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Global increase in herbicide use to control weeds has led to issues such as 

evolution of herbicide-resistant weeds, off-target herbicide movement, etc. Precision 

agriculture advocates Site Specific Weed Management (SSWM) application to achieve 

precise and right amount of herbicide spray and reduce off-target herbicide movement. 

Recent advancements in Deep Learning (DL) have opened possibilities for adaptive and 

accurate weed recognitions for field based SSWM applications with traditional and 

emerging spraying equipment; however, challenges exist in identifying the DL model 

structure and train the model appropriately for accurate and rapid model applications over 

varying crop/weed growth stages and environment. In our study, an encoder-decoder 

based DL architecture was proposed that performs pixel-wise Semantic Segmentation 

(SS) classifications of crop, soil, and weed patches in the fields. The objective of this 

study was to develop a robust weed detection algorithm using DL techniques that can 

accurately and reliably locate weed infestations in low altitude Unmanned Aerial Vehicle 

(UAV) imagery with acceptable application speed. Two different encoder-decoder based 

SS models of LinkNet and UNet were developed using transfer learning techniques. We 

performed various measures such as backpropagation optimization and refining of the 



dataset used for training to address the class-imbalance problem which is a 

common issue in developing weed detection models. It was found that LinkNet model 

with ResNet18 as the encoder section and use of ‘Focal loss’ loss function was able to 

achieve the highest mean and class-wise Intersection over Union scores for different class 

categories while performing predictions on unseen dataset. The developed state-of-art 

model did not require a large amount of data during training and the techniques used to 

develop the model in our study provides a propitious opportunity that performs better 

than the existing SS based weed detections models. The proposed model integrates a 

futuristic approach to develop a model that could be used for weed detection on aerial 

imagery from UAV and perform real-time SSWM applications. 
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Chapter 1: Introduction 

 The current world population of 8 billion people is expected to increase by around 

1.8 billion and reach 9.7 billion by 2050 (https://www.fao.org). Increasing world 

population trends demand an increase in overall crop production and measures to 

decrease crop yield losses. There exist various biotic constraints such as weeds, pests, 

bacteria, fungus, etc., and abiotic factors such as change in soil moisture content, 

excessive rain, drought etc., that could dwindle crop yield (Oerke et al., 2006). According 

to a survey conducted by (Adeux et al., 2019), farmers could suffer an estimated 19-56 % 

decline in crop yield if weeds were left untrammeled in the fields. Weeds are one of the 

most important biotic constraints that compete with crops for water, sunlight, nutrients, 

and space. Also, weeds destroy the natural habitat of plants and animals in the fields as 

they provide a haven to insects and pathogens in the fields (Chauhan et al., 2020). Several 

chemical and mechanical weed control measures have been used to manage weeds in 

agriculture. Mechanical weed control techniques like tilling, hoeing, hand removal are a 

few practical practices which are used to handle weed infestations in small farmlands in 

developing countries. In developed countries like USA and Canada where farmers have 

large farmlands, these manual weeding techniques are not practically feasible to handle 

weed infestations. The most popular operandi to cover larger field areas is the use of 

uniform spraying of chemicals like herbicides in the fields to perform weed killings. 

Glyphosate-based Herbicides (GBHs) are the most used herbicides in the fields as they 

are capable of handling multiple weed species that grow in fields. There exist a few 

drawbacks associated with practicing of uniform spraying herbicide applications in the 
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fields such as increase in economic burden due to costs associated with herbicides and 

human labor, environment pollution due to use of chemicals in fields, and evolution of 

herbicide resistant weeds in the fields which are more harmful (Veeranampalayam et al., 

2020). Recently, it has been proven that excessive use of GBHs in fields lead to decrease 

in crop nutrition quality and disruption to rhizosphere microbial ecology (Martinez et al., 

2018). 

Precision agriculture suggests various Site-Specific Weed Management (SSWM) 

strategies in performing the weeding applications at locations where weed infestations are 

detected in the fields. Computer vision techniques have been extensively used to extract 

useful information from the data acquired using various remote sensing techniques such 

as Satellites, Unmanned Aerial Vehicles, Ground robots to generate weed maps that 

could be used to perform the tasks of SSWM applications. (Wu et al., 2021). 

Traditionally machine vision and image processing techniques were used to develop 

weed detection models, these models were trained to detect weed infestations that existed 

in-between crops row spacing and did not perform well in classifying intra-row weed 

infestations (Perez et al., 2000). The availability of high-resolution imagery collected 

using Unmanned Aerial Vehicles hovering at lower altitudes have helped in extraction of 

useful features which have been used with various Machine Learning algorithms such as 

Support Vector Machines, Decision Tress, Random Forests to develop weed detection 

models in recent past (Liakos et al., 2018). Due to their better learning capabilities on 

features extracted from these images, ML algorithms helped achieve higher accuracy 

scores to perform the classifications tasks between crops and weeds (Bakhshipour et al., 
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2018). However, training a weed detection has been a complex task due to the 

homogenous crop-weed characteristics such as color similarity, high occlusions, similar 

reflective index, similar shape, and texture features (Hasan et al., 2021). 

DL techniques using CNN have revolutionized computer vision tasks by creating 

state-of-art models to perform the complex tasks of image classification, object detection, 

semantic segmentation, and instance segmentation (Girshick et al., 2015; Ren et al., 

2015; Liu et al., 2016; Ronneberger et al., 2015; He et al., 2017). CNN based deep 

learning approach have gained much importance over the past few years in performing 

classifications and detection tasks because of their feature generation and better self-

learning capabilities in comparison with Machine Learning algorithms and traditional 

conventional image processing or vegetation index-based approaches. The training of DL 

models requires systems with high configurational capabilities to perform the complex 

computations required during the training phase. The availability of systems having better 

computer hardware, software capabilities and use of GPUs have helped in training DL 

models to achieve higher accuracy scores. Weed detection models have been developed 

using Object Detection and Semantic Segmentation techniques (He et al., 2017; 

Ronneberger et al., 2015). Object detection performs the task of generating bounding 

boxes around detected objects during prediction and Semantic segmentation models 

generate pixel-wise mapping of different class categories detected during predictions. 

The Semantic Segmentation approaches have gained much importance in recent past as 

they better perform the tasks of scene understanding and help in generating better 

accuracy scores during predictions. Due to their better scene understanding capabilities 
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these models have been used for real-time applications such as self-driving cars, and 

augmented reality (Hao et al., 2020; Garcia-Garcia et al., 2017). Pixel-wise classifications 

using Semantic Segmentation approaches are not fully exploited in resolving weed 

detection tasks due to unavailability of data to be used for training these models. A major 

challenge faced while training Semantic Segmentation models is the class-imbalance 

issue, which is a common concern while training Deep Learning model. This study 

proposes a two-step approach to handle the class imbalance problem and generate 

optimized Semantic Segmentation based Deep Learning models to generate weed maps 

with better accuracy scores. The two-step optimized strategy is explained in detail in 

Chapter 3 of this thesis. 

This thesis has been organized as three chapters with Chapter 1 as the 

Introduction. Chapter 2 gives a detailed review on the Computer Vision techniques that 

have been used to develop real-time weed detection models in the past two decades. 

Chapter 3 presents research conducted to develop a robust weed detection model using 

Semantic Segmentation based Deep Learning approach. 
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Chapter 2: Computer Vision techniques for weed detection in 

agricultural production and natural resource management: A Review 

This manuscript has been prepared for journal submission 

2.1 Introduction 

 Agriculture in the 21st century faces multiple challenges: the major concerns are 

to mass-produce abundant food and fiber to feed a growing population with a smaller 

rural labor force. The need of the hour is to embrace more efficient and sustainable 

production methods and adapt to climate change, which could contribute to overall 

development in the many agricultural-dependent developing countries in the world. The 

current global population of 8 billion is expected to reach over 9.8 billion by 2050 [3]. To 

feed this rise in population the overall food production would need to be increased by an 

estimate of around 70-100%. This implies a significant increase in the production of 

several key commodities such as cereal production and meat production, considering the 

required nutritional content [1]. Accordingly, in addition to breeding a higher-yielding 

variety of crops, it is vital to address the numerous factors affecting crop yield loss in the 

agriculture community.  

Computer vision technologies have been used to resolve many Precision 

Agriculture (PA) tasks, such as crop yield prediction, water and soil conservation, plant 

disease detection, weed detection, quality evaluation of crops, and species identification 

[31-48] to help fetch insights that directly or indirectly helps in increase of crop yield. 

Table 1 lists various computer vision-based applications in agriculture that were 

developed recently. PA has proposed site-specific spraying techniques that could prevent 
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waste and herbicide residual problems caused by traditional spraying practices [25]. PA 

is an approach to farm management that uses Information Technology (IT) to ensure that 

crops and soil receive exactly what they need for optimum health and productivity [27].  

At present, the development of robust real-time applications performing accurate 

identification of crops and weeds is among the major focuses in Site-Specific Weed 

Management (SSWM). Training weed detection models using traditional image-

processing methods involves extraction of useful features, such as color, texture, and 

shape, and incorporating them with various image analyses [61-71], and ML [46-49] 

algorithms such as SVM [28], RF [29], ANN [44], K-Means [30] etc. These methods are 

trained on features fed manually by the user and have a high dependency on image 

acquisition, quality of feature extraction, and pre-processing methods. Improvement in 

computational power, increase in data volume, and advancement in technology, has led to 

the increase in use of DL algorithms to solve several Computer Vision oriented 

applications in the agriculture domain. DL methods [31-38] consisting of CNN have been 

extensively used for detection and classification predictions because of their feature 

extraction and self-learning capabilities. Due to their enhanced data expression 

capabilities for images, these models have helped to develop more robust detection 

models with better accuracy results. avoiding the disadvantages of traditional extraction 

methods, these methods have gained much attention in the recent past. 

Several reviews have already been published which emphasize comparing weed 

detection models developed using various computer vision approaches [2, 3, 46, 49]. 

These reviews provide an extensive overview of the strategies used to develop these 
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models along with the pros and cons associated with them. Numerous real-time weed 

management applications have been developed in recent past, which make use of unique 

strategies to develop these models. Novel strategies that could be used to develop real-

time site-specific weed management applications and the pros and cons associated with 

existing real-time weed management applications are yet to be discussed in a review. 

This review provides a comprehensive overview of various CV methods used for 

developing weed detection in the past three decades, including real-time CV methods 

developed in more recent years. Lastly, the challenges of current CV techniques for weed 

detection and some opportunities and trend of future research prospects are discussed that 

could be used to strategically plan and improve PA in weed management for their real-

time site-specific weed management applications. 

This review paper is divided into seven sections. The first section briefly explains 

about the world population trend, the required increase in demand for agriculture 

production for upcoming decades, the major causes of crop yield loss, and a few solutions 

to increase crop production in the 21st century. The second section explains the strategy 

that was adopted to fetch relevant articles to our research domain from available 

scientific databases. Section 3 gives a brief description of weeds, crop yield loss due to 

weeds, prevention and management strategies, and some common categories of weeds 

found in different crops. Section 4 gives a detailed description of traditional approaches 

that were used to develop weed detection models. ML and DL approaches that were used 

in the development of weed detection models and their advantages and disadvantages are 

also discussed along in Section 4 as well. Section 5 reviews the real-time applications of 
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weed detection models that have been developed and tested in agriculture fields for weed 

detection and discusses probable future directions in utilizing Computer Vision 

techniques for real-time applications in the development of weed detection models to 

surge agriculture production and conserve natural resources. Lastly, section 6 presents the 

summary and conclusions of our review. 

 

2.2 Methodology 

  This section explains the research questions, search strategy, and selection criteria 

based on which certain research articles were selected, and a comprehensive review was 

done on various weed management practices developed over the years.  

