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Abstract. A completely well-centered tetrahedral mesh is a triangulation of a three dimensional
domain in which every tetrahedron and every triangle contains its circumcenter in its interior.
Such meshes have applications in scientific computing and other fields. We show how to triangulate
simple domains using completely well-centered tetrahedra. The domains we consider here are space,
infinite slab, infinite rectangular prism, cube, and regular tetrahedron. We also demonstrate single
tetrahedra with various combinations of the properties of dihedral acuteness, 2-well-centeredness,
and 3-well-centeredness.

1. Introduction

In this paper we demonstrate well-centered triangulation of simple domains in R3. A well-
centered simplex is one for which the circumcenter lies in the interior of the simplex [8]. This
definition is further refined to that of a k-well-centered simplex which is one whose k-dimensional
faces have the well-centeredness property. An n-dimensional simplex which is k-well-centered for all
1 ≤ k ≤ n is called completely well-centered [15]. These properties extend to simplicial complexes,
i.e. to meshes. Thus a mesh can be completely well-centered or k-well-centered if all its simplices
have that property. For triangles, being well-centered is the same as being acute-angled. But a
tetrahedron can be dihedral acute without being 3-well-centered as we show by example in Sect. 2.
We also note that while every well-centered triangulation is Delaunay, the converse is not true.

In [14] we described an optimization-based approach to transform a given planar triangle mesh
into a well-centered one by moving the internal vertices while keeping the boundary vertices fixed.
In [15] we generalized this approach to arbitrary dimensions and in addition to developing some
theoretical properties of our method showed some complex examples of our method at work in the
plane and some simple examples in R3. In this paper the domains we consider are space, slabs,
infinite rectangular prisms, cubes and tetrahedra.

Well-centered triangulations find applications in some areas of scientific computing and other
fields. Their limited use so far may be partly because until recently there were no methods known
for constructing such meshes. One motivation for constructing well-centered meshes comes from
Discrete Exterior Calculus, which is a framework for constructing numerical methods for partial
differential equations [4, 8]. The availability of well-centered meshes permits one to discretize an
important operator called the Hodge star as a diagonal matrix, leading to efficiencies in numerical
solution procedures. Other potential applications are the covolume method [10, 11], space-time
meshing [13], and computations of geodesic paths on manifolds [9].

2. Well-centeredness and Dihedral Acuteness for a Single Tetrahedron

An equatorial ball of a simplex is a ball for which the circumsphere of the simplex is an equator.
Stated more precisely, if σk is a k-dimensional simplex, then the equatorial ball of σk is a (k + 1)-
dimensional ball whose center is c(σk), the circumcenter of σk, and whose radius is R(σk), the
circumradius of σk. In [15] we showed that a simplex σn is n-well-centered if and only if for each
vertex v in σn, v lies outside the equatorial ball of the facet τn−1

v opposite v. Figure 1 illustrates
1
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Figure 1. One characterization of well-centeredness is that for each vertex v, the
vertex lies outside of the equatorial ball of the facet opposite v. The larger sphere
shown here is the circumsphere of the tetrahedron and the smaller sphere is the
boundary of the equatorial ball of the bottom triangle. The top vertex of the
tetrahedron is outside the equatorial ball

this characterization of well-centeredness; the vertex v at the top of the tetrahedron in Fig. 1 lies
outside of the equatorial ball of the facet opposite v.

We now have a definition of k-well-centeredness and an alternate characterization of well-cen-
teredness, but these provide limited intuition for what it means to be well-centered. In this section
we discuss a variety of tetrahedra, showing that in R3, a simplex that is 2-well-centered may or
may not be 3-well-centered, and vice versa. We also discuss how being dihedral acute relates to
being well-centered.

Figures 2 through 7 are pictures of six different tetrahedra that illustrate the possible combi-
nations of the qualities 2-well-centered, 3-well-centered, and dihedral acute. Each picture shows
a tetrahedron inside of its circumsphere. The center of each circumsphere is marked by a small,
unlabeled axes indicator. In each case, the circumcenter of the tetrahedron lies at the origin, and
the circumradius is 1. The coordinates given are exact, and the quality statistics are rounded to
the nearest value of the precision shown.

