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Abstract

Metabolic engineering is a highly interdisciplinary research domain that interfaces bi-
ology, mathematics, computer science, and engineering. Metabolic flux analysis with
carbon tracer experiments (13C-MFA) is a particularly challenging metabolic engineering
application that consists of several tightly interwoven building blocks such as modeling,
simulation, and experimental design. While several general-purpose workflow solutions
have emerged in recent years to support the realization of complex scientific applications,
the transferability of these approaches are only partially applicable to 13C-MFA work-
flows. While problems in other research fields (e.g., bioinformatics) are primarily cen-
tered around scientific data processing, 13C-MFA workflows have more in common with
business workflows. For instance, many bioinformatics workflows are designed to iden-
tify, compare, and annotate genomic sequences by "pipelining" them through standard
tools like BLAST. Typically, the next workflow task in the pipeline can be automatically
determined by the outcome of the previous step. Five computational challenges have
been identified in the endeavor of conducting 13C-MFA studies: organization of heteroge-
neous data, standardization of processes and the unification of tools and data, interactive
workflow steering, distributed computing, and service orientation.

The outcome of this thesis is a scientific workflow framework (SWF) that is custom-
tailored for the specific requirements of 13C-MFA applications. The proposed approach
– namely, designing the SWF as a collection of loosely-coupled modules that are glued
together with web services – alleviates the realization of 13C-MFA workflows by offer-
ing several features. By design, existing tools are integrated into the SWF using web
service interfaces and foreign programming language bindings (e.g., Java or Python).
Although the attributes "easy-to-use" and "general-purpose" are rarely associated with
distributed computing software, the presented use cases show that the proposed Hadoop
MapReduce framework eases the deployment of computationally demanding simulations
on cloud and cluster computing resources. An important building block for allowing in-
teractive researcher-driven workflows is the ability to track all data that is needed to
understand and reproduce a workflow. The standardization of 13C-MFA studies using a
folder structure template and the corresponding services and web interfaces improves the
exchange of information for a group of researchers. Finally, several auxiliary tools are
developed in the course of this work to complement the SWF modules, i.e., ranging from
simple helper scripts to visualization or data conversion programs.

This solution distinguishes itself from other scientific workflow approaches by offering
a system of loosely-coupled components that are flexibly arranged to match the typical
requirements in the metabolic engineering domain. Being a modern and service-oriented
software framework, new applications are easily composed by reusing existing components.
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Zusammenfassung

Metabolic Engineering ist eine hochgradig interdisziplinäre Wissenschaftsdomäne, welche
Biologie, Mathematik, Informatik und Ingenieurswissenschaften miteinander verknüpft.
Metabolische Stoffflussanalyse mit 13C markierten Isotopen (13C-SFA) ist eine beson-
ders herausfordernde Metabolic Engineering Anwendung, die aus vielen miteinander eng
verwobenen Bausteinen besteht, wie etwa Modellierung, Simulation und Versuchspla-
nung. Obwohl eine Vielzahl universeller Workflow Lösungen zur Realisierung komplexer
wissenschaftlicher Anwendungen in den vergangenen Jahren entwickelt wurden, ist die
Übertragung dieser Ansätze auf 13C-SFA Workflows nur teilweise möglich. Während
Probleme in anderen Wissenschaftszweigen (wie etwa der Bioinformatik) vornehmlich mit
Datenprozessierung zu tun haben, sind 13C-SFA Workflows eher mit Business Workflows
vergleichbar. Beispielsweise sind viele Bioinformatik Workflows derart gestaltet, dass
Genomsequenzen mittels "pipelining" durch Standardwerkzeuge wie BLAST identifiziert,
verglichen und annotiert werden. Typischerweise kann der nächste Workflow Schritt in
der "pipeline" automatisch durch das Ergebnis des vorangegangenen Schrittes ermittelt
werden. Fünf rechenbetonte Herausforderungen wurden im Bemühen um 13C-SFA Stu-
dien durchzuführen identifiziert: Organisation heterogener Daten, Standardisierung von
Prozessen sowie die Vereinheitlichung von Werkzeugen und Daten, interaktive Workflow
Steuerung, verteiltes Rechnen und Service Orientierung.

Das Ergebnis dieser Dissertation ist ein Scientific Workflow Framework (SWF), das
auf die spezifischen Anforderungen von 13C-SFA Anwendungen zugeschnitten ist. Der
hier präsentierte Ansatz – nämlich das SWF als eine Sammlung von miteinander lose
gekoppelten Modulen zu gestalten, die mittels Web Services miteinander interagieren –
erleichtert mit einigen Besonderheiten die Umsetzung von 13C-SFA Workflows. Beste-
hende Werkzeuge sind in das SWF durch Web Service Schnittstellen sowie Programmier-
sprachenanbindungen angebunden (z.B. an Java oder Python). Obwohl die Attribute
"einfache Handhabung" und "Universalität" nur selten in Zusammenhang mit verteil-
tem Rechnen gebracht wird, zeigen die vorgestellten Anwendungsfälle, dass der Ein-
satz des vorgeschlagenen Hadoop MapReduce Frameworks die Umsetzung von rechen-
intensiven Simulationen auf Cloud und Cluster Computing Ressourcen vereinfacht. Ein
wichtiger Baustein um interaktive, Wissenschaftler-affine Workflows zu ermöglichen ist
die Fähigkeit, alle Daten zu beobachten, die notwendig sind um einen Workflow zu ver-
stehen und zu reproduzieren. Die Standardisierung von 13C-SFA Studien mittels einer
Vorlage für eine Ordnerstruktur und den dazugehörigen Web Services und Schnittstellen
verbessert den Austausch von Informationen mit anderen Wissenschaftlern. Schließlich
wurden im Rahmen dieser Arbeit eine Vielzahl von Zusatzprogrammen entwickelt, welche
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die eigentlichen SWF Module komplementieren. Diese reichen von einfachen Hilfsskripten
bis hin zu Visualisierungs- und Datenkonvertierungsprogrammen.

