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Global increase in herbicide use to control weeds has led to issues such as
evolution of herbicide-resistant weeds, off-target herbicide movement, etc. Precision
agriculture advocates Site Specific Weed Management (SSWM) application to achieve
precise and right amount of herbicide spray and reduce off-target herbicide movement.
Recent advancements in Deep Learning (DL) have opened possibilities for adaptive and
accurate weed recognitions for field based SSWM applications with traditional and
emerging spraying equipment; however, challenges exist in identifying the DL model
structure and train the model appropriately for accurate and rapid model applications over
varying crop/weed growth stages and environment. In our study, an encoder-decoder
based DL architecture was proposed that performs pixel-wise Semantic Segmentation
(SS) classifications of crop, soil, and weed patches in the fields. The objective of this
study was to develop a robust weed detection algorithm using DL techniques that can
accurately and reliably locate weed infestations in low altitude Unmanned Aerial Vehicle
(UAV) imagery with acceptable application speed. Two different encoder-decoder based
SS models of LinkNet and UNet were developed using transfer learning techniques. We

performed various measures such as backpropagation optimization and refining of the



dataset used for training to address the class-imbalance problem which is a
common issue in developing weed detection models. It was found that LinkNet model
with ResNet18 as the encoder section and use of ‘Focal loss’ loss function was able to
achieve the highest mean and class-wise Intersection over Union scores for different class
categories while performing predictions on unseen dataset. The developed state-of-art
model did not require a large amount of data during training and the techniques used to
develop the model in our study provides a propitious opportunity that performs better
than the existing SS based weed detections models. The proposed model integrates a
futuristic approach to develop a model that could be used for weed detection on aerial

imagery from UAV and perform real-time SSWM applications.
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Chapter 1: Introduction

The current world population of 8 billion people is expected to increase by around
1.8 billion and reach 9.7 billion by 2050 (https://www.fao.org). Increasing world
population trends demand an increase in overall crop production and measures to
decrease crop yield losses. There exist various biotic constraints such as weeds, pests,
bacteria, fungus, etc., and abiotic factors such as change in soil moisture content,
excessive rain, drought etc., that could dwindle crop yield (Oerke et al., 2006). According
to a survey conducted by (Adeux et al., 2019), farmers could suffer an estimated 19-56 %
decline in crop yield if weeds were left untrammeled in the fields. Weeds are one of the
most important biotic constraints that compete with crops for water, sunlight, nutrients,
and space. Also, weeds destroy the natural habitat of plants and animals in the fields as
they provide a haven to insects and pathogens in the fields (Chauhan et al., 2020). Several
chemical and mechanical weed control measures have been used to manage weeds in
agriculture. Mechanical weed control techniques like tilling, hoeing, hand removal are a
few practical practices which are used to handle weed infestations in small farmlands in
developing countries. In developed countries like USA and Canada where farmers have
large farmlands, these manual weeding techniques are not practically feasible to handle
weed infestations. The most popular operandi to cover larger field areas is the use of
uniform spraying of chemicals like herbicides in the fields to perform weed killings.
Glyphosate-based Herbicides (GBHSs) are the most used herbicides in the fields as they
are capable of handling multiple weed species that grow in fields. There exist a few

drawbacks associated with practicing of uniform spraying herbicide applications in the



fields such as increase in economic burden due to costs associated with herbicides and
human labor, environment pollution due to use of chemicals in fields, and evolution of
herbicide resistant weeds in the fields which are more harmful (VVeeranampalayam et al.,
2020). Recently, it has been proven that excessive use of GBHs in fields lead to decrease
in crop nutrition quality and disruption to rhizosphere microbial ecology (Martinez et al.,

2018).

Precision agriculture suggests various Site-Specific Weed Management (SSWM)
strategies in performing the weeding applications at locations where weed infestations are
detected in the fields. Computer vision techniques have been extensively used to extract
useful information from the data acquired using various remote sensing techniques such
as Satellites, Unmanned Aerial VVehicles, Ground robots to generate weed maps that
could be used to perform the tasks of SSWM applications. (Wu et al., 2021).
Traditionally machine vision and image processing techniques were used to develop
weed detection models, these models were trained to detect weed infestations that existed
in-between crops row spacing and did not perform well in classifying intra-row weed
infestations (Perez et al., 2000). The availability of high-resolution imagery collected
using Unmanned Aerial Vehicles hovering at lower altitudes have helped in extraction of
useful features which have been used with various Machine Learning algorithms such as
Support Vector Machines, Decision Tress, Random Forests to develop weed detection
models in recent past (Liakos et al., 2018). Due to their better learning capabilities on
features extracted from these images, ML algorithms helped achieve higher accuracy

scores to perform the classifications tasks between crops and weeds (Bakhshipour et al.,



2018). However, training a weed detection has been a complex task due to the
homogenous crop-weed characteristics such as color similarity, high occlusions, similar

reflective index, similar shape, and texture features (Hasan et al., 2021).

DL techniques using CNN have revolutionized computer vision tasks by creating
state-of-art models to perform the complex tasks of image classification, object detection,
semantic segmentation, and instance segmentation (Girshick et al., 2015; Ren et al.,
2015; Liu et al., 2016; Ronneberger et al., 2015; He et al., 2017). CNN based deep
learning approach have gained much importance over the past few years in performing
classifications and detection tasks because of their feature generation and better self-
learning capabilities in comparison with Machine Learning algorithms and traditional
conventional image processing or vegetation index-based approaches. The training of DL
models requires systems with high configurational capabilities to perform the complex
computations required during the training phase. The availability of systems having better
computer hardware, software capabilities and use of GPUs have helped in training DL
models to achieve higher accuracy scores. Weed detection models have been developed
using Object Detection and Semantic Segmentation techniques (He et al., 2017;
Ronneberger et al., 2015). Object detection performs the task of generating bounding
boxes around detected objects during prediction and Semantic segmentation models
generate pixel-wise mapping of different class categories detected during predictions.
The Semantic Segmentation approaches have gained much importance in recent past as
they better perform the tasks of scene understanding and help in generating better

accuracy scores during predictions. Due to their better scene understanding capabilities



these models have been used for real-time applications such as self-driving cars, and
augmented reality (Hao et al., 2020; Garcia-Garcia et al., 2017). Pixel-wise classifications
using Semantic Segmentation approaches are not fully exploited in resolving weed
detection tasks due to unavailability of data to be used for training these models. A major
challenge faced while training Semantic Segmentation models is the class-imbalance
issue, which is a common concern while training Deep Learning model. This study
proposes a two-step approach to handle the class imbalance problem and generate
optimized Semantic Segmentation based Deep Learning models to generate weed maps
with better accuracy scores. The two-step optimized strategy is explained in detail in

Chapter 3 of this thesis.

This thesis has been organized as three chapters with Chapter 1 as the
Introduction. Chapter 2 gives a detailed review on the Computer Vision techniques that
have been used to develop real-time weed detection models in the past two decades.
Chapter 3 presents research conducted to develop a robust weed detection model using

Semantic Segmentation based Deep Learning approach.
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Chapter 2: Computer Vision techniques for weed detection in
agricultural production and natural resource management: A Review
This manuscript has been prepared for journal submission

2.1 Introduction

Agriculture in the 21st century faces multiple challenges: the major concerns are
to mass-produce abundant food and fiber to feed a growing population with a smaller
rural labor force. The need of the hour is to embrace more efficient and sustainable
production methods and adapt to climate change, which could contribute to overall
development in the many agricultural-dependent developing countries in the world. The
current global population of 8 billion is expected to reach over 9.8 billion by 2050 [3]. To
feed this rise in population the overall food production would need to be increased by an
estimate of around 70-100%. This implies a significant increase in the production of
several key commodities such as cereal production and meat production, considering the
required nutritional content [1]. Accordingly, in addition to breeding a higher-yielding
variety of crops, it is vital to address the numerous factors affecting crop yield loss in the

agriculture community.

Computer vision technologies have been used to resolve many Precision
Agriculture (PA) tasks, such as crop yield prediction, water and soil conservation, plant
disease detection, weed detection, quality evaluation of crops, and species identification
[31-48] to help fetch insights that directly or indirectly helps in increase of crop yield.
Table 1 lists various computer vision-based applications in agriculture that were

developed recently. PA has proposed site-specific spraying techniques that could prevent



waste and herbicide residual problems caused by traditional spraying practices [25]. PA
IS an approach to farm management that uses Information Technology (IT) to ensure that

crops and soil receive exactly what they need for optimum health and productivity [27].

At present, the development of robust real-time applications performing accurate
identification of crops and weeds is among the major focuses in Site-Specific Weed
Management (SSWM). Training weed detection models using traditional image-
processing methods involves extraction of useful features, such as color, texture, and
shape, and incorporating them with various image analyses [61-71], and ML [46-49]
algorithms such as SVM [28], RF [29], ANN [44], K-Means [30] etc. These methods are
trained on features fed manually by the user and have a high dependency on image
acquisition, quality of feature extraction, and pre-processing methods. Improvement in
computational power, increase in data volume, and advancement in technology, has led to
the increase in use of DL algorithms to solve several Computer Vision oriented
applications in the agriculture domain. DL methods [31-38] consisting of CNN have been
extensively used for detection and classification predictions because of their feature
extraction and self-learning capabilities. Due to their enhanced data expression
capabilities for images, these models have helped to develop more robust detection
models with better accuracy results. avoiding the disadvantages of traditional extraction

methods, these methods have gained much attention in the recent past.

Several reviews have already been published which emphasize comparing weed
detection models developed using various computer vision approaches [2, 3, 46, 49].

These reviews provide an extensive overview of the strategies used to develop these



10
models along with the pros and cons associated with them. Numerous real-time weed
management applications have been developed in recent past, which make use of unique
strategies to develop these models. Novel strategies that could be used to develop real-
time site-specific weed management applications and the pros and cons associated with
existing real-time weed management applications are yet to be discussed in a review.
This review provides a comprehensive overview of various CV methods used for
developing weed detection in the past three decades, including real-time CV methods
developed in more recent years. Lastly, the challenges of current CV techniques for weed
detection and some opportunities and trend of future research prospects are discussed that
could be used to strategically plan and improve PA in weed management for their real-

time site-specific weed management applications.

This review paper is divided into seven sections. The first section briefly explains
about the world population trend, the required increase in demand for agriculture
production for upcoming decades, the major causes of crop yield loss, and a few solutions
to increase crop production in the 21st century. The second section explains the strategy
that was adopted to fetch relevant articles to our research domain from available
scientific databases. Section 3 gives a brief description of weeds, crop yield loss due to
weeds, prevention and management strategies, and some common categories of weeds
found in different crops. Section 4 gives a detailed description of traditional approaches
that were used to develop weed detection models. ML and DL approaches that were used
in the development of weed detection models and their advantages and disadvantages are

also discussed along in Section 4 as well. Section 5 reviews the real-time applications of



11
weed detection models that have been developed and tested in agriculture fields for weed
detection and discusses probable future directions in utilizing Computer Vision
techniques for real-time applications in the development of weed detection models to
surge agriculture production and conserve natural resources. Lastly, section 6 presents the

summary and conclusions of our review.

2.2 Methodology

This section explains the research questions, search strategy, and selection criteria
based on which certain research articles were selected, and a comprehensive review was

done on various weed management practices developed over the years.