The analysis of these research papers involved two main steps:  

1. Collection of related research articles in the domain, in-depth analysis, and  

2. Review of the research performed in their work 

Firstly, to collect associated articles involving the development of weed 

identification models using various Computer Vision approaches, a keyword-based 

search was performed to gather both conference papers and journal articles on kindred 

subjects in PA. The main research question is: What is the role of Computer Vision 

techniques to form a weed map and real-time applications developed for SSWM using 

the weed map? Weedmaps could be referred to as the classification and detection of weed  
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patches with respective coordinates information in the agriculture fields. The articles 

were searched from 7 bibliographic databases: Google Scholar, Research Gate, Science 

Direct, MDPI, Wiley Online Library ProQuest, and the University of Nebraska-Lincoln: 

Library databases. The primary keyword ‘Computer Vision’ was paired with the 

secondary keyword ‘weed detection. These keywords were inserted into the databases 

and related articles were selected that were included in this review. To ensure that no 

related articles were missed, a hand search was also performed to find related articles in 

the same domain. 

 

2.3 What are weeds? A few Prevention and Management Strategies 

The various constraints to agricultural production or crop yield loss could be 

classified into the following basic categories: biotic and abiotic constraints in addition to 

socioeconomic and those related to crop management [14]. Plant breeders and researchers 

have continuously produced new innovative, resilient, and novel ideas to overcome these 

constraints in the past few decades [15, 16]. Amongst the biotic factors, weeds represent 

the most significant constituent that leads to the highest potential crop yield loss along 

with other pathogens such as bacteria, fungi, etc. Weeds are unwanted plants that grow in 

crops and compete with them for water, sunlight, nutrients, and space. In addition, they 

also harbor insects and pathogens which attack crop plants, destroying their native 

habitats, which could lead to detrimental effects on the quality of crops if uncontrolled. 

Potential crop yield loss without weed control is about 43% on a global scale [10]. In the 
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USA alone, crop yield losses due to weeds sum up to an estimated cost of around 33 

billion USD [9]. 

Pesticides such as herbicides have revolutionized and contributed significantly to 

weed management practices for the last 65 years and have helped in increasing crop yield 

[52]. Traditionally, weeds were controlled by uniform rate spraying of herbicides in the 

fields. This practice has a few disadvantages such as safety and environmental pollution, 

harm to humans, and the evolution of herbicide-resistant weeds which is a major issue of 

concern [26]. SSWM techniques could bridle the issue of uniform spraying of herbicides 

in fields to spraying only at desired locations where weeds were detected by machinery or 

equipment embedded with technologies that could detect weeds in crops [13]. This 

practice could help overcome the challenges associated with the uniform spraying of 

herbicides in the fields. Glyphosate has been commercially available since 1974 and is 

the most effective herbicide ever discovered [52]. Recurrent use of herbicides to control 

weeds has led to the emergence of legion Herbicide Resistant (HR) weeds in different 

crops. The first discovery of triazine-resistant weeds was found in western Washington in 

the 1960s [49] and as per [weedscience.org] 513 unique cases of HR weeds were 

discovered globally in 2022. Table 3 gives a few examples of common HR weeds that 

grow in different crops. Also, researchers have discovered various weed biotypes which 

are resistant to more than one herbicide (i.e., cross-resistance). 

Continuous improvements need to be made to improve crop production. The 

traditional practices including burning, hand sowing, manual spot spraying, considering  
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primary tillage, regularly scouting of fields to identify weed presence, rotation in 

herbicide usage, herbicide pre-emergence or post-emergence application, and repetitive 

blade hoeing are not practical anymore. These practices impacted the ecosystem rather 

than benefiting production. The evolution in technology using computer vision 

applications has led to the development of multiple smart agriculture practices that have 

made the lives of farmers easier and more comfortable and are discussed in the following 

sections. The transformation in SSWM applications using various computer vision 

techniques has been discussed in the following sections of this study. 

 

2.4 Computer Vision for Weed Detection 

Weed management is a complex, information-intensive task. Important factors 

such as the emergence of weeds, the crop’s ability to suppress weed growth, effects of 

different weed species on crop yield need to be taken into consideration to understand the 

effects of weeds on crops [53]. Large quantities of herbicides are being used to control 

weeds in fields, gardens, ponds, golf courses, roadsides, and sports fields annually, which 

leads to environmental pollution and economic concerns. Traditional practices of 

removing weeds such as manual weeding and the usage of weeding tools to remove 

weeds are still being practiced for centuries and are still being used by farmers in owning 

small fields in developing countries [55]. Inefficiency, labor intensive, and high labor-

cost are a few major challenges associated with manual weeding practices which make 

them impractical for large farmlands [54]. Advancement in the field of technology has 
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led to the development of numerous Computer Vision based SSWM techniques that 

could be used as precise and real-time weed detection applications. These promising tools 

could replace and overcome the challenges posed by traditional weed management 

practices. In comparison with manual weeding, these approaches are much more 

efficient, decrease human labor and cost associated with it, and reduce the usage of 

herbicides in the fields. The result of a weed detection model is a weed map that could be 

used for site-specific treatment of weeds [58]. 

The main intuition behind SSWM is spraying of required herbicide composition 

at only specific weed patches that are detected. Typically, the development of SSWM 

practices usually requires 5 important steps to be followed [56, 57]: 

1. Collection of data using various remote sensing techniques 

2. Pre-processing and utilization of remote sensing data in preparation of Weed 

detection model and generating a real-time weed map.  

3. Decision-making to decide on an action for weeding on the previously detected 

information and farmer experience 

4. Weeding application based on the decision via an actuator 

5. Performance evaluation of the precision operation 

Amongst these 5 processes, weed detection plays a critical role in SSWM as it 

involves the algorithm development for the weed detection model and provides 

information to the successive processes that help in decision making. 
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RS techniques have been intensively used for numerous PA applications such as 

crop monitoring, irrigation management, predicting weather conditions, observing air 

quality, disease and pest management, and yield prediction in the past few decades. RS is 

the process of detecting and monitoring the physical characteristics of an object without 

coming into direct contact with the object. Several sensing methods have been used to 

fetch data using airborne, ground-based, and satellite techniques. These methods can be 

classified into ground-based, and airborne sensing techniques. Airplanes, UAVs (also 

drones), and satellites are used for data acquisition of airborne remote sensing data. The 

data from these pieces of equipment were collected and after proper examination and pre-

processing, the data were used as an input for training weed detection models. 

Multi/Hyper-spectral imaging [39, 46, 47], Visible and near Infra-red (Vis-NIR) 

spectroscopy [57], X-ray imaging [48], Satellite Spectral data [31, 41-43], distance 

sensing techniques (Light Detection and Ranging -LiDAR) [29], and RGB images [32, 

45] were used to extract important features such as plant spectral characteristics, leaf 

color, height, texture, shape, etc. and were utilized to train weed detection algorithms 

using computer vision and image analysis technology. The development of numerous 

weed detection algorithms using these techniques were carried out to perform 

classification tasks between different vegetation species. 

2.4.1 Traditional Computer Vision approaches 

 

  Detecting broad-leaved weeds in cereal crops under actual field conditions were 

performed using color information and shape features from the images. Two different 
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pattern recognition methods: KNN and Bayes rule were trained on color information and 

shape features extracted from various cereal crops and weeds and their performance was 

compared [61]. Average classification success rates (crop/weed) and corresponding 

variances were evaluated and the performance of 5 different classification algorithms was 

compared and rained on Spectral range, slit width, and slit length features extracted from 

6 weeds and sugar beet crops respectively. Performance comparisons between 5 different 

classification algorithms namely: ED, MD, KNN, CART, and MLNLM were done. 

MLNLM performed the best classification tasks between crops and weeds with a 

classification success rate of 85.8% [62]. Reflectance spectra of crop and weed canopies 

were used to evaluate the possibilities of weed detection with reflection measurements in 

laboratory circumstances. Sugar beet and maize and 7 weed species were included in the 

measurements and their wavelength bands were compared to obtain 97% accuracy in 

performing classification between weeds and crops respectively [63]. A computer vision 

system comprising an ANN was trained using shape features extracted from binary 

images collected from images of radish and weeds. The neural network developed was 

able to achieve a successful recognition rate of 93.3% for Radish and 93.8% for weeds 

[64]. Soil-crop segmentation was done with two spectral channels, chosen from 100 

channels available from the hyperspectral sensor, and weed detection was based on 

texture features extracted from segmented images [65]. Image pixels of the crop (Sugar 

beet) and weeds (4 species) were classified using the differences in spectral 

characteristics of plant species [66]. A combination of plant height and spectral 
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reflectance features was used to develop an algorithm to perform classification between 

crops and weeds in organic carrots [67]. 

  Some successful real-time weed detection models were also developed, and 

prototype testing was performed in agriculture fields to check and compare their 

performance in performing site-specific spraying of herbicides in the fields. Robotic 

weed controllers were developed by Blasco et al., [68] in Spain, which included two 

vision systems. The primary vision system helped the robot to distinguish between crops 

and weeds and the second vision system helped to retrieve the exact coordinates of weed 

presence, where an electrode powered by a set of batteries killed weeds by giving an 

electric discharge of 15000V [68]. Another robotic platform that could adapt and operate 

in between row crops of 0.25m and 0.5 m was developed by [69] with cameras for row 

guidance and weed detection. The robot included improved modules such as four-wheel 

steering and propulsion which helped to attain better mobility from adjustments in 

orientation. 

 Development of weed detection model using various spectral features and 

physical features such as shape, color, texture, and height encountered numerous 

challenges such as slow processing speeds, proper illumination during data collection, 

large memory requirements, and high costs of systems hardware. These were a few 

difficulties that were faced by researchers in the development of these detection models. 

The detection algorithms developed were not able to achieve accurate real-time 

applications during prototype testing. The presence of variable soil backgrounds and 
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residue cover complicates the spectral response and hinders the response of vegetative 

presence [70]. This approach was used by plenty of detection algorithms that compared 

the vegetative spectral reflectance of the weed areas in the fields. Detection algorithms’ 

performance differed in detection during different times of the day with variation in the 

lighting in which the remote sensing data was collected which was also a drawback of 

these approaches [71]. Advancements in the field of technology led to the development of 

better systems that could perform complex calculations and operations that led to the 

development of better architectures and algorithms that could perform arduous tasks of 

object classification and detection. Also, improvements and inventions of various 

Machine Learning and Deep Learning techniques led to solving challenges and tasks that 

seemed impossible in the past. 

2.4.2 Machine Learning-based Computer Vision approaches for weed 

detection 

 

ML has contributed significantly to resolving Computer Vision tasks in the 

agriculture domain such as yield prediction, disease detection, weed detection, and 

species identification, and has emerged significantly with big data technologies and high-

performance computing. ML is defined as an application of AI that empowers a system to 

learn and improve its performance from experience. It majorly focuses on developing 

programs that can access data and use it to perform certain tasks such as classification, 

regression, or clustering. In this section, we present a review of ML applications 

developed in agriculture specifically for weed detection. The performance of an ML task 
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is evaluated using an evaluation metric that is calculated after regular intervals while 

training an ML model. ML approaches have been extensively used in the previous decade 

to perform tasks such as Identification, Classification, Quantification, and Prediction in 

the agriculture domain [4, 79]. 

ML tasks could be broadly classified into 2 categories based on the learning 

approach that is used to train the model: Supervised [76-87] and Unsupervised Learning 

[72-74]. Also, ML models could be trained using different learning algorithms such as 

KNN, DT, RF, SVM, ANN, DL. Table 5 presents a detailed description of the weed 

detection models developed using the ML approach in recent past. 

2.4.2.1 Supervised vs Unsupervised ML approaches 

ML tasks are classified into two main categories: Supervised and Unsupervised 

Learning. The major difference between these methods is the approach in which learning 

is performed to improve the performance of the ML. In supervised learning, data is 

presented to the model in a manner that explicitly defines both input and desired output 

associated with it. In simple words, it could be stated that a well-defined labeled dataset 

is provided for training and the model is expected to learn the ability to distinguish an 

output given input during testing from knowledge gained during training. Also, another 

category in supervised learning is reinforcement learning where training is performed 

based on the feedback that is provided by the user training the model. Positive feedback 

is given whenever the model performs as expected and negative feedback is given 

whenever a model deviates from expectations during the training of a reinforcement 
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learning model. To compare performance on how well an ML performs on unseen data, 

the original dataset available for training is split into two separate independent folders to 

be used for training and testing. Training of the ML model is performed only using the 

training set and the performance is evaluated by comparing the predicted output with the 

actual output during testing. This helps to evaluate how well a model is generalizing on 

unseen data. Unsupervised learning is a process in which the ML model predicts by itself 

how to process and label the unlabeled or raw data that is fed to the model for training. 