Die in dieser Arbeit vorgestellte Lösung unterscheidet sich von anderen Scientific Work-
flow Ansätzen durch ein System von lose gekoppelten Komponenten, die flexibel ange-
ordnet sind, um den typischen Anforderungen in der Metabolic Engineering Domäne
gerecht zu werden. Die moderne Softwarearchitektur und Service-orientierung des SWF
erleichtern die Entwicklung neuer Anwendungen durch das Zusammenstellen und die
Wiederverwendung bereits existierender Komponenten.
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Chapter 1.

Motivation: Computer-Assisted Metabolic
Engineering

Biology is the study of life and living organisms, their structure, function, growth, evolu-
tion, and distribution1. With the enormous scientific and technological advancements in
modern biology, a paradigm shift has happened in recent years from seeking to understand
single genes or cells to an integrative life science discipline (Cortassa et al., 2012). Sys-
tems biology is an emerging field that aims at a systems-level understanding of complex
biological entities. Various other disciplines are fertilized by systems biology including
classical life sciences such as theoretical biology, molecular physiology, cell biology, and
ecology, but also mathematics, engineering, synthetic biology, and bioinformatics (Kitano,
2002).

Living cells are commonly understood as membrane-bounded organisms that consist of
organic molecules in an aqueous solution (i.e., the protoplasm). In contrast to proteins,
which are large biological molecules consisting of amino acid chains, the smaller organic
molecules are called metabolites. The complete set of all metabolites found in a biological
sample is termed metabolome. The living cell constitutes of organic matter which is the
result of the cell’s metabolism, i.e., the continuous process of transforming metabolites
into cellular building blocks including proteins (anabolism) and vice versa (catabolism).
Chains of biochemical reactions are called metabolic pathways.

Metabolic engineering is the purposeful modification of cells by using modern recom-
binant DNA technologies (Stephanopoulos, 1999). Contemporary metabolic engineering
has a wide range of applications, e.g., industrial biofuel production using yeast cultures,
production of amino acids, and analysis of pathogens for the development of effective
drugs and vaccines (Stephanopoulos, Aristidou, and Nielsen, 1998). In recent years, the
research focus has shifted from understanding (metabolic engineering) towards the con-
struction of microorganisms (synthetic biology).

Today’s metabolic engineering2 workflows already include modeling and simulation
steps using computational tools which are tightly coupled with experiments in biolog-
ical laboratories. Recent developments embrace methods from foreign disciplines like
engineering or computer science (Matsuoka, Ghosh, and Kitano, 2009). For instance, the

1see http://www.biology-online.org/dictionary/Biology; last accessed: May 22, 2017
2The terms metabolic engineering workflows can also be replaced by systems biology or synthetic biology

in the following text.

1
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emergence of high-throughput experimental setups, the increased cross-fertilization of the
different "omics" fields (fluxomics, metabolomics, proteomics, genomics, etc), and the ev-
erlasting development of improved measurement devices and HPC facilities clearly hint at
a continuation of this trend. Therefore, the efficient organization of transparent workflows
is of utter importance for the successful realization of systems biology and metabolic engi-
neering endeavors (Schwender, 2011). This thesis presents a scientific workflow framework
(SWF) to support the organization and realization of complex research applications in
the context of metabolic engineering.

1.1. The Experimental-Modeling Cycle
The key for the development of optimized bioproducts is the in-depth systemic analysis
and understanding of the employed microorganisms. Because microbial cells are complete
living organisms, and because they are comparatively easy to work with, microorganisms
have been in the focus of many in vivo and in vitro studies in the metabolic engineering
domain so far. At the same time, in silico analysis methods, i.e., computer simulations and
model-based approaches, have gained lots of attention in experimental sciences (Palsson,
2011).

Driven by a biological question, model-based experimental studies typically start with
a specific experiment (cf. fig. 1.1). Mimicking the functionality of the target organism or
parts thereof, a mathematical model is then created that aims at answering the biological
question. It is also common to take an existing model of a related organism or strain as
template which is then adjusted to the scientist’s requirements and biological conditions.
Diverse experimental data is integrated into this model and simulations are performed.
This process of model calibration requires a valid model and implies several further steps
accompanying statistical assessment, sensitivity analysis, etc (cf. fig. 1.2). Afterwards,
the outcome is (visually) analyzed which leads to new insights improving the knowledge
about biological phenomena. Hence, by closing the loop, new experiments can be planned
and conducted to iteratively improve the knowledge about the target organism.

2



1.2. From Tools, Processes, and Knowledge to a Scientific Workflow Framework

Figure 1.1.: Classical metabolic engineering experimental cycle.

1.2. From Tools, Processes, and Knowledge to a Scientific
Workflow Framework

As a typical metabolic engineering application, 13C-MFA is a model-based approach to
estimate non-measurable intracellular reaction rates using highly-sophisticated in silico
methods (Wiechert, 2001). Starting with a specific biological question (e.g., what are the
carbon flows within a particular C. glutamicum strain under certain circumstances), the
general procedure of 13C-MFA perambulates a series of steps in a workflow (cf. fig. 1.2)
(Niedenführ, Wiechert, and Nöh, 2015).