The quality statistics displayed include the minimum and maximum face angles and dihedral
angles of the tetrahedron. These familiar quality measures need no further explanation, and it
is easy to determine from them whether a tetrahedron is 2-well-centered (having all face angles
acute) or dihedral acute. The R/` statistic shows the ratio of the circumradius R to the shortest
edge of the tetrahedron, which has length `. The range of R/` is [

√
3/8,∞], with

√
3/8 ≈ 0.612.

A single tetrahedron has a particular R/` ratio, so the minimum R/` equals the maximum R/`
in each of Figs. 2–7. Later, however, we will show similar statistics for tetrahedral meshes, and
it is convenient to use the same format to summarize mesh quality in both cases. The R/` ratio
is a familiar measurement of the quality of a tetrahedron, especially in the context of Delaunay
refinement.

The quality statistic h/R is less familiar. The R in this ratio is the circumradius. The h stands
for height. For a given facet of the tetrahedron, h measures the signed height of the circumcenter
of the tetrahedron above the plane containing that facet. The direction above the facet means the
direction towards the remaining vertex of the tetrahedron, and h is positive when the circumcenter
lies above the facet. In [15] the quantity h/R and its relationship to well-centeredness in any
dimension is discussed at more length. For our purposes it should suffice to note that the range of
h/R for tetrahedra is (−1, 1), that a tetrahedron is 3-well-centered if and only if the minimum h/R
is positive, and that h/R = 1/3 relative to every facet of the regular tetrahedron.

The regular tetrahedron is completely well-centered and dihedral acute. Our first example,
shown in Fig. 2, is another tetrahedron that shares those properties with the regular tetrahedron.
Not every completely well-centered tetrahedron is dihedral acute, and the second example, shown
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Vertex Coordinates
x y z

0.6 −0.64 −0.48
0.48 0.8 −0.36

−0.96 0 −0.28
0 0 1

Quality Statistics
Quantity Min Max

h/R 0.254 0.371
Face Angle 50.92° 67.08°

Dihedral Angle 58.76° 76.98°

R/` 0.690 0.690

Figure 2. A tetrahedron that is completely well-centered and dihedral acute

Vertex Coordinates
x y z

0 0.96 −0.28
−0.744 −0.64 −0.192

0.856 −0.48 −0.192
−0.48 0.192 0.856

Quality Statistics
Quantity Min Max

h/R 0.224 0.427
Face Angle 46.26° 77.62°

Dihedral Angle 52.71° 94.15°

R/` 0.733 0.733

Figure 3. A completely well-centered tetrahedron that is not dihedral acute

Vertex Coordinates
x y z

0.224 −0.768 −0.6
0.8 0 −0.6
0.224 0.768 −0.6

−0.28 0 0.96

Quality Statistics
Quantity Min Max

h/R −0.029 0.600
Face Angle 29.89° 106.26°

Dihedral Angle 35.42° 116.68°

R/` 1.042 1.042

Figure 4. A tetrahedron that is not dihedral acute, 2-well-centered, or 3-well-centered
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Figure 3-WC 2-WC Acute
2 Y Y Y
3 Y Y N
4 N N N
5 N Y Y
6 N Y N
7 Y N N

Table 1. A tetrahedron may have any of six different possible combinations of the
qualities 2-well-centered, 3-well-centered, and dihedral acute

in Fig. 3, is a tetrahedron that is completely well-centered but not dihedral acute. Some sliver
tetrahedra are completely well-centered and have dihedral angles approaching 180°.

As one might expect, there are tetrahedra that have none of these nice properties. The tetra-
hedron shown in Fig. 4 is an example of such a tetrahedron. Most polar caps also have none of
these nice properties. Some tetrahedra that are neither dihedral acute nor 2-well-centered nor 3-
well-centered have much worse quality than the example in Fig. 4. This particular example is near
the boundary dividing 3-well-centered tetrahedra from tetrahedra that are not 3-well-centered.