No information about the relationship between data values is provided during training 

unsupervised learning ML models. Supervised Learning is the most used approach for 

training ML models [71]. 

2.4.2.2 Clustering Algorithms 

 

 Clustering is an unsupervised classification ML algorithm. K-mean clustering like 

nearest neighbors could be referred to as a method of clustering objects with similar 

feature information/characteristics in a cluster. This approach has been used by various 

researchers to perform tasks of weed detection. [72] used an unsupervised ML approach 

of clustering plants with similar shapes in one group. Data points with similar feature 

information formed clusters and these were used for the task of weed detection. Zhang et 

al., [73] presented a weed detection algorithm consisting of three sequentially linked 

phases that involved, image segmentation, feature extraction, and crop-row detection. 

Crop-row detection in this approach used made use of a clustering algorithm to form 

separate clustered feature point sets of crops and row spacing. Clustering has been used 
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to perform classification between weeds and crops using 16 features that were extracted 

using image processing techniques from the images that were collected from fields. Also, 

this approach was used to generate weed maps in less complex cases using GPS data 

[74]. KNN classifiers were used to perform weed identification tasks in low infestation 

level imagery collected using remote pilot aircraft on sugarcane plantations and overall 

accuracy of 83.1% was achieved using a kappa coefficient of 0.775 [78].  

2.4.2.3 Regression Algorithms 

  

Regression models supervised ML models that perform the prediction of detecting 

weeds in an image using a set of independent features that are extracted from the images. 

Major regression algorithms are Linear Regression (LR), Multiple Regression, and 

Logistic Regression (LoR). Multiple regression [76] analyses were used to find a 

relationship between ultrasonic readings and the corresponding coverage of crops and 

weeds. LR and LoR ML models were trained using weed density information and 

performance comparisons were made on their predictions to detect the presence/absence 

of weeds in the field [75]. These models were used to generate weed maps of annual 

grass weeds in the later stages of cereals. Feature extraction methods in combination with 

various ML models such as LoR [77] models were used to perform classification tasks 

between crops and weeds. 
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2.4.2.4 Support Vector Machines 

  

SVMs are supervised ML algorithms that perform the mapping of high-

dimensional data points and divide them into classes to form a Maximum Marginal 

Hyperplane. SVMs help to resolve the overfitting problems that appear in high-

dimensional spaces, which makes them a popular ML algorithm used by researchers to 

perform various classification, clustering, and regression tasks [4]. SVM classifiers using 

features extracted from Gabor and FFT filters have been used to perform the task of weed 

detection to detect broad and narrow weeds [80]. Fourier descriptors and moment 

invariant features together with several shape features were used to train the supervised 

SVM classifier to classify four species of weeds in sugar beet that achieved an overall 

accuracy of 95% [81]. An overall accuracy score of 97% was achieved on the testing 

performance of the SVM classifier trained on 14 optimal features extracted from digital 

images of crops and weeds [82]. The SVM classifier was able to perform complex 

classification between avena sterilis weed and cereal crops that shares similar spectral 

signature successfully even with minimum system memory requirements and 

computation power [83].  

2.4.2.5 Decision Trees 

 

DTs are supervised ML algorithms that could be referred to as probability tree-

like consisting of the root node, branches, and internal node that continuously split data to 

categorize or make predictions using the set of features that are used for training the 
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model. During training DT gradually tries to fit in the objects with similar characteristics 

under a common root node. DT algorithms were used to extract the shape and texture 

features of eight species of plant leaves using hyperspectral images to perform 

classification between corn and weeds under laboratory conditions that achieved an 

accuracy of over 95% [84]. Hyperspectral data of corn plots were used to classify into 3 

separate categories namely: weeds presence, water stress, and nitrogen application rates 

using DT algorithm [85].  

2.4.2.6 Ensemble Learning 

 

Ensemble learning refers to training multiple ML models on different samples 

from training datasets and aggregating responses from all the models to generate a final 

output. Ensemble learning generate better ML models that could generalize well on 

unseen dataset and have proven to overcome overfitting problems. The two common 

categories under which ensemble learning techniques can be classified are: Bagging and 

Boosting. Bagging is an ensemble learning technique in which several training samples 

from a dataset are independently trained on multiple ML algorithms and are aggregated 

via an appropriate combination technique to perform final prediction task. Boosting is an 

ensemble learning technique in which multiple ML algorithms are trained sequentially 

with an intuition that the successor learns from the miss-classifications or errors 

generated during training phase. This approach has resulted in improving generalizability 

during prediction from the trained model. One of the powerful supervised ML algorithms 

that uses ensemble learning techniques are RFs. RF constructs multiple DTs during 
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training and uses an aggregation of outputs from all DTs in a combination to perform the 

final classification and regression tasks during prediction. RF classifiers were used to 

perform weed species recognition tasks on the imagery that were collected at low 

altitudes using UAVs in presence of lower infestation levels in sugarcane fields [86]. The 

research conducted by [87] has developed RF-based ML algorithms to detect alligator 

weeds that form dense infestations in aquatic environments using remote sensing data to 

improve biosecurity supervision and monitoring efforts in Australia. ML algorithms that 

use gradient boosting techniques such as XGBoost have been used to train state-of art 

weed detection models to distinguish between Buffel grass and spinifex with accuracy 

scores of 97% have already been developed in recent past. Predictions performed in 

different case scenarios such as object rotation, illumination changes, background 

cluttering suggest the robustness of the ML models developed using gradient boosting 

techniques [106]. 

2.4.3 Deep Learning based Computer Vision approaches for weed detection 

 

Evolution in the field of developing better computer hardware and software has 

helped in the amelioration of the computing power of GPUs that play a vital role in 

performing multiple, simultaneous computations during the training of ML and DL 

models. DL algorithms have been used to perform various tasks in the agriculture and 

farming sector [34, 37, 41, 45], and in the development of various weed detection models 

lately. Traditional ML approaches have been extensively developed to perform the task 

of weed detection due to ease in both understanding ML algorithms and the availability  
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of features that could be used to train these models. DL models usually require large 

datasets to efficiently train and perform tasks such as prediction and classification.  

Traditional ML algorithms were limited in their ability to extract useful insights 

from raw natural raw data. DL algorithms such as CNNs, LSTM, GANs, FCNs, and 

RNNs have been used to develop both supervised and unsupervised DL models. CNN-

based supervised DL approaches have gained much popularity in the recent past due to 

their feature generation and self-learning capabilities. CNN consists of multiple layers: 

convolutional filters, pooling layers, and fully connected layers. Convolutional filters in 

CNN help in extracting important generic feature maps from raw natural data. The 

combination of generic feature maps from original data helps in training a DL model to 

detect several motifs from raw data that further help in performing complex tasks such as 

pattern recognition and object recognition. Pooling layers perform the task of 

dimensionality reduction while preserving the feature maps generated by convolutional 

filters in the DL network. The fully connected layers consist of adjustable weight 

parameters that represent the magnitude of certain feature outputs generated from 

convolutional filters that in turn play a major role in deciding the final prediction during 

training of a supervised DL model. The concept of Backpropagation performs the task of 

training in a DL algorithm. During the training phase, an objective function is computed 

that measures the deviation in between the predicted and desired output. Backpropagation 

performs the task of regularly computing the objective function and updating adjustable 
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weight parameters in fully connected layers such that the predicted output matches the 

desired output (Lecun et al., 2015) [88].  

The ILSVRC was a worldwide contest conducted between 2010-2017 to measure 

the progress of Computer Vision field to solve the complex tasks of object detection. The 

ILSVRC dataset consisted of 1.2 million annotated images of different objects (such as 

Person, airplanes, cars, etc.) across 1000 categories and the goal was to develop a ML 

architecture that could perform prediction task with higher accuracy scores. DL 

techniques gained much importance after the deep neural network Alexnet consisting of 

CNNs won the ILSVRC contest also popularly known as the ImageNet competition in 

2012 [111] (https://image-net.org/index.php, access on November 1, 2022). Optimal 

neural networks have been developed continuously since than to achieve better accuracy 

scores during prediction on ImageNet dataset. Popular CNN architectures such as VGG 

[91], ResNet [129], Inception [130], ResNeXt, GoogleNet [130] were developed in the 

following years to solve the ImageNet challenge and these architectures have been used 

for tasks such as object recognition, image classification, and automatic object clustering. 

Also, these architectures have been largely used as backbone (also called encoder or 

feature extractor) in popular classification algorithms of DL namely OD and SS. 

DL approaches have been used to develop weed detection models that could be 

used to perform the task of SSWM and use those applications for real-time sensing and 

spraying. Reviews on DL approaches that have been used to develop weed detection 

models [89], [90] are already published. Several CNN architectures such as GoogleNet 

https://image-net.org/index.php
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[131], MobileNet [132], ShuffleNet [133], VGGNet [91], ResNet [129], Inception [130], 

DenseNet [92], and ExceptionNet have been used to develop weed detection models. 

These CNN architectures differ in the arrangement and number of convolutional filters, 

pooling layers, and fully connected layers that have been used to create that specific 

architecture. These architectural arrangements are all unique and have contributed to 

solving diverse kinds of classification and prediction tasks. Deep CNN architectures 

(consisting of a higher number of convolutional and pooling layers) such as Inception and 

ResNet have been successfully used to solve complex classification tasks and achieve 

higher accuracy scores and shallow CNN architectures (consisting of lower convolutional 

and pooling layers) such as MobileNet [132], ExceptionNet [134] architectures have been 

used on edge computing devices to perform real-time applications [92].  

2.4.3.1 Transfer Learning and Data Augmentation 

 

A major challenge associated with training DL models is that they usually require 

large amounts of data during training and an increase in the number of images used 

during training have helped DL models to achieve higher accuracy scores. A common 

solution to handle the unavailability of large datasets to train DL models is the usage of 

TL and data augmentation techniques. Techniques such as TL and Data Augmentation 

have been popularly used to alleviate the problem during availability of insufficient data 

to train a DL model.  

TL refers to the use of existing knowledge that has already been used to perform 

one task, usually where large amounts of data is present for training to solve a similar 
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learning task, where there is limited data to perform the training of ML model. Training 

ML models especially. DL models using this approach have shown amazing results and 

helped in achieving state-of-art accuracy scores during prediction. Several applications 

using this approach have already been developed in the recent past [93] and this approach 

is widely used to develop weed detection models. [105], [107], [108] presents studies in 

which DL models were developed using TL techniques to overcome the limitation of 

training data. CNN architectures such as VGG, ResNet, Inception, DenseNet, MobileNet 

networks that have already been trained on ImageNet [94, 95], Microsoft COCO [96] 

datasets and are easily available and could be used for developing various detection, 

classification, and segmentation tasks using TL techniques. TL techniques were used by 

[30] to develop weed detection model and performance comparisons were made on the 

models that were developed using MobileNet and Inception architectures already trained 

on ImageNet datasets. [93] proposes a study in which a weed detection models are 

developed using a combination of various pre-trained convolutional architectures such as 

Xception, Inception-ResNet, MobileNet, and DenseNet with traditional ML models such 

SVMs, and LoR. A section in the review developed by [113] discusses various detection 

and classification models developed in agriculture domain using TL techniques in detail. 

Data Augmentation techniques in ML domain refers to the artificial increase in 

the amount of training data my adding moderately modified copies of original data or 

newly created synthetic data from existing data. Various strategies such as adjustment in 

color intensities, random rotations, flipping, etc. are commonly used to perform data 
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augmentation. DL models usually performs the training on features extracted from the 

images used for training. Increasing images using these strategies helps to increase the 

datasets by manifolds and helps in increasing the dataset used for training DL model. 

These techniques have also proven to escalate the robustness of CNN architectures used 

for feature extraction process in DL models. [30] performed horizontal flip and crop 

rotations to increase the images in training dataset. Data augmentation techniques such as 

pre-processing images by altering brightness, random rotations, flips and color variations 

were performed on original dataset to increase 920 images in original dataset to 9200 

images to be used for training DL models [107]. 

