPs is crucial
to improve the overall network performance.

It is assumed that the NFPs are placed at a pre-defined
height hD (i.e., LAP, MAP, and HAP) according to safety



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXXX 2018 5

and security policies [20] and uniformly distributed on a hor-
izontal plane parallel to the ground; while, SCs are uniformly
distributed on the ground level. This work considers a system
with I NFPs and J SCs pairs (I << J) where the set of
NFPs is represented as F = {f1, f2, .........., fI} and the set
of SCs is represented as S = {s1, s2, .........., sJ}. For the
remainder of the paper, NFPs are denoted as fi, 1 ≤ i ≤ I
and SCs are denoted as sj , 1 ≤ j ≤ J . To facilitate
the implementation of the centralized algorithm, NFPs can
share the control information (required bandwidth, required
data rate, and SINR) with the core network for association
purposes. Based on the control information, the system can
specify the association between SCs and NFPs. However, this
does not include the data information.

In this work, it has also been assumed that each NFP has a
different number of links to support the communication with
SCs, i.e., each NFP can serve one or more SCs depending
on the number of links Li and maximum bandwidth it can
support Bi.

Since NFPs are spread in a horizontal parallel plane to
the SCs at a height hd from ground level, we use the air-
to-ground path loss channel model; this is in contrary to the
conventional terrestrial communications that use log-distance
path loss model. Thus, the wireless link between NFPs and
SCs is mainly vertical. Hence, in the following subsection,
the air-to-ground (ATG) path loss model is discussed.

B. Air-to-Ground Path Loss Model
The same Air-to-Ground (ATG) path loss (PL) model is

used as in [20], which is widely adopted in the NFP litera-
ture [7]. The adopted ATG model considers two propagation
groups: i) line-of-sight (LoS) receivers where the SCs are
placed in LoS / near-LoS to the NFPs and ii) Non-line-of-
sight (NLoS) receivers where SCs depend on reflections and
refractions for coverage. One factor that plays an important
role in determining the PL in the ATG model is the probability
of LoS. This depends on the surrounding environment (urban,
rural, etc.) and the orientation of NFPs and SCs. Hence, the
probability of LoS is formulated as in [20]

P (LoS) =
1

1 + α exp[−β( 180π θ − α)]
, (1)

where α and β are constants depending on the environment
(rural, urban, etc) and θ = arctan(hD

s ) is the angle between
the SC and the NFP, where s =

√
(x− xD)2 + (y − yD)2

is the horizontal distance between the SC and the NFP. The
locations of the SCs and NFPs in the Cartesian coordinate are
given as (x, y) and (xD, yD, hD), respectively. The average PL
is given as

PL(d)|dB = 10 log

(
4πfcd

c

)γ
+ηLoSP (LoS)+ηNLoSP (NLoS),

(2)
where PL(d)|dB represents the free space path loss in dB, fc
is the carrier frequency, c is the speed of light, γ is the PL
exponent, and d =

√
hD

2 + s2 is the distance between the
NFP and SC. ηLoS and ηNLoS represent the additional losses of
the LoS and NLoS links, and P (NLoS) = 1− P (LoS).

C. Problem formulation

This work aims to find the optimal association between
SCs and NFPs to maximize the total sum rate subject to
constraints on the QoS and the maximum number of links
and bandwidth supported by each NFP. This work denotes the
requested data of the sj associated with the fi by ri,j , where
Shannon capacity formula is used to compute ri,j , and we
denote the association between the sj and the fi by Ai,j that
can be formally defined as

Ai,j =

{
1, if fi is connected with sj ,
0, Otherwise.