The tetrahedra we have considered so far have been either completely well-centered or neither
2-well-centered nor 3-well-centered. Our last three examples show that tetrahedra can be 2-well-
centered without being 3-well-centered and vice-versa. The tetrahedron shown in Fig. 5 is 2-well-
centered and dihedral acute, but not 3-well-centered. The example tetrahedron shown in Fig. 6 is
similar but has been modified to no longer be dihedral acute. Our final example, shown in Fig. 7,
is a tetrahedron that is 3-well-centered, but is neither 2-well-centered nor dihedral acute.

Table 1 summarizes the six examples presented in this section, indicating whether each example
is 2-well-centered, 3-well-centered, and/or dihedral acute. Of the eight possible binary sequences,
the two missing examples are the sequences N,N, Y and Y, N, Y , in which a tetrahedron would be
dihedral acute but not 2-well-centered. These examples are missing because they do not exist; every
tetrahedron that is dihedral acute is also 2-well-centered. Eppstein, Sullivan, and Üngör provide a
proof of this in Lemma 2 of [6], which states, among other things, that “an acute tetrahedron has
acute facets.”

3. Tiling Space, Slabs, and Infinite Rectangular Prisms
with Completely Well-Centered Tetrahedra

We have mentioned above that there are applications that could make good use of well-centered
triangulations and have considered examples of single well-centered tetrahedra. In what follows,
we give some examples of well-centered triangulations of simple domains in dimension 3.

In [6], Eppstein, Sullivan, and Üngör show that one can tile space, R3, and infinite slabs, R2 ×
[0, a], with dihedral acute tetrahedra. They also briefly discuss how high-quality tilings of space
have been used to design meshing algorithms. The acute triangulations of space given in [6] all
make use of copies of at least two different tetrahedra, and the authors suggest it is unlikely that
there is a tiling of space with copies of a single acute tetrahedron. Their acute triangulation of the
slab appears to use copies of seven distinct tetrahedra. The problem of triangulating an infinite
rectangular prism, R× [0, a]× [0, b], or a cube, [0, 1]3, with acute tetrahedra is still an open problem
as far as the authors know.

In contrast to the complexity of tiling space with acute tetrahedra, there are fairly simple com-
pletely well-centered triangulations of space. Barnes and Sloane proved that the optimal lattice for
quantizing uniformly distributed data in R3 is the body-centered cubic (BCC) lattice [2]. Since this
is related to centroidal Voronoi tesselations (CVTs) [5], and CVTs have been used for high-quality
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Vertex Coordinates
x y z

0.36 −0.8 −0.48
0.768 0.28 −0.576

−0.6 0.64 −0.48
0.576 0.168 0.8

Quality Statistics
Quantity Min Max

h/R −0.109 0.562
Face Angle 41.71° 83.76°

Dihedral Angle 53.33° 85.72°

R/` 0.863 0.863

Figure 5. A tetrahedron that is dihedral acute and 2-well-centered, but not 3-well-centered

Vertex Coordinates
x y z

−0.152 0.864 −0.48
−0.64 −0.6 −0.48

0.6 −0.64 −0.48
−0.192 −0.64 0.744

Quality Statistics
Quantity Min Max

h/R −0.024 0.630
Face Angle 42.08° 85.44°

Dihedral Angle 59.94° 91.20°

R/` 0.806 0.806

Figure 6. A tetrahedron that is not dihedral acute or 3-well-centered, but is 2-well-centered

Vertex Coordinates
x y z

0 −0.6 −0.8
0.64 −0.024 −0.768

−0.64 −0.024 −0.768
0 0.352 0.936

Quality Statistics
Quantity Min Max

h/R 0.112 0.765
Face Angle 25.69° 95.94°

Dihedral Angle 40.33° 105.62°

R/` 1.161 1.161

Figure 7. A tetrahedron that is not dihedral acute or 2-well-centered, but is 3-well-centered
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Vertex Coordinates
x y z
−1 −2 0