The analysis of these research papers involved two main steps:

1. Collection of related research articles in the domain, in-depth analysis, and

2. Review of the research performed in their work

Firstly, to collect associated articles involving the development of weed
identification models using various Computer Vision approaches, a keyword-based
search was performed to gather both conference papers and journal articles on kindred
subjects in PA. The main research question is: What is the role of Computer Vision
techniques to form a weed map and real-time applications developed for SSWM using

the weed map? Weedmaps could be referred to as the classification and detection of weed
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patches with respective coordinates information in the agriculture fields. The articles
were searched from 7 bibliographic databases: Google Scholar, Research Gate, Science
Direct, MDPI, Wiley Online Library ProQuest, and the University of Nebraska-Lincoln:
Library databases. The primary keyword ‘Computer Vision” was paired with the
secondary keyword ‘weed detection. These keywords were inserted into the databases
and related articles were selected that were included in this review. To ensure that no
related articles were missed, a hand search was also performed to find related articles in

the same domain.

2.3  What are weeds? A few Prevention and Management Strategies

The various constraints to agricultural production or crop yield loss could be
classified into the following basic categories: biotic and abiotic constraints in addition to
socioeconomic and those related to crop management [14]. Plant breeders and researchers
have continuously produced new innovative, resilient, and novel ideas to overcome these
constraints in the past few decades [15, 16]. Amongst the biotic factors, weeds represent
the most significant constituent that leads to the highest potential crop yield loss along
with other pathogens such as bacteria, fungi, etc. Weeds are unwanted plants that grow in
crops and compete with them for water, sunlight, nutrients, and space. In addition, they
also harbor insects and pathogens which attack crop plants, destroying their native
habitats, which could lead to detrimental effects on the quality of crops if uncontrolled.

Potential crop yield loss without weed control is about 43% on a global scale [10]. In the
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USA alone, crop yield losses due to weeds sum up to an estimated cost of around 33

billion USD [9].

Pesticides such as herbicides have revolutionized and contributed significantly to
weed management practices for the last 65 years and have helped in increasing crop yield
[52]. Traditionally, weeds were controlled by uniform rate spraying of herbicides in the
fields. This practice has a few disadvantages such as safety and environmental pollution,
harm to humans, and the evolution of herbicide-resistant weeds which is a major issue of
concern [26]. SSWM techniques could bridle the issue of uniform spraying of herbicides
in fields to spraying only at desired locations where weeds were detected by machinery or
equipment embedded with technologies that could detect weeds in crops [13]. This
practice could help overcome the challenges associated with the uniform spraying of
herbicides in the fields. Glyphosate has been commercially available since 1974 and is
the most effective herbicide ever discovered [52]. Recurrent use of herbicides to control
weeds has led to the emergence of legion Herbicide Resistant (HR) weeds in different
crops. The first discovery of triazine-resistant weeds was found in western Washington in
the 1960s [49] and as per [weedscience.org] 513 unique cases of HR weeds were
discovered globally in 2022. Table 3 gives a few examples of common HR weeds that
grow in different crops. Also, researchers have discovered various weed biotypes which

are resistant to more than one herbicide (i.e., cross-resistance).

Continuous improvements need to be made to improve crop production. The

traditional practices including burning, hand sowing, manual spot spraying, considering
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primary tillage, regularly scouting of fields to identify weed presence, rotation in
herbicide usage, herbicide pre-emergence or post-emergence application, and repetitive
blade hoeing are not practical anymore. These practices impacted the ecosystem rather
than benefiting production. The evolution in technology using computer vision
applications has led to the development of multiple smart agriculture practices that have
made the lives of farmers easier and more comfortable and are discussed in the following
sections. The transformation in SSWM applications using various computer vision

techniques has been discussed in the following sections of this study.

2.4  Computer Vision for Weed Detection

Weed management is a complex, information-intensive task. Important factors
such as the emergence of weeds, the crop’s ability to suppress weed growth, effects of
different weed species on crop yield need to be taken into consideration to understand the
effects of weeds on crops [53]. Large quantities of herbicides are being used to control
weeds in fields, gardens, ponds, golf courses, roadsides, and sports fields annually, which
leads to environmental pollution and economic concerns. Traditional practices of
removing weeds such as manual weeding and the usage of weeding tools to remove
weeds are still being practiced for centuries and are still being used by farmers in owning
small fields in developing countries [55]. Inefficiency, labor intensive, and high labor-
cost are a few major challenges associated with manual weeding practices which make

them impractical for large farmlands [54]. Advancement in the field of technology has
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led to the development of numerous Computer Vision based SSWM techniques that
could be used as precise and real-time weed detection applications. These promising tools
could replace and overcome the challenges posed by traditional weed management
practices. In comparison with manual weeding, these approaches are much more
efficient, decrease human labor and cost associated with it, and reduce the usage of
herbicides in the fields. The result of a weed detection model is a weed map that could be

used for site-specific treatment of weeds [58].

The main intuition behind SSWM is spraying of required herbicide composition
at only specific weed patches that are detected. Typically, the development of SSWM

practices usually requires 5 important steps to be followed [56, 57]:

1. Collection of data using various remote sensing techniques

2. Pre-processing and utilization of remote sensing data in preparation of Weed
detection model and generating a real-time weed map.

3. Decision-making to decide on an action for weeding on the previously detected
information and farmer experience

4. Weeding application based on the decision via an actuator

5. Performance evaluation of the precision operation

Amongst these 5 processes, weed detection plays a critical role in SSWM as it
involves the algorithm development for the weed detection model and provides

information to the successive processes that help in decision making.
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RS techniques have been intensively used for numerous PA applications such as
crop monitoring, irrigation management, predicting weather conditions, observing air
quality, disease and pest management, and yield prediction in the past few decades. RS is
the process of detecting and monitoring the physical characteristics of an object without
coming into direct contact with the object. Several sensing methods have been used to
fetch data using airborne, ground-based, and satellite techniques. These methods can be
classified into ground-based, and airborne sensing techniques. Airplanes, UAVs (also
drones), and satellites are used for data acquisition of airborne remote sensing data. The
data from these pieces of equipment were collected and after proper examination and pre-
processing, the data were used as an input for training weed detection models.
Multi/Hyper-spectral imaging [39, 46, 47], Visible and near Infra-red (Vis-NIR)
spectroscopy [57], X-ray imaging [48], Satellite Spectral data [31, 41-43], distance
sensing techniques (Light Detection and Ranging -LiDAR) [29], and RGB images [32,
45] were used to extract important features such as plant spectral characteristics, leaf
color, height, texture, shape, etc. and were utilized to train weed detection algorithms
using computer vision and image analysis technology. The development of numerous
weed detection algorithms using these techniques were carried out to perform

classification tasks between different vegetation species.

24.1 Traditional Computer Vision approaches

Detecting broad-leaved weeds in cereal crops under actual field conditions were

performed using color information and shape features from the images. Two different
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pattern recognition methods: KNN and Bayes rule were trained on color information and
shape features extracted from various cereal crops and weeds and their performance was
compared [61]. Average classification success rates (crop/weed) and corresponding
variances were evaluated and the performance of 5 different classification algorithms was
compared and rained on Spectral range, slit width, and slit length features extracted from
6 weeds and sugar beet crops respectively. Performance comparisons between 5 different
classification algorithms namely: ED, MD, KNN, CART, and MLNLM were done.
MLNLM performed the best classification tasks between crops and weeds with a
classification success rate of 85.8% [62]. Reflectance spectra of crop and weed canopies
were used to evaluate the possibilities of weed detection with reflection measurements in
laboratory circumstances. Sugar beet and maize and 7 weed species were included in the
measurements and their wavelength bands were compared to obtain 97% accuracy in
performing classification between weeds and crops respectively [63]. A computer vision
system comprising an ANN was trained using shape features extracted from binary
images collected from images of radish and weeds. The neural network developed was
able to achieve a successful recognition rate of 93.3% for Radish and 93.8% for weeds
[64]. Soil-crop segmentation was done with two spectral channels, chosen from 100
channels available from the hyperspectral sensor, and weed detection was based on
texture features extracted from segmented images [65]. Image pixels of the crop (Sugar
beet) and weeds (4 species) were classified using the differences in spectral

characteristics of plant species [66]. A combination of plant height and spectral
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reflectance features was used to develop an algorithm to perform classification between

crops and weeds in organic carrots [67].

Some successful real-time weed detection models were also developed, and
prototype testing was performed in agriculture fields to check and compare their
performance in performing site-specific spraying of herbicides in the fields. Robotic
weed controllers were developed by Blasco et al., [68] in Spain, which included two
vision systems. The primary vision system helped the robot to distinguish between crops
and weeds and the second vision system helped to retrieve the exact coordinates of weed
presence, where an electrode powered by a set of batteries killed weeds by giving an
electric discharge of 15000V [68]. Another robotic platform that could adapt and operate
in between row crops of 0.25m and 0.5 m was developed by [69] with cameras for row
guidance and weed detection. The robot included improved modules such as four-wheel
steering and propulsion which helped to attain better mobility from adjustments in

orientation.

Development of weed detection model using various spectral features and
physical features such as shape, color, texture, and height encountered numerous
challenges such as slow processing speeds, proper illumination during data collection,
large memory requirements, and high costs of systems hardware. These were a few
difficulties that were faced by researchers in the development of these detection models.
The detection algorithms developed were not able to achieve accurate real-time

applications during prototype testing. The presence of variable soil backgrounds and
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residue cover complicates the spectral response and hinders the response of vegetative
presence [70]. This approach was used by plenty of detection algorithms that compared
the vegetative spectral reflectance of the weed areas in the fields. Detection algorithms’
performance differed in detection during different times of the day with variation in the
lighting in which the remote sensing data was collected which was also a drawback of
these approaches [71]. Advancements in the field of technology led to the development of
better systems that could perform complex calculations and operations that led to the
development of better architectures and algorithms that could perform arduous tasks of
object classification and detection. Also, improvements and inventions of various
Machine Learning and Deep Learning techniques led to solving challenges and tasks that

seemed impossible in the past.

2.4.2 Machine Learning-based Computer Vision approaches for weed
detection

ML has contributed significantly to resolving Computer Vision tasks in the
agriculture domain such as yield prediction, disease detection, weed detection, and
species identification, and has emerged significantly with big data technologies and high-
performance computing. ML is defined as an application of Al that empowers a system to
learn and improve its performance from experience. It majorly focuses on developing
programs that can access data and use it to perform certain tasks such as classification,
regression, or clustering. In this section, we present a review of ML applications

developed in agriculture specifically for weed detection. The performance of an ML task
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is evaluated using an evaluation metric that is calculated after regular intervals while
training an ML model. ML approaches have been extensively used in the previous decade
to perform tasks such as Identification, Classification, Quantification, and Prediction in

the agriculture domain [4, 79].

ML tasks could be broadly classified into 2 categories based on the learning
approach that is used to train the model: Supervised [76-87] and Unsupervised Learning
[72-74]. Also, ML models could be trained using different learning algorithms such as
KNN, DT, RF, SVM, ANN, DL. Table 5 presents a detailed description of the weed

detection models developed using the ML approach in recent past.