Scientists have to organize scientific data, utilize computational resources, realize work-
flows in a reproducible manner, and often coordinate their work with project partners from
other institutes. In many scientific domains, researchers encounter similar challenges in
managing their tasks (Gannon et al., 2006). Because scientific workflows consist of a
series of experimental, simulation, or analysis tasks, SWFs aim at alleviating the research
process by providing data management facilities, distributed computing support, data
provenance tracking support, and convenient user interfaces (Tan, Missier, et al., 2010).
While several prominent general-purpose SWFs are established in scientific and industrial
applications today, various approaches have emerged that are adapted for the needs of

3
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bioinformatics applications, e.g., Taverna (Hull et al., 2006), Kepler (Ludäscher et al.,
2006), KNIME (Berthold et al., 2009), or Galaxy (Goecks et al., 2010).

Figure 1.2.: Overview of the complete 13C-MFA workflow. While the principle sequence of
workflow steps is linear from top to bottom (left; red arrows), the evaluation of
intermediate steps may yield a recursion to a previous step (gray, green and or-
ange arrows). Furthermore, the individual steps are influenced by various bio-
logical, analytical and experimental knowledge and data sources (right). The
figure is adopted from Advanced Course on 13C-based Metabolic Flux Analy-
sis materials (unpublished); see: http://13cflux.net/13cflux2/courses.
jsp.

1.3. Computational Challenges
Many bioinformatics workflows are designed to identify, compare, and annotate genomic
sequences by "pipelining" them through standard tools like BLAST or Clustal W (Altschul
et al., 1990; Larkin et al., 2007). Typically, the next workflow task in the pipeline can
be automatically determined by the outcome of the previous step. By contrast, 13C-MFA

4
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workflows consist of many tasks which are executed in a non-deterministic order where
subsequent steps are decided by a researcher. Due to these differences, the corresponding
workflows are difficult to realize in a SWF that is designed with the particular require-
ments of bioinformatics applications in mind.

This work presents a SWF that is custom-tailored for the specific needs of 13C-MFA
applications. Five computational challenges are identified for the SWF.

C1 Heterogeneous and flexible data and tool organization: The way from carbon labeling
experiment planning to the final flux map takes a considerable amount of time (in
the order of weeks and months). Scientists need support throughout all phases of
this process. A plenitude of knowledge sources, experimental data, (web) databases,
and software tools are involved and numerous models emerge from a typical study.
All these data need to be organized in a retrievable manner. At any time, new tools
(e.g., web databases, software solutions, algorithms) and knowledge may become
available that need to be incorporated into the workflow.

C2 Standardization of processes and unifying software tools and data: A 13C-MFA study
inherently depends on various factors, e.g., the biological system, the experimental
setup, or the analytical platform of choice. While a standardization of the overall
13C-MFA procedure is currently beyond reach (Niedenführ, Wiechert, and Nöh,
2015), the unification of employed software tools and the computational parts of
the 13C-MFA workflow is possible. To this end, the heterogeneous information
(models, experimental data) involved in computational steps has to be adequately
parameterized.

C3 Interactive research-driven workflow steering: 13C-MFA workflows are not static,
but need to be adapted during their runtime. For instance, depending on the out-
come of an intermediate processing step, the scientist reconfigures program parame-
ters of subsequent simulation tasks or inserts an additional data preprocessing step.
Thus, a scientist interactively decides on the basis of expert knowledge whether to
re-parameterize and repeat, to proceed with a different step, or, in the worst case,
to terminate and discard the entire simulation branch. These decision points can
occur at any step along the workflow.

C4 Distributed computing: The computing intensity of 13C-MFA greatly varies from
task to task. For instance, during assembly, a model is frequently tested (i.e., sim-
ulated). A single simulation run takes less than a second even for a comprehensive
network model on the researcher’s local computer (Weitzel et al., 2013). On the
other hand, large-scale computational studies (e.g., non-linear statistical analyses
with Monte Carlo algorithms) require thousands of optimization runs and millions
of simulations. Such calculations must be parallelized and efficiently performed on
cluster or cloud computing resources.

C5 Service orientation: 13C-MFA experts need a solution that supports the flexible
assembly of workflows, while, at the same time, largely covering the complexity of
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technical tasks (e.g., data security or parallelization). At many steps, on-demand
control of the execution of a workflow is needed, e.g., to make ad hoc decisions
based on expert knowledge. Likewise, by publishing a composite (sub-) workflow as
a service, it can be readily repeated (i.e., validated) and reused for new 13C-MFA
applications. A service-oriented architecture (SOA) leverages the realization of such
complex processes (Josuttis, 2007).

1.4. Contributions
This work presents a SWF for 13C-MFA to tackle the challenges C.1–C.5. Many SWFs
have been developed that abstract computational and data resources and strive to take
the computational workload away from the scientists to manage operational complexi-
ties (Curcin and Ghanem, 2008). However, to the author’s best knowledge, so far the
aforementioned challenges have been only partially addressed by existing approaches. In
this work, a novel solution is proposed that is specially tailored to the needs of 13C-MFA
users. The framework is located between script-oriented computational ad hoc pipelines
and a dedicated software system, while combining the advantages of both solutions.

In particular, this thesis makes the following contributions to advance the state of the
art:

• A software framework is developed that provides service interfaces to combine ex-
isting 13C-MFA tools to scientific workflows. It is shown that purely computational
workflow steps are effectively automated, thus, decreasing the complexity of typical
metabolic engineering applications.

• Computationally demanding 13C-MFA simulations are deployed on high-
performance computing (HPC) resources. In particular, Amazon’s Cloud offering is
employed to effectively reduce the total computation time.

• A software solution to capture, manage, and query all data to be able to reproduce
13C-MFA workflows. In particular, this so-called provenance collection framework
is capable of gathering workflow meta information after a workflow has completed,
but also in an online fashion (i.e., while a workflow is running).