Thus, the data rate supported by the fi is
∑J
j=1 ri,j .Ai,j and

the total sum rate over all NFPs is
∑I
i=1

∑J
j=1 ri,j .Ai,j . The

SINR between the sj and the fi is defined as

SINRi,j =
Pi,jPL(di,j)∑I

k=1,k 6=i Pk,jPL(dk,j) + σ2
i

, (3)

where Pk,j is the transmit power from fk to sj and σ2
i

represents the received noise power at the fi and di,j is the
distance between fi and sj . The Interference depend on path
loss in equation (2). The QoS constraint should guarantee
that the SINRi,j is greater than a minimum required value
SINRmin. Hence, the QoS constraint can be expressed as

Ai,j .SINRmin ≤ SINRi,j , ∀ i, j. (4)

It is denoted that the requested bandwidth of the sj associated
with the fi by bi,j and the maximum available bandwidth of
the fi is Bi. Thus, the bandwidth constraint can be formulated
as

J∑
j=1

Ai,j .bi,j 6 Bi , ∀ i. (5)

The maximum number of links that the fi can support is
declared as Li. Hence, the number of NFP links constraint
can be expressed as

J∑
j=1

Ai,j 6 Li , ∀ i. (6)

The maximum number of links that the sj can support is
one link. Hence, the number of SC links constraint can be
formulated as

I∑
i=1

Ai,j 6 1 , ∀ j. (7)

Taking into consideration all constraints mentioned previ-
ously, for a specific time when NFPs and SCs have fixed
positions, this work seeks to find the association between the
SCs and the NFPs in order to maximize total sum rate of
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the system. The SC association with NFP problem can be
formulated as

max
Ai,j

I∑
i=1

J∑
j=1

ri,j .Ai,j (8a)

s. t. (8b)
Ai,j .SINRmin ≤ SINRi,j , ∀ i, j. (8c)
J∑
j=1

Ai,j .bi,j 6 Bi , ∀ i. (8d)

J∑
j=1

Ai,j 6 Li , ∀ i. (8e)

I∑
i=1

Ai,j 6 1 , ∀ j. (8f)

Ai,j ∈ {0, 1} , ∀ i, j. (8g)

This is an integer linear program that can be solved numer-
ically to get the optimal solution. However, in worst case
the system will try to connect each NFP with all SCs to
find the best association and this can take exponential time
[36]. Therefore, this is an NP-hard problem as explained in
[37], which proves that the provided association problem is
equivalent to generalized assignment problem (GAP). Using
this relation with the GAP, they show the NP-hard complexity
of the association problem. (the problem can be reduced to a
maximum knapsack problem [38]). In the coming section, two
polynomial-time algorithms to obtain sub-optimal solutions
are proposed.

IV. EXISTING ALGORITHM

A Distributed Maximal Demand Minimum Servers algo-
rithm (DM)2S is proposed in [20] to provide an efficient
solution of the optimization problem (8). They have proposed
a greedy method to solve the association problem. The major
steps of the algorithm are:

1. Each SC sends a message to the NFP with the maximum
SINR. Basically, each SC wants to connect that NFP
which will give it the best SINR value.

2. Once an NFP receives messages (an NFP can get mes-
sages from more than one SC), it selects that SC to be
connected with which will maximize the total sum rate
along with satisfying maximum NFP bandwidth and links
constraints.

Lemma 1 In the worst case, the performance of (DM)2S
is unbounded.

Proof Consider a scenario where there is J SCs
(s1, s2, ...sJ ) and 2 NFPs (f1, f2). Now, if SINR of each SCs
and f1 is the same say, SINR1,j , for all j. And for all j,
SINR2,j is same too. Now, if SINR2,j = SINR1,j − ε where
ε is a very small constant, then all SCs will send message to
f1 as shown in Fig. 2.

Assume that f1 has only one link available and f2 has (J−
1) available links. After sending messages from all SCs, f1
eventually will only consider one small cell. Now, if all SCs

Fig. 2. Example of the SINR and data rate between SCs and NFPs

Fig. 3. SCs ask NFPs to associate using (DM)2S algorithm

provide the same data rate (say r for every connection) and f1
picks one of them (say s1). Hence, at the end of the algorithm,
only one SC will be connected as shown in Fig. 3. No small
cell will be connected with f2 since no message was sent to
f2.

The total sum rate of this solution will be r. On the other
hand, as one can see in Fig. 4, in an optimal solution, total
J ∗ r can be obtained by connecting one small cell to f1 and
the rest with f2. Hence, the performance ratio of (DM)2S is
r
J∗r which 1

J which is unbounded (will be increase with the
increase of small cells).