Recent advancements in the field of PA and need for sustainable practices such as 

SSWM has led to a significant increase in the use of DL techniques for development of 

weed detection models. A large number of studies conducted in this domain are 

conducted to develop neural networks solving weed detection problem on independent 

and unpublished datasets, this approach makes it exceedingly hard to compare and 

evaluate the performance of these neural networks in general. In order to perform 

performance comparisons of neural networks developed in this domain, it is crucial to 

prepare sufficiently large datasets comprising of weeds and crops images that could be 

used by researchers. An increase in the number of labeled datasets that are currently 

being developed in this domain would help to develop more robust and accurate weed 

detection models in near future. 
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DL generally has 2 classification algorithms based on the results generated during 

output. The following two sub-sections explain these 2 approaches in detail along with 

the weed detection applications developed using these techniques recently are discussed 

along. Table 7 presents a detailed description of the weed detection models developed 

using the DL approach in recent past. 

2.4.3.2 Object-Detection 

 

DL models perform the classification or detection task in which bounding boxes 

are formed with probability scores around the predictions as a final output belongs to the 

category of OD in DL. OD models that are quite popular and have been used to train DL-

based weed detection models are Fast RCNN [97], Faster RCNN [98], YOLO [99], SSD 

[100], and MaskRCNN [101]. These models [97, 98, 101] consist of RPNs that help the 

model predict certain locations in an image where there is a higher probability of finding 

an object, and then a convolutional network is used to perform the task of object 

detection and localization whereas in [99, 100] directly a convolutional network is used 

for both object detection and localization during prediction. The advantages associated 

with the former approaches discussed are that they can predict even the small objects that 

are present in an image whereas the later approaches usually miss predicting small 

objects. The disadvantages associated with former approaches are that due to their 

complex architecture they have high processing time and take more time to perform 

predictions as compared to later approaches. This has led to the use of [99, 100] 

approaches on edge-computing devices to perform real-time applications [105]. 
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(Sivakumar et al., 2020) [30] developed a weed detection model using OD-based 

FasterRCNN and SSD models and made performance comparisons of these models based 

on IoU scores and inference speed. The research concluded that the FasterRCNN model 

could achieve a higher optimized confidence threshold as compared to SSD which 

depicts that FasterRCNN generalizes better during testing. [107] conducted research and 

developed a weed detection model using OD-based DL approaches in vegetables. 

Performance comparisons between YOLO-v3 and FasterRCNN were made, and the 

results depicted that YOLO-v3 was able to achieve higher accuracy scores and had a 

significantly shorter inference time as compared to the latter. 

2.4.3.3 Semantic Segmentation 

 

DL models that perform the classification or detection tasks in which pixel-wise 

labeling is performed around the predictions as a final output belongs to the category of 

SS in DL. SS models that are quite popular and have been extensively used to develop 

weed detection models using the DL approach are SegNet [102], UNet [103], LinkNet 

[127], BiSeNet [128], and PSPNet [104]. SS techniques are gaining much importance as 

they can achieve higher accuracy results to train state-of-art DL models even with less 

amount of data [103]. These tasks have helped elucidate complex tasks of scene 

understanding. There has been a surge in the research related to performing tasks such as 

scene understanding due to rise in developing real-time applications for self-driving cars 

[149, 150, 151], augmented reality [152, 153], etc. in recent past as performing pixel-

wise classifications is an important task in these techniques. These models consist of 
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encoder-decoder architecture [102, 103] that consists of convolutional, pooling, and up-

convolutional layers. Encoder architecture performs the feature extraction process using 

the convolutional filters and the pooling layers lead to the condensed representation of 

the original image whereas in the decoder architecture the pooling indices in SegNet and 

both feature maps and pooling indices in UNet are concatenated along the up-

convolutional layers that help in converting the condensed representation back to the 

original input size of the image during prediction. Different CNN architectures such as 

DenseNet, VGG, ResNet, MobileNet, Inception, etc. using TL techniques can be used for 

the generation of feature maps in the encoder part of these models. These architectures 

usually have high processing time due to their complex architecture. The research 

conducted by (Asad & Bais, 2020) [108] made performance comparisons between SS 

models of UNet and SegNet that were used to perform tasks of weed detection in canola 

fields. ResNet-50 and VGG16 architectures were used in place of the encoder section to 

perform the task of feature extraction for both the models. It was concluded that the 

SegNet SS model in which ResNet50 architecture was used in encoder section gave the 

best results with a mean IoU score of 0.8288. [109] conducted research and conclude that 

NIR information helped improve the robustness in segmentation against different lighting 

conditions and obtained a mean IoU score of 88.91%. InceptionV3 was used as an 

encoder to develop a supervised SS-based UNet model with data augmentation 

techniques to achieve accuracy scores of 90% for broad-leaves weed classification. Image 

enhancement methods such as the inclusion of NIR information used to train a supervised 

SS-based UNet model for weed detection purposes significantly improve the  
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segmentation accuracy and the model were able to achieve a mean IoU score of 88.21% 

[110]. Publicly available weed detection datasets are mentioned in Table 2.6 . these 

datasets are available online and can be used to increase datasets while developing weed 

detection or to check performance comparison on  developed DL models on these 

datasets. 

 

2.5 Review of real-time weed detection applications: Challenges and 

opportunities 

Overall increase in food production and methods to prevent crop losses is a matter 

of serious concern due to increasing world population. Major crop yield loss, decrease in 

crop quality, evolution of herbicide-resistant weeds, and the ill-effects associated with 

increased use of herbicides have motivated scientists and engineers to perform 

continuous research to handle the menace that arise due to weeds in agriculture fields. 

SSWM applications could help overcome these challenges and weed detection models 

developed using various techniques are discussed in previous sections of this study. The 

final goal of developing these weed detection models is to use them for performing real-

time on-field weeding operations. Numerous real-time SSWM applications have already 

been developed that make use of both chemical-based weeding strategies such as 

herbicide spraying using various ground-based [114] and aerial based equipment’s [115], 

and non-chemical weeding strategies such as using high electric discharge [68], 

mechanical actuators to remove weeds [113] etc. in recent past. This section discusses 
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various approaches that have been used in various studies performed in relation to this 

domain and their associated advantages and disadvantages are described. 

Embedded systems have played a vital role in performing real-time SSWM 

applications in agriculture fields. Embedded systems could be referred to as 

minicomputers consisting of both hardware and a software that could perform a specific 

function or sets of functions. Some common examples of embedded systems are 

Raspberry Pi, Orange Pi, and Nvidia Jetson. These embedded systems could be employed 

on various agricultural equipment’s such as tractors [113], UGVs including robotic 

models [116], UAVs [115], and could be trained to perform weeding operations. To 

perform weeding operations, the embedded systems are responsible for pre-processing 

the sensory information collected from fields, use this information to generate weed 

maps, and initiate actuators such as nozzle sprays, releasing electrical discharge, or 

mechanical actuators attached with agricultural equipment’s to eliminate weeds from 

fields.  

DL methods have shown prominent results in tasks such as object detection and 

classification, albeit rather their complex black-box structure, higher computational 

power requirements for processing, power supply issues, and higher memory storage 

requirements makes implementation of these DL models on embedded systems hard as 

they possess only limited processing and storage capabilities. One of the potential 

solutions to meet the high computational requirements and to perform millions of 

computations during training and inference phase of DL models is to use Cloud 
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technologies. According to [120], Cloud computing is a model for enabling convenient, 

on-demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction. This 

definition includes the five essential characteristics associated with cloud-computing 

namely: on-demand self-service, broad network access, resource pooling – location 

independence, rapid elasticity, and measurable service. Availability of on-demand cloud 

computing platforms such as AWS, Azure, GCP, Alibaba Cloud etc. from companies 

such as Amazon, Microsoft, Google, and Alibaba have popularized use of cloud-based 

technologies for PA applications [118, 119]. 

Developing a real-time weed detection model involves five steps as discussed in 

Section 4 of this study. After data collection using various RS techniques the following 

two operations which involves high computational requirements such as pre-processing 

of the data and generation of a weed map using weed detection model have been 

performed on cloud platforms in recent past. In order to perform real-time weeding 

applications, data sharing across cloud platforms and embedded systems is performed via 

IoT. The sharing of data includes sending and receiving of instructions on where to 

perform weeding operations after processing of information at cloud locations. In order to 

overcome the high space and time complexity of computer vision algorithms that perform 

weed detection tasks [121], a cloud-based architecture was used to leverage high 

computational resources and additional aggregated knowledge to generate weed maps for 
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real-time SSWM applications. [122] developed a cloud and AI based application that 

uses RS data such as RGB imagery collected from airplanes, UAVs, and satellites. The 

application rapidly processes the data to perform various applications such as measuring 

plant height and canopy, detecting, and locating plant gaps, and developing plant heat 

maps with higher accuracy scores. Google cloud platform were used to perform real-time 

detection of parthenium weed plants in pulse crops by [123]. In this research, a LinkNet 

model (SS based DL model) was used with ResNet34 as feature extractor to develop a 

weed detection model that achieved a mean accuracy score of 0.598 in 0.217s. In the 

study proposed by [124], a weed detection model was developed in which an IoT device 

collects images from the fields and transmits them to a cloud server where YOLO-v5 DL 

model performs the task of weed detection on the images. The research conducted by 

[125] proposed a model that integrates technologies such as IoT, data analytics, and cloud 

computing to detect nutrient deficiency, weeds, and disease detection in chili crops. 

There are a few issues associated with the use of cloud-based technologies [126] to 

perform real-time applications in weed detection domain and these are as follows: 

1. Latency: The weed detection models developed using cloud technologies 

requires sharing of both the input data generated locally in the fields and the 

weed maps generated after pre-processing the information in between cloud 

and sensors in the fields to perform real-time SSWM applications. Strong 

network connectivity plays a vital role in using these technologies as there 

needs to be a strong and robust communication between sensors and cloud 
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locations. There needs to be a constant access of internet to maintain proper 

connectivity between both platforms. Also, exploiting resources available at 

cloud may face additional queuing. These issues could lead to network latency 

and delay decision making for real-time weeding applications. 

2. Privacy: This is a major issue of concern as there might be risks associated 

with data leakage or compromising of personal data from the cloud locations. 

There exist other issues associated with the use of cloud technologies such as 

misuse of sensitive information already uploaded to the cloud by the cloud 

companies. User needs to be wary about the privacy concerns of the 

information shared with cloud. 

3. Scalability: Data generated from sensors in the fields needs to be shared with 

cloud regularly and sharing large loads of data in a short time could be a 

challenge. Uploading higher resolution imagery or video streaming with cloud 

would excessive bandwidth consumptions and could lead to scalability issues 

in sharing data. Also, scalability issues would increase if multiple cameras 

shared data concurrently with the cloud.  

 

Edge computing has served as a practical solution to overcome the centralization 

issues such as Latency, Scalability, and Privacy associated with using cloud computing 

technologies. Recent advancements in developing powerful GPU-accelerated parallel 

processing embedded devices such as Nvidia Jetson, Google Coral, and Intel NCS etc., 
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have led to their increase in running various DL related applications such as image 

classification, object detection, segmentation, and speech recognition. According to 

[138], Edge computing refers to the enabling technologies allowing computation to be 

performed at the edge of the network, on downstream data on behalf of cloud services 

and upstream data on behalf of IoT services. Also, the development of various Software 

Developments Kits (SDK) such as Tensor RT by Nvidia and Tensorflow Lite by Google 

have helped in developing optimized DL models that delivers low latency and high 

throughput for inference applications. SDKs like TensorRT perform several important 

transformations and optimizations to the neural network graph, including constant 

folding, pruning unnecessary graph nodes, layer fusion, and more 

(https://developer.nvidia.com/tensorrt). These optimization strategies help in decreasing 

the computational and memory requirements of DL models while preserving their 

performance capabilities. TensorRT is a SDK specifically designed to optimize DL 

models and run them on Nvidia Jetson boards whereas optimization performed using 

Tensorflow Lite could be used on various other GPUs. [148] performed a study in which 

performance comparisons of the Mean IoU score and inference time were made in 

between two SS based weed detection models developed with and without TensorRT 

optimizations on Nvidia Jetson Nano. In performing comparisons between the developed 

models, decrease in mean IoU score was observed by a factor of 14.8, but inference time 

accelerated by a factor of 14.7% in the model developed using TensorRT optimizations. 