1 0 −2
−1 2 0

1 0 2

Quality Statistics
Quantity Min Max

h/R 0.316 0.316
Face Angle 54.74° 70.53°

Dihedral Angle 60.00° 90.00°

R/` 0.645 0.645

Figure 8. The second Sommerville tetrahedron – a completely well-centered tetra-
hedron that tiles space

meshing of 3-dimensional domains (see [1]), it is not surprising that a Delaunay triangulation of
the vertices of the BCC lattice gives rise to a high quality triangulation of space. The triangulation
consists of congruent copies of a single completely well-centered tetrahedron, shown in Fig. 8. The
tiling is one of four spatial tilings discovered by Sommerville [6, 12]. The other three tilings Som-
merville found are neither 3-well-centered nor 2-well-centered, though one of them has a maximum
face angle of 90° and is dihedral nonobtuse. It is interesting to note that Fuchs algorithm for mesh-
ing spatial domains based on high-quality spatial tilings had “good performance . . . when he used
the second Sommerville construction,” S[6, 7] which is the completely well-centered tetrahedron
shown in Fig. 8.

Next we describe the space tiling that uses the Sommerville tetrahedron described above. The
view of the tetrahedron shown in Fig. 8 has an elevation angle between 10 and 11 degrees, so it is
not difficult to identify the horizontal edge and the vertical edge of the tetrahedron. The horizontal
edge connects a pair of vertices from one of the cubic lattices, and the vertical edge connects a pair
of vertices from the other cubic lattice. It is natural to think of this spatial tiling in terms of the
interleaved cubic lattices, but we can also look at the tiling from a different perspective. Consider
the tilted plane P that contains the bottom face of the tetrahedron shown in Fig. 8. Consider a
single cube of one of the cubic lattices. The plane P is the one defined by two opposing parallel
edges of the cube. At the center of the cube there is a vertex from the other cube lattice; this vertex
also lies in P . By making translated copies of the vertices in P we can obtain all of the vertices of
the BCC lattice. Each vertex in P has six adjacent vertices in P and four adjacent vertices in each
of the plane above and below P . There are two types of tetrahedra in the tiling, but both types
are copies of the same tetrahedron in this case. The first type is the convex hull of three vertices
in a copy of P and one vertex from the plane above or below that copy of P . The second type of
tetrahedron is the convex hull of an edge in a copy of P and a corresponding edge from the plane
above or below that copy of P .

From this understanding of the structure of the BCC-based spatial tiling, we can generalize to
an entire family of triangulations of space using copies of two different tetrahedra. We consider
first the set of vertices {(i, 0, 0) : i ∈ Z}. We will make translated copies of this line in one direction
to make a plane P . To do this we choose a parameter a > 0 and make infinitely many copies of
each vertex translating by the vector (1/2, a, 0). Lastly we choose a parameter b > 0 and make
translated copies of the plane P using the translation vector (1/2, 0, b). Thus our set of vertices is

{(i + j/2 + k/2, aj, bk) : i, j, k ∈ Z},
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Figure 9. Starting with a set of vertices equally spaced along a line, we make
translated copies of the line in a plane and triangulate the plane with each vertex
having six neighbors

Figure 10. We make translated copies of the plane into space and form tetrahedra
by connecting vertices of adjacent planes as shown

i.e., the lattice Λ = {
∑3

i=1 ciui : ci ∈ Z} with basis vectors

u1 = (1, 0, 0), u2 = (1/2, a, 0), and u3 = (1/2, 0, b).