• By providing a template for organizing all files of a scientific study in a Version
Control System (VCS), metabolic engineering studies are effectively standardized.

• Several auxiliary tools are realized in the course of the development of 13C-MFA
workflows, e.g., data visualization, data conversion, or performing specialized simu-
lation tasks.

Thereby, this work is part of an ecosystem of 13C-MFA research topics at the Institute
of Bio- and Geosciences (IBG-1) at Forschungszentrum Jülich (FZJ). Specifically, the
database storing analytical raw data is conceived as part of the Jülich Measurement Data
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Selector (JuMeDaS) and integrated in the context of a middle- and high-throughput
methodology for the 13C-MFA procedure (Miebach, 2012). Being developed several years
in parallel with the SWF, the 13CFLUX2 toolbox (Weitzel, 2009) and the visualization
and modeling software Omix3 (Droste, 2011) are directly integrated in the SWF.

1.5. Publications

In the context of the work on this thesis, the following papers have been published:

T. Dalman, E. Juhnke, T. Dörnemann, M. Weitzel, K. Nöh, W. Wiechert, and
B. Freisleben (2010). “Service workflows and distributed computing methods for 13C
metabolic flux analysis”. In Proceedings of 7th EUROSIM Congress on Modelling and
Simulation, pp. 1–7

T. Dalman, P. Droste, M. Weitzel, W. Wiechert, and K. Nöh (2010). “Workflows
for metabolic flux analysis: data integration and human interaction”. In: Proceedings
of the 4th International Conference on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA). vol. 6415. Lecture Notes in Computer Science
(LNCS). Springer-Verlag Berlin, Heidelberg, pp. 261–275

T. Dalman, T. Dörnemann, E. Juhnke, M. Weitzel, K. Nöh, W. Wiechert, and
B. Freisleben (2010). “Metabolic flux analysis in the cloud”. In: Proceedings of IEEE 6th
International Conference on e-Science 2010, pp. 57–64

T. Dalman, M. Weitzel, W. Wiechert, B. Freisleben, and K. Nöh (2011). “An online
provenance service for workflows for distributed metabolic flux analysis”. In: Proceedings
of IEEE 9th European Conference on Web Services (ECOWS). IEEE Press, pp. 91–98

T. Dalman, M. Weitzel, B. Freisleben, W. Wiechert, and K. Nöh (2011). “A hybrid
parallelization approach for cloud-enabled metabolic flux analysis simulation workflows”.
In: Proceedings of 4th GRID4TS Workshop, pp. 30–31

M. Weitzel, K. Nöh, T. Dalman, S. Niedenführ, B. Stute, and W. Wiechert (2013).
“13CFLUX2 – high-performance software suite for 13C-metabolic flux analysis”. In:
Bioinformatics 29 (1), pp. 143–145

T. Dalman, T. Dörnemann, E. Juhnke, M. Weitzel, K. Nöh, W. Wiechert, and
B. Freisleben (2013). “Cloud MapReduce for Monte Carlo bootstrap applied to
metabolic flux analysis”. In: Future Generation Computer Science 29 (2), pp. 582–590.

3 Meanwhile, OmixTM has become a commercially maintained project. See http://www.omix-
visualization.com/ for more information.
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T. Dalman, W. Wiechert, and K. Nöh (2016). “A scientific workflow framework for 13C
metabolic flux analysis”. In: Journal of Biotechnology 232. Bioinformatics for Biotech-
nology and Biomedicine, pp. 12–24

1.6. Outline
This thesis is organized as follows.

Chapter 2 introduces the scientific workflows concepts and the basic ingredients of a
SWF. A selection of existing scientific workflow approaches are conceptually and techni-
cally compared a with the outcome of this thesis.

Chapter 3 introduces the necessary background knowledge and basic concepts.
The 13C-MFA method is introduced along with the domain-specific simulation toolbox
13CFLUX2 and the modeling and visualization software Omix. A brief introduction to
cloud computing concepts and the Hadoop MapReduce software framework are discussed
next.

Chapter 4 presents the design and architecture of the SWF which is split into three
layers (data, application, and presentation tier). Thereby, the derived design decisions are
discussed in due depth. Finally, considerations regarding the deployment of the software
framework are illuminated.

Chapter 5 highlights the service-oriented approach of the SWF, i.e., the extension
of 13CFLUX2 with web service interfaces, the combination of 13CFLUX2 with Hadoop
MapReduce, services for collecting workflow runtime data, the services to organization and
standardize data and studies, and a set of complementary tools and services to complete
the 13C-MFA procedure is discussed.

Chapter 6 presents use cases that are realized with the SWF. Thereby, the selected
workflow examples are taken from different areas of the complete 13C-MFA procedure as
depicted in fig. 1.2.

Chapter 7 discusses the insights gained from the presented use cases and their solution
using the SWF. The outcome of the thesis is summarized and hints for possible future
work is given on this topic.
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Chapter 2.

Related Work

By presenting related research in the area of scientific workflows, this chapter sets the
conceptual and technical context of this thesis. § 2.1 gives a short introduction to scientific
workflows and selected technical aspects that are relevant for this work. In § 2.2, the
applicability of existing SWF approaches in the context of MFA is discussed. A special
focus is set on FiatFlux-P, an alternative solution based on the Bio-jETI workflow engine.

2.1. Scientific Workflow Framework

Several definitions for workflows are proposed in the literature (see for example Gannon
et al., 2006; W. M. P. v. d. Aalst and Hee, 2002; W. v. d. Aalst and Stahl, 2011). In
this thesis, a workflow is defined as a sequence of connected steps to perform a predefined
task1.