These results show that there is a trade-off between overall accuracy and inference time, 

performing optimizations on these DL models using various SDKs helps in accelerating 

https://developer.nvidia.com/tensorrt
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the inference time while performing predictions using the developed model but this leads 

to a decrease in performing accurate predictions by some extent which could be referred 

to as a disadvantage of performing optimizations on DL models. Overall, the use of 

embedded GPUs to perform real-time applications is still in its initial stages. Several 

studies have shown results for improved performance using optimized DL models on the 

energy efficient embedded GPUs. Further study in this domain could focus on developing 

state-of-art models using these techniques to perform real-time on-board applications for 

various smart agriculture applications like weed detection, livestock management, and 

plant disease detections etc. in agriculture domain with better prediction performance. 

 

2.6 Summary and Conclusions 

Weed management is one of the most important crop production practices. The 

global increase in herbicides use to control weeds has led to various issues such as 

decrease in crop quality, economic losses due to excessive off-target herbicide 

movement, and evolution of herbicide resistant weeds. Site-Specific Weed Management 

strategies refer to the use of right and precise amounts of herbicide only at locations 

where weed infestation are detected. There have been several studies in relation to 

development of these SSWM applications in agriculture domain, this review article 

discusses various image processing, machine vision, machine learning, and deep 

learning-based computer vision techniques in detail that have been used to develop weed 

detection models in recent years. Also, a detailed description on various ML algorithms 
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and DL models used to develop weed detection models and their associated advantages 

and disadvantages are also discussed.  

The use of CNN in DL methods have revolutionized the tasks of image detection, 

classification, and segmentation tasks as these models have the advantages of feature 

extraction and self-learning capabilities over other conventional ML models where an 

optimal set of features extracted from the data are used for training. Overall, development 

of weed detection models using DL techniques have helped in generation of better weed 

maps during prediction and achieve higher accuracy scores as compared to weed 

detection models developed using traditional machine learning, machine vison and 

image-processing techniques. Several weed detection models developed using various 

ML and DL techniques along with their corresponding results are presented in this study. 

Also, a list of publicly available datasets that have been developed in recent past that 

could be used to check the performance of new DL models or increase the amount of 

dataset being used to train DL models are also mentioned along with their respective 

URLs in this study. In the final section of this review, the popular approaches that have 

been used to perform real-time SSWM applications are discussed. An overview of 

various techniques and their associated advantages and disadvantages are discussed in the 

section. 

We conclude that DL models could be further explored by tuning and tweaking 

hyperparameters used for training these models, as this could lead to generation of weed 

detection models that could perform the detection tasks more efficiently and robustly. It 
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is known that training of DL model requires large dataset for training, there exists an 

absence of a datasets like ImageNet, COCO, CamVid etc., in weed detection domain 

which could be used by researchers to test performance of various DL models and 

architectures. Several datasets have already been prepared and are available publicly, but 

they include less images as compared to the datasets mentioned earlier. The preparation 

of a common generic dataset would help to check and compare performance comparisons 

between different DL models and architectures used by researchers while preparing these 

models. It has been observed that there exists a class imbalance issue amongst various 

datasets that have been used to develop a weed detection model. Future work could 

involve developing robust weed detection models that could address these class 

imbalance problems. 

There is a wide scope of research that could be conducted in performing 

optimizations of the DL models using various SDKs such as Tensorflow Lite and 

TensorRT techniques so that these trained models could be used on edge devices for real-

time SSWM applications. It has been proven that performing predictions on optimized 

DL models have an accelerated inference time, but these models have a trade-off with 

performing accurate predictions. Further research could be conducted in developing 

models that could achieve the tasks of optimizing DL models while preserving their 

performance capabilities in performing accurate predictions on edge devices such as 

Nvidia Jetson, Google Coral etc. to achieve the tasks of SSWM applications in 

agriculture fields. 
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3 Chapter 3: Performance comparison of semantic segmentation 

based deep learning models on weed detection in maize fields 

This manuscript has been prepared for journal submission 

3.1 Introduction 

According to the latest surveys conducted by the Department of Economic and 

Social Affairs, United Nations – the world population is expected to reach at 8.5 billion 

people by 2030 and an additional 1.8 billion in the following two decades reaching to 9.7 

billion by 2050 [68]. A major concern associated with the increasing population trends is 

related to the mass production of food and fiber along with a smaller rural labor force. An 

estimated increase in global food production of around 70-100% is required to meet the 

demands of the population. These trends demand an increase for research and 

development in agriculture domain bringing out much attention to various sectors such as 

generation of high-seed quality to increase crop yield, improving soil health for better 

crop growth, and prevention of crop yield losses. One of the major concerns that leads to 

crop yield losses in agriculture are associated with the growth of weeds, pests, and crop-

diseases in the fields which are responsible for a global crop yield loss of around 40%. 

Weeds are unwanted plants that grow in fields and compete with crops for water, light, 

nutrients, and space leading to causing crop yield losses [41, 42]. Traditional practices 

associated with handling weeds in fields include various manual techniques such as 

hoeing, tilling, burning, and spraying of chemicals have already been used in agriculture 

fields. The most used techniques to handle these weed infestations is the use of uniform 
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rate spraying of herbicides in the fields. Weed infestations are usually observed at a few 

locations in fields and the need to perform uniform spraying activities could be avoided. 

Practicing herbicide spraying activities at a uniform rate across the fields are associated 

with a few disadvantages such as economic loss due to excessive usage, environmental 

pollution, contamination of non-target vegetation and evolution of herbicide-resistant 

weeds [24]. 

Precision agriculture proposes site-specific weed management techniques which 

perform the task of detecting weed infestations and using different weeding techniques to 

remove weeds from the fields. Computer vision techniques have been used to develop 

weed detection models that make use of data collected from various remote sensing 

techniques such satellites, LIDAR, UAVs, UGVs to generate weed maps that could be 

used to perform the tasks of SSWM. Several features such as shape, color, band 

information, texture, height were collected and used to develop weed detection models. A 

two step-approach to develop an inter-line weed detection model was developed by [62] 

using image processing techniques. Inter-line crop row detections were made using 

Hough transformation algorithm and Normalized Difference Vegetation Indices were 

used to detect weed infestation that existed between crop rows in the study. A study was 

conducted by [59], developed a weed detection model in which color-based machine 

vision techniques were used to perform detection of reddish weed stems in wheat and 

soybean fields which have greenish stems. Spectral characteristics such as texture, color, 

shape was used to differentiate between crops, weeds, and soil [52] and a real-time weed 
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detection model were developed and deployed in agriculture fields. Real-time weed 

detection applications were developed using Hough transform and simple linear iterative 

clustering techniques to detect inter and intra line weeds in crops [53]. A Discriminant 

analysis and an Artificial Neural network were designed in the research where 

misclassification rates in performing weed detection were below 3 percent. The 

measurements of reflectance characteristics of crops and weed in visual and near-infra-

red rays were utilized to generate a weed detection model in laboratory conditions in the 

research performed by [60]. A weed detection model to classify broad-leaved weed were 

developed by [61] using physical characteristics extracted from imagery collected from 

ground vehicles. Color based information were used to perform elimination between 

vegetation and soil, and spatial information such as shape and texture-based features were 

used to perform classifications between crops and weeds in the study. Most of the 

traditional weed detection models developed using machine vision and image processing 

techniques were trained to perform classifications tasks under constrained laboratory 

conditions and didn’t perform well in natural circumstances in fields. 

The collection of multi-spectral images from the UAV remote sensing techniques 

have helped in extraction of useful features which have been used with various ML 

algorithms such as SVMs, DTs, RFs to develop weed detection models in recent past. 

Due to their better learning capabilities on features extracted from these images, ML 

algorithms have helped achieve higher accuracy scores to perform the classifications 

tasks between crops and weeds. However, training a weed detection has been a complex 
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task due to the homogenous crop-weed characteristics such as color similarity, high 

occlusions, similar reflective index, indistinguishable shape, and texture features. 

Performance comparisons between weed detection models developed using Logistic 

Regression and SVMs based ML algorithms were made in detecting weeds in carrot 

crops [63]. The histogram of gradients features were extracted from the data and it was 

observed that SVMs performed better classification tasks as compared to Logistic 

regression based weed detection model. Pattern based recognition techniques were used 

to train weed detection model using several ML algorithms such as KNN, SVM, and 

ANN in sugarcane crops. ANN based ML models performed the best and were able to 

achieve accuracy scores of 63.1% [64]. The model proposed by [65], used an ANN that 

trained on a combination of Red, Green, NIR, and texture features extracted using the 

high-quality imagery from UAVs to generate weed maps in leguminous crops which 

achieved an accuracy score of 98.87 %. Shape vectors along with Fourier descriptors and 

moment invariant features were used to train a weed detection model in classifying four 

different weed categories in Sugar beet plants. The weed detection model helped 

achieved an overall classification accuracy of 94.5% [55]. The use of ensemble learning 

techniques have helped improved the training of ML algorithms. Ensemble learning 

refers to training multiple ML models on different samples from training datasets and 

aggregating responses from all the models to generate a final output. ML models 

developed using ensemble learning techniques have proven to overcome overfitting and 

have helped generate models that generalize well on unseen dataset. One of the powerful 

supervised ML algorithms that uses ensemble learning techniques is RFs. RF constructs 
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multiple DTs during training and uses an aggregation of outputs from all DTs in a 

combination to perform the final classification and regression tasks during prediction. 

The research conducted by [66] has developed RF-based ML algorithms to detect 

alligator weeds that form dense infestations in aquatic environments using remote sensing 

data to improve biosecurity supervision and monitoring efforts in Australia. 

DL techniques using CNN have revolutionized computer vision tasks by creating 

state-of-art models to perform the complex tasks of image classification, object detection, 

semantic segmentation, and instance segmentation [9, 10, 12, 14, 18]. CNN based deep 

learning approach have gained much importance over the past few years for detection and 

classifications tasks because of their feature generation and better self-learning 

capabilities as compared to conventional image processing or vegetation index-based 

approaches. The training of a DL models requires systems with high configurational 

capabilities to perform the complex computations required during the training phase. The 

availability of systems having better computer hardware, software capabilities and use of 

GPUs have helped in training DL models to achieve higher accuracy scores. Several 

weed detection models have been developed using Object Detection and Semantic 

Segmentation techniques. Object detection perform the task of generating bounding 

boxes around detected objects during prediction and Semantic segmentation models 

generate pixel-wise mapping of different class categories detected during predictions. 

The tasks of SS have gained much importance in recent past as they better perform the 

tasks of scene understanding and helps in generating better accuracy scores during 
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predictions. SS based DL approaches are still not fully exploited to develop weed 

detection models due to the unavailability of labelled data required to train these models. 

A major challenge associated in developing weed detection models using these 

approaches is the class imbalance issue that arise due to the availability of unequal 

proportions of pixel labels for different class categories used for training of the model. 

This imbalance problem prevents the model to train equally well in predicting pixel 

values that are underrepresented and are not present in equal proportions with other 

classes. This issue leads to the problem of underfitting in which the trained model does 

not perform well in detecting underrepresented pixel values during prediction. 

The objective of this study was to develop Semantic Segmentation based Deep 

Learning models that perform weed detection in maize. This is a complex task due to the 

crop-weed color similarity and high occlusions between crops and weeds found in the 

maize fields. Amaranthus Palmeri is an important and a common weed category usually 

found in maize and soybean fields.. Also, these weeds come under the category of 

herbicide-resistant weeds and are resistant to glyphosate, which is the most commonly 

used herbicide. Extraction of Semantic segmentation model results could be used with 

weeding actuators in fields to perform the complex task of Site-Specific Weed 

Management and remove weed patches. The benefits associated with Site-Specific Weed 

Management practices ends up being two-folds: Firstly, it prevents environmental 

pollution linked with excessive uniform spraying of herbicides in fields and performs 

weeding only at locations where weed patches are found. Secondly, it decreases the 
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economic burden on farmers as these practices leads to reduction of both herbicides’ 

quantities being used and human labor costs associated with spraying activities in 

agriculture fields. The paper has the following contributions: 

1. Performing pixel-wise classifications of weeds, soil, and crops in RGB images 

from maize fields using Semantic Segmentation based Deep Learning approaches. 