To turn this into a triangulation of space, we start by triangulating each copy of the plane P as
shown in Fig. 9. Each vertex v in a copy of P is connected to the six vertices which lie at positions
v ± (1, 0, 0), v ± (1/2, a, 0), and v ± (1/2,−a, 0). This yields the standard tiling of the plane with
equilateral triangles if a =

√
3/2. Now for each triangle in a copy of P there is exactly one edge

– the edge in the direction (1, 0, 0) – for which a vertex lies directly above and directly below the
midpoint of that edge. The first type of tetrahedron, then, is the convex hull of a triangle T in P
and the vertex directly above or below the midpoint of one of the edges of T . If we add all possible
tetrahedra of the first type, the gaps that remain are all tetrahedra of the second type. This second
type of tetrahedron is the convex hull of an edge in P in the direction ±(1/2, a, 0) and the edge in
the direction ±(1/2,−a, 0) whose midpoint lies directly above or below the midpoint of the given
edge. Figure 10 shows three copies of the plane and highlights three of the tetrahedra that appear
in the spatial tiling. The two tetrahedra on the left side of Fig. 10 are both copies of the first type of
tetrahedron. The other tetrahedron is of the second type. For the BCC-based spatial triangulation,
in which both types of tetrahedra are the same, the parameters are a = b =

√
2/2.

This family of triangulations of space is interesting for at least two reasons. First, the triangula-
tion is completely well-centered if and only if both a > 1/2 and b > 1/2. Second, the family provides
an elegant solution to the problems of tiling an infinite slab in R3 and tiling infinite rectangular
prisms in R3. To tile the slab, one uses a finite number of translates of plane P . We see that any
slab can be triangulated using copies of a single tetrahedron; for the parameters a = b =

√
2/2, the

two types of tetrahedra are the same, and we can scale the result as needed to get a slab of the
desired thickness. Triangulating rectangular prisms is also easy; it suffices to use a finite number of
translates both of the initial line and of the resulting infinite strip. Again, this can be done using
copies of a single tetrahedron, provided that the ratio of side lengths of the rectangle is a rational
number. If the ratio of side lengths is p/q, one can use parameters a = b =

√
2/2 and take p copies

of the initial line with q copies of the infinite strip. The result has the correct ratio of side lengths
and can be scaled to get the desired rectangle.
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Figure 11. A completely well-centered mesh of the cube with 194 tetrahedra

4. Meshing the Cube With Well-Centered Tetrahedra

Meshing the cube with well-centered tetrahedra is significantly more difficult than meshing an
infinite square prism, but it can be done. In this section we discuss several well-centered meshes
of the cube that we constructed. In each case, the mesh was built by first designing the mesh
connectivity, then moving the internal vertices using the optimization algorithm described in [15].

The first completely well-centered mesh of the cube that we discovered has 224 tetrahedra. We
do not discuss the construction of this mesh in detail here, but it is worth mentioning the mesh
because it has higher quality than the other well-centered meshes of the cube we will discuss. The
quality statistics for the mesh are shown in the columns to the left in Table 2. The faces of this
triangulation of the cube match up with each other, so it is relatively easy to make a well-centered
mesh of any figure that can be tiled with unit cubes. One can use a copy of this well-centered mesh
of the cube in each cube tile, using rotations and reflections as needed to make all the faces match.

Cassidy and Lord showed that the smallest acute triangulation of the square consists of eight
triangles [3]. Knowing that a completely well-centered mesh of the cube exists, it is natural to ask
the analogous question for the cube. What is the smallest well-centered mesh of the cube? One can
ask this question for the three different types of well-centered tetrahedral meshes – 2-well-centered,
3-well-centered, and completely well-centered. It is also conceivable that the well-centered mesh of
the cube with the fewest tetrahedra is different from the mesh of the cube with the fewest vertices
or edges, but we restrict our attention to the smallest well-centered mesh in the sense of fewest
tetrahedra.
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Cube Mesh Quality Statistics

Quantity 224 Tets 194 Tets 146 Tets
Min Max Min Max Min Max

h/R 0.041 0.850 0.005 0.790 0.016 0.854
Face Angle 21.01° 87.49° 26.93° 89.61° 17.09° 112.60°