Scientific workflows are specialized workflow applications with requirements that are
typically not covered by conventional (i.e., business) workflow frameworks, e.g., support
for HPC and long-running tasks (I. J. Taylor et al., 2006). Moreover, scientific work-
flows are typically data-driven because tokens of information and knowledge is generated,
consumed, transformed, and deleted in a decentralized fashion. Conversely, some scien-
tific applications require fine-grained control over the workflow execution (Tan and Zhou,
2013). Control-flow applications allow the fine-grained execution of the workflow using
programming language structures. In the 13C-MFA context, the necessity for a SWF with
control-flow support is derived specifically from requirement C4 (cf. § 1.3).

SWFs are understood as structured environments that contain the building blocks of
which scientific workflows are composed (I. J. Taylor et al., 2006). In the context of 13C-
MFA workflows, we identified four basic building blocks that constitute a service-oriented
software solution: (i) data management facilities, (ii) distributed computing support, (iii)
data provenance tracking support, and (iv) convenient user interfaces. Hence, to realize
a service-oriented SWF, several functional units and software components have to be
made available and interconnected through unified interfaces. These technical aspects are
briefly covered next.

1 A similar wording is found at https://en.wikipedia.org/wiki/Workflow; last accessed: May 22, 2017
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2.1.1. Data Management
13C-MFA workflows involve various inputs and outputs, i.e., measurement data from
biological experiments, genome data, proteins, reaction pathways, models, and simulation
data (Miebach, 2012). These inputs are typically available in data formats that need to
be supported by the SWF, e.g., SBML or FluxML in the case of models.

In addition to research bulk data, the presence of additional model or application infor-
mation is important for the reproducibility of scientific workflows, e.g., original author,
document version, creation time, etc. This information is called metadata. Consequently,
various data storage technologies need to be employed, i.e., relational and non-relational
databases, public web and cloud database services, model documents, raw data files,
application- and device-specific formats, and metadata storage concepts to trace the
provenance of information. Further background information about state of the art data
storage and organization concepts is available in the literature (e.g., see Shoshani and
Rotem, 2009; Edlich et al., 2010).

2.1.2. Web Services and Service-Oriented Architectures

To fulfill the requirements of 13C-MFA applications, the architecture of the SWF needs
to provide several (in parts competing) features, a flexible design by modularization, sup-
port for distributed computing, and seamless access to third-party applications. Service-
Oriented Architecture (SOA) is a paradigm for the implementation and maintenance of
business applications and processes that employ large distributed computing resources
(Josuttis, 2007). The services offered in a modern SOA are almost always realized as web
services (Erl, 2014). A web service is a standardized machine-to-machine message passing
communication interface that today comes in one of the two different flavors: SOAP and
RESTful web services.

In many scientific disciplines the utilization of existing (legacy) software tools is cru-
cial. For instance, several man years have been invested in the development of 13C-MFA
software tools, most prominently 13CFLUX2 and Omix. Hence, the re-implementation of
these tools is out of reach and, thus, their integration is an important technical require-
ment for a 13C-MFA SWF. The adoption of a service-oriented architecture is an elegant
approach to integrate legacy software into complex software frameworks (Sneed, 2006).
Several solutions are found in the literature that aim at the utilization of legacy tools
in workflow frameworks, e.g., Soaplab2, Opal, or LCDL (Senger et al., 2008; Krishnan
et al., 2009; Juhnke et al., 2009). Inspired by these approaches, § 4.2.2 presents a custom-
tailored application wrapper for legacy tools that matches the requirements of 13CFLUX2
and similar programs.

2.1.3. Control-Flow Workflow Management

The de-facto standard language for control-flow workflows is WS-BPEL (BPEL for short)
(Andrews et al., 2003). Although originating from Business Intelligence applications,
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BPEL is in principle suited to be applied in the scientific context as well (Akram, Mered-
ith, and Allan, 2006). BPEL is designed to perfectly fit into the SOAP web service stack
by leveraging the interoperability with XML, WSDL, WS-Addressing, and others. Several
commercial and non-commercial BPEL interpreters are available today2. A popular solu-
tion is the open source ActiveBPEL3 engine. By providing extensions to the ActiveBPEL
engine (e.g., support for long-running workflows and cloud deployment), the applicability
of BPEL in the context of scientific applications is recently discussed in detail elsewhere
in the literature (Dörnemann, 2013).

Beside BPEL, other workflow modeling and execution languages are available includ-
ing UML and YAWL (Fowler, 2003; W. M. P. v. d. Aalst and Hofstede, 2005). Various
lightweight workflow management engines have emerged that employ a traditional pro-
gramming language rather than a specialized workflow language, e.g., PaPY, PyUtilib,
or Hadoop (Cieslik and Mura, 2011; Hart, 2011; White, 2009). Because these approaches
directly access traditional programming language features to define control-flow appli-
cations, lightweight workflow management solutions are seamlessly integrated in larger
workflow applications.

2.1.4. Tracking the Provenance of Data

The collection and management of auxiliary data like intermediate results, process mes-
sages, logs, and workflow job information (e.g., date and time, or executive scientist) is
of utter importance for the reproducibility and the understanding of a scientific study
(Davidson and Freire, 2008). The necessary information to reproduce results from a com-
putational step is called provenance data (Moreau, Groth, et al., 2008). Hence, provenance
data consists not only of intermediate results, but also of process data, metadata, such as
information about hardware and software environments, and log messages.