2.4.2.1 Supervised vs Unsupervised ML approaches

ML tasks are classified into two main categories: Supervised and Unsupervised
Learning. The major difference between these methods is the approach in which learning
is performed to improve the performance of the ML. In supervised learning, data is
presented to the model in a manner that explicitly defines both input and desired output
associated with it. In simple words, it could be stated that a well-defined labeled dataset
is provided for training and the model is expected to learn the ability to distinguish an
output given input during testing from knowledge gained during training. Also, another
category in supervised learning is reinforcement learning where training is performed
based on the feedback that is provided by the user training the model. Positive feedback
is given whenever the model performs as expected and negative feedback is given

whenever a model deviates from expectations during the training of a reinforcement
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learning model. To compare performance on how well an ML performs on unseen data,
the original dataset available for training is split into two separate independent folders to
be used for training and testing. Training of the ML model is performed only using the
training set and the performance is evaluated by comparing the predicted output with the
actual output during testing. This helps to evaluate how well a model is generalizing on
unseen data. Unsupervised learning is a process in which the ML model predicts by itself
how to process and label the unlabeled or raw data that is fed to the model for training.
No information about the relationship between data values is provided during training
unsupervised learning ML models. Supervised Learning is the most used approach for

training ML models [71].

2.4.2.2 Clustering Algorithms

Clustering is an unsupervised classification ML algorithm. K-mean clustering like
nearest neighbors could be referred to as a method of clustering objects with similar
feature information/characteristics in a cluster. This approach has been used by various
researchers to perform tasks of weed detection. [72] used an unsupervised ML approach
of clustering plants with similar shapes in one group. Data points with similar feature
information formed clusters and these were used for the task of weed detection. Zhang et
al., [73] presented a weed detection algorithm consisting of three sequentially linked
phases that involved, image segmentation, feature extraction, and crop-row detection.
Crop-row detection in this approach used made use of a clustering algorithm to form

separate clustered feature point sets of crops and row spacing. Clustering has been used



27
to perform classification between weeds and crops using 16 features that were extracted
using image processing techniques from the images that were collected from fields. Also,
this approach was used to generate weed maps in less complex cases using GPS data
[74]. KNN classifiers were used to perform weed identification tasks in low infestation
level imagery collected using remote pilot aircraft on sugarcane plantations and overall

accuracy of 83.1% was achieved using a kappa coefficient of 0.775 [78].

2.4.2.3 Regression Algorithms

Regression models supervised ML models that perform the prediction of detecting
weeds in an image using a set of independent features that are extracted from the images.
Major regression algorithms are Linear Regression (LR), Multiple Regression, and
Logistic Regression (LoR). Multiple regression [76] analyses were used to find a
relationship between ultrasonic readings and the corresponding coverage of crops and
weeds. LR and LoR ML models were trained using weed density information and
performance comparisons were made on their predictions to detect the presence/absence
of weeds in the field [75]. These models were used to generate weed maps of annual
grass weeds in the later stages of cereals. Feature extraction methods in combination with
various ML models such as LoR [77] models were used to perform classification tasks

between crops and weeds.
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2.4.2.4 Support Vector Machines

SVMs are supervised ML algorithms that perform the mapping of high-
dimensional data points and divide them into classes to form a Maximum Marginal
Hyperplane. SVMs help to resolve the overfitting problems that appear in high-
dimensional spaces, which makes them a popular ML algorithm used by researchers to
perform various classification, clustering, and regression tasks [4]. SVM classifiers using
features extracted from Gabor and FFT filters have been used to perform the task of weed
detection to detect broad and narrow weeds [80]. Fourier descriptors and moment
invariant features together with several shape features were used to train the supervised
SVM classifier to classify four species of weeds in sugar beet that achieved an overall
accuracy of 95% [81]. An overall accuracy score of 97% was achieved on the testing
performance of the SVM classifier trained on 14 optimal features extracted from digital
images of crops and weeds [82]. The SVM classifier was able to perform complex
classification between avena sterilis weed and cereal crops that shares similar spectral
signature successfully even with minimum system memory requirements and

computation power [83].

2.4.2.5 Decision Trees

DTs are supervised ML algorithms that could be referred to as probability tree-
like consisting of the root node, branches, and internal node that continuously split data to

categorize or make predictions using the set of features that are used for training the
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model. During training DT gradually tries to fit in the objects with similar characteristics
under a common root node. DT algorithms were used to extract the shape and texture
features of eight species of plant leaves using hyperspectral images to perform
classification between corn and weeds under laboratory conditions that achieved an
accuracy of over 95% [84]. Hyperspectral data of corn plots were used to classify into 3
separate categories namely: weeds presence, water stress, and nitrogen application rates

using DT algorithm [85].
2.4.2.6 Ensemble Learning

Ensemble learning refers to training multiple ML models on different samples
from training datasets and aggregating responses from all the models to generate a final
output. Ensemble learning generate better ML models that could generalize well on
unseen dataset and have proven to overcome overfitting problems. The two common
categories under which ensemble learning techniques can be classified are: Bagging and
Boosting. Bagging is an ensemble learning technique in which several training samples
from a dataset are independently trained on multiple ML algorithms and are aggregated
via an appropriate combination technique to perform final prediction task. Boosting is an
ensemble learning technique in which multiple ML algorithms are trained sequentially
with an intuition that the successor learns from the miss-classifications or errors
generated during training phase. This approach has resulted in improving generalizability
during prediction from the trained model. One of the powerful supervised ML algorithms

that uses ensemble learning techniques are RFs. RF constructs multiple DTs during
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training and uses an aggregation of outputs from all DTs in a combination to perform the
final classification and regression tasks during prediction. RF classifiers were used to
perform weed species recognition tasks on the imagery that were collected at low
altitudes using UAVSs in presence of lower infestation levels in sugarcane fields [86]. The
research conducted by [87] has developed RF-based ML algorithms to detect alligator
weeds that form dense infestations in aquatic environments using remote sensing data to
improve biosecurity supervision and monitoring efforts in Australia. ML algorithms that
use gradient boosting techniques such as XGBoost have been used to train state-of art
weed detection models to distinguish between Buffel grass and spinifex with accuracy
scores of 97% have already been developed in recent past. Predictions performed in
different case scenarios such as object rotation, illumination changes, background
cluttering suggest the robustness of the ML models developed using gradient boosting

techniques [106].

2.4.3 Deep Learning based Computer Vision approaches for weed detection

Evolution in the field of developing better computer hardware and software has
helped in the amelioration of the computing power of GPUs that play a vital role in
performing multiple, simultaneous computations during the training of ML and DL
models. DL algorithms have been used to perform various tasks in the agriculture and
farming sector [34, 37, 41, 45], and in the development of various weed detection models
lately. Traditional ML approaches have been extensively developed to perform the task

of weed detection due to ease in both understanding ML algorithms and the availability
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of features that could be used to train these models. DL models usually require large

datasets to efficiently train and perform tasks such as prediction and classification.

Traditional ML algorithms were limited in their ability to extract useful insights
from raw natural raw data. DL algorithms such as CNNs, LSTM, GANs, FCNs, and
RNNs have been used to develop both supervised and unsupervised DL models. CNN-
based supervised DL approaches have gained much popularity in the recent past due to
their feature generation and self-learning capabilities. CNN consists of multiple layers:
convolutional filters, pooling layers, and fully connected layers. Convolutional filters in
CNN help in extracting important generic feature maps from raw natural data. The
combination of generic feature maps from original data helps in training a DL model to
detect several motifs from raw data that further help in performing complex tasks such as
pattern recognition and object recognition. Pooling layers perform the task of
dimensionality reduction while preserving the feature maps generated by convolutional
filters in the DL network. The fully connected layers consist of adjustable weight
parameters that represent the magnitude of certain feature outputs generated from
convolutional filters that in turn play a major role in deciding the final prediction during
training of a supervised DL model. The concept of Backpropagation performs the task of
training in a DL algorithm. During the training phase, an objective function is computed
that measures the deviation in between the predicted and desired output. Backpropagation

performs the task of regularly computing the objective function and updating adjustable
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weight parameters in fully connected layers such that the predicted output matches the

desired output (Lecun et al., 2015) [88].

The ILSVRC was a worldwide contest conducted between 2010-2017 to measure
the progress of Computer Vision field to solve the complex tasks of object detection. The
ILSVRC dataset consisted of 1.2 million annotated images of different objects (such as
Person, airplanes, cars, etc.) across 1000 categories and the goal was to develop a ML
architecture that could perform prediction task with higher accuracy scores. DL
techniques gained much importance after the deep neural network Alexnet consisting of

CNNs won the ILSVRC contest also popularly known as the ImageNet competition in

2012 [111] (https://image-net.org/index.php, access on November 1, 2022). Optimal
neural networks have been developed continuously since than to achieve better accuracy
scores during prediction on ImageNet dataset. Popular CNN architectures such as VGG
[91], ResNet [129], Inception [130], ResNeXt, GoogleNet [130] were developed in the
following years to solve the ImageNet challenge and these architectures have been used
for tasks such as object recognition, image classification, and automatic object clustering.
Also, these architectures have been largely used as backbone (also called encoder or

feature extractor) in popular classification algorithms of DL namely OD and SS.

DL approaches have been used to develop weed detection models that could be
used to perform the task of SSWM and use those applications for real-time sensing and
spraying. Reviews on DL approaches that have been used to develop weed detection

models [89], [90] are already published. Several CNN architectures such as GoogleNet
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[131], MobileNet [132], ShuffleNet [133], VGGNet [91], ResNet [129], Inception [130],
DenseNet [92], and ExceptionNet have been used to develop weed detection models.
These CNN architectures differ in the arrangement and number of convolutional filters,
pooling layers, and fully connected layers that have been used to create that specific
architecture. These architectural arrangements are all unique and have contributed to
solving diverse kinds of classification and prediction tasks. Deep CNN architectures
(consisting of a higher number of convolutional and pooling layers) such as Inception and
ResNet have been successfully used to solve complex classification tasks and achieve
higher accuracy scores and shallow CNN architectures (consisting of lower convolutional
and pooling layers) such as MobileNet [132], ExceptionNet [134] architectures have been

used on edge computing devices to perform real-time applications [92].

2.4.3.1 Transfer Learning and Data Augmentation

A major challenge associated with training DL models is that they usually require
large amounts of data during training and an increase in the number of images used
during training have helped DL models to achieve higher accuracy scores. A common
solution to handle the unavailability of large datasets to train DL models is the usage of
TL and data augmentation techniques. Techniques such as TL and Data Augmentation
have been popularly used to alleviate the problem during availability of insufficient data

to train a DL model.

TL refers to the use of existing knowledge that has already been used to perform

one task, usually where large amounts of data is present for training to solve a similar
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learning task, where there is limited data to perform the training of ML model. Training
ML models especially. DL models using this approach have shown amazing results and
helped in achieving state-of-art accuracy scores during prediction. Several applications
using this approach have already been developed in the recent past [93] and this approach
is widely used to develop weed detection models. [105], [107], [108] presents studies in
which DL models were developed using TL techniques to overcome the limitation of
training data. CNN architectures such as VGG, ResNet, Inception, DenseNet, MobileNet
networks that have already been trained on ImageNet [94, 95], Microsoft COCO [96]
datasets and are easily available and could be used for developing various detection,
classification, and segmentation tasks using TL techniques. TL techniques were used by
[30] to develop weed detection model and performance comparisons were made on the
models that were developed using MobileNet and Inception architectures already trained
on ImageNet datasets. [93] proposes a study in which a weed detection models are
developed using a combination of various pre-trained convolutional architectures such as
Xception, Inception-ResNet, MobileNet, and DenseNet with traditional ML models such
SVMs, and LoR. A section in the review developed by [113] discusses various detection

and classification models developed in agriculture domain using TL techniques in detail.