2. Two-step approach in optimizing the training of weed detection models to resolve 

the challenges associated with class-imbalance problem are explained 

3. Performance comparisons between two Semantic Segmentation models of 

LinkNet and UNet developed using various architecture backbones such as VGG, 

Inception, and ResNet in the encoder section 

 

Table 3. 1 Abbreviations table 

Abbreviation Full form 

GB Giga Bytes 

RAM Random Access Memory 

GHz Giga Hertz 

RGB Red, Green Blue 

DL Deep Learning 

ML Machine Learning 

GPU Graphical Processing Unit 

AGL Above Ground Level 

UAV Unmanned Aerial Vehicles 

CMOS Complementary Metal Oxide Semiconductor 

OD Object Detection 

CVAT Computer Vision Annotation Toolkit 

SS Semantic Segmentation 

SSWM Site-Specific Weed Management 
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 The remaining research article is organized as follows. Section 2 explain the 

encoder-decoder architecture of SS models and related works of weed detection models 

developed using these approaches are discussed. Section 3 gives a detailed description of 

the proposed method discussed. Section 4 presents the experimental results obtained after 

training state-of-art weed detection models in this study. Also, performance comparisons 

between weed detection models developed based on various evaluation metrics obtained 

during testing are discussed. Section 5 presents the conclusion of our study and discusses 

possible future outcomes associated with developing real-time weed detection models to 

perform tasks of SSWM. 

3.2 Semantic Segmentation 

 SS based DL models perform the tasks of pixel-wise classification of each and 

every pixel in an image to a separate class category, and the pixel values corresponding to 

similar class categories are labelled as a single entity during prediction. These tasks have 

helped elucidate complex tasks of scene understanding. There has been a surge in the 

research related to performing tasks such as scene understanding due to rise in 

developing real-time applications for self-driving cars [3, 4, 5], augmented reality [6, 7], 

etc. in recent past as performing pixel-wise classifications is an important task in these 

techniques. The task of labelling each and every pixel in an image or a video helps in 

performing the tasks of precise object recognition and localization during predictions. 

Since Alexnet [8] won the ImageNet challenge in 2012, DL methods have been 

extensively researched upon and developed continuously with modifications to perform 
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the complex tasks of image classification, object-detection, semantic segmentation,  and 

instance segmentation tasks. DL methods comprising of CNN architectures have gained 

much popularity due to their feature extraction and self-learning capabilities. DL 

approaches have been extensively used to perform the classification and detection tasks, a 

difference between different classification tasks is shown in Figure 3.6. The image shows 

the difference between the final predicted outputs using various DL models. The first 

image performs the task of image classification in which labels are generated for various 

objects detected in an image, object detection performs the task of detecting various 

objects and localizing a bounding box around these objects as an output from these 

models. Several popular DL models such as Fast RCNN [9], Faster RCNN [10], YOLO 

[11], SSD [12] have been developed to solve the tasks of OD in recent past. As discussed 

earlier about the SS models, Several SS based DL models have been developed to 

perform the tasks of pixel-wise classification such as UNet [13], LinkNet [14], PSPNet 

[15], SegNet [16], BiSeNet [17] have been already developed. Instance segmentation 

performs a more complex task than SS as it implements an algorithm that classifies each 

and every pixel to a specific label and it considers objects of similar class category as an 

individual which is different from SS approach which detects objects of similar class 

categories as a single entity. DL models such as Mask RCNN [18], Panoptic 

segmentation [19] perform the tasks of instance segmentation. The success achieved by 

researchers in performing complex recognition tasks using DL approaches have 

motivated various studies in agriculture domain perform the complex recognition tasks 

such as different crops detection [21], fruit yield estimation [22], detecting cotton balls in 
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fields [23], weed detection [24], tassel detection [25], disease detection [26] in agriculture 

domain. 

In our research, we explored SS based DL models to perform the tasks of weed 

recognition in maize fields. The main intuition behind using SS based DL models in our 

research were that these models have two-folds benefits of better performance on 

complex computer vision tasks and these models could be used on embedded devices for 

real-time weeding applications in fields. Also, these models have not been fully explored 

to perform the task of weed recognition in agriculture domain for real-time SSWM 

applications. In our research we made performance comparisons on weed detection 

models developed using SS based DL models of UNet [13] and LinkNet [14]. These 

models have an encoder-decoder architecture, and their working are explained in the 

following two sub-sections:  
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Figure 3.1 An example of different computer vision tasks. 

This figure is borrowed from [2] 

 

3.2.1 UNet 

 

 UNet is a powerful DL model that performs the SS tasks and was developed by 

[13] to perform biomedical image segmentation tasks. This architecture won the ISBI cell 

tracking challenge in 2015 and thereafter, has been extensively used for performing 

various DL applications. UNet models have been shown great success in training DL 

models with only a limited dataset and have achieved higher accuracy scores during 

predictions [27]. UNet model has achieved great success in SS due to its symmetrical 

encoder-decoder architecture as shown in Figure 3.2. This architecture has various DL 

tools such as Convolutional filters, max-pool layers, up-convolutional layers, arranged in 

such a fashion that forms a U like structure from which the model got its name.  
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The encoder part consists of Convolutional filters and maxpool layers that helps 

to extract features/textures/patterns from the images that are further used for training DL 

model. Then the images are down sampled regularly using maxpool layers until it reaches 

to its base layer where it forms a condensed representation of original image. As the 

number of convolutional filters increase during consecutive layers in the encoder 

sections, regular down sampling helps in decreasing spatial dimensions of images and 

thus leads to decreasing of overall computations performed during training. The decoder 

part consists of transposed conv layers that perform the up sampling. For localization to 

be more precise, so-called skip connections are used where the feature maps from the 

encoder block are concatenated to the output of transposed conv of the same layer. This 

process leads to the condensed representation of an image back to the original input 

image.  



90 
 

 
 

 

Figure 3.2 UNet architecture [13] 

  

3.2.2 LinkNet 

 

 LinkNet [14] is a powerful SS based DL model which is an optimized version of 

UNet architecture, and this model also consists of various DL tools such as Convolutional 

filters, max-pool layers, and up-convolutional layers. The major difference between both 

of these models is that LinkNet makes uses fewer parameters that could result in faster 

execution during prediction and in turn could be used for real-time application tasks. This 

model also has an encoder-decoder architecture and the main difference between 

LinkNet, and other SS based models is the usage of information exchange between 

encoder-decoder. On comparison with other models instead of sharing entire feature 

maps between encoder and decoder as in UNet, only the input to the encoder block is 
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shared with the corresponding decoder block in the model. The information share 

amongst encode-decoder blocks could be depicted from Figure 3 that depicts the LinkNet 

architecture. In spite of using fewer parameters as compared to UNet, LinkNet has shown 

better results during predictions on popular datasets such as CityScapes [28] and  

CamVid [29], and ImageNet [30] as well. 

 

Figure 3.3 LinkNet architecture [14] 
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3.3 Methodology 

3.3.1 Data acquisition 

 

UAV imageries were collected from maize fields in Carleton (Thayer County - 

Southeastern Nebraska), NE, USA (Figure 3.1) in 2021 growing season. Heavy 

infestations of Palmer Amaranthus (Amaranthus palmeri) a glyphosate resistant weed 

was found in these fields and a weed detection model focusing on detecting palmer weed 

infestations were developed in this research work. DJI Phantom 4 RTK drone (Figure 

3.2) was used for the UAV imagery data  acquisition. The camera used in the drone had a 

1-inch CMOS sensor, and a 20-megapixel camera that captured images with an 84-degree 

field of view. The dimensions of the images were 5472 × 4648 pixels (3:2) in three bands 

– Red, Green, and Blue, and only RGB images were used to train various DL models in 

this research work to develop an economical solution. The spatial resolution of the 

images collected using the UAV were 0.27 cm/pixel. In order to collect drone imagery of 

corn crops during different growth stages, multiple drone flights were conducted on June 

14, 2021, June 30, 2021, and July 9, 2021, at 10 meter and 25-meter altitude AGL 

respectively. A total of 2006 RGB images were collected during data collection at the 

study site. The drone flights were conducted at around solar noon in order to capture 

images with better illumination intensity. DJI ground station pro software was used to 

design flight missions and the  drone flew at a speed of 2 meter/sec with a 90% front and 

sidewise overlap during data collection. 
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Figure 3.4 UAV data imagery collection location in Nebraska – Carleton (Thayer 

County), NE 

 

 

 

Figure 3.5 DJI Phantom 4 RTK used for data collection 
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3.3.2 Dataset preparation 

 

Training a SS based DL model requires meticulous pixel-wise labelling of ground 

truth images that could be used for training purposes. Dataset preparation is  one of the 

most important phases in this approach as it directly contributes towards the training and 

in turn generalizability of the DL model towards testing. On careful analysis of the UAV 

imagery captured during data acquisition, a training dataset comprising of high-quality 

images were formed after an in-depth analysis of the UAV imagery collected during data 

acquisition for training DL model in this research work after proper pre-processing as 

described later in this section.  

3.3.2.1 Data Annotation 

 

A web-based annotation tool named CVAT was used to perform the task of pixel-

wise labelling of images in our dataset. In our research, we manually annotated weeds 

and soil patches in the original RGB images and all the un-annotated pixels values 

besides these class categories (pixel values not labelled as either weeds or soil) were 

automatically labelled as background labels during annotation. Polygon bounding boxes 

were used to annotate several weeds and soil patches during the process of data 

annotation, a total of 8320 weed patches and 329 soil patches were annotated manually. 

All the images in the training dataset were annotated accurately and their corresponding 

masks were generated. Figure 3.5 represents the tasks of annotating original images and 

generating corresponding masks of these images. In summary, we had pixel-wise 
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information of all the images in our dataset corresponding to 3 class labels namely: 

Background, Weeds, and Soil.  

There were a few constraints that led to elimination of images collected during data 

collection and they were as follows - 

1. It was observed that the quality of the pixel values from UAV imagery 

collected at 25-meter AGL were compromised. Due to this reason images 

captured at 25-meter AGL were skipped and only the images captured at 10-

meter AGL were used in this study as they had better pixel level information. 

2. During the last data collection i.e., on July 9, 2021, most of the UAV imagery 

collected had weed infestations hidden under corn canopies. Due to this 

reason these images could not be used for training our DL model as they only 

had a few weed patches in the images. 

3. During the early growth stage both weeds and crops infestations were quite 

sparse in the fields. There were large soil patches inter-row spacing between 

crops which were quite hard to annotate. Due to this reason, they were not 

included in the dataset used for training. 
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3.3.2.2 Data Augmentation 

 

 Training DL models requires large amounts of data during training, increasing the 

amount of data used for training has shown generation of better DL models that achieve higher 

accuracy scores as compared to prior. Data augmentation refers to artificially increasing the 

amount of data that is used for training DL models by randomly generating new data from 

already existing data. These techniques have been popularly used in the recent past and have 

helped the network to learn desired invariance and increase robustness while predictions. Data 

augmentation techniques that were adopted in this study were: horizontal flip, vertical flip. 

ImageDataGenrator is a data augmentation module available under Tensorflow library [32] was 

used to perform the tasks of Data augmentation in our study. These techniques were used only in 

the training phase and not during the testing phase. Data augmentation techniques were 

performed on both original RGB images in the dataset along with their corresponding masks 

during the training of DL models in this study. Figure 3.5 depicts a few augmentation techniques 

that were used in this study. 

3.3.3 Transfer Learning 

 

The SS based DL models usually consists of encoder-decoder architecture. The encoder 

sections perform the tasks of feature extractions and down-sampling images using Convolutional 

and MaxPool layers. The uniqueness in the architectures of various SS models such as UNet[13]. 