In particular in e-Science environments, the need to support data provenance has been
identified as a vital information surplus (Oinn et al., 2006). Recently, for data-driven
SWFs several provenance solutions emerged (Altintas, Barney, and Jaeger-Frank, 2006;
Missier, Paton, and Belhajjame, 2010; Cao et al., 2009; Anand, Bowers, and Ludäscher,
2010). For these solutions, the so-called provenance dependency graph can be readily
obtained by unfolding the workflow execution graph (Tan, Missier, et al., 2010). In
contrast, service-oriented (i.e., BPEL-based) workflow frameworks form a control-flow
graph. Thus, the generation and capture of provenance data has to be explicitly defined
in the workflow service interfaces (Curbera et al., 2008).

The Open Provenance Model (OPM) has emerged as a comprehensive specification for
a generic provenance model (Moreau, Clifford, et al., 2011). The major aim of OPM
is the ability to exchange provenance information across various implementations of the
standard. Several provenance solutions already provide support for the OPM standard.

2 A list of BPEL engines is found here: https://en.wikipedia.org/wiki/List_of_BPEL_engines; last
accessed: May 22, 2017

3 ActiveBPEL is GPL-licensed up to version 2. The engine is further developed as the commercially
distributed ActiveVOS solution.
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2.2. Comparison with Existing Scientific Workflow Solutions

In the last decade, life sciences have experienced an increasing demand for integrative
data analysis owing to the advent of various omics technologies. In turn, a variety of
scientific workflow solutions have been developed that assist scientists with the imple-
mentation of new, increasingly complex data integration methodologies. Traditionally,
the bioinformatics community has been the main driver of progress being pushed by the
increasing flood of, e.g. (meta) genomic, proteomic and imaging data. As a consequence,
several approaches have emerged that are optimized to process and analyze these data
types using large collections of tools and libraries. Reviews on this topic can be found
in the literature (e.g., Barker and Hemert, 2008; Curcin and Ghanem, 2008; Deelman,
Gannon, et al., 2009; Romano, 2008; Tan and Zhou, 2013; Tan, Missier, et al., 2010;
I. J. Taylor et al., 2006). Typically, these solutions focus on providing convenient user
interfaces for modeling the data flow or deploying the computational tasks on local or
distributed resources.

Existing scientific workflow solutions are categorized into three groups: (1) general-
purpose engines, (2) lightweight workflow solutions, and (3) specialized systems biology
solutions. Table 2.1 summarizes the findings of this section.

2.2.1. General-Purpose Scientific Workflow Frameworks

General-purpose workflow engines are widely established in sciences and industry. These
scientific workflow frameworks provide a wealth of features for improving common research
tasks, e.g., organization of workflow steps, management of large-scale data, distributed
computing and HPC support, and they are often designed to be easily usable by non-
IT experts. The Java-based Kepler engine aims at solving common technical problems
found in modern bioinformatics workflows, i.e., the use of web service and grid computing
technology, the integration of domain-specific tools, and the need to manage scientific
data (Ludäscher et al., 2006). Especially with the current Kepler 2.4 (released in 2013),
former extensions to improve scientific data handling and provenance data management
have become an integral part of this software suite (Altintas, Barney, and Jaeger-Frank,
2006; Barseghian et al., 2010). Kepler provides a convenient graphical user interface
for workflow modeling, managing workflow instances, and for inspecting the scientific
results and runtime information. Kepler introduces the so-called actor concept, an elegant
approach to integrate third-party applications or web services into the framework (Bowers
and Ludäscher, 2005).

Originally aimed at life sciences (and genomics applications in particular), Galaxy is
a domain-agnostic web platform to facilitate scientific research in general today (Goecks
et al., 2010). The authors focus on accessibility to HPC and cloud computing resources
for non-IT experts, reproducibility of workflows with a provenance framework, and trans-
parency by providing a simplistic yet convenient web user interface. Because Galaxy is
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Data Management
relational DB + + - - - - - + + -

version control - + - - - - - - - -
SBML support - - - - - - + - - +

FluxML support - - - - - - - - - -
Simulation
workstation + + + + + + + - + +

Cluster + + + + + + - + + +
Grid + + + - - - - + + +

Cloud + + + + - - - + + +
Web Services

SOAP client + + + - - + - + + +
SOAP services - + + - - + - - - +

REST client + + - - - + - + + +
REST services - + - + - + - - - +

asynchronous calls + - + + - - - - + +
Workflow Engine

control-flow - - + + - + + - + +
data-driven + + - + + - - + + +
legacy tools + + - + - + - + + -

stand-alone client - - - + + + + - - +
multi-user support - + - + - - - + + +

Provenance Collection
post-mortem analysis + + - + + - - - + +

online collection - - - + + - - - - -

Table 2.1.: Comparison between various existing scientific workflow approaches. The fol-
lowing technical aspects, derived from the requirements for a scientific work-
flow framework, are examined: (a) data management including access to rela-
tional databases, version-controlled document repositories, and support for
specific SBML and FluxML formats; (b) simulations on various computer
types; (c) web service support; (d) workflow engine capabilities; and (e) sup-
port for provenance collection. The selected solutions are deliberately chosen
as representative scientific workflow approaches grouped in three categories:
general-purpose, lightweight, and special-purpose bioinformatics.
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an open source, Python-based software with a clean object-oriented architecture, several
extensions and custom sites have been released already4.

In this thesis, ActiveBPEL is classified as a general-purpose scientific workflow solution.
Recently, the feasibility of ActiveBPEL is evaluated in the scientific context (Dörnemann,
2013). Other prominent scientific workflow approaches include Taverna, KNIME, Pegasus,
and Triana (Hull et al., 2006; Berthold et al., 2009; Deelman, Singh, et al., 2005; Churches
et al., 2006).