Data Augmentation techniques in ML domain refers to the artificial increase in
the amount of training data my adding moderately modified copies of original data or
newly created synthetic data from existing data. Various strategies such as adjustment in

color intensities, random rotations, flipping, etc. are commonly used to perform data
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augmentation. DL models usually performs the training on features extracted from the
images used for training. Increasing images using these strategies helps to increase the
datasets by manifolds and helps in increasing the dataset used for training DL model.
These techniques have also proven to escalate the robustness of CNN architectures used
for feature extraction process in DL models. [30] performed horizontal flip and crop
rotations to increase the images in training dataset. Data augmentation techniques such as
pre-processing images by altering brightness, random rotations, flips and color variations
were performed on original dataset to increase 920 images in original dataset to 9200

images to be used for training DL models [107].

Recent advancements in the field of PA and need for sustainable practices such as
SSWM has led to a significant increase in the use of DL techniques for development of
weed detection models. A large number of studies conducted in this domain are
conducted to develop neural networks solving weed detection problem on independent
and unpublished datasets, this approach makes it exceedingly hard to compare and
evaluate the performance of these neural networks in general. In order to perform
performance comparisons of neural networks developed in this domain, it is crucial to
prepare sufficiently large datasets comprising of weeds and crops images that could be
used by researchers. An increase in the number of labeled datasets that are currently
being developed in this domain would help to develop more robust and accurate weed

detection models in near future.
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DL generally has 2 classification algorithms based on the results generated during
output. The following two sub-sections explain these 2 approaches in detail along with
the weed detection applications developed using these techniques recently are discussed
along. Table 7 presents a detailed description of the weed detection models developed

using the DL approach in recent past.

2.4.3.2 Object-Detection

DL models perform the classification or detection task in which bounding boxes
are formed with probability scores around the predictions as a final output belongs to the
category of OD in DL. OD models that are quite popular and have been used to train DL-
based weed detection models are Fast RCNN [97], Faster RCNN [98], YOLO [99], SSD
[100], and MaskRCNN [101]. These models [97, 98, 101] consist of RPNs that help the
model predict certain locations in an image where there is a higher probability of finding
an object, and then a convolutional network is used to perform the task of object
detection and localization whereas in [99, 100] directly a convolutional network is used
for both object detection and localization during prediction. The advantages associated
with the former approaches discussed are that they can predict even the small objects that
are present in an image whereas the later approaches usually miss predicting small
objects. The disadvantages associated with former approaches are that due to their
complex architecture they have high processing time and take more time to perform
predictions as compared to later approaches. This has led to the use of [99, 100]

approaches on edge-computing devices to perform real-time applications [105].
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(Sivakumar et al., 2020) [30] developed a weed detection model using OD-based
FasterRCNN and SSD models and made performance comparisons of these models based
on loU scores and inference speed. The research concluded that the FasterRCNN model
could achieve a higher optimized confidence threshold as compared to SSD which
depicts that FasterRCNN generalizes better during testing. [107] conducted research and
developed a weed detection model using OD-based DL approaches in vegetables.
Performance comparisons between YOLO-v3 and FasterRCNN were made, and the
results depicted that YOLO-v3 was able to achieve higher accuracy scores and had a

significantly shorter inference time as compared to the latter.

2.4.3.3 Semantic Segmentation

DL models that perform the classification or detection tasks in which pixel-wise
labeling is performed around the predictions as a final output belongs to the category of
SS in DL. SS models that are quite popular and have been extensively used to develop
weed detection models using the DL approach are SegNet [102], UNet [103], LinkNet
[127], BiSeNet [128], and PSPNet [104]. SS techniques are gaining much importance as
they can achieve higher accuracy results to train state-of-art DL models even with less
amount of data [103]. These tasks have helped elucidate complex tasks of scene
understanding. There has been a surge in the research related to performing tasks such as
scene understanding due to rise in developing real-time applications for self-driving cars
[149, 150, 151], augmented reality [152, 153], etc. in recent past as performing pixel-

wise classifications is an important task in these techniques. These models consist of
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encoder-decoder architecture [102, 103] that consists of convolutional, pooling, and up-
convolutional layers. Encoder architecture performs the feature extraction process using
the convolutional filters and the pooling layers lead to the condensed representation of
the original image whereas in the decoder architecture the pooling indices in SegNet and
both feature maps and pooling indices in UNet are concatenated along the up-
convolutional layers that help in converting the condensed representation back to the
original input size of the image during prediction. Different CNN architectures such as
DenseNet, VGG, ResNet, MobileNet, Inception, etc. using TL techniques can be used for
the generation of feature maps in the encoder part of these models. These architectures
usually have high processing time due to their complex architecture. The research
conducted by (Asad & Bais, 2020) [108] made performance comparisons between SS
models of UNet and SegNet that were used to perform tasks of weed detection in canola
fields. ResNet-50 and VGG16 architectures were used in place of the encoder section to
perform the task of feature extraction for both the models. It was concluded that the
SegNet SS model in which ResNet50 architecture was used in encoder section gave the
best results with a mean loU score of 0.8288. [109] conducted research and conclude that
NIR information helped improve the robustness in segmentation against different lighting
conditions and obtained a mean loU score of 88.91%. InceptionVV3 was used as an
encoder to develop a supervised SS-based UNet model with data augmentation
techniques to achieve accuracy scores of 90% for broad-leaves weed classification. Image
enhancement methods such as the inclusion of NIR information used to train a supervised

SS-based UNet model for weed detection purposes significantly improve the
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segmentation accuracy and the model were able to achieve a mean loU score of 88.21%
[110]. Publicly available weed detection datasets are mentioned in Table 2.6 . these
datasets are available online and can be used to increase datasets while developing weed
detection or to check performance comparison on developed DL models on these

datasets.

2.5  Review of real-time weed detection applications: Challenges and

opportunities

Overall increase in food production and methods to prevent crop losses is a matter
of serious concern due to increasing world population. Major crop yield loss, decrease in
crop quality, evolution of herbicide-resistant weeds, and the ill-effects associated with
increased use of herbicides have motivated scientists and engineers to perform
continuous research to handle the menace that arise due to weeds in agriculture fields.
SSWM applications could help overcome these challenges and weed detection models
developed using various techniques are discussed in previous sections of this study. The
final goal of developing these weed detection models is to use them for performing real-
time on-field weeding operations. Numerous real-time SSWM applications have already
been developed that make use of both chemical-based weeding strategies such as
herbicide spraying using various ground-based [114] and aerial based equipment’s [115],
and non-chemical weeding strategies such as using high electric discharge [68],

mechanical actuators to remove weeds [113] etc. in recent past. This section discusses
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various approaches that have been used in various studies performed in relation to this

domain and their associated advantages and disadvantages are described.

Embedded systems have played a vital role in performing real-time SSWM
applications in agriculture fields. Embedded systems could be referred to as
minicomputers consisting of both hardware and a software that could perform a specific
function or sets of functions. Some common examples of embedded systems are
Raspberry Pi, Orange Pi, and Nvidia Jetson. These embedded systems could be employed
on various agricultural equipment’s such as tractors [113], UGVs including robotic
models [116], UAVs [115], and could be trained to perform weeding operations. To
perform weeding operations, the embedded systems are responsible for pre-processing
the sensory information collected from fields, use this information to generate weed
maps, and initiate actuators such as nozzle sprays, releasing electrical discharge, or
mechanical actuators attached with agricultural equipment’s to eliminate weeds from

fields.

DL methods have shown prominent results in tasks such as object detection and
classification, albeit rather their complex black-box structure, higher computational
power requirements for processing, power supply issues, and higher memory storage
requirements makes implementation of these DL models on embedded systems hard as
they possess only limited processing and storage capabilities. One of the potential
solutions to meet the high computational requirements and to perform millions of

computations during training and inference phase of DL models is to use Cloud
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technologies. According to [120], Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction. This
definition includes the five essential characteristics associated with cloud-computing
namely: on-demand self-service, broad network access, resource pooling — location
independence, rapid elasticity, and measurable service. Availability of on-demand cloud
computing platforms such as AWS, Azure, GCP, Alibaba Cloud etc. from companies
such as Amazon, Microsoft, Google, and Alibaba have popularized use of cloud-based

technologies for PA applications [118, 119].

Developing a real-time weed detection model involves five steps as discussed in
Section 4 of this study. After data collection using various RS techniques the following
two operations which involves high computational requirements such as pre-processing
of the data and generation of a weed map using weed detection model have been
performed on cloud platforms in recent past. In order to perform real-time weeding
applications, data sharing across cloud platforms and embedded systems is performed via
loT. The sharing of data includes sending and receiving of instructions on where to
perform weeding operations after processing of information at cloud locations. In order to
overcome the high space and time complexity of computer vision algorithms that perform
weed detection tasks [121], a cloud-based architecture was used to leverage high

computational resources and additional aggregated knowledge to generate weed maps for
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real-time SSWM applications. [122] developed a cloud and Al based application that
uses RS data such as RGB imagery collected from airplanes, UAVs, and satellites. The
application rapidly processes the data to perform various applications such as measuring
plant height and canopy, detecting, and locating plant gaps, and developing plant heat
maps with higher accuracy scores. Google cloud platform were used to perform real-time
detection of parthenium weed plants in pulse crops by [123]. In this research, a LinkNet
model (SS based DL model) was used with ResNet34 as feature extractor to develop a
weed detection model that achieved a mean accuracy score of 0.598 in 0.217s. In the
study proposed by [124], a weed detection model was developed in which an IoT device
collects images from the fields and transmits them to a cloud server where YOLO-v5 DL
model performs the task of weed detection on the images. The research conducted by
[125] proposed a model that integrates technologies such as 10T, data analytics, and cloud
computing to detect nutrient deficiency, weeds, and disease detection in chili crops.
There are a few issues associated with the use of cloud-based technologies [126] to

perform real-time applications in weed detection domain and these are as follows:

1. Latency: The weed detection models developed using cloud technologies
requires sharing of both the input data generated locally in the fields and the
weed maps generated after pre-processing the information in between cloud
and sensors in the fields to perform real-time SSWM applications. Strong
network connectivity plays a vital role in using these technologies as there

needs to be a strong and robust communication between sensors and cloud



47
locations. There needs to be a constant access of internet to maintain proper
connectivity between both platforms. Also, exploiting resources available at
cloud may face additional queuing. These issues could lead to network latency
and delay decision making for real-time weeding applications.

2. Privacy: This is a major issue of concern as there might be risks associated
with data leakage or compromising of personal data from the cloud locations.
There exist other issues associated with the use of cloud technologies such as
misuse of sensitive information already uploaded to the cloud by the cloud
companies. User needs to be wary about the privacy concerns of the
information shared with cloud.

3. Scalability: Data generated from sensors in the fields needs to be shared with
cloud regularly and sharing large loads of data in a short time could be a
challenge. Uploading higher resolution imagery or video streaming with cloud
would excessive bandwidth consumptions and could lead to scalability issues
in sharing data. Also, scalability issues would increase if multiple cameras

shared data concurrently with the cloud.

