57 research outputs found

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Developing a Semi-autonomous Robot to Engage Children with Special Needs and Their Peers in Robot-Assisted Play

    Get PDF
    Despite the wide variety of robots used in human-robot interaction (HRI) scenarios, the potential of robots as connectors whilst acting as play mediators has not been fully explored. Robots present an opportunity to redefine traditional game scenarios by being physical embodiments of agents/game elements. Robot assisted play has been used to reduce the barriers that children with physical special needs experience. However, many projects focus on child-robot interaction rather than child-child interaction. In an attempt to address this gap, a semi-autonomous mobile robot, MyJay, was created. This thesis discusses the successful development of MyJay and its potential contribution in future HRI studies. MyJay is an open-source robot that plays a basketball-like game. It features light and color for communicative feedback, omni-directional mobility, robust mechanisms, adjustable levels of autonomy for dynamic interaction, and a child-friendly aesthetically-pleasing outer shell. The design process included target users such as children with special needs and therapists in order to create a robot that ensures repeated use, engagement, and long-term interaction. A hybrid approach was taken to involve stakeholders, combining user-centered design and co-design, exemplifying that children can be included in the creation process even when it is not possible to hold in-person co-design sessions due to COVID-19. Aside from the care taken to meet user requirements, the robot was designed with researchers in mind, featuring extensible software and ROS compatibility. The frame is constructed from aluminum to ensure rigidity, and most functional parts related to gameplay are 3D printed to allow for quick swapping, should a need to change game mechanics arise. The modularity in software and in mechanical aspects should increase the potential of MyJay as a valuable research tool for future HRI studies. Finally, a novel framework to simulate teleoperation difficulties for individuals with upper-limb mobility challenges is proposed, along with a dynamic assistance algorithm to aid in the teleoperation process

    International Conference on NeuroRehabilitation 2012

    Get PDF
    This volume 3, number 2 gathers a set of articles based on the most outstanding research on accessibility and disability issues that was presented in the International Conference on NeuroRehabilitation 2012 (ICNR).The articles’ research present in this number is centred on the analysis and/or rehabilitation of body impairment most due to brain injury and neurological disorders.JACCES thanks the collaboration of the ICNR members and the research authors and reviewers that have collaborated for making possible that issue

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic

    Get PDF
    During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to infection calls for extra safety precautions. Despite the imposed restrictions, early neurorehabilitation cannot be postponed due to its paramount importance for improving motor and functional recovery chances. Utilizing accessible state-of-the-art technologies, home-based rehabilitation devices are proposed as a sustainable solution in the current crisis. In this paper, a comprehensive review on developed home-based rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper and lower limb devices and considering both commercialized and state-of-the-art realms. Mechatronic, control, and software aspects of the system are discussed to provide a classified roadmap for home-based systems development. Subsequently, a conceptual framework on the development of smart and intelligent community-based home rehabilitation systems based on novel mechatronic technologies is proposed. In this framework, each rehabilitation device acts as an agent in the network, using the internet of things (IoT) technologies, which facilitates learning from the recorded data of the other agents, as well as the tele-supervision of the treatment by an expert. The presented design paradigm based on the above-mentioned leading technologies could lead to the development of promising home rehabilitation systems, which encourage stroke survivors to engage in under-supervised or unsupervised therapeutic activities

    Proceedings of the 6th international conference on disability, virtual reality and associated technologies (ICDVRAT 2006)

    Get PDF
    The proceedings of the conferenc

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computation”, “Embodiment”, and “Biology” to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computation”, “Embodiment”, and “Biology”. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural design”. These three major topics will be introduced in this Summary.   “Computation”, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form” has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form” in architecture as a continual “information processor” rather than the result of information processing. In other words, “Form” should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formation”. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities?   “Embodiment” in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension” (McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs” (Gilles Deleuze and Félix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology” proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities.   “Biology”, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural process”. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complex”, “Geometric Information Distribution”, and “On/Off Switch and Trigger.” The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential System based approach from the “Simple to Complex” principle of Evo-Devo B. Extract the idea of “Collective Intelligence” from “Geometric information Distribution” principle of Evo-Devo C. Extract the principle of “Assembly Regulation” from “On/Off switch and trigger” principle of Evo-Devo The “HyperCell” research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBody”. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell” will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computationâ€, “Embodimentâ€, and “Biology†to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computationâ€, “Embodimentâ€, and “Biologyâ€. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural designâ€. These three major topics will be introduced in this Summary. “Computationâ€, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form†has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form†in architecture as a continual “information processor†rather than the result of information processing. In other words, “Form†should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formationâ€. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities? “Embodiment†in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension†(McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs†(Gilles Deleuze and Félix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology†proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities. “Biologyâ€, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural processâ€. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complexâ€, “Geometric Information Distributionâ€, and “On/Off Switch and Trigger.†The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential Systembased approach from the “Simple to Complex†principle of Evo-Devo B. Extract the idea of “Collective Intelligence†from “Geometric information Distribution†principle of Evo-Devo C. Extract the principle of “Assembly Regulation†from “On/Off switch and trigger†principle of Evo-Devo The “HyperCell†research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBodyâ€. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell†will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures
    corecore