Dihedral Angle 24.91° 105.61° 28.26° 126.64° 10.73° 163.17°

R/` 0.618 1.569 0.612 1.134 0.711 1.835
Table 2. The quality of our meshes of the cube decreases with the number of
tetrahedra in the mesh of the cube

The answer to the question is not known for any of the three types of well-centered triangulations,
but we can give some upper and lower bounds. The best known upper bound for 2-well-centered
and completely well-centered triangulations of the cube is a completely well-centered mesh of the
cube with 194 tetrahedra. Figure 11 shows a picture of this mesh. The quality statistics for the
mesh are recorded in the middle columns of Table 2.

It is possible to improve the quality slightly by optimization of the location of the surface vertices,
but for the version of the mesh shown in Fig. 11, the surface triangulation has some desirable
symmetries, with every surface vertex at a cube corner, at the midpoint of an edge of the cube, or
on a diagonal of a face of the cube. All of the faces match each other up to rotation and reflection,
so this triangulation of the cube can also be used to create a well-centered mesh of any figure that
can be tiled with unit cubes. Although the surface triangulation of this mesh is combinatorially
the same as the triangulation with 224 tetrahedra, the vertices on the surfaces are not in the same
location, so it is not trivial to mix these two triangulations in meshing a cube-tiled shape. It is
worth noting that the vertices of the surface triangulation that lie on the cube diagonals do not
have coordinates of 1/3 or 2/3. Instead the coordinates are 0.35 or 0.65 for the vertices adjacent
to an edge through the center of the cube face, and the coordinates are 0.295 or 0.705 for vertices
not adjacent to such an edge.

Figure 11 is designed to make it possible to discern the structure of this triangulation of the
cube. In the bottom right we see a triangulation of a region that fits into the corner of the cube
and extends along the cube surface to diagonals of three of the faces of the cube. The triangulation
basically has two layers of tetrahedra. The first layer is shown at bottom left. It consists of six
tetrahedra that are incident to the corner of the cube. The two-layer triangulation is imprecisely
replicated in four different corners of the cube. The thicker diagonal lines in the picture at top left
help show which cube corners contain this type of triangulation. To complete the triangulation of
the cube, a vertex at the center of the cube is added to the triangulations of the cube corners. The
picture at top right of Fig. 11 shows all the interior vertices of the cube, combining the vertex at the
center of the cube with one tetrahedron from each triangulation of a cube corner. The Delaunay
triangulation defines the connectivity table, since any 3-well-centered triangulation is Delaunay.

This mesh establishes upper bounds for the 2-well-centered and completely well-centered cases.
There is an even smaller triangulation of the cube that is known to be 3-well-centered. We do
not describe it here except to say that the mesh consists of 146 tetrahedra and has a surface
triangulation with fewer triangles than the two previously mentioned triangulations of the cube.
The quality of that 3-well-centered mesh of the cube is shown in the rightmost columns of Table 2.

The upper bounds for this problem are simple to present, since they consist of constructive
examples. The analytical lower bounds are rather more complicated to explain, and we discuss
them here only briefly. One can show that in a 3-well-centered triangulation of the cube, no face
of the cube is triangulated with two right triangles meeting along the hypotenuse [16]. Thus each
face of the cube must contain at least five vertices and at least three tetrahedral facets. Since there
are six cube faces, this leads to a count of 18 tetrahedra, one adjacent to each facet. Some of these
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tetrahedra may have been counted twice, though, since a single tetrahedron may have a facet in
each of two different cube faces. It can be shown that no tetrahedron having a facet in each of three
different cube faces is a 3-well-centered tetrahedron [16]. Thus no tetrahedron is triple-counted. A
lower bound of 9 tetrahedra follows. It is possible to prove that any triangulation of the cube with
all vertices lying on the edges of the cube is not 3-well-centered, but it is not immediately clear
whether this can be used to improve the lower bound.