LinkNet [14] lies in the method of information exchange between the encoder-decoder layers 

which helps in recovering the spatial information lost during continuous down sampling in  
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encoder sections. This process helps to generate better results during predictions. To 

better perform the tasks of features extractions from the images used for training SS 

based DL models, transfer learning techniques could be used to obtain better results from 

training these models. Encoder section is the most important phase in training SS models 

as it performs the tasks of feature extractions. Several state-of-art architecture backbones 

such as VGG [32], ResNet [33], Inception [34] already trained on ImageNet datasets 

could be used to perform the tasks of feature extraction and better train SS models rather 

training these models from scratch. Transfer learning techniques makes use of pre-trained 

weights already trained to extract useful features on large datasets such as CamVid [29], 

ImageNet [30], etc., this approach helps to transfer the knowledge already acquired to 

solve a similar OD or SS based DL tasks. Fine-tuning of these models could also be 

adopted while using transfer learning techniques which helps the model to update the 

weights in such a manner that they could perform a different detection/classification task 

optimally. These architectures could also be referred to as backbones that are used while 

training SS based DL models. We trained and made performance comparisons on both 

UNet and LinkNet models trained using VGG [32], ResNet [33], and Inception [34] 

backbones. The main difference in these architectures backbones lies in the orientation 

and layout of various DL tools such as Convolutional filters, Maxpool layers, used for 

feature extraction. In this research we made performance comparisons on developing SS 

based models using three different architectures and these architectures are briefly 

explained in the following sub-sections. 
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3.3.3.1 VGG 

 

Since VGG won ImageNet contest in 2014, it has been extensively used as a 

backbone for various OD and SS based DL models for the process of feature extraction. 

The major difference between VGG network and other architecture backbones popular 

during that time was in the depth and layout of various convolutional filters and fully 

connected layers. VGG networks had a depth of around 16-19 layers and the number of 

convolutional layers in the architecture were around 8-16 [35]. A significant difference 

between VGG network and other CNN architectures was the use of 3 × 3 convolutional 

filter kernels which helped to build deeper models and also generate better feature 

extractions from the input data fed to the DL model. Also, using 3 × 3 convolutional filter 

kernels helped to decrease the number of parameters being used in the training of the 

model and were able to generate better results with less use of computational power 

during training as compared to Alexnet [8]. The network had three fully connected layers 

in the last, 2 layers had fully connected 4096 neurons and a SoftMax layer was used as a 

last layer to perform and learn the classification tasks during training. 

3.3.3.2 Inception 

 

Inception modules were developed and used in Inception architectures that made 

use of convolutional filters of various kernel sizes in a single layer to perform the feature 

extraction process. Various filter size kernels such 1 × 1 , 3 × 3, 5 × 5 were used in a 

single layer and their average were taken in the end to learn features. Rather than using 

convolutional filters of single size of 3 × 3 as used in VGG network, Inception modules 
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made use of  multiple filter size kernels in a single layer to perform feature extraction 

process. Making use of inception modules had the following advantages, these modules 

helped to decrease the number of parameters being used during training and this in turn 

help to reduce computational efficiency. This was achieved by using multiple lower size 

convolutional filters as compared to using larger convolutional filters in convolutional 

layers, it was observed that two 3 × 3 convolutional filters (2 * (3 * 3) = 18 parameters) 

used less parameters than one 5 × 5 (5 * 5 = 25 parameters) convolutional filter size. 

These benefits made use of inception backbones popular in developing DL models. Some 

common Inception backbones used in DL models are: InceptionV2, InceptionV3, 

InceptionResNetV2. 

3.3.3.3 ResNet 

 

The development of architectures such as VGG [32] and Inception [34] 

popularized development of deeper CNNs after its creation several deeper architectures 

were developed by researchers thereafter. A rising concern that became popular in deeper 

CNN architectures was the issue of vanishing gradient problem. Backpropagation 

techniques are used by DL models to learn and execute the training process and perform 

complex tasks of OD and SS. In these deeper architectures, certain predictions were made 

during testing and using the concept of backpropagation weights were updated in the 

previous layers so as the model learns and performs ideally. An approach was developed 

by [33] in which certain skip connections were used between convolutional layers to 

mitigate the performance decay and perform the task of backpropagation optimally 
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during training [35]. ResNet architecture won the ImageNet challenge in 2015 and has 

been one of the most popular architecture backbones that have been used to solve various 

complex recognition and detection tasks. Development of ResNet architectures made it 

possible to use deeper CNN architectures in DL models and resolve the vanishing 

gradient problem. ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 

architecture backbones. The major difference between these CNNs is the total number of 

layers being used in these architectures to perform the feature extraction process. We 

used ResNet 18 and ResNet34 architecture backbones in the encoder sections and made 

performance comparisons along other architecture backbones in our study. ResNet34 is a 

deeper architecture that uses a greater number of parameters during training as compared 

to ResNet18 architecture. 

3.3.4 Class-imbalance problem 

 

The original image dimensions  of 5472 × 3648 pixels were too large to fit in the 

memory for processing while training DL model, so the original images were sliced into 

384 sub-images of dimensions 228 × 228 pixels. A total of 38,400 sub-images were 

formed of these original RGB images and were included in the training dataset. Dividing 

original dataset into sub-images led to an issue of class imbalance problem as most of the 

sub-images belonged to background class labels or had most of the pixel values 

associated with background class category. Figure 3.9 depicts a few images from our 

original dataset that explain the class imbalance problem by depicting weeds, soil, and 

background class categories in the images included in our dataset. Class imbalance issues 
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is one of the major factors that makes it hard to train DL models to perform the tasks of 

better predicting the under-represented samples that are being used for training the 

model. Several techniques such as increasing under-represented samples using Data 

augmentation techniques, practice of using under sampling (to use less samples during 

training) for majority class or over sampling (to use more samples during testing) of 

minority class, using ensemble learning techniques to train a ML model have been 

adopted in recent past to handle these issues. The novelty in this research lies in the two 

approaches which were adopted to overcome the class imbalance problem, and these 

were as follows – 

3.3.4.1 Refining training dataset 

 

The main intuition behind training a weed detection model is to train the model 

that has a higher generalizability over unseen dataset and performs well in accurately 

detecting weed patches in order for the model to be used for real-time SSWM 

applications. To perform the refining of the dataset in a manner such the dataset to be 

used for training has a balance of pixel values of each class category a strategy was 

adopted. A new training dataset were formed by analyzing each and every image in the 

original dataset. An algorithm behind the strategy adopted to form a new training dataset 

is explained in Algorithm 3.1. An image was included in the new training dataset if and 

only if the total number of background pixels values in that image were < 95% of the 

total pixel values in that image. This strategy helped to remove the images that pre-

dominantly include only background pixel values in them and created a balance in the 
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dataset which had either of weeds or soil pixel values to be used for training DL model. 

Also, details about the total number of images in each dataset namely: Training, 

Validation, and Testing before and after refining of the dataset are mentioned in Table 1 

respectively. 

 

 

Algorithm 3.1: Creation of a new dataset to be used for training 

New Training Dataset = [] 

for i in range (total number of images): 

 image = cv2.imread (Read image in the dataset) 

 if (# of background pixel values in an image) >= (total pixel values in an image): 

  continue # Image was not included in the new training dataset 

 else: 

  New Training Dataset.append(image) # Image included in the new 

training dataset 
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Table 3. 2 Number of images in different categories before and after refining original 

dataset 

 Training  Validation Testing Total 

Before 28800 5760 3840 38400 

After 9366 1873 3840 15079 

 

 

3.3.4.2 Optimizing backpropagation 

 

DL could be referred to as an ability to train computers in the ability to make use 

of neurons and imitate the working as in human brain. The human brain consists of 

millions of neurons, and it makes use of these neurons to perform decision making. 

Supervised DL models consists of multiple layers such as convolutional layers, fully 

connected layers consisting of neurons that are initialized with random weights during 

training, these randomized weights are regularly updated while training these DL models 

in such a manner that they could optimally perform the tasks of classifications or 

predictions. Backpropagation techniques are used to update these weights in DL models 

and these techniques perform the most important task in training a DL model. Continuous 

research to optimize these backpropagation techniques by tuning hyperparameters used in 

training have been performed in recent past and is a topic of continuous research in the 

DL domain. Several loss functions have been developed in the recent past that help 

refining such as Class imbalance problem. In our research, we train our SS based DL 
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Figure 3.6  Images explaining the class imbalance problem between different class 

categories in our dataset 
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models using a fixed sets of hyperparameters and extract the best state-of-art weed 

detection model. As a next step, to further optimize our weed detection model we make 

use of several loss functions such as Focal loss [36], Dice Loss [38], and Jaccard Loss 

[39] while training state-of-art model and performance comparisons were made. 

3.3.5 Experimental setup 

 

3.3.5.1 Software and hardware setup 

 

An Alienware 17 R5 laptop with the following specifications 64-bit OS, 2.9 GHz 

core Intel i9-8590HK processor with 32 GB of RAM was used to train the DL models. 

An 8 GB NVIDIA GeForce GTX 1080 GPU was also installed on the laptop to achieve 

optimal performance during training DL models. Windows 10 Enterprise software 

environment was installed on the machine. DL codes were written in Python 3.9.10 

programming language and use of DL libraries such as Tensorflow 2.8.0, Keras 2.8.0, 

and Segmentation models API were made to train semantic segmentation-based DL 

models of UNet and LinkNet in this research. Training of DL models were executed in 

Spyder text editor and matplotlib library were used for visualizations of predictions 

during testing phase. 

 

3.3.5.2 Hyperparameter tuning 

 

In this study, we tried and tested a few different sets of hyperparameters. All the 

images used for training DL models in this research had a fixed dimension of 228 × 228 
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pixels. After a few testings, a suitable set of hyperparameters that helped in an optimum 

training a state-of-art DL models were set and used for training all the DL models whose 

performance were evaluated in this study. All the models were trained for 50 epochs, and 

each epoch ran for 586 iterations as we used a batch size of 16 while training. We used 

cross validation and data augmentation techniques to overcome the issues of overfitting 

during training phase. We used transfer learning techniques during training and various 

architectures such as ResNet, VGG, Inception already trained on ImageNet dataset were 

used to train the model. Also, fine-tuning of the weights used in these architectures were 

adopted to help optimize these architectures and learn better to perform a specific task of 

weed detection. Relu, a non-linear activation function was used as this helps to train the 

model faster and reliably. Adam optimizer with a learning rate of 1e-3 was used during 

training phase. A detailed description of hyperparameters used to train DL models are 

described in Table 2.  

3.3.6 Evaluation metrics 

 

 In this research, several evaluation metrics such as Precision, Recall, F1-score, 

and IoU were evaluated during the training phase. The respective validation metric scores 

were extracted after comparing the trained model performance on the validation dataset. 

These scores were analyzed regularly so as to note if the model were showing trends of 

either overfitting or underfitting during training. It was observed while performing the 

assessment for SS based DL models evaluation metrics such as Precision, Recall, and F1- 

score did not give a better idea on how well the model was performing due to high class 
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imbalance [31]. IoU score gives an estimation of the overlap between the predicted and 

the ground-truth class labels and is a better evaluation metric for SS based DL models.  

 

Table 3. 3 Number of images in different categories before and after refining original 

dataset 

Parameters Values 

Learning rate 1e-3 

Optimizer Adam 

Activation function Relu 

Training Epochs 50 

Focal loss (γ) 2 

Batch size 16 

Input size 228 × 228 

Train, Validation, testing split 75%, 15%, 10% 

Data Augmentation True 

Encoder weights ImageNet 

Fine-tuning  True 

IoU Threshold 0.5 
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1. Precision = 
∑ 𝑇𝑃 

∑ 𝑇𝑃  +∑ 𝐹𝑃    

2. Recall = 
∑ 𝑇/𝑃 

∑ 𝑇𝑃  +∑ 𝐹𝑃    

3. F1–score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

4. IoU = 
∑ 𝑇𝑃 

∑ 𝑇𝑃  +∑ 𝐹𝑃   +  ∑ 𝐹𝑁    

Here, TP – True Positive, FP - False Positive, and FN – False Negative. 

