59,571 research outputs found

    An innovative collaborative high-performance platform for simulation

    Get PDF
    This paper presents an innovative collaborative visualization platform for the simulation-based design applications. Following the scope and the main objectives, the general architecture based on the internet standard technologies is explained. Based on a multi-domain approach, several demonstrators are involved crossing interests of industrial and academic communities. Related to the field of process engineering, we adapt and deploy a web-based architecture research application on the targeted platform

    Scientific Workflows for Metabolic Flux Analysis

    Get PDF
    Metabolic engineering is a highly interdisciplinary research domain that interfaces biology, mathematics, computer science, and engineering. Metabolic flux analysis with carbon tracer experiments (13 C-MFA) is a particularly challenging metabolic engineering application that consists of several tightly interwoven building blocks such as modeling, simulation, and experimental design. While several general-purpose workflow solutions have emerged in recent years to support the realization of complex scientific applications, the transferability of these approaches are only partially applicable to 13C-MFA workflows. While problems in other research fields (e.g., bioinformatics) are primarily centered around scientific data processing, 13C-MFA workflows have more in common with business workflows. For instance, many bioinformatics workflows are designed to identify, compare, and annotate genomic sequences by "pipelining" them through standard tools like BLAST. Typically, the next workflow task in the pipeline can be automatically determined by the outcome of the previous step. Five computational challenges have been identified in the endeavor of conducting 13 C-MFA studies: organization of heterogeneous data, standardization of processes and the unification of tools and data, interactive workflow steering, distributed computing, and service orientation. The outcome of this thesis is a scientific workflow framework (SWF) that is custom-tailored for the specific requirements of 13 C-MFA applications. The proposed approach – namely, designing the SWF as a collection of loosely-coupled modules that are glued together with web services – alleviates the realization of 13C-MFA workflows by offering several features. By design, existing tools are integrated into the SWF using web service interfaces and foreign programming language bindings (e.g., Java or Python). Although the attributes "easy-to-use" and "general-purpose" are rarely associated with distributed computing software, the presented use cases show that the proposed Hadoop MapReduce framework eases the deployment of computationally demanding simulations on cloud and cluster computing resources. An important building block for allowing interactive researcher-driven workflows is the ability to track all data that is needed to understand and reproduce a workflow. The standardization of 13 C-MFA studies using a folder structure template and the corresponding services and web interfaces improves the exchange of information for a group of researchers. Finally, several auxiliary tools are developed in the course of this work to complement the SWF modules, i.e., ranging from simple helper scripts to visualization or data conversion programs. This solution distinguishes itself from other scientific workflow approaches by offering a system of loosely-coupled components that are flexibly arranged to match the typical requirements in the metabolic engineering domain. Being a modern and service-oriented software framework, new applications are easily composed by reusing existing components

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    JSClassFinder: A Tool to Detect Class-like Structures in JavaScript

    Get PDF
    With the increasing usage of JavaScript in web applications, there is a great demand to write JavaScript code that is reliable and maintainable. To achieve these goals, classes can be emulated in the current JavaScript standard version. In this paper, we propose a reengineering tool to identify such class-like structures and to create an object-oriented model based on JavaScript source code. The tool has a parser that loads the AST (Abstract Syntax Tree) of a JavaScript application to model its structure. It is also integrated with the Moose platform to provide powerful visualization, e.g., UML diagram and Distribution Maps, and well-known metric values for software analysis. We also provide some examples with real JavaScript applications to evaluate the tool.Comment: VI Brazilian Conference on Software: Theory and Practice (Tools Track), p. 1-8, 201

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed
    corecore