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Abstract

This short technical report briefly examines and discusses some of the major literature relevant to re-
mote sensing of weeds in row crops using remotely-collected images. The basic problem is introduced,
following by short discussions of remote crop sensing using UAVs and other methods, collected image
processing, and vegetation classification methods. This report provides a basic collection of high-impact
work in this area which may act as a starting place for a formal review of crop/weed detection methods.
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1 Introduction

In modern agriculture, herbicide application provides the most effective and time-efficient method of man-
aging weeds [1]. Typically, herbicides are applied by broadcast spraying to cover a large area [2]; however,
this not only requires vast quantities of herbicides and wasted water but can be harmful to the environment,
particularly to local ecosystems near the crop fields. Herbicides can have adverse effects on biotic and
abiotic environments and risk harming human health as well [3–5]. The long term impacts of herbicide
residues, especially after repeat applications, are less well understood but is unlikely be positive. Therefore,
reducing the amount of herbicide used in modern agriculture is an important step in achieving sustainable
and efficient agriculture. In order to increase productivity while reducing the amount of harmful chemicals
used and water wasted (both for weed control and for fertilization), the concept of precision agriculture was
introduced [6–8]; this can be used to allocate the appropriate herbicide dose at exactly the right time and
place [9]. While a promising technology, accurate identification of the weeds, separated from the crops,
within a farm field remains a major challenge for the effective and widespread application of this work.

This short report provides a collection of the major literature in this area to act as a starting place for a
formal review or article-appropriate review of the literature. This is not a formal, structured review and is to
be used as a helpful tool to aid in the study of weed detection via remote sensing. It is also a good starting
place for students or non-experts in the field to begin learning about the topic via the highest-impact and
most respected literature in the field. Analysis of the filed and conclusions/future research directions are left
to the reader and will not be presented in this report.

2 Remote Sensing

Several major studies have been done to explore methods for remotely, quickly, and accurately detecting
plants using a diversity of methods [10–14]. The use of unmanned aerial vehicles (UAVs) has become a
widely popular method for monitoring farmland [15–17], as they are reliable, cheap, and have a very small
impact on the local environment. Compared with ground vehicles, they can cover large areas in a short time
and capture high-quality images of the crops for later analysis [18]. While tracking of the crops is well-
developed and easy, equivalently good tracking of weeds has proven to be a difficult problem, especially
within tall and leafy crops such soybeans.

3 Collected Image Segmentation and Processing

The methods thus far developed for this generally involve the segmentation of vegetation images to locate
weeds by finding areas of vegetation that are different than the main crop or that are clearly in the wrong
location. Significant work on vegetation segmentation using RGB and multi-spectral images has been un-
dertaken, focusing on the use of UAV-collected images of common crops. Hamuda et al. [19] collected
information about various techniques for image segmentation and presented them in the form of a review;
the methods discussed mostly involved using threshold-based methods and learning-based segmentation
methods. Some of the major recent threshold methods relevant to weed detection discussed were those
by Tellaeche et al. [20], Kirk et al. [21], and Jeon et al. [22], as well as classic methods such as those by
Otsu [23], Marchant et al. [24], and Reid & Searcy [25]. Learning methods were also discussed, especially
focused on 24-bit RGB methods (for color images) [26–29] but there was also discussion of other methods
such as hue-intensity [30], LUV space [31], and lab color space [32, 33]. A recent major work in this area
included a study by Torres Sanchez et al. [34] which investigated an automatic thesholding method based
on the Normalized Difference Vegetation Index (NDVI) and Excess Green (ExG) Index [35] to detect veg-
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etation. This approach was able to separate vegetation from various background with a success rate of over
90%.

4 Vegetation Classification

Classification of the vegetation after identification is another major challenge, as it is necessary to distin-
guish weeds from good crops for a weed detection method to be valuable. Pena et al. [36] developed a
method using multispectral imagery to map weeds in maize fields; this technique used super-pixels divided
according to the spacial and spectral characteristics of the images, effectively tracing crop lines and veg-
etation segmentation. Discrimination of the weeds was done by calculating the deviation of the observed
plants with the mapped crop lines. Another method is to use a Hough transform, as discussed in studies
by Tellaeche et al. [20], Gee et al. [37], Montalvo et al. [38], Bakker et al. [39], and Bah et al. [9]. The
study by Bah et al. used a combination of super-pixels and a Hough transform for weed discrimination,
where 400 square-pixel images of corn and beet field were used to test the method. The detection rate was
90-94% using the method, but the algorithm seemed to have a more difficult time detecting weeds in the
more leafy beet plants, as the corn plants are more narrow and easier to locate in straight rows. The corn
images produced excellent results, with a detection rate near 100% for low, moderate, and high infestation
rates; the leafy beet plants showed good results for low infestation rates, but does not appear to have been
tested for medium and high infestation rates.
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