V. PROPOSED ALGORITHMS

In this section, two efficient algorithms are proposed to
solve the SCs and NFPs association problem in (8) in poly-
nomial time complexity. The first algorithm works in a cen-
tralized manner; while the second one provides a distribution
solution.

A. Proposed Hungarian Based Centralized Algorithm (HBCA)

The centralized solutions are designed to move all pro-
cessing work to a central location in support of multiple
remote radio heads. The central location could store both
the communication and the user account information, as well
as all the necessary information from the SCs and NFPs.
The proposed Hungarian based centralized algorithm (HBCA)
maximizes the total sum rate after receiving all necessary
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Fig. 4. Optimal solution

HBCA - part 1
1: Input: (S, F, SINR,SCLink,SINRm, L,B, b, r)
2: Let WJ×J be a new Matrix . Wi,j is the weight of the

edge between fi and sj
3: while there is free fi ∈ F do
4: for each fi ∈ F do
5: for each sj ∈ S do
6: if SCLinkj > 0 and Li > 0 then
7: if Bi − bi,j ≥ 0 and SINRi,j ≥ SINRm

then
8: Wi,j = ri,j
9: end if

10: end if
11: end for
12: end for
13: for each J − I dummy NFP pair do
14: Wi,j = 0
15: end for
16: Let HJ×J be a new matrix . a boolean matrix, a

true value in i, j index depicts, fi is assigned to sj H =
HUNGARIAN(W ) . Hungarian Algorithm is the bipartite
matching algorithm which will return a boolean matrix

17: for each fi ∈ F do
18: for each sj ∈ S do
19: if Hi,j = 0 then
20: Associate sj with fi
21: Li = Li − 1
22: Bi = Bi − bi, j
23: SCLinkj = SCLinkj − 1;
24: end if
25: end for
26: end for
27: end while

information about both SCs and NFPs, such as ri,j , bi,j ,
SINRi,j , SINRmin , Li, and Bi.

The main idea of the proposed HBCA is based on extending
the Hungarian algorithm to handle the unbalanced association
problem between SCs and NFPs, where the number of SCs
is much larger than the number of NFPs. The Hungarian
algorithm gives the optimal solution in case of one-to-one
matching (which is not the case in our SCs-NFPs association
problem). The first part of the proposed HBCA, i.e., HBCA -
part 1, can be briefly explained as follows.

HBCA - part 2
1: Input: (S, F )
2: Improve=true
3: while Improve do
4: Improve=false
5: for each pair (fi, fj) ∈ F do . where i 6= j .
si, sj ∈ S are assigned with fi and fj respectively

6: Find Total Sum rate : SumRate
7: Swap association (fi, sj) , (fj , si)
8: Find Total Sum rate: SumSwap
9: if SumSwap > SumRate && all constraints still

satisfied then
10: Swap association (fi, sj) , (fj , si)
11: Improve=true
12: end if
13: end for
14: end while

HBCA - part 3
1: Input: (S, F )
2: Improve=true
3: while Improve do
4: for each pair (fi, fj) ∈ F do . where i 6= j . sj
∈ S are assigned with fj

5: Improve=false
6: if fi is free then
7: Find Total Sum rate : SumRate
8: Unassigned sj from fj and assigned it to fi
9: Find Total Sum rate: SumSwap

10: if SumSwap > SumRate && all constraints
still satisfied then

11: Unassigned sj from fj and assigned it to
fi

12: Improve=true
13: end if
14: end if
15: end for
16: end while

• The algorithm starts by checking if there is a free NFP
(has remaining links and enough bandwidth), then fills
the W matrix of the SCs and NFPs with ri,j or zero
based on the constraints. (lines 4-12).

• Since the Hungarian algorithm accepts only a squared
matrix and the number of SCs is much larger than the
number of NFPs, a number of dummy NFPs is added
that represents the difference between the number of SCs
and NFPs. (lines 13-15).

• The Hungarian algorithm returns the association between
SCs and NFPs, and then, the available bandwidth and
number of remaining links for non-dummy NFPs is
updated accordingly. (lines 16-26).