2.2.2. Lightweight Scientific Workflow Approaches

Lightweight approaches have emerged that provide solutions to ease the realization or
the automation of research applications. These approaches distinguish themselves from
general-purpose solutions by only addressing a subset of scientific workflow framework
features. Originally, Apache Hadoop has emerged as a MapReduce implementation to
process large amounts of data (White, 2009). Since version 2.0 onward, the open source
Hadoop project is a general Big Data Analysis framework that includes solutions for
data storage (Cassandra, HBase), data processing (MapReduce, Mahout), and workflow
management (Pig, Zookeeper). As demonstrated in the previous chapters with Hadoop
MapReduce, the integration of such a lightweight solutions into the scientific workflow
framework is surprisingly straightforward, especially when the interfaces are kept simple.

The Python programming language has recently gained popularity in the scientific
community (J. Stewart, 2014). Along with this development, several scientific workflow
approaches in Python have emerged5. One such approach is PaPY (Cieslik and Mura,
2011). This approach combines data-driven processing via parallel pipelines with the
procedural control-flow programming using the Python programming language itself. Be-
cause the parallel pipelines approach resembles the MapReduce design pattern, PaPY is
comparable to our approach using Hadoop MapReduce. Like our approach, PaPY offers
an extensive logging framework, which is a prerequisite for online provenance collection.
PaPY provides a minimalistic GUI for visual composition and management (e.g., start,
stop) of workflows.

jORCA provides a graphical bioinformatics workbench for visually composing web ser-
vices (Martín-Requena et al., 2010). As such, the authors focus on a user-oriented graph-
ical interfaces to compose and parameterize workflows, (semi-)automatic data conversion,
access to various web service repositories (e.g., BioMoby and EBI), and a sophisticated
service discovery approach.

2.2.3. Specialized 13C-MFA approaches

In the context of 13C-MFA, only two scientific workflow solutions have been made available
so far. The first is ReMatch (Pitkänen et al., 2008) in combination with Biomine (Eronen

4 https://wiki.galaxyproject.org/PublicGalaxyServers; last accessed: May 22, 2017
5 For example, a partial list of scientific workflow engines in Python is found here: https://wiki.
openstack.org/wiki/NovaOrchestration/WorkflowEngines; last accessed: May 22, 2017
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and Toivonen, 2012), which is a web-based solution that leverages the assembly and export
of network files for the 13C-MFA tools OpenFLUX and 13CFLUX. Like 13CFLUX.net,
Java Server Pages (JSP) and Java Servlets are utilized to realize the user workflows
of ReMatch. The ReMatch client web pages are rendered in a JavaScript-capable web
browser. Because the main functionality of ReMatch is centered around the modeling of
MFA networks, it is comparable to Omix. However, SBML is the primary model format
and the stoichiometry export is currently restricted to 13CFLUX FTBL models. ReMatch
has KEGG and other public databases statically included, while Omix can directly access
the reaction information or the reaction database of the scientific workflow framework via
web services.

The second SWF approach in the context of 13C-MFA is FiatFlux-P, which fosters
automated calculation of metabolic flux ratios with the FiatFlux software in the context
of routine computational analyses (Ebert et al., 2012; Zamboni, Fischer, and Sauer, 2005).
Because FiatFlux-P shares many similarities with the present thesis, the next section is
dedicated for an in-depth analysis and comparison with the SWF.

2.2.4. Bio-jETI: An Alternative Approach

During the development of this thesis an alternative scientific workflow approach is pub-
lished that is based on the Bio-jETI framework (Lamprecht, 2013). To meet the require-
ments of typical users of the Bio-jETI framework (i.e., Biologists and Biotechnologists),
the author realizes six technical aspects of that work:

1. Because the primary focus of their work is the simplification of user processes during
the workflow design, Bio-jETI offers convenient user interfaces to relieve the scien-
tists from the need to create workflow applications with traditional programming
languages. Figure 2.1 exemplarily depicts the workflow design in the Bio-jETI Java
client application.

2. Bio-jETI provides mechanisms to leverage the workflow design by introducing mech-
anisms to handle services (i.e., control flow), data (i.e., data flow), and workflows
(i.e., hierarchical abstraction).

3. The author recognizes the need to integrate existing domain-specific tools in a sci-
entific workflow approach. Thus, the need to integrate these programs in a service-
oriented fashion technically and semantically is emphasized in the Bio-jETI aproach.

4. To handle the combinatorial explosion of possible workflow sequences in typical
bioinformatics applications, a special focus on semantic workflow composition is
handled in their work. Thereby, two aspects are highlighted: (a) the discovery of
available services; and (b) (semi-) automatic workflow composition.

5. Beside supporting the composition of workflow semantically, Bio-jETI provides
static and runtime workflow validation and verification mechanisms.
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Figure 2.1.: Screenshot of the Bio-jETI client using an example from the project page.
By providing a visual editor, workflows are composed in a drag-and-drop
fashion. The most distinguishing feature of this approach is the semantic
model checker (exemplarily displayed on the lower left pane).

6. Once defined, the execution of a workflow needs to be handled by the scientific
workflow framework. The author identifies the need to handle the execution of
workflow tasks. While it is possible to validate runtime tasks within the environment
of the workflow framework, many tasks are executed on a different infrastructure
(e.g., clusters). Thus, Bio-jETI provides a code generator to perform tasks on
external systems as stand-alone applications.

Several bioinformatics applications from different areas are realized with Bio-jETI. One
of these applications, called FiatFlux-P, is dedicated to realize 13C-MFA workflows and
therefore directly comparable with the SWF.

