13 research outputs found

    Comparison of Classical Computer Vision vs. Convolutional Neural Networks for Weed Mapping in Aerial Images

    Get PDF
    In this paper, we present a comparison between convolutional neural networks and classicalcomputer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth, for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical model

    Remote Sensing of Weeds in Field Crops via Image Processing: A Short Literature Collection

    Get PDF
    This short technical report briefly examines and discusses some of the major literature relevant to remote sensing of weeds in row crops using remotely-collected images. The basic problem is introduced, following by short discussions of remote crop sensing using UAVs and other methods, collected image processing, and vegetation classification methods. This report provides a basic collection of high-impact work in this area which may act as a starting place for a formal review of crop/weed detection methods.Ope

    Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

    Get PDF
    The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and improving the sustainability of the agricultural sector. In addition to discussing recent advances, this study also highlights the challenges faced in adopting new technology in agriculture and proposes novel techniques to enhance the performance of deep learning models. The study provides valuable insights into the latest advances and challenges in process systems engineering and technology for agricultural activities

    d Weed Recognition in Agriculture Using Mask R-CNN

    Get PDF
    Recent cooperation on deep learning has piqued the curiosity of those interested to utilise the techniques in agriculture. Weed management system is significant in agriculture that must be completed to improve crop production. The first step in weed management is to accurately classify the weeds and crops with an effective management strategy. Due to the enormous complexities in agricultural images, such as identical colour and texture, a deep neural network with pixel-wise grouping must be used to identify the plant type. The effectiveness of one of the most famous deep neural networks is examined in this paper to tackle the instance segmentation problems. Using field photos, Mask R-CNN is used to recognise weed plants (detection and classification). The dataset, which contains weeds and plants, is used to train a Mask R-CNN computer vision framework to classify and locate unique occurrences of weeds among plants. The dataset was trained on the MS COCO dataset, and the model was tailored to our classification purpose via transfer learning. Some well-reported problems in developing a suitable model are instance occlusion and the major resemblance between weeds and crops. Mask�RCNN is built on the FPN and the ResNet101 backbone. After the field images are tested on the pre-trained Mask R-CNN model, Mask R-CNN will give a class label and a bounding box offset for each weed and crop recognised. Moreover, the recognised weeds and crops will be given an object mask. Using the Mask R-CNN, the system can effectively perform instance segmentation on the images of weeds and crops with higher accuracy

    Semantic Segmentation based deep learning approaches for weed detection

    Get PDF
    Global increase in herbicide use to control weeds has led to issues such as evolution of herbicide-resistant weeds, off-target herbicide movement, etc. Precision agriculture advocates Site Specific Weed Management (SSWM) application to achieve precise and right amount of herbicide spray and reduce off-target herbicide movement. Recent advancements in Deep Learning (DL) have opened possibilities for adaptive and accurate weed recognitions for field based SSWM applications with traditional and emerging spraying equipment; however, challenges exist in identifying the DL model structure and train the model appropriately for accurate and rapid model applications over varying crop/weed growth stages and environment. In our study, an encoder-decoder based DL architecture was proposed that performs pixel-wise Semantic Segmentation (SS) classifications of crop, soil, and weed patches in the fields. The objective of this study was to develop a robust weed detection algorithm using DL techniques that can accurately and reliably locate weed infestations in low altitude Unmanned Aerial Vehicle (UAV) imagery with acceptable application speed. Two different encoder-decoder based SS models of LinkNet and UNet were developed using transfer learning techniques. We performed various measures such as backpropagation optimization and refining of the dataset used for training to address the class-imbalance problem which is a common issue in developing weed detection models. It was found that LinkNet model with ResNet18 as the encoder section and use of ‘Focal loss’ loss function was able to achieve the highest mean and class-wise Intersection over Union scores for different class categories while performing predictions on unseen dataset. The developed state-of-art model did not require a large amount of data during training and the techniques used to develop the model in our study provides a propitious opportunity that performs better than the existing SS based weed detections models. The proposed model integrates a futuristic approach to develop a model that could be used for weed detection on aerial imagery from UAV and perform real-time SSWM applications Advisor: Yeyin Sh

    Artificial intelligence and image processing applications for high-throughput phenotyping

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMitchell L NeilsenThe areas of Computer Vision and Scientific Computing have witnessed rapid growth in the last decade with the fields of industrial robotics, automotive and healthcare acting as the primary vehicles for research and advancement. However, related research in other fields, such as agriculture, remains an understudied problem. This dissertation explores the application of Computer Vision and Scientific Computing in an agricultural domain known as High-throughput Phenotyping (HTP). HTP is the assessment of complex seed traits such as growth, development, tolerance, resistance, ecology, yield, and the measurement of parameters that form more complex traits. The dissertation makes the following contributions: The first contribution is the development of algorithms to estimate morphometric traits such as length, width, area, and seed kernel count using 3-D graphics and static image processing, and the extension of existing algorithms for the same. The second contribution is the development of lightweight frameworks to aid in synthetic image dataset creation and image cropping for deep neural networks in HTP. Deep neural networks require a plethora of training data to yield results of the highest quality. However, no such training datasets are readily available for HTP research, especially on seed kernels. The proposed synthetic image generation framework helps generate a profusion of training data at will to train neural networks from a meager samples of seed kernels. Besides requiring large quantities of data, deep neural networks require the input to be a certain size. However, not all available data are in the size required by the deep neural networks. The proposed image cropper helps to resize images without resulting in any distortion, thereby, making image data fit for consumption. The third contribution is the design and analysis of supervised and self-supervised neural network architectures trained on synthetic images to perform the tasks of seed kernel classification, counting and morphometry. In the area of supervised image classification, state-of-the-art neural network models of VGG-16, VGG-19 and ResNet-101 are investigated. A Simple framework for Contrastive Learning of visual Representations (SimCLR) [137], Momentum Contrast (MoCo) [55] and Bootstrap Your Own Latent (BYOL) [123] are leveraged for self-supervised image classification. The instance-based segmentation deep neural network models of Mask R-CNN and YOLO are utilized to perform the tasks of seed kernel classification, segmentation and counting. The results demonstrate the feasibility of deep neural networks for their respective tasks of classification and instance segmentation. In addition to estimating seed kernel count from static images, algorithms that aid in seed kernel counting from videos are proposed and analyzed. Proposed is an algorithm that creates a slit image which can be analyzed to estimate seed count. Upon the creation of the slit image, the video is no longer required to estimate seed count, thereby, significantly lowering the computational resources required for the estimation. The fourth contribution is the development of an end-to-end, automated image capture system for single seed kernel analysis. In addition to estimating length and width from 2-D images, the proposed system estimates the volume of a seed kernel from 2-D images using the technique of volume sculpting. The relative standard deviation of the results produced by the proposed technique is lower (better) than the relative standard deviation of the results produced by volumetric estimation using the ellipsoid slicing technique. The fifth contribution is the development of image processing algorithms to provide feature enhancements to mobile applications to improve upon on-site phenotyping capabilities. Algorithms for two features of high value namely, leaf angle estimation and fractional plant cover estimation are developed. The leaf angle estimation feature estimates the angle between stem and leaf for images captured using mobile phone cameras whereas fractional plant cover is to determine companion plants i.e., plants that are able to co-exist and mutually benefit. The proposed techniques, frameworks and findings lay a solid foundation for future Computer Vision and Scientific Computing research in the domain of agriculture. The contributions are significant since the dissertation not only proposes techniques, but also develops low-cost end-to-end frameworks to leverage the proposed techniques in a scalable fashion
    corecore