• This process will repeat until all SCs are assigned or there
are no free NFPs.

The simulation results presented in Section VI show a gap
between the performance of the proposed HBCA - part 1
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and the optimal solution. In the following, the performance
of HBCA - part 1 is improved by introducing HBCA -
part 2 to reduce the gap to the optimal solution. The basic
idea of HBCA - part 2 can be explained as follows. HBCA
- part 2 checks if swapping the already existing associa-
tion between SCs and NFPs obtained from HBCA - part
1 can further lead to a higher total sum rate. If yes, HBCA
- part 2 swaps the association; otherwise, the association
kept as in HBCA - part 1. It is worth mentioning that if
algorithm HBCA - part 2 swapped the association then the
new matrix will be used to find the total sum rate.

The performance of the HBCA can be further improved
as shown in HBCA - part 3. The basic idea of HBCA -
part 3 is to check if any NFP has free links and if so, then
dissociating one SC and associating it with the free NFP can
lead to higher total sum rate.

Fig. 5 shows an example that helps illustrate the HBCA
algorithm more clearly. We have two NFPs f1 and f2, where
f1 has one link and f2 has 2 links. We also have three SCs
and each SC requires a specific data rate from each NFP as
shown in Fig. 5. Please note that we suppose all links between
SCs and NFPs satisfy the minimum SINR and each NFP has
enough bandwidth. Since the Hungarian algorithm accept only
a square matrix, the HBCA starts by adding a dummy NFPs to
create and fill a 3X3 W matrix with the requested ri,j if all
constraints are satisfied and with zero otherwise.

After that, HBCA sends the matrix to the Hungarian algo-
rithm to get the optimal one-to-one match between the SCs
and the NFPs as shown in Fig. 6. Each SC that has a real
association drops from the W matrix. This process repeats
until all the NFPs links are used, all the NFPs bandwidth
are used or all SCs are associated. Fig. 7 shows the initial
association between the SCs and the NFPs at the end of HBCA
- part 1. Fig. 8 shows the association between the SCs
and the NFPs at the end of HBCA- part 2, where some
swapping between the associated SCs and NFPs has been done
to enhance the total sum rate and the new associations should
satisfy all constraints.

There is a swap here, where the association between (s1
associates instead with f1) and (s2 associates with f2) to be
(s1 associates with f2) and (s2 associates with f1) enhances
the total sum rate. Finally if there is available any free links
HBCA- part 3 checks if dropping some SCs association
and associate it with the free NFPs can improve the total sum
rate or not, However in this example there are no free links;
therefore we give another example to explain HBCA- part
3 as shown in Fig. 9. We have two NFPs f1 and f2, where
f1 has one link and f2 has 2 links, we also have two SCs and
each SC requires a specific data rate from each NFP as shown
in Fig. 9.

Please note that we assume all links between SCs and
NFPs satisfy the minimum SINR and each NFP has enough
bandwidth. Fig. 10 shows the initial association between the
SCs and NFPs after HBCA- part 1, HBCA- part 2 does
not change the association in this case. On the other hand,
HBCA- part 3 disassociates s1 from f1 and associates it
with f2, since f2 satisfy all constraints and has a free link.

Fig. 5. SCs ask NFPs to associate

Fig. 6. Hungarian Algorithm returned matching

Fig. 7. SCs and NFPs Association at the end of HBCA-part 1

Fig. 8. SCs and NFPs Association at the end of HBCA

This process enhances the total sum rate as shown in Fig. 11.
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Fig. 9. SCs ask NFPs to associate

Fig. 10. SCs and NFPs Association at the end of HBCA-part 1

Fig. 11. SCs and NFPs Association at the end of HBCA

B. Stable Marriage Based Distributed Algorithm (SMBDA)

The stable marriage algorithm is the problem of finding a
stable matching between two equally sized sets of elements
given an ordering of preferences for each element [39]. A
matching is a mapping from the elements of one set to the
elements of the other set. Matching is not stable if there is
an element A of the first matched set that prefers some given
element B of the second matched set over the element to which
A is already matched, or if B prefers A over the element to
which B is already matched. In the end, each element in both
lists will have a matched element from the other list.