Edge computing has served as a practical solution to overcome the centralization
issues such as Latency, Scalability, and Privacy associated with using cloud computing
technologies. Recent advancements in developing powerful GPU-accelerated parallel

processing embedded devices such as Nvidia Jetson, Google Coral, and Intel NCS etc.,
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have led to their increase in running various DL related applications such as image
classification, object detection, segmentation, and speech recognition. According to
[138], Edge computing refers to the enabling technologies allowing computation to be
performed at the edge of the network, on downstream data on behalf of cloud services
and upstream data on behalf of 10T services. Also, the development of various Software
Developments Kits (SDK) such as Tensor RT by Nvidia and Tensorflow Lite by Google
have helped in developing optimized DL models that delivers low latency and high
throughput for inference applications. SDKs like TensorRT perform several important
transformations and optimizations to the neural network graph, including constant

folding, pruning unnecessary graph nodes, layer fusion, and more

(https://developer.nvidia.com/tensorrt). These optimization strategies help in decreasing
the computational and memory requirements of DL models while preserving their
performance capabilities. TensorRT is a SDK specifically designed to optimize DL
models and run them on Nvidia Jetson boards whereas optimization performed using
Tensorflow Lite could be used on various other GPUs. [148] performed a study in which
performance comparisons of the Mean loU score and inference time were made in
between two SS based weed detection models developed with and without TensorRT
optimizations on Nvidia Jetson Nano. In performing comparisons between the developed
models, decrease in mean loU score was observed by a factor of 14.8, but inference time
accelerated by a factor of 14.7% in the model developed using TensorRT optimizations.
These results show that there is a trade-off between overall accuracy and inference time,

performing optimizations on these DL models using various SDKSs helps in accelerating
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the inference time while performing predictions using the developed model but this leads
to a decrease in performing accurate predictions by some extent which could be referred
to as a disadvantage of performing optimizations on DL models. Overall, the use of
embedded GPUs to perform real-time applications is still in its initial stages. Several
studies have shown results for improved performance using optimized DL models on the
energy efficient embedded GPUs. Further study in this domain could focus on developing
state-of-art models using these techniques to perform real-time on-board applications for
various smart agriculture applications like weed detection, livestock management, and

plant disease detections etc. in agriculture domain with better prediction performance.

2.6 Summary and Conclusions

Weed management is one of the most important crop production practices. The
global increase in herbicides use to control weeds has led to various issues such as
decrease in crop quality, economic losses due to excessive off-target herbicide
movement, and evolution of herbicide resistant weeds. Site-Specific Weed Management
strategies refer to the use of right and precise amounts of herbicide only at locations
where weed infestation are detected. There have been several studies in relation to
development of these SSWM applications in agriculture domain, this review article
discusses various image processing, machine vision, machine learning, and deep
learning-based computer vision techniques in detail that have been used to develop weed

detection models in recent years. Also, a detailed description on various ML algorithms
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and DL models used to develop weed detection models and their associated advantages

and disadvantages are also discussed.

The use of CNN in DL methods have revolutionized the tasks of image detection,
classification, and segmentation tasks as these models have the advantages of feature
extraction and self-learning capabilities over other conventional ML models where an
optimal set of features extracted from the data are used for training. Overall, development
of weed detection models using DL techniques have helped in generation of better weed
maps during prediction and achieve higher accuracy scores as compared to weed
detection models developed using traditional machine learning, machine vison and
image-processing techniques. Several weed detection models developed using various
ML and DL techniques along with their corresponding results are presented in this study.
Also, a list of publicly available datasets that have been developed in recent past that
could be used to check the performance of new DL models or increase the amount of
dataset being used to train DL models are also mentioned along with their respective
URLSs in this study. In the final section of this review, the popular approaches that have
been used to perform real-time SSWM applications are discussed. An overview of
various techniques and their associated advantages and disadvantages are discussed in the

section.

We conclude that DL models could be further explored by tuning and tweaking
hyperparameters used for training these models, as this could lead to generation of weed

detection models that could perform the detection tasks more efficiently and robustly. It
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is known that training of DL model requires large dataset for training, there exists an
absence of a datasets like ImageNet, COCO, CamVid etc., in weed detection domain
which could be used by researchers to test performance of various DL models and
architectures. Several datasets have already been prepared and are available publicly, but
they include less images as compared to the datasets mentioned earlier. The preparation
of a common generic dataset would help to check and compare performance comparisons
between different DL models and architectures used by researchers while preparing these
models. It has been observed that there exists a class imbalance issue amongst various
datasets that have been used to develop a weed detection model. Future work could
involve developing robust weed detection models that could address these class

imbalance problems.

There is a wide scope of research that could be conducted in performing
optimizations of the DL models using various SDKs such as Tensorflow Lite and
TensorRT techniques so that these trained models could be used on edge devices for real-
time SSWM applications. It has been proven that performing predictions on optimized
DL models have an accelerated inference time, but these models have a trade-off with
performing accurate predictions. Further research could be conducted in developing
models that could achieve the tasks of optimizing DL models while preserving their
performance capabilities in performing accurate predictions on edge devices such as
Nvidia Jetson, Google Coral etc. to achieve the tasks of SSWM applications in

agriculture fields.
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3 Chapter 3: Performance comparison of semantic segmentation

based deep learning models on weed detection in maize fields

This manuscript has been prepared for journal submission
3.1 Introduction

According to the latest surveys conducted by the Department of Economic and
Social Affairs, United Nations — the world population is expected to reach at 8.5 billion
people by 2030 and an additional 1.8 billion in the following two decades reaching to 9.7
billion by 2050 [68]. A major concern associated with the increasing population trends is
related to the mass production of food and fiber along with a smaller rural labor force. An
estimated increase in global food production of around 70-100% is required to meet the
demands of the population. These trends demand an increase for research and
development in agriculture domain bringing out much attention to various sectors such as
generation of high-seed quality to increase crop yield, improving soil health for better
crop growth, and prevention of crop yield losses. One of the major concerns that leads to
crop yield losses in agriculture are associated with the growth of weeds, pests, and crop-
diseases in the fields which are responsible for a global crop yield loss of around 40%.
Weeds are unwanted plants that grow in fields and compete with crops for water, light,
nutrients, and space leading to causing crop yield losses [41, 42]. Traditional practices
associated with handling weeds in fields include various manual techniques such as
hoeing, tilling, burning, and spraying of chemicals have already been used in agriculture

fields. The most used techniques to handle these weed infestations is the use of uniform
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rate spraying of herbicides in the fields. Weed infestations are usually observed at a few
locations in fields and the need to perform uniform spraying activities could be avoided.
Practicing herbicide spraying activities at a uniform rate across the fields are associated
with a few disadvantages such as economic loss due to excessive usage, environmental
pollution, contamination of non-target vegetation and evolution of herbicide-resistant

weeds [24].

Precision agriculture proposes site-specific weed management techniques which
perform the task of detecting weed infestations and using different weeding techniques to
remove weeds from the fields. Computer vision techniques have been used to develop
weed detection models that make use of data collected from various remote sensing
techniques such satellites, LIDAR, UAVs, UGVs to generate weed maps that could be
used to perform the tasks of SSWM. Several features such as shape, color, band
information, texture, height were collected and used to develop weed detection models. A
two step-approach to develop an inter-line weed detection model was developed by [62]
using image processing techniques. Inter-line crop row detections were made using
Hough transformation algorithm and Normalized Difference Vegetation Indices were
used to detect weed infestation that existed between crop rows in the study. A study was
conducted by [59], developed a weed detection model in which color-based machine
vision techniques were used to perform detection of reddish weed stems in wheat and
soybean fields which have greenish stems. Spectral characteristics such as texture, color,

shape was used to differentiate between crops, weeds, and soil [52] and a real-time weed



80
detection model were developed and deployed in agriculture fields. Real-time weed
detection applications were developed using Hough transform and simple linear iterative
clustering techniques to detect inter and intra line weeds in crops [53]. A Discriminant
analysis and an Artificial Neural network were designed in the research where
misclassification rates in performing weed detection were below 3 percent. The
measurements of reflectance characteristics of crops and weed in visual and near-infra-
red rays were utilized to generate a weed detection model in laboratory conditions in the
research performed by [60]. A weed detection model to classify broad-leaved weed were
developed by [61] using physical characteristics extracted from imagery collected from
ground vehicles. Color based information were used to perform elimination between
vegetation and soil, and spatial information such as shape and texture-based features were
used to perform classifications between crops and weeds in the study. Most of the
traditional weed detection models developed using machine vision and image processing
techniques were trained to perform classifications tasks under constrained laboratory

conditions and didn’t perform well in natural circumstances in fields.

The collection of multi-spectral images from the UAV remote sensing techniques
have helped in extraction of useful features which have been used with various ML
algorithms such as SVMs, DTs, RFs to develop weed detection models in recent past.
Due to their better learning capabilities on features extracted from these images, ML
algorithms have helped achieve higher accuracy scores to perform the classifications

tasks between crops and weeds. However, training a weed detection has been a complex
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task due to the homogenous crop-weed characteristics such as color similarity, high
occlusions, similar reflective index, indistinguishable shape, and texture features.
Performance comparisons between weed detection models developed using Logistic
Regression and SVMs based ML algorithms were made in detecting weeds in carrot
crops [63]. The histogram of gradients features were extracted from the data and it was
observed that SVMs performed better classification tasks as compared to Logistic
regression based weed detection model. Pattern based recognition techniques were used
to train weed detection model using several ML algorithms such as KNN, SVM, and
ANN in sugarcane crops. ANN based ML models performed the best and were able to
achieve accuracy scores of 63.1% [64]. The model proposed by [65], used an ANN that
trained on a combination of Red, Green, NIR, and texture features extracted using the
high-quality imagery from UAVs to generate weed maps in leguminous crops which
achieved an accuracy score of 98.87 %. Shape vectors along with Fourier descriptors and
moment invariant features were used to train a weed detection model in classifying four
different weed categories in Sugar beet plants. The weed detection model helped
achieved an overall classification accuracy of 94.5% [55]. The use of ensemble learning
techniques have helped improved the training of ML algorithms. Ensemble learning
refers to training multiple ML models on different samples from training datasets and
aggregating responses from all the models to generate a final output. ML models
developed using ensemble learning techniques have proven to overcome overfitting and
have helped generate models that generalize well on unseen dataset. One of the powerful

supervised ML algorithms that uses ensemble learning techniques is RFs. RF constructs
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multiple DTs during training and uses an aggregation of outputs from all DTs in a
combination to perform the final classification and regression tasks during prediction.
The research conducted by [66] has developed RF-based ML algorithms to detect
alligator weeds that form dense infestations in aquatic environments using remote sensing

data to improve biosecurity supervision and monitoring efforts in Australia.

DL techniques using CNN have revolutionized computer vision tasks by creating
state-of-art models to perform the complex tasks of image classification, object detection,
semantic segmentation, and instance segmentation [9, 10, 12, 14, 18]. CNN based deep
learning approach have gained much importance over the past few years for detection and
classifications tasks because of their feature generation and better self-learning
capabilities as compared to conventional image processing or vegetation index-based
approaches. The training of a DL models requires systems with high configurational
capabilities to perform the complex computations required during the training phase. The
availability of systems having better computer hardware, software capabilities and use of
GPUs have helped in training DL models to achieve higher accuracy scores. Several
weed detection models have been developed using Object Detection and Semantic
Segmentation techniques. Object detection perform the task of generating bounding
boxes around detected objects during prediction and Semantic segmentation models
generate pixel-wise mapping of different class categories detected during predictions.
The tasks of SS have gained much importance in recent past as they better perform the

tasks of scene understanding and helps in generating better accuracy scores during
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predictions. SS based DL approaches are still not fully exploited to develop weed
detection models due to the unavailability of labelled data required to train these models.
A major challenge associated in developing weed detection models using these
approaches is the class imbalance issue that arise due to the availability of unequal
proportions of pixel labels for different class categories used for training of the model.
This imbalance problem prevents the model to train equally well in predicting pixel
values that are underrepresented and are not present in equal proportions with other
classes. This issue leads to the problem of underfitting in which the trained model does

not perform well in detecting underrepresented pixel values during prediction.

