84,284 research outputs found

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Triangulation of Simple 3D Shapes with Well-Centered Tetrahedra

    Get PDF
    A completely well-centered tetrahedral mesh is a triangulation of a three dimensional domain in which every tetrahedron and every triangle contains its circumcenter in its interior. Such meshes have applications in scientific computing and other fields. We show how to triangulate simple domains using completely well-centered tetrahedra. The domains we consider here are space, infinite slab, infinite rectangular prism, cube and regular tetrahedron. We also demonstrate single tetrahedra with various combinations of the properties of dihedral acuteness, 2-well-centeredness and 3-well-centeredness.Comment: Accepted at the conference "17th International Meshing Roundtable", Pittsburgh, Pennsylvania, October 12-15, 2008. Will appear in proceedings of the conference, published by Springer. For this version, we fixed some typo

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Generating families of surface triangulations. The case of punctured surfaces with inner degree at least 4

    Get PDF
    We present two versions of a method for generating all triangulations of any punctured surface in each of these two families: (1) triangulations with inner vertices of degree at least 4 and boundary vertices of degree at least 3 and (2) triangulations with all vertices of degree at least 4. The method is based on a series of reversible operations, termed reductions, which lead to a minimal set of triangulations in each family. Throughout the process the triangulations remain within the corresponding family. Moreover, for the family (1) these operations reduce to the well-known edge contractions and removals of octahedra. The main results are proved by an exhaustive analysis of all possible local configurations which admit a reduction.Comment: This work has been partially supported by PAI FQM-164; PAI FQM-189; MTM 2010-2044

    Curvature bounds for surfaces in hyperbolic 3-manifolds

    Full text link
    We prove existence of thick geodesic triangulations of hyperbolic 3-manifolds and use this to prove existence of universal bounds on the principal curvatures of surfaces embedded in hyperbolic 3-manifolds.Comment: 21 pages, 9 figures, published version, added figures, fixed typo
    corecore