In this section, a stable marriage based distributed algorithm
(SMBDA) is proposed to efficiently solve the SCs and NFPs
association problem in low complexity. In the distributed
algorithm, each SC and NFP stores only local information.
This means that each SC and NFP is responsible for its
association, where SC sends the request to associate with NFP
or vice-versa.

In a preferable list algorithm, each SC and NFP

preferable list
1: Input: (S, F, r)
2: Each free fi ∈ F will broadcast Bi to all sj ∈ S
3: Each sj calculate SINRi,j and bi,j
4: Each sj will broadcast it’s local information to all fi ∈ F
5: Each sj will fill it’s PrefSC with the indices of the

preferred NFPs based on ri,j from max to min
6: Each fi will fill it’s PrefNFP with the indices of the

preferred SCs based on ri,j from max to min

are filled a preferable list, based on the maximum data rate
between SC and NFP, starting from the most preferable down
to least preferred. As previously mentioned, the number of SCs
is much larger than the number of NFPs and considering the
fact that the size of the first list and second list in the stable
marriage algorithm should be the same, we added dummy
NFPs. The preferable list will help each SC to connect with the
most appropriate NFP which is done in the SMBDA algorithm.

SMBDA Algorithm starts at the beginning with all SCs and
NFPs are free, (line 2). Each NFP and SC broadcasts its local
information; after that the NFP fi first selects the preferable
SC sj from it’s PrefNFP and if the constraints are satisfied,
fi sends a association request to that sj , (lines 3-7). There are
three cases:
• Case 1: SC sj is free and it sends accept and call
Accept(sj , fi, Li, Bi, bi,j), (lines 8− 9).

• Case 2: SC sj is engaged (no final association) to
NFP fk and SC sj prefers NFP fi more, then SC sj
sends disassociate message to NFP fk and sends accept
message to NFP fi and call Accept(sj , fi, Li, Bi, bi,j),
(lines 10− 12).

• Case 3: SC sj is engaged (no final association) to NFP
fk and SC sj prefers NFP fk more, then SC sj sends
Reject message to NFP fi. after that, NFP fi selects the
next SC in its PrefNFP list, (lines 13− 15).

After that, the SC married (final associated) with NFP, that
provide it a stable matching.

As can be seen in Accept algorithm, when sj calls
Accept(sj , fi, Li, Bi, bi,j), then SC sj and NFP fi local
information will be updated as following:
• Associate SC sj with NFP fi
• Decrease Bi by b(i,j)
• Decrease Li by 1
• if Li less than or equal to zero, set fi to be not free.

On the other hand, in the Disassociate algorithm, when
sj calls Disassociate (sj , fi, Li, Bi, bi,j), then SC sj ,
NFP fi local information will be updated as followed:
• Disassociate SC sj with NFP fi
• Increase Bi by b(i,j)
• Increase Li by 1
• Set fi to be free.
Using SMBDA we found the best association for the fig. 5

example. In this example there are three SCs and two NFPs
with three Free links. Fig. 12 shows each SC and NFP with
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SMBDA
1: Input: (S, F,PrefNFP,PrefSC, L,B, b)
2: At the beginning All fi ∈ F and sj ∈ S are free
3: Each free fi broadcasts Bi to all sj
4: Each sj calculates SINRi,j and bi,j
5: Each sj broadcasts it’s local information to all fi
6: sj = PrefNFPi
7: If all constraints are satisfied fi Sends Request to associate

with sj
8: Case 1: sj is free
9: Calls Accept(sj , fi, Li, Bi, bi,j)

10: Case 2: sj is engaged to fk and fi is more preferable,
as in PrefSCj , for sj than fk

11: Calls Accept(sj , fi, Li, Bi, bi,j)
12: Calls Disassociate(sj , fk, Lk, Bk, bk,j)
13: Case 3: si prefers fk more than fi as in PrefSCj list
14: si Rejects to associate with fi
15: Go to the next preferred SC in PrefSCj preferable list

Accept
Input: (sj , fi, Li, Bi, bi,j)
sj connect with fi
Li = Li − 1
Bi = Bi − bi,j
if Li == 0 then

set fi is not free
end if

its preferable lists. For example, as can be seen from Fig. 12,
s1 prefers f2 then f1; however, f1 prefers s1 first then s2 and
finally s3. SMBDA starts when f1 sends request to s1, which
accepts to engage (not fixed associates) with f1.