2.2.4.1. Bio-jETI/FiatFlux-P

FiatFlux-P is an application scenario using Bio-jETI that aims at standardizing and au-
tomating high-throughput 13C-MFA applications (Ebert et al., 2012). FiatFlux-P uses a
’headless’ MATLABTM version of the FiatFlux software to perform the 13C-MFA simula-
tions (Zamboni, Fischer, and Sauer, 2005). By employing the FiatFlux software, FiatFlux-
P realizes a flux estimation based on metabolic flux ratio analysis. This static workflow
consists of three sub-workflows that are executed sequentially:

• Extract and pre-process MS raw data.
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• Calculate flux ratios and data post-processing.

• Estimate the intracellular flux distribution.

FiatFlux-P combines raw data analytics with the network model analysis using
heuristics-based threshold values, which makes the integration of new measurement
methods impossible. By exposing the computational MATLAB functions of FiatFlux,
FiatFlux-P emulates the graphical user input and, hence, successfully integrates FiatFlux
into the Bio-jETI workflow framework. Like the SWF, FiatFlux-P supports a variety
of standardized data exchange formats, such as CSV, netCDF, and XML. Furthermore,
FiatFlux-P is capable of utilizing third-party tools, particularly Omix. Comparable to
the SWF, the Bio-jETI framework provides the utilization of HPC resources and the in-
tegration of existing tools via command-line programs or modern web service technology.

In summary, Bio-jETI/FiatFlux-P module is a feature-rich workflow solution for 13C-
MFA applications which addresses the challenges stated in the introduction. With the
visual workflow editor and the semantic checker, Bio-jETI/FiatFlux-P provides well-
designed graphical user interfaces and workflow steering capabilities.
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Basic Concepts

This chapter introduces the basic ingredients that are relevant for the outcome of this the-
sis, the SWF. § 3.1 reviews the 13C-MFA procedure. The simulation toolbox 13CFLUX2
and the modeling and visualization software Omix are used to realize many 13C-MFA tasks
(§§ 3.2 and 3.3). The SWF employs a so-called MapReduce framework to deploy com-
putationally demanding 13CFLUX2 computations on high-performance machines, e.g.,
computer clusters or cloud computing resources (cf. § 3.4) (Jin et al., 2011).

3.1. Isotope-based Metabolic Flux Analysis

Metabolic networks are constituted by enzyme-catalyzed biochemical reactions convert-
ing substrate pools to intermediate and product pools. Key properties for the quantita-
tive understanding of the intracellular metabolism are absolute metabolite concentrations
and the reaction rates (the so-called fluxes) as well as their interaction which forms the
metabolic network structure.

Because intracellular fluxes are not directly measurable, model-based approaches aim
at estimating the reaction rates from available experimental data. Isotope-based MFA is
a powerful method for the accurate determination of these fluxes within living cells using
stable isotope tracer experiments (Wiechert, 2001). Basically, this process consists of two
steps (cf. fig. 3.1):

I. Isotope Labeling Experiment. The workflows discussed in this thesis are based
on the classical steady-state 13C-MFA approach. The general approach comprises
several steps: (a) Pre-cultivation: microbial cells are cultivated in a bioreactor
until a critical population density is available (using non-labeled sources like 12C-
glucose). (b) Main cultivation with feed of tracer isotopes: the cell culture is fed
with a mixture of specifically labeled isotope substrates (e.g., by exchanging specific
12C substrate labeling positions in parts or completely by 13C or 14C tracers); (c)
Sampling: during the transient labeling phase or as soon as the isotope enrichment
is saturated (i.e., the cell culture is in the isotopic stationary state), samples are
drawn, cell metabolism is immediately quenched, cell supernatants are removed,
and samples from the purified cell solution are subjected to chemical analysis (e.g.,
1H-NMR or GC-MS). (d) Chemical analysis: labeling patterns of the samples are
measured.
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Figure 3.1.: Schematic overview of the 13C-MFA method. Non-measurable intracellular
fluxes are estimated by solving a high-dimensional and nonlinear parameter
fitting problem (Wiechert, 1996). The underlying equation system is deter-
mined by the mass balancing of the organism reaction pathway model, whose
parameters are the fluxes that have to be determined from the known in-
put and the measured labeling fractions, an isotope-labeled input substrate
mixture, and intracellular metabolite labeling patterns obtained from non-
invasive measurements (e.g., 1H-NMR or GC-MS).

II. Computer-based Evaluation. The measured fractional labeling enrichments are
incorporated into an organism-specific network model that describes the labeling
patterns as functions of the (unknown) fluxes. A nonlinear mathematical model
is deduced that relates intracellular fluxes and measurements. The in-vivo fluxes
are indirectly determined by solving a nonlinear least-squares problem. Finally, the
quality of these estimations is assessed using statistical methods. A comprehensive
overview and mathematical deduction of the general MFA procedure is found in the
literature (Wiechert, 1996).
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3.2. 13C-MFA with the 13CFLUX2 Toolbox

For computer-based evaluation, high-performance simulation tools are readily available
that are well-suited for the evaluation of experimental data sets. Today, several MFA soft-
ware solutions exist, e.g., FiatFlux, Metran, or OpenFlux (Zamboni, Fischer, and Sauer,
2005; Antoniewicz, Kelleher, and Stephanopoulos, 2007; Quek et al., 2009). However,
these approaches are based on monolithic (and in parts closed source) software archi-
tectures that makes the integration in a workflow framework difficult to realize (these
issues are discussed in more detail in § 2.2.4). Simulation workflows presented in this
thesis are realized with 13CFLUX2, a high-performance software toolbox for performing
isotope-labeled 13C-MFA in silico experiments that is developed at FZJ/IBG-1 (Weitzel,
2009).

This section introduces the contents of the 13CFLUX2 toolbox, the most important
data types, and the typical usage patterns in 13C-MFA applications. The runtime be-
havior of 13C-MFA simulations with 13CFLUX