The lower bound for 2-well-centered and completely well-centered triangulations of the cube is
slightly better. In this case, each face of the cube must be triangulated with an acute triangulation,
so each cube face contains at least 8 tetrahedral facets. This gives a count of 48 tetrahedra, and
once again we cannot have counted any tetrahedron three times [16]. (For the 2-well-centered case
this is not exactly the same reason as the 3-well-centered case.) A lower bound of 24 tetrahedra
follows. This lower bound can be improved a little by paying attention to which triangular facets
can and cannot lead to double-counted tetrahedra, and a lower bound of 30 tetrahedra can be
obtained.

A careful analysis along these lines might improve the lower bound even more, since there is no
way to conformally triangulate all the surfaces of the cube with an 8-triangle acute triangulation of
each face. In any case, the authors suspect that the actual answer to these questions is close to 100
tetrahedra, if not greater, so the lower bounds mentioned here should be considered preliminary.

5. Some Subdivisions of Tetrahedra into Well-Centered Tetrahedra

Having seen that the cube can be subdivided into well-centered tetrahedra, one might also ask
whether a tetrahedron can be subdivided into well-centered tetrahedra. Subdivisions of tetrahedra
into well-centered tetrahedra could be used to refine an existing mesh. Subdividing a tetrahedron
that tiles space into well-centered tetrahedra would provide new well-centered meshes of space.
In general, well-centered subdivisions of tetrahedra might be used to design high-quality meshing
algorithms.

One might suppose that subdividing the regular tetrahedron into smaller well-centered tetrahedra
is relatively simple, but the problem is not so easy as it might seem. In two dimensions, the Loop
subdivision, which refines a triangle by connecting the midpoints of each edge of the triangle,
produces four smaller triangles. Each of these triangles is similar to the original triangle, so the
Loop subdivision of an acute triangle is an acute triangulation of the triangle. In three dimensions,
however, there is no obvious analog of the Loop subdivision.

Connecting the midpoints of the edges of a tetrahedron cuts out four corner tetrahedra that are
similar to the original tetrahedron. The shape that remains in the center after removing these four
tetrahedra is an octahedron. In the case of the regular tetrahedron, it is a regular octahedron,
and it can be subdivided into four tetrahedra by adding an edge between opposite vertices of the
octahedron. The result is not well-centered; the center of the octahedron is the circumcenter of all
four tetrahedra, so the tetrahedra are not 3-well-centered. In addition, the facets incident to the
new edge are right triangles, so the tetrahedra are not 2-well-centered.

We can turn this subdivision of the regular tetrahedron into a well-centered subdivision, however.
By sliding some of the new vertices along the edges of the regular tetrahedron, moving them away
from the edge midpoints, we can make the four center tetrahedra well-centered without degrading
the four corner tetrahedra to the point of not being well-centered. Figures 12 and 13 illustrate
two different successful ways we can slide the vertices along edges of the tetrahedra. In both cases,
the midpoint vertices that are adjacent to the central edge remain stationary, to keep the central
edge as short as possible. In Fig. 12, the four free midpoints all slide towards the same edge of the
regular tetrahedron. In Fig. 13, the free midpoints slide along a directed four-cycle through the
vertices of the regular tetrahedron.

There are also more complicated ways to divide the regular tetrahedron into smaller well-centered
tetrahedra. Figure 14 shows the basic structure of a subdivision of the regular tetrahedron into
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Quality Statistics
Quantity Min Max

h/R 0.0345 0.712
Face Angle 38.87° 86.76°

Dihedral Angle 38.44° 121.37°

R/` 0.702 0.934

Figure 12. A simple subdivision of the regular tetrahedron into eight completely
well-centered tetrahedra

Quality Statistics
Quantity Min Max

h/R 0.0448 0.584
Face Angle 39.63° 87.43°

Dihedral Angle 46.72° 105.95°

R/` 0.777 0.826

Figure 13. Another simple subdividision of the regular tetrahedron into eight com-
pletely well-centered tetrahedra