After that, as shown in Fig. 13, f2 sends request to s2 which
accepts to engage to f2. Since f2 has 2 links and enough
bandwidth f2 sends request to the second SC in its preferable
list which is s1. Therefore, s1 disengages from f1 and engages
to f2 as shown in Fig. 14. Again f1 becomes free. Hence, f1
sends request to s2 which is reject, since s2 is engaged to f2
and it prefers f2 more than f1. Hence, f1 sends request to s3
which accepts to engage with f1 as shown in Fig. 15. At the
end there are no free links, and all SCs and NFPs have stable
match. Fig. 16 shows the final association between the SCs
and the NFPs.

C. Complexity analysis

In this subsection, the worst case complexity analysis of
the proposed algorithms is provided. We find that the time
complexity of HBCA - part 1 in the worst case is O(IJ3).
This can be explained as follows:
• The while loop in line 3 requires a complexity of O(I)
• The for loops in lines 4 and 5 require a complexity of
O(I) and O(J), respectively.

• The for loop in line 13 requires a complexity of O(J −
I), and the Hungarian algorithm in line 16 requires a
complexity of O(J3).

• The for loops in lines 17 and 18 require a complexity of
O(I) and O(J), respectively.

Disassociate
1: Input: (sj , fi, Li, Bi, bi,j)
2: sj disconnect from fi
3: Bi=Bi + bi,j
4: set fi is free
5: Li = Li + 1

Fig. 12. NFP f1 is engages to s1

Hence the worst case complexity of HBCA - part 1 is
O(I)

(
O(IJ) +O(J − I) +O(J3) +O(IJ)

)
= O(IJ3).

For HBCA - part 2 time complexity can be clarified as
follows:
• The while loop in line 3 requires a complexity of O(W )

where W =
∑I
i=1

∑J
j=1 ri,j .

• The for loop in line 5 requires a complexity of O(IJ).
• The SumRate and SumSwap in lines 6 and 8 both require

a complexity of O(IJ).
Hence, HBCA - part 2 time complexity in worst case
is O(W )(O(IJ)O(IJ)) = O(WI2J2). Similarly the worst
case computational complexity of HBCA - part 3 is
O(WI2J2). Finally, the overall time complexity for the HBCA
algorithm will be O(IJ3) + O(WI2J2) + O(WI2J2) =
O(WI2J2).

Regarding the time complexity of SMBDA, it is found that
in the worst case each NFP at maximum sends requests to all
SCs. Therefore, the time complexity in the worst case occurs
when all NFPs send to all SCs, is O(IJ). Furthermore, in
the worst case, each SCs rejects all NFPs. Hence, the time
complexity in the worst case occurs when all SCs reject all
NFPs, is O(IJ). Subsequently, the worst time complexity
of SMBDA is O(IJ). This explains that SMBDA termination
is assured, as each NFP at maximum sends request to all
SCs depend on each NFP PrefNFP list, and each SC at
maximum sends reject or accept to all NFPs depend on each
SC PrefSC list.

Table I summaries the worst case time complexity of the
proposed algorithms with the (DM)2S algorithm. It can be
noticed that the proposed algorithms are slightly more compu-
tationally expensive than the (DM)2S algorithm in the worst
case. However, the proposed algorithms are computationally
acceptable and are practically applicable.

Additionally, the message complexity of the SMBDA dis-
tributed algorithm is found. The NFP message complexity in
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Fig. 13. NFP f2 engages to s2

Fig. 14. NFP f2 engages to s1

worst case happens when the NFP sends a request message
to each single SC. Therefore, the NFP message complexity is
O(IJ) in worst case. The SC message complexity in the worst
case happens when the SC sends accept or reject message to
each single f . Therefore, the SC message complexity is O(IJ)
in the worst case. Hence, the SMBDA message complexity is
O(IJ) +O(IJ) = O(IJ).