𝑰𝒐𝑼𝒊 for pixel i, could be described as: 

 𝑰𝒐𝑼𝒊 =  
𝑨𝒓𝒆𝒂 𝒐𝒇 𝒐𝒗𝒆𝒓𝒍𝒂𝒑

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏
 

 

The predictions of the trained model were performed on testing dataset, which 

comprised of images which were not used to train the state-of-art weed detection model. 

The predictions of DL model performed on the  testing dataset, so as to check on how 

well the model generalizes on unseen dataset. This process also helped to measure on 

how well the model could perform on unseen dataset and also to check if the model was 

overfitting. IoU is one of the most important metrics that is evaluated during the tasks of 

SS based DL models as it helps to predict on how well the model is able to perform the 

task of pixel-wise classification of all pixels. All the predicted pixel values were 

compared with the ground-truth pixels values during prediction and both class-wise IoU 

and mean IoU score were evaluated to check the performance of the trained model. 
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3.4 Results discussion 

 In this section we evaluate performance comparisons between SS based DL 

models of LinkNet and UNet developed using various architecture backbones such as 

VGG, Inception, and ResNet. A detailed description of various architecture backbone that 

were used as feature extractors is explained in Section 2.4. The main difference between 

these architecture backbones lies in the layout of various DL tools such as Convolutional 

layer, MaxPool layers while designing these CNNs. The total number of parameters 

being used while training decides the training time required to train a DL model. Increase 

in the total number of parameters used by the model leads to performing a higher number 

of computations while training a DL model. Thus, this leads to an increase in both longer 

training and inference time during testing. Table 3 describes the total number of 

parameters that were being used while training weed detection models. We observe that 

ResNet18 architecture backbone when used as a feature extractor for training our weed 

detection models uses minimum number of parameters both for LinkNet and UNet 

models. These models converge faster and have a shorter training and testing time as 

compared to others. 

A total of eight SS based DL models were developed and their performances were 

evaluated in this research. Evaluation metrics such as Precision, Recall, IoU, F1 score, 

and Mean IoU were observed, and the results are presented in this section. We utilized 

cross-validation techniques while performing the training procedure and divided our 

dataset into three sets of Training, Validation, and Testing in a ratio 75%, 15%, and 10%. 
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Table 3. 4 Comparison between number of parameters used during training in LinkNet 

and UNet 

Feature extractor (Encoder section) LinkNet UNet 

ResNet 18 11.5 M 14.3 M 

VGG 16 20.3 M 23.7 M 

ResNet 34 21.6 M 24.5 M 

InceptionV3 26.2 M 29.9 M 

 

‘Adam’ optimizer and ‘Categorical_cross_entropy’ loss function was used while training 

DL models. We trained our model for 50 epochs and complete details of the 

hyperparameters used to train our model are described in Table 2. Training was 

performed on only the training and validation dataset and testing dataset included a 

dataset of images which were not used while training. The predictions performed while 

testing of our developed weed detection models were performed on the testing dataset, so 

as to observe on how well our models were generalizing on unseen dataset. A detailed 

description of the evaluation metrics scores that were recorded after the DL models were 

developed in this study are presented in Table 4, this table depicts the performance 

comparisons between different weed detection models developed. IoU evaluation metric 

is considered to be the most important metric while comparing the performances of 

different SS based DL models developed. IoU scores gives us an estimate on how 

robustly a model is able to predict each and every pixel during predictions successfully 

[31].  
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Performance comparisons between the eight DL models developed shows that the 

LinkNet model with ResNet18 as feature extractor helped us achieve the best scores 

amongst all the models. These results are consistent with other similar works in this 

domain, [37] performed a study in which performance comparisons between LinkNet and 

UNet SS based DL models were made while developing a weed detection models in 

pulse crops. In comparison to their work, the proposed LinkNet model developed with 

ResNet18 architecture has shown an improvement of around 31% in the Mean IoU scores 

respectively. 

The main objective of this study was to develop robust weed detection models 

that could perform the task of weed detections in maize fields and compare the inference 

time in which different models could perform the task of generating weed maps. Table 5 

presents the inference time of different DL models in performing the predictions on both 

a single sub-image and on entire original image comprising of 384 sub-images. Complex 

issues such as crop-weed color similarity and crop-weed occlusions make development of 

these models quite hard. In order to further improve evaluation metric scores as obtained 

using previous DL techniques, we optimized the backpropagation techniques as discussed 

in Section 2.5.2 by using different loss functions. Several loss functions have already 

been developed in recent past to address the class-imbalance issues during training of DL 

models. We trained 2 DL models namely: LinkNet model with ResNet18 as a backbone 

and UNet model with ResNet18 as a backbone with several loss functions such as: Focal 

Loss [36], Dice Loss [38], Jaccard Loss [39], and Focal Dice Loss [40] and compared 
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their performance by evaluating the Mean IoU and class wise IoU scores of these models.  

A detailed description of the mean IoU and IoU scores for each class category were 

recorded while performing predictions on the testing dataset by the weed detection 

models developed using different loss functions and are presented in Table 6. We 

observed that Focal loss function helps us improve the Mean IoU and IoU scores for 

classifying weeds during testing. These results suggests that the LinkNet model with 

ResNet18 backbone and Focal loss as a loss function leads to development of a robust 

weed detection model that achieves the best results. 
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3.5 Future Research and Conclusions 

Weeds pose a major threat in agriculture as they compete with crops for water, 

light, nutrients, and space. Weeds account for about 40% of global yield loss and cause a 

major threat to crop yield loss worldwide. Growing world population and increase in 

global food requirement create an alarming need to decrease crop yield. An effective way 

to handle this menace of crop yield losses due to weeds is developing site-specific weed 

management techniques. These techniques could help alleviate the crop yield losses by 

performing spot spraying practices of herbicides at only specific locations where weed 

infestations are detected leading to decrease in environmental pollution caused by 

overuse of herbicides. In this work, a study was conducted to develop a weed detection 

model using SS based DL techniques. Developing a weed detection model is a complex 

task as their exist multiple challenges such as crop-weed color similarity, crop-weed 

occlusions, presence of low weed infestations in fields that decrease the number of weed 

samples that are to be used for training DL models. Class imbalance problem is also a 

major challenge that needs to be addressed while developing these weed detection models 

due to over-sampling of other class categories as compared to weeds used for training. 

We used SS based DL techniques as these models help to perform pixel wise 

classifications during predictions, execute better scene understanding and in turn help 

generating better results as compared to other DL models.  

We developed and investigated performance comparisons between two SS based 

DL models namely: LinkNet and UNet which comprise of an encoder-decoder 
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architecture. A detailed explanation of SS based DL techniques and the two models used 

are discussed. We used different architecture backbones in the encoder sections and 

transfer learning techniques were used with fine tuning to develop these DL models. IoU 

score is an important evaluation metric that is used to compare and check the 

performance of SS based DL developed. Also, IoU metric helps to measure the 

generalizability of the developed model during testing on unseen dataset.  

The novelty of this research lies in the techniques used to handle the class 

imbalance issues while developing weed detection models. Firstly, we performed an 

analysis of all the images included in the original dataset and created a refined dataset of 

images to be used for training. The images consisting of background pixel values of more 

than 95% were skipped and not used for training, this approach performs the task of 

balancing the data to be used for training. Thereafter, optimized backpropagation 

techniques to overcome the class imbalance issue were performed by training the weed 

detection models using different loss functions. We analyzed that Focal loss function in 

comparison with other loss functions helps to address the class imbalance problem by 

some extent and helps the model to train better on hard examples in our case ‘weeds’. 

Finally, we concluded that training a LinkNet SS model using ResNet18 in the encoder 

section along with ‘Focal Loss’ loss function helped us achieve state-of -art accuracy 

scores of Mean IoU score of 0.801 and weeds IoU score of 0.691 respectively. The 

developed model is quite robust and generalizes well on unseen UAV imagery of maize 

fields included in the test dataset. 
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Future work for this study is to further use these developed models on embedded 

devices to perform real-time Site-Specific Weed Management applications in agriculture 

fields. This could be achieved by optimizing these models using Software Development 

Toolkits like TensorRT and Tensorflow Lite as these helps to perform several important 

transformations and optimizations to the neural network graph, including constant 

folding, pruning unnecessary graph nodes, layer fusion for these Deep Learning models. 

This helps to decrease the computational and memory requirements that delivers low 

latency and high throughput for inference applications. Also, this research gives a basis to 

develop various weed detection models in different crops and also on detecting multiple 

weed categories in the fields. 
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Chapter 4: Conclusions 

Several studies have already been conducted to develop precision agriculture 

applications using computer vision techniques in the recent past. In this thesis work, an 

intensive literature review was conducted to understand various computer vision 

techniques that have been used to generate robust weed detection models and determine 

the research gaps that are present in the existing research. Semantic segmentation based 

deep learning-based techniques were used to train the weed detection models to train a 

powerful weed detection model that could be used to generate weed maps on drone 

imagery collected from maize fields. 

Even though numerous studies have already been conducted that review various 

computer vision-based techniques to develop weed detection models. We present a 

detailed literature review on various approaches that have been used to develop weed 

detection models in the past few decades. Traditional image processing, machine vision, 

machine learning and deep learning techniques were explained in detail and their 

associated advantages and disadvantages were discussed. Also, the techniques used to 

perform real-time Site-Specific Weed Management applications were discussed. The role 

of cloud computing and edge computing in developing these real-time applications and 

their associated advantages and disadvantages were discussed. Lastly, conclusions and 

some prospects that could be used to perform future studies were described in the final 

section of the study. 
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The advancements in Remote Sensing techniques to fetch high quality data using 

Unmanned Aerial Vehicles have helped in the development of robust weed detection 

models using deep learning techniques. In this study, we developed a Semantic 

Segmentation based Deep Learning model to perform the complex task of weed detection 

in maize fields. These Semantic Segmentation models perform the tasks of pixel-wise 

labelling of detected objects during predictions which help in developing robust Deep 

Learning models. Also, these models help to perform tasks like better scene 

understanding and learn to extract useful features to learn the complex trends of color 

similarity, inter-intra line weed infestations, high occlusions between crop and weeds in 

maize fields. The goal of this study was to develop a robust weed detection model using 

Semantic Segmentation based Deep Learning techniques and address the class imbalance 

problem. The developed model was expected to generate accurate weed maps on UAV 

imagery collected from maize fields. 

To perform this study, we made performance comparisons between weed 

detection models developed using two Semantic Segmentation models namely LinkNet 

and UNet. Transfer learning techniques were used to perform the feature extraction 

process and these features were used for training weed detection models. The datasets 

that are frequently used to train deep learning models in weed detection domain usually 

have a class-imbalance issue that negatively affects the models in robustly identifying 

weed patches in the fields. To overcome this issue, we performed a two-step approach: 

Firstly, we refined the dataset to be used for training and developed a balanced dataset to 

be sued for training. Secondly, we performed optimized backpropagation techniques and 
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made performance comparisons between models trained using different loss functions. 

We concluded that, the weed detection model trained on LinkNet model with ResNet18 

as a feature extractor and ‘Focal Loss’ as a loss function helped us achieve the best 

Intersection Over Union scores which is an important evaluation metric to compare 

Semantic Segmentation based Deep Learning models. Also, this model had the minimum 

inference time amongst others which signifies that this model could be used to perform 

real-time weeding applications for Site-Specific Weed Management applications. The 

model was able to achieve a Mean IoU score of 0.801 and IoU score for weed class 

category of 0.691. 

Future work for this study would be to further use these developed models on 

embedded devices to check their performance for real-time Site-Specific Weed 

Management applications in agriculture fields. This could be achieved by optimizing 

these models using Software Development Toolkits like TensorRT and Tensorflow Lite 

as these helps to perform several important transformations and optimizations to the 

neural network graph, including constant folding, pruning unnecessary graph nodes, layer 

fusion for these Deep Learning models. This helps to decrease the computational and 

memory requirements that delivers low latency and high throughput for inference 

applications. 
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