1,539 research outputs found

    Neurocybernetics and Artificial Intelligence

    Get PDF

    Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

    Full text link
    Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Fifty years of the Psychology of Programming

    Get PDF
    This paper reflects on the evolution (past, present and future) of the ‘psychology of programming' over the 50 year period of this anniversary issue. The International Journal of Human-Computer Studies (IJHCS) has been a key venue for much seminal work in this field, including its first foundations, and we review the changing research concerns seen in publications over these five decades. We relate this thematic evolution to research taking place over the same period within more specialist communities, especially the Psychology of Programming Interest Group (PPIG), the Empirical Studies of Programming series (ESP), and the ongoing community in Visual Languages and Human-Centric Computing (VL/HCC). Many other communities have interacted with psychology of programming, both influenced by research published within the specialist groups, and in turn influencing research priorities. We end with an overview of the core theories that have been developed over this period, as an introductory resource for new researchers, and also with the authors’ own analysis of key priorities for future research

    Morphological Computing of Cognition and Intelligence, MORCOM 2021-Online Conference

    Get PDF
    The theme of the conference, “Morphological Computing of Cognition and Intelligence” (MORCOM 2021), focused on the unconventional forms of computing, which bring the promise of more efficient intelligent and cognitive computing. The present editorial, written by the organizers of the conference, reports the ideas and goals of MORCOM 2021 and provides an overview of the contributions

    Legal personhood for the integration of AI systems in the social context: a study hypothesis

    Get PDF
    In this paper, I shall set out the pros and cons of assigning legal personhood on artificial intelligence systems (AIs) under civil law. More specifically, I will provide arguments supporting a functionalist justification for conferring personhood on AIs, and I will try to identify what content this legal status might have from a regulatory perspective. Being a person in law implies the entitlement to one or more legal positions. I will mainly focus on liability as it is one of the main grounds for the attribution of legal personhood, like for collective legal entities. A better distribution of responsibilities resulting from unpredictably illegal and/or harmful behaviour may be one of the main reasons to justify the attribution of personhood also for AI systems. This means an efficient allocation of the risks and social costs associated with the use of AIs, ensuring the protection of victims, incentives for production, and technological innovation. However, the paper also considers other legal positions triggered by personhood in addition to responsibility: specific competencies and powers such as, for example, financial autonomy, the ability to hold property, make contracts, sue (and be sued)

    Ontologies across disciplines

    Get PDF

    Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines

    Get PDF
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial (deep learning, robotics), natural sciences (neuroscience, cognitive science, biology), and philosophy (philosophy of computing, philosophy of mind, natural philosophy). The question is, what at this stage of the development the inspiration from nature, specifically its computational models such as info-computation through morphological computing, can contribute to machine learning and artificial intelligence, and how much on the other hand models and experiments in machine learning and robotics can motivate, justify, and inform research in computational cognitive science, neurosciences, and computing nature. We propose that one contribution can be understanding of the mechanisms of ‘learning to learn’, as a step towards deep learning with symbolic layer of computation/information processing in a framework linking connectionism with symbolism. As all natural systems possessing intelligence are cognitive systems, we describe the evolutionary arguments for the necessity of learning to learn for a system to reach human-level intelligence through evolution and development. The paper thus presents a contribution to the epistemology of the contemporary philosophy of nature
    • …
    corecore