49 tetrahedra. A smaller regular tetrahedron is placed in the center of the large tetrahedron with
the same orientation as the original. Each face of the smaller tetrahedron is connected to the
center of a face of the larger tetrahedron. At each corner of the large tetrahedron, a small regular
tetrahedron is cut off of the corner, and the resulting face is connected to a vertex of the central
regular tetrahedron. After filling in a few more tetrahedral faces, six more edges need to be added
to subdivide octahedral gaps into tetrahedra. The mesh shown in Fig. 15 is the completely well-
centered mesh that results from optimizing the mesh shown in Fig. 14. This subdivision of the
regular tetrahedron is interesting partly because all of the surface triangulations match and have
three-fold radial symmetry. It is also possible that this type of subdivision will be easier to use in
mesh refinement than the other two subdivisions.

It is not clear whether these constructions can be extended in some way to create a well-centered
subdivision of any well-centered tetrahedron. The constructions cannot be extended to create
well-centered subdivisions of all tetrahedra, since both constructions cut off the corners of the
tetrahedron to create smaller tetrahedra that are nearly similar to the original tetrahedron. In
particular, the cube corner tetrahedron, i.e., some scaled, rotated, translated version of the tetra-
hedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), cannot be subdivided into well-centered
tetrahedra in this fashion; one can show that no tetrahedron with three mutually orthogonal faces
is 3-well-centered [16]. Subdividing the cube corner tetrahedron is particularly interesting, though,
because it provides some guidance regarding what is needed to mesh a cube or, for that matter,
any object having three mutually orthogonal faces that meet at a point.
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Figure 14. A subdivision of the regular tetrahedron that can be made completely
well-centered through optimization

Quality Statistics
Quantity Min Max

h/R 0.0146 0.845
Face Angle 23.36° 89.07°

Dihedral Angle 29.93° 107.73°

R/` 0.612 1.305

Figure 15. The completely well-centered subdivision of the regular tetrahedron
that results from optimizing the mesh shown in Fig. 14

In fact, the smallest known subdivision of the cube into well-centered tetrahedra is based on a
subdivision of the cube corner into well-centered tetrahedra. The picture in the bottom right corner
of Fig. 11 shows a triangulation of a region that fits into the corner of a cube. The three visible
interior vertices in Fig. 11 are not coplanar with the cube diagonals, but they are nearly so, and
there is a completely well-centered mesh of the cube corner that is combinatorially the same as that
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mesh. We actually obtained the mesh of the cube corner tetrahedron first, and the well-centered
mesh of the cube in Fig. 11 was obtained by replicating the cube corner mesh as described earlier,
adding a vertex at the cube center, computing the Delaunay triangulation, and optimizing with
the software discussed in [15].

6. Conclusions and Questions

We have discussed some of the properties of well-centered tetrahedra and seen that it is possible
to triangulate a variety of basic three-dimensional shapes with completely well-centered tetrahedra.
The triangulations discussed suggest that it might soon be practical to mesh simple domains in
R3 with well-centered tetrahedra. They also show that there are a rich variety of well-centered
tetrahedra.

The authors hope that it will be possible to build robust software for meshing three-dimensional
domains with this variety of well-centered tetrahedra, but there is still significant work to be
done before that goal can be reached. Part of this work is to determine what properties the
neighborhood of a vertex in a 3-dimensional triangulation must have in order to permit a well-
centered triangulation. The question is partially answered in [16], but a complete answer is lacking.
The ability to subdivide any tetrahedron (or even just any well-centered tetrahedon) into smaller
well-centered tetrahedra would also be a significant advance toward this goal.

This work also raises some questions that are of more theoretical interest, though not without
practical application. It would be interesting to construct the smallest possible well-centered mesh
of the cube. How might one improve the lower bounds on the number of tetrahedra needed in a
well-centered mesh of the cube? Also it is still an open question whether there are other tetrahedra
for which copies of a single tetrahedron meet face to face and fill space. Could there be other
well-centered tetrahedra that tile space? Are there other families of high-quality tetrahedra that
tile space?
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