The objective of this study was to develop Semantic Segmentation based Deep
Learning models that perform weed detection in maize. This is a complex task due to the
crop-weed color similarity and high occlusions between crops and weeds found in the
maize fields. Amaranthus Palmeri is an important and a common weed category usually
found in maize and soybean fields.. Also, these weeds come under the category of
herbicide-resistant weeds and are resistant to glyphosate, which is the most commonly
used herbicide. Extraction of Semantic segmentation model results could be used with
weeding actuators in fields to perform the complex task of Site-Specific Weed
Management and remove weed patches. The benefits associated with Site-Specific Weed
Management practices ends up being two-folds: Firstly, it prevents environmental
pollution linked with excessive uniform spraying of herbicides in fields and performs

weeding only at locations where weed patches are found. Secondly, it decreases the
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economic burden on farmers as these practices leads to reduction of both herbicides’
quantities being used and human labor costs associated with spraying activities in

agriculture fields. The paper has the following contributions:

1. Performing pixel-wise classifications of weeds, soil, and crops in RGB images
from maize fields using Semantic Segmentation based Deep Learning approaches.

2. Two-step approach in optimizing the training of weed detection models to resolve
the challenges associated with class-imbalance problem are explained

3. Performance comparisons between two Semantic Segmentation models of
LinkNet and UNet developed using various architecture backbones such as VGG,

Inception, and ResNet in the encoder section

Table 3. 1 Abbreviations table

Abbreviation Full form
GB Giga Bytes
RAM Random Access Memory
GHz Giga Hertz
RGB Red, Green Blue
DL Deep Learning
ML Machine Learning
GPU Graphical Processing Unit
AGL Above Ground Level
UAV Unmanned Aerial Vehicles
CMOS Complementary Metal Oxide Semiconductor
oD Object Detection
CVAT Computer Vision Annotation Toolkit
SS Semantic Segmentation
SSWM Site-Specific Weed Management
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The remaining research article is organized as follows. Section 2 explain the

encoder-decoder architecture of SS models and related works of weed detection models
developed using these approaches are discussed. Section 3 gives a detailed description of
the proposed method discussed. Section 4 presents the experimental results obtained after
training state-of-art weed detection models in this study. Also, performance comparisons
between weed detection models developed based on various evaluation metrics obtained
during testing are discussed. Section 5 presents the conclusion of our study and discusses
possible future outcomes associated with developing real-time weed detection models to

perform tasks of SSWM.

3.2  Semantic Segmentation

SS based DL models perform the tasks of pixel-wise classification of each and
every pixel in an image to a separate class category, and the pixel values corresponding to
similar class categories are labelled as a single entity during prediction. These tasks have
helped elucidate complex tasks of scene understanding. There has been a surge in the
research related to performing tasks such as scene understanding due to rise in
developing real-time applications for self-driving cars [3, 4, 5], augmented reality [6, 7],
etc. in recent past as performing pixel-wise classifications is an important task in these
techniques. The task of labelling each and every pixel in an image or a video helps in
performing the tasks of precise object recognition and localization during predictions.
Since Alexnet [8] won the ImageNet challenge in 2012, DL methods have been

extensively researched upon and developed continuously with modifications to perform
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the complex tasks of image classification, object-detection, semantic segmentation, and
instance segmentation tasks. DL methods comprising of CNN architectures have gained
much popularity due to their feature extraction and self-learning capabilities. DL
approaches have been extensively used to perform the classification and detection tasks, a
difference between different classification tasks is shown in Figure 3.6. The image shows
the difference between the final predicted outputs using various DL models. The first
image performs the task of image classification in which labels are generated for various
objects detected in an image, object detection performs the task of detecting various
objects and localizing a bounding box around these objects as an output from these
models. Several popular DL models such as Fast RCNN [9], Faster RCNN [10], YOLO
[11], SSD [12] have been developed to solve the tasks of OD in recent past. As discussed
earlier about the SS models, Several SS based DL models have been developed to
perform the tasks of pixel-wise classification such as UNet [13], LinkNet [14], PSPNet
[15], SegNet [16], BiSeNet [17] have been already developed. Instance segmentation
performs a more complex task than SS as it implements an algorithm that classifies each
and every pixel to a specific label and it considers objects of similar class category as an
individual which is different from SS approach which detects objects of similar class
categories as a single entity. DL models such as Mask RCNN [18], Panoptic
segmentation [19] perform the tasks of instance segmentation. The success achieved by
researchers in performing complex recognition tasks using DL approaches have
motivated various studies in agriculture domain perform the complex recognition tasks

such as different crops detection [21], fruit yield estimation [22], detecting cotton balls in



87
fields [23], weed detection [24], tassel detection [25], disease detection [26] in agriculture

domain.

In our research, we explored SS based DL models to perform the tasks of weed
recognition in maize fields. The main intuition behind using SS based DL models in our
research were that these models have two-folds benefits of better performance on
complex computer vision tasks and these models could be used on embedded devices for
real-time weeding applications in fields. Also, these models have not been fully explored
to perform the task of weed recognition in agriculture domain for real-time SSWM
applications. In our research we made performance comparisons on weed detection
models developed using SS based DL models of UNet [13] and LinkNet [14]. These
models have an encoder-decoder architecture, and their working are explained in the

following two sub-sections:
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battle

(c) Semantic segmentation (d) Instance segmentation

Figure 3.1 An example of different computer vision tasks.

This figure is borrowed from [2]

3.21 UNet

UNet is a powerful DL model that performs the SS tasks and was developed by
[13] to perform biomedical image segmentation tasks. This architecture won the ISBI cell
tracking challenge in 2015 and thereafter, has been extensively used for performing
various DL applications. UNet models have been shown great success in training DL
models with only a limited dataset and have achieved higher accuracy scores during
predictions [27]. UNet model has achieved great success in SS due to its symmetrical
encoder-decoder architecture as shown in Figure 3.2. This architecture has various DL
tools such as Convolutional filters, max-pool layers, up-convolutional layers, arranged in

such a fashion that forms a U like structure from which the model got its name.
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The encoder part consists of Convolutional filters and maxpool layers that helps
to extract features/textures/patterns from the images that are further used for training DL
model. Then the images are down sampled regularly using maxpool layers until it reaches
to its base layer where it forms a condensed representation of original image. As the
number of convolutional filters increase during consecutive layers in the encoder
sections, regular down sampling helps in decreasing spatial dimensions of images and
thus leads to decreasing of overall computations performed during training. The decoder
part consists of transposed conv layers that perform the up sampling. For localization to
be more precise, so-called skip connections are used where the feature maps from the
encoder block are concatenated to the output of transposed conv of the same layer. This
process leads to the condensed representation of an image back to the original input

image.
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Figure 3.2 UNet architecture [13]

3.2.2 LinkNet

LinkNet [14] is a powerful SS based DL model which is an optimized version of
UNet architecture, and this model also consists of various DL tools such as Convolutional
filters, max-pool layers, and up-convolutional layers. The major difference between both
of these models is that LinkNet makes uses fewer parameters that could result in faster
execution during prediction and in turn could be used for real-time application tasks. This
model also has an encoder-decoder architecture and the main difference between
LinkNet, and other SS based models is the usage of information exchange between
encoder-decoder. On comparison with other models instead of sharing entire feature

maps between encoder and decoder as in UNet, only the input to the encoder block is



91
shared with the corresponding decoder block in the model. The information share
amongst encode-decoder blocks could be depicted from Figure 3 that depicts the LinkNet
architecture. In spite of using fewer parameters as compared to UNet, LinkNet has shown
better results during predictions on popular datasets such as CityScapes [28] and

CamVid [29], and ImageNet [30] as well.
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Figure 3.3 LinkNet architecture [14]
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3.3  Methodology

3.3.1 Data acquisition

UAYV imageries were collected from maize fields in Carleton (Thayer County -
Southeastern Nebraska), NE, USA (Figure 3.1) in 2021 growing season. Heavy
infestations of Palmer Amaranthus (Amaranthus palmeri) a glyphosate resistant weed
was found in these fields and a weed detection model focusing on detecting palmer weed
infestations were developed in this research work. DJI Phantom 4 RTK drone (Figure
3.2) was used for the UAV imagery data acquisition. The camera used in the drone had a
1-inch CMOS sensor, and a 20-megapixel camera that captured images with an 84-degree
field of view. The dimensions of the images were 5472 x 4648 pixels (3:2) in three bands
— Red, Green, and Blue, and only RGB images were used to train various DL models in
this research work to develop an economical solution. The spatial resolution of the
images collected using the UAV were 0.27 cm/pixel. In order to collect drone imagery of
corn crops during different growth stages, multiple drone flights were conducted on June
14, 2021, June 30, 2021, and July 9, 2021, at 10 meter and 25-meter altitude AGL
respectively. A total of 2006 RGB images were collected during data collection at the
study site. The drone flights were conducted at around solar noon in order to capture
images with better illumination intensity. DJI ground station pro software was used to
design flight missions and the drone flew at a speed of 2 meter/sec with a 90% front and

sidewise overlap during data collection.
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3.3.2 Dataset preparation

Training a SS based DL model requires meticulous pixel-wise labelling of ground
truth images that could be used for training purposes. Dataset preparation is one of the
most important phases in this approach as it directly contributes towards the training and
in turn generalizability of the DL model towards testing. On careful analysis of the UAV
imagery captured during data acquisition, a training dataset comprising of high-quality
images were formed after an in-depth analysis of the UAV imagery collected during data
acquisition for training DL model in this research work after proper pre-processing as

described later in this section.

3.3.2.1 Data Annotation

A web-based annotation tool named CVAT was used to perform the task of pixel-
wise labelling of images in our dataset. In our research, we manually annotated weeds
and soil patches in the original RGB images and all the un-annotated pixels values
besides these class categories (pixel values not labelled as either weeds or soil) were
automatically labelled as background labels during annotation. Polygon bounding boxes
were used to annotate several weeds and soil patches during the process of data
annotation, a total of 8320 weed patches and 329 soil patches were annotated manually.
All the images in the training dataset were annotated accurately and their corresponding
masks were generated. Figure 3.5 represents the tasks of annotating original images and

generating corresponding masks of these images. In summary, we had pixel-wise
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information of all the images in our dataset corresponding to 3 class labels namely:

Background, Weeds, and Soil.

There were a few constraints that led to elimination of images collected during data

collection and they were as follows -

1. It was observed that the quality of the pixel values from UAV imagery
collected at 25-meter AGL were compromised. Due to this reason images
captured at 25-meter AGL were skipped and only the images captured at 10-
meter AGL were used in this study as they had better pixel level information.

2. During the last data collection i.e., on July 9, 2021, most of the UAV imagery
collected had weed infestations hidden under corn canopies. Due to this
reason these images could not be used for training our DL model as they only
had a few weed patches in the images.

3. During the early growth stage both weeds and crops infestations were quite
sparse in the fields. There were large soil patches inter-row spacing between
crops which were quite hard to annotate. Due to this reason, they were not

included in the dataset used for training.
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3.3.2.2 Data Augmentation

Training DL models requires large amounts of data during training, increasing the
amount of data used for training has shown generation of better DL models that achieve higher
accuracy scores as compared to prior. Data augmentation refers to artificially increasing the
amount of data that is used for training DL models by randomly generating new data from
already existing data. These techniques have been popularly used in the recent past and have
helped the network to learn desired invariance and increase robustness while predictions. Data
augmentation techniques that were adopted in this study were: horizontal flip, vertical flip.
ImageDataGenrator is a data augmentation module available under Tensorflow library [32] was
used to perform the tasks of Data augmentation in our study. These techniques were used only in
the training phase and not during the testing phase. Data augmentation techniques were
performed on both original RGB images in the dataset along with their corresponding masks
during the training of DL models in this study. Figure 3.5 depicts a few augmentation techniques

that were used in this study.