Table II compares the worst case time complexity of the
proposed SMBDA algorithm and the (DM)2S algorithm. It
can be noticed that the proposed SMBDA algorithm message
complexity is the same as its counterpart of the (DM)2S
algorithm.

VI. PERFORMANCE EVALUATION

We use the Gurobi optimization tool [40] to find the the
integer linear program (ILP) solution for problem (8), which
takes an exponential time. In this section, the performance of
the proposed HBCA and SMBDA algorithms are investigated
and the results with their counterparts obtained from the
optimal solution of ILP of the problem in (8) are compared
with the proposed distributed algorithm (DM)2S in [20].

A 5G+ system is considered, where the SCs and NFPs are
uniformly distributed within a 4 km by 4 km area. The data
rates used in [20] is considered, then the bandwidth bi,j and
SINRi,j are calculated. Without loss of generality, we assume
that all NFPs have the same hight, hdi = hd = 300 m ∀i, and
all NFPs have the same bandwidth Bi = B = 250 MHz ∀i.
Following [20], the rest of parameters are defined in Table III.

Fig. 15. NFP f1 engages to s3

Fig. 16. NFP f1 fix associates to s3 and f2 fix associates to both s1 and s2

Fig. 17 shows the total sum rate of the proposed HBCA,
SMBDA, ILP, (DM)2S versus the number of SCs at 30 NFPs.
As can be seen, the HBCA and the SMBDA performances
approach that of the optimal results of the ILP. One can also
see from Fig. 17 that the proposed SMBDA outperforms the
(DM)2S. As previously discussed in the (DM)2S algorithm,
the SC sends a request to associate with the NFP of the highest
SINR, and if rejected then that SC will not associate with
another NFP. Even more, as shown in Fig. 17, the total sum
rate in both proposed HBCA and SMBDA along with the ILP
increases when the number of SCs increases, on the other
hand, the total sum rate of (DM)2S has a little increment.

Fig. 18 shows the total sum rate of the proposed HBCA,
SMBDA, ILP, (DM)2S versus the number of NFP at 100
SCs. Again as shown in Fig. 18, the HBCA and the SMBDA
performances approach that of the optimal results of the ILP.
Further, Fig. 18 shows that the proposed SMBDA outperforms
the (DM)2S as discussed in Fig. 17. Additionally, as shown
in Fig. 18, the total sum rate of the proposed HBCA and
SMBDA along with the ILP at the beginning increases with
the increase of NFP. After that, the total sum rate saturates or
slightly increases. This can be explained as when the number
of NFPs reaches 40, almost all SCs are associated which
causes the total sum rate to saturate. However, the total sum
rate of (DM)2S almost unchanged.

Fig. 19 shows the total sum rate of the proposed HBCA,
SMBDA, ILP, (DM)2S versus the number of SCs at 50 NFPs.
As can be seen, the HBCA and the SMBDA performances
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TABLE I
COMPUTATIONAL TIME COMPLEXITY OF THE PROPOSED ALGORITHMS.

Algorithm Time Complexity Order
HBCA O(WI2J2)
SMBDA O(IJ)
(DM)2S O(IJ)

TABLE II
COMPUTATIONAL MESSAGE COMPLEXITY OF THE ALGORITHMS.

Algorithm Message Complexity Order
SMBDA O(IJ)
(DM)2S O(IJ)

approach that of the optimal results of the ILP. However the
ILP takes around 46882 second running time, which is a very
long time comparing to HBCA which takes around 138 second
and the SMBDA which takes around 48 seconds. where is the
used computer processor is Intel core i7-8750h 2.20 GHz and
the ram is 16 GB. As shown in Fig. 19, the proposed SMBDA
outperforms the (DM)2S. Even more, the total sum rate in
both proposed HBCA and SMBDA along with the ILP highly
increases when the number of SCs increase in contradiction
with (DM)2S where the total sum rate is slightly increased.