3.3.3 Transfer Learning

The SS based DL models usually consists of encoder-decoder architecture. The encoder
sections perform the tasks of feature extractions and down-sampling images using Convolutional
and MaxPool layers. The uniqueness in the architectures of various SS models such as UNet[13].
LinkNet [14] lies in the method of information exchange between the encoder-decoder layers

which helps in recovering the spatial information lost during continuous down sampling in
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encoder sections. This process helps to generate better results during predictions. To
better perform the tasks of features extractions from the images used for training SS
based DL models, transfer learning techniques could be used to obtain better results from
training these models. Encoder section is the most important phase in training SS models
as it performs the tasks of feature extractions. Several state-of-art architecture backbones
such as VGG [32], ResNet [33], Inception [34] already trained on ImageNet datasets
could be used to perform the tasks of feature extraction and better train SS models rather
training these models from scratch. Transfer learning techniques makes use of pre-trained
weights already trained to extract useful features on large datasets such as CamVid [29],
ImageNet [30], etc., this approach helps to transfer the knowledge already acquired to
solve a similar OD or SS based DL tasks. Fine-tuning of these models could also be
adopted while using transfer learning techniques which helps the model to update the
weights in such a manner that they could perform a different detection/classification task
optimally. These architectures could also be referred to as backbones that are used while
training SS based DL models. We trained and made performance comparisons on both
UNet and LinkNet models trained using VGG [32], ResNet [33], and Inception [34]
backbones. The main difference in these architectures backbones lies in the orientation
and layout of various DL tools such as Convolutional filters, Maxpool layers, used for
feature extraction. In this research we made performance comparisons on developing SS
based models using three different architectures and these architectures are briefly

explained in the following sub-sections.
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3.3.3.1VGG

Since VGG won ImageNet contest in 2014, it has been extensively used as a
backbone for various OD and SS based DL models for the process of feature extraction.
The major difference between VGG network and other architecture backbones popular
during that time was in the depth and layout of various convolutional filters and fully
connected layers. VGG networks had a depth of around 16-19 layers and the number of
convolutional layers in the architecture were around 8-16 [35]. A significant difference
between VGG network and other CNN architectures was the use of 3 x 3 convolutional
filter kernels which helped to build deeper models and also generate better feature
extractions from the input data fed to the DL model. Also, using 3 x 3 convolutional filter
kernels helped to decrease the number of parameters being used in the training of the
model and were able to generate better results with less use of computational power
during training as compared to Alexnet [8]. The network had three fully connected layers
in the last, 2 layers had fully connected 4096 neurons and a SoftMax layer was used as a

last layer to perform and learn the classification tasks during training.

3.3.3.2 Inception

Inception modules were developed and used in Inception architectures that made
use of convolutional filters of various kernel sizes in a single layer to perform the feature
extraction process. Various filter size kernelssuch 1 x 1,3 x 3,5 x5 were used ina
single layer and their average were taken in the end to learn features. Rather than using

convolutional filters of single size of 3 x 3 as used in VGG network, Inception modules
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made use of multiple filter size kernels in a single layer to perform feature extraction
process. Making use of inception modules had the following advantages, these modules
helped to decrease the number of parameters being used during training and this in turn
help to reduce computational efficiency. This was achieved by using multiple lower size
convolutional filters as compared to using larger convolutional filters in convolutional
layers, it was observed that two 3 x 3 convolutional filters (2 * (3 * 3) = 18 parameters)
used less parameters than one 5 x 5 (5 * 5 = 25 parameters) convolutional filter size.
These benefits made use of inception backbones popular in developing DL models. Some
common Inception backbones used in DL models are: InceptionV2, InceptionV3,

InceptionResNetV2.

3.3.3.3 ResNet

The development of architectures such as VGG [32] and Inception [34]
popularized development of deeper CNNs after its creation several deeper architectures
were developed by researchers thereafter. A rising concern that became popular in deeper
CNN architectures was the issue of vanishing gradient problem. Backpropagation
techniques are used by DL models to learn and execute the training process and perform
complex tasks of OD and SS. In these deeper architectures, certain predictions were made
during testing and using the concept of backpropagation weights were updated in the
previous layers so as the model learns and performs ideally. An approach was developed
by [33] in which certain skip connections were used between convolutional layers to

mitigate the performance decay and perform the task of backpropagation optimally



103
during training [35]. ResNet architecture won the ImageNet challenge in 2015 and has
been one of the most popular architecture backbones that have been used to solve various
complex recognition and detection tasks. Development of ResNet architectures made it
possible to use deeper CNN architectures in DL models and resolve the vanishing
gradient problem. ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152
architecture backbones. The major difference between these CNNs is the total number of
layers being used in these architectures to perform the feature extraction process. We
used ResNet 18 and ResNet34 architecture backbones in the encoder sections and made
performance comparisons along other architecture backbones in our study. ResNet34 is a
deeper architecture that uses a greater number of parameters during training as compared

to ResNet18 architecture.

3.34 Class-imbalance problem

The original image dimensions of 5472 x 3648 pixels were too large to fit in the
memory for processing while training DL model, so the original images were sliced into
384 sub-images of dimensions 228 x 228 pixels. A total of 38,400 sub-images were
formed of these original RGB images and were included in the training dataset. Dividing
original dataset into sub-images led to an issue of class imbalance problem as most of the
sub-images belonged to background class labels or had most of the pixel values
associated with background class category. Figure 3.9 depicts a few images from our
original dataset that explain the class imbalance problem by depicting weeds, soil, and

background class categories in the images included in our dataset. Class imbalance issues
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is one of the major factors that makes it hard to train DL models to perform the tasks of
better predicting the under-represented samples that are being used for training the
model. Several techniques such as increasing under-represented samples using Data
augmentation techniques, practice of using under sampling (to use less samples during
training) for majority class or over sampling (to use more samples during testing) of
minority class, using ensemble learning techniques to train a ML model have been
adopted in recent past to handle these issues. The novelty in this research lies in the two
approaches which were adopted to overcome the class imbalance problem, and these

were as follows —

3.3.4.1 Refining training dataset

The main intuition behind training a weed detection model is to train the model
that has a higher generalizability over unseen dataset and performs well in accurately
detecting weed patches in order for the model to be used for real-time SSWM
applications. To perform the refining of the dataset in a manner such the dataset to be
used for training has a balance of pixel values of each class category a strategy was
adopted. A new training dataset were formed by analyzing each and every image in the
original dataset. An algorithm behind the strategy adopted to form a new training dataset
is explained in Algorithm 3.1. An image was included in the new training dataset if and
only if the total number of background pixels values in that image were < 95% of the
total pixel values in that image. This strategy helped to remove the images that pre-

dominantly include only background pixel values in them and created a balance in the
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dataset which had either of weeds or soil pixel values to be used for training DL model.
Also, details about the total number of images in each dataset namely: Training,
Validation, and Testing before and after refining of the dataset are mentioned in Table 1

respectively.

Algorithm 3.1: Creation of a new dataset to be used for training

New Training Dataset = []

for i in range (total number of images):

image = cv2.imread (Read image in the dataset)

if (# of background pixel values in an image) >= (total pixel values in an image):

continue # Image was not included in the new training dataset

else:

New Training Dataset.append(image) # Image included in the new

training dataset
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Table 3. 2 Number of images in different categories before and after refining original

dataset
Training  Validation Testing Total
Before 28800 5760 3840 38400
After 9366 1873 3840 15079

3.3.4.2 Optimizing backpropagation

DL could be referred to as an ability to train computers in the ability to make use
of neurons and imitate the working as in human brain. The human brain consists of
millions of neurons, and it makes use of these neurons to perform decision making.
Supervised DL models consists of multiple layers such as convolutional layers, fully
connected layers consisting of neurons that are initialized with random weights during
training, these randomized weights are regularly updated while training these DL models
in such a manner that they could optimally perform the tasks of classifications or
predictions. Backpropagation techniques are used to update these weights in DL models
and these techniques perform the most important task in training a DL model. Continuous
research to optimize these backpropagation techniques by tuning hyperparameters used in
training have been performed in recent past and is a topic of continuous research in the
DL domain. Several loss functions have been developed in the recent past that help

refining such as Class imbalance problem. In our research, we train our SS based DL
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Figure 3.6 Images explaining the class imbalance problem between different class
categories in our dataset
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models using a fixed sets of hyperparameters and extract the best state-of-art weed
detection model. As a next step, to further optimize our weed detection model we make
use of several loss functions such as Focal loss [36], Dice Loss [38], and Jaccard Loss

[39] while training state-of-art model and performance comparisons were made.

3.35 Experimental setup

3.3.5.1 Software and hardware setup

An Alienware 17 R5 laptop with the following specifications 64-bit OS, 2.9 GHz
core Intel 19-8590HK processor with 32 GB of RAM was used to train the DL models.
An 8 GB NVIDIA GeForce GTX 1080 GPU was also installed on the laptop to achieve
optimal performance during training DL models. Windows 10 Enterprise software
environment was installed on the machine. DL codes were written in Python 3.9.10
programming language and use of DL libraries such as Tensorflow 2.8.0, Keras 2.8.0,
and Segmentation models API were made to train semantic segmentation-based DL
models of UNet and LinkNet in this research. Training of DL models were executed in
Spyder text editor and matplotlib library were used for visualizations of predictions

during testing phase.

3.3.5.2 Hyperparameter tuning

In this study, we tried and tested a few different sets of hyperparameters. All the

images used for training DL models in this research had a fixed dimension of 228 x 228
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pixels. After a few testings, a suitable set of hyperparameters that helped in an optimum
training a state-of-art DL models were set and used for training all the DL models whose
performance were evaluated in this study. All the models were trained for 50 epochs, and
each epoch ran for 586 iterations as we used a batch size of 16 while training. We used
cross validation and data augmentation techniques to overcome the issues of overfitting
during training phase. We used transfer learning techniques during training and various
architectures such as ResNet, VGG, Inception already trained on ImageNet dataset were
used to train the model. Also, fine-tuning of the weights used in these architectures were
adopted to help optimize these architectures and learn better to perform a specific task of
weed detection. Relu, a non-linear activation function was used as this helps to train the
model faster and reliably. Adam optimizer with a learning rate of 1e-3 was used during
training phase. A detailed description of hyperparameters used to train DL models are

described in Table 2.

3.3.6 Evaluation metrics

In this research, several evaluation metrics such as Precision, Recall, F1-score,
and loU were evaluated during the training phase. The respective validation metric scores
were extracted after comparing the trained model performance on the validation dataset.
These scores were analyzed regularly so as to note if the model were showing trends of
either overfitting or underfitting during training. It was observed while performing the
assessment for SS based DL models evaluation metrics such as Precision, Recall, and F1-

score did not give a better idea on how well the model was performing due to high class
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imbalance [31]. loU score gives an estimation of the overlap between the predicted and

the ground-truth class labels and is a better evaluation metric for SS based DL models.

Table 3. 3 Number of images in different categories before and after refining original

Parameters Values
Learning rate le-3
Optimizer Adam
Activation function Relu
Training Epochs 50
Focal loss (y) 2
Batch size 16
Input size 228 x 228

Train, Validation, testing split
Data Augmentation
Encoder weights
Fine-tuning

loU Threshold

75%, 15%, 10%
True
ImageNet
True

0.5
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. . _ TP
1. Precision = STPIS PP
_ XT/P
2. Recall = m

Precision X Recall

3. Fl-score =2 x

Precision + Recall

- X TP
4. ToU T Y TP+Y FP + 3 FN

Here, TP — True Positive, FP - False Positive, and FN — False Negative.
IoU; for pixel i, could be described as:

Area of overlap
Area of Union

IOUi =

The predictions of the trained model were performed on testing dataset, which
comprised of images which were not used to train the state-of-art weed detection model.
The predictions of DL model performed on the testing dataset, so as to check on how
well the model generalizes on unseen dataset. This process also helped to measure on
how well the model could perform on unseen dataset and also to check if the model was
overfitting. loU is one of the most important metrics that is evaluated during the tasks of
SS based DL models as it helps to predict on how well the model is able to perform the
task of pixel-wise classification of all pixels. All the predicted pixel values were
compared with the ground-truth pixels values during prediction and both class-wise loU

and mean loU score were evaluated to check the performance of the trained model.
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3.4 Results discussion

In this section we evaluate performance comparisons between SS based DL
models of LinkNet and UNet developed using various architecture backbones such as
VGG, Inception, and ResNet. A detailed description of various architecture backbone that
were used as feature extractors is explained in Section 2.4. The main difference between
these architecture backbones lies in the layout of various DL tools such as Convolutional
layer, MaxPool layers while designing these CNNs. The total number of parameters
being used while training decides the training time required to train a DL model. Increase
in the total number of parameters used by the model leads to performing a higher number
of computations while training a DL model. Thus, this leads to an increase in both longer
training and inference time during testing. Table 3 describes the total number of
parameters that were being used while training weed detection models. We observe that
ResNet18 architecture backbone when used as a feature extractor for training our weed
detection models uses minimum number of parameters both for LinkNet and UNet
models. These models converge faster and have a shorter training and testing time as

compared to others.

A total of eight SS based DL models were developed and their performances were
evaluated in this research. Evaluation metrics such as Precision, Recall, loU, F1 score,
and Mean loU were observed, and the results are presented in this section. We utilized
cross-validation techniques while performing the training procedure and divided our

dataset into three sets of Training, Validation, and Testing in a ratio 75%, 15%, and 10%.
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Table 3. 4 Comparison between number of parameters used during training in LinkNet

and UNet
Feature extractor (Encoder section) LinkNet UNet
ResNet 18 115M 143 M
VGG 16 203 M 23.7M
ResNet 34 21.6 M 245 M
InceptionV3 26.2 M 29.9 M

‘Adam’ optimizer and ‘Categorical cross_entropy’ loss function was used while training
DL models. We trained our model for 50 epochs and complete details of the
hyperparameters used to train our model are described in Table 2. Training was
performed on only the training and validation dataset and testing dataset included a
dataset of images which were not used while training. The predictions performed while
testing of our developed weed detection models were performed on the testing dataset, so
as to observe on how well our models were generalizing on unseen dataset. A detailed
description of the evaluation metrics scores that were recorded after the DL models were
developed in this study are presented in Table 4, this table depicts the performance
comparisons between different weed detection models developed. loU evaluation metric
is considered to be the most important metric while comparing the performances of
different SS based DL models developed. loU scores gives us an estimate on how
robustly a model is able to predict each and every pixel during predictions successfully

[31].
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Performance comparisons between the eight DL models developed shows that the
LinkNet model with ResNet18 as feature extractor helped us achieve the best scores
amongst all the models. These results are consistent with other similar works in this
domain, [37] performed a study in which performance comparisons between LinkNet and
UNet SS based DL models were made while developing a weed detection models in
pulse crops. In comparison to their work, the proposed LinkNet model developed with
ResNet18 architecture has shown an improvement of around 31% in the Mean IoU scores

respectively.

The main objective of this study was to develop robust weed detection models
that could perform the task of weed detections in maize fields and compare the inference
time in which different models could perform the task of generating weed maps. Table 5
presents the inference time of different DL models in performing the predictions on both
a single sub-image and on entire original image comprising of 384 sub-images. Complex
issues such as crop-weed color similarity and crop-weed occlusions make development of
these models quite hard. In order to further improve evaluation metric scores as obtained
using previous DL techniques, we optimized the backpropagation techniques as discussed
in Section 2.5.2 by using different loss functions. Several loss functions have already
been developed in recent past to address the class-imbalance issues during training of DL
models. We trained 2 DL models namely: LinkNet model with ResNet18 as a backbone
and UNet model with ResNet18 as a backbone with several loss functions such as: Focal

Loss [36], Dice Loss [38], Jaccard Loss [39], and Focal Dice Loss [40] and compared
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their performance by evaluating the Mean loU and class wise loU scores of these models.
A detailed description of the mean loU and loU scores for each class category were
recorded while performing predictions on the testing dataset by the weed detection
models developed using different loss functions and are presented in Table 6. We
observed that Focal loss function helps us improve the Mean loU and loU scores for
classifying weeds during testing. These results suggests that the LinkNet model with
ResNet18 backbone and Focal loss as a loss function leads to development of a robust

weed detection model that achieves the best results.
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35 Future Research and Conclusions

Weeds pose a major threat in agriculture as they compete with crops for water,
light, nutrients, and space. Weeds account for about 40% of global yield loss and cause a
major threat to crop yield loss worldwide. Growing world population and increase in
global food requirement create an alarming need to decrease crop yield. An effective way
to handle this menace of crop yield losses due to weeds is developing site-specific weed
management techniques. These techniques could help alleviate the crop yield losses by
performing spot spraying practices of herbicides at only specific locations where weed
infestations are detected leading to decrease in environmental pollution caused by
overuse of herbicides. In this work, a study was conducted to develop a weed detection
model using SS based DL techniques. Developing a weed detection model is a complex
task as their exist multiple challenges such as crop-weed color similarity, crop-weed
occlusions, presence of low weed infestations in fields that decrease the number of weed
samples that are to be used for training DL models. Class imbalance problem is also a
major challenge that needs to be addressed while developing these weed detection models
due to over-sampling of other class categories as compared to weeds used for training.
We used SS based DL techniques as these models help to perform pixel wise
classifications during predictions, execute better scene understanding and in turn help

generating better results as compared to other DL models.

We developed and investigated performance comparisons between two SS based

DL models namely: LinkNet and UNet which comprise of an encoder-decoder
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architecture. A detailed explanation of SS based DL techniques and the two models used
are discussed. We used different architecture backbones in the encoder sections and
transfer learning techniques were used with fine tuning to develop these DL models. loU
score is an important evaluation metric that is used to compare and check the
performance of SS based DL developed. Also, 1oU metric helps to measure the

generalizability of the developed model during testing on unseen dataset.

The novelty of this research lies in the techniques used to handle the class
imbalance issues while developing weed detection models. Firstly, we performed an
analysis of all the images included in the original dataset and created a refined dataset of
images to be used for training. The images consisting of background pixel values of more
than 95% were skipped and not used for training, this approach performs the task of
balancing the data to be used for training. Thereafter, optimized backpropagation
techniques to overcome the class imbalance issue were performed by training the weed
detection models using different loss functions. We analyzed that Focal loss function in
comparison with other loss functions helps to address the class imbalance problem by
some extent and helps the model to train better on hard examples in our case ‘weeds’.
Finally, we concluded that training a LinkNet SS model using ResNet18 in the encoder
section along with ‘Focal Loss’ loss function helped us achieve state-of -art accuracy
scores of Mean loU score of 0.801 and weeds loU score of 0.691 respectively. The
developed model is quite robust and generalizes well on unseen UAV imagery of maize

fields included in the test dataset.
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Future work for this study is to further use these developed models on embedded
devices to perform real-time Site-Specific Weed Management applications in agriculture
fields. This could be achieved by optimizing these models using Software Development
Toolkits like TensorRT and Tensorflow Lite as these helps to perform several important
transformations and optimizations to the neural network graph, including constant
folding, pruning unnecessary graph nodes, layer fusion for these Deep Learning models.
This helps to decrease the computational and memory requirements that delivers low
latency and high throughput for inference applications. Also, this research gives a basis to
develop various weed detection models in different crops and also on detecting multiple

weed categories in the fields.
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Chapter 4: Conclusions

Several studies have already been conducted to develop precision agriculture
applications using computer vision techniques in the recent past. In this thesis work, an
intensive literature review was conducted to understand various computer vision
techniques that have been used to generate robust weed detection models and determine
the research gaps that are present in the existing research. Semantic segmentation based
deep learning-based techniques were used to train the weed detection models to train a
powerful weed detection model that could be used to generate weed maps on drone

imagery collected from maize fields.

Even though numerous studies have already been conducted that review various
computer vision-based techniques to develop weed detection models. We present a
detailed literature review on various approaches that have been used to develop weed
detection models in the past few decades. Traditional image processing, machine vision,
machine learning and deep learning techniques were explained in detail and their
associated advantages and disadvantages were discussed. Also, the techniques used to
perform real-time Site-Specific Weed Management applications were discussed. The role
of cloud computing and edge computing in developing these real-time applications and
their associated advantages and disadvantages were discussed. Lastly, conclusions and
some prospects that could be used to perform future studies were described in the final

section of the study.
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The advancements in Remote Sensing techniques to fetch high quality data using
Unmanned Aerial Vehicles have helped in the development of robust weed detection
models using deep learning techniques. In this study, we developed a Semantic
Segmentation based Deep Learning model to perform the complex task of weed detection
in maize fields. These Semantic Segmentation models perform the tasks of pixel-wise
labelling of detected objects during predictions which help in developing robust Deep
Learning models. Also, these models help to perform tasks like better scene
understanding and learn to extract useful features to learn the complex trends of color
similarity, inter-intra line weed infestations, high occlusions between crop and weeds in
maize fields. The goal of this study was to develop a robust weed detection model using
Semantic Segmentation based Deep Learning techniques and address the class imbalance
problem. The developed model was expected to generate accurate weed maps on UAV

imagery collected from maize fields.

To perform this study, we made performance comparisons between weed
detection models developed using two Semantic Segmentation models namely LinkNet
and UNet. Transfer learning techniques were used to perform the feature extraction
process and these features were used for training weed detection models. The datasets
that are frequently used to train deep learning models in weed detection domain usually
have a class-imbalance issue that negatively affects the models in robustly identifying
weed patches in the fields. To overcome this issue, we performed a two-step approach:
Firstly, we refined the dataset to be used for training and developed a balanced dataset to

be sued for training. Secondly, we performed optimized backpropagation techniques and
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made performance comparisons between models trained using different loss functions.
We concluded that, the weed detection model trained on LinkNet model with ResNet18
as a feature extractor and ‘Focal Loss’ as a loss function helped us achieve the best
Intersection Over Union scores which is an important evaluation metric to compare
Semantic Segmentation based Deep Learning models. Also, this model had the minimum
inference time amongst others which signifies that this model could be used to perform
real-time weeding applications for Site-Specific Weed Management applications. The
model was able to achieve a Mean loU score of 0.801 and loU score for weed class

category of 0.691.

Future work for this study would be to further use these developed models on
embedded devices to check their performance for real-time Site-Specific Weed
Management applications in agriculture fields. This could be achieved by optimizing
these models using Software Development Toolkits like TensorRT and Tensorflow Lite
as these helps to perform several important transformations and optimizations to the
neural network graph, including constant folding, pruning unnecessary graph nodes, layer
fusion for these Deep Learning models. This helps to decrease the computational and
memory requirements that delivers low latency and high throughput for inference

applications.
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