Fig. 20 shows the total sum rate of the proposed HBCA,
SMBDA, ILP, (DM)2S versus the number of NFP at 200
SCs. As shown in Fig. 20, the HBCA and the SMBDA
performances approach that of the optimal results of the ILP.
Fig. 20 shows that the proposed SMBDA outperforms the
(DM)2S.

As one can see from figure (21), as the number of SCs
increases the total number of associated SCs decreases. How-
ever, the number of SCs associate with NFPs in our algorithms
are very close to the number of SCs associate with NFPs in the
optimal case. Moreover, the number of associate SCs in our
algorithms outperform the number of associate SCs in case of
(DM)2S.

As one can see from the previous examples both HBCA and
SMBDA outperform (DM)2S. As mentioned before (DM)2S
is a distributed algorithm, therefore, it has only a local in-
formation and this explain why HBCA outperform (DM)2S,
since HBCA algorithm is a centralized algorithm. As discussed
in IV, in the first step of (DM)2S algorithm each SC sends a
message to the NFP with the maximum SINR. Basically, each
SC wants to connect NFP with the best SINR link. However,
based on other constraints such as the number of links or
the bandwidth each NFP can support, the NFP could send
rejections to some SCs and these SCs will not attempt to
associate with another NFP.

The SMBDA is also a distributed algorithm; however, the
SMBDA tries to find the best association for each SC as
explained in Section V-B taking into consideration all con-
straints. The SMBDA tries to find the best association by
exploiting the idea of the stable marriage algorithm, which
finds the stable match between two lists. This explains why
the SMBDA outperforms the (DM)2S algorithm.

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value
α 9.61 β 0.16
ηLos 1 dB ηNLos 20 dB
fc 2 GHz Pt 5 Watts
σj 1 dB hd 300 m
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Fig. 17. Total Sum Rate versus the number of SCs for the proposed HBCA,
SMBDA, ILP, and (DM)2S at 30 NFPs.

Fig. 22 shows the total sum rate versus the number of
SCs for the proposed HBCA, SMBDA, ILP, and (DM)2S
at 30 NFPs. In this scenario, the SINRi,j is given random
values between −10 and 0 dB to put the proposed HBCA and
SMBDA algorithm under a critical limitation. As it can be
seen, in Fig. 22, the HBCA, and the SMBDA performances
approach that of the optimal results of the ILP. Moreover, one
can see from Fig. 22 that the proposed SMBDA outperforms
the (DM)2S, which becomes clear as previously discussed.
Fig. 23 shows the total number of associated SCs versus the
number of SCs for the proposed HBCA, SMBDA, ILP, and
(DM)2S at 30 NFPs. As can be seen the total number of
associated SCs of the proposed HBCA and SMBDA algo-
rithms approximated the total number of associated SCs of
the ILP. However, the number of associated SC of (DM)2S
is less than SMBDA and HBCA. We find different results with
different numbers of SCs and NFPs other than the previous
one. We find that regardless the number of SCs or NFPs, the
two proposed algorithms approach their counterparts obtained
from the optimal solution of the integer linear program (ILP)
of the problem in (8) and outperform the proposed distributed
algorithm (DM)2S in [20].

VII. CONCLUSION

In this work, the association problem of the NFPs with SCs
of future cellular network is studied to maximize the system
sum rate while taking into consideration each NFP band-
width, the number of supported links, and minimum required
SINR. We proposed a centralized (HBCA) and a distributed
(SMBDA) algorithm to find a sub-optimal association between
the SCs and NFPs, at reduced computational complexity. The
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Fig. 18. Total Sum Rate versus the number of NFPs for the proposed HBCA,
SMBDA, ILP, and (DM)2S at 100 SCs.
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Fig. 19. Total Sum Rate versus the number of NFPs for the proposed HBCA,
SMBDA, ILP, and (DM)2S at 50 NFPs.

numerical evaluation of the considered case study has shown
that the performance of the proposed algorithms outperform
the performance of the existing algorithm in terms of the
number of connected SCs and the total sum rate. In future
works, it is of interest to investigate other resource allocation
problems such as minimizing the total interference while
satisfying a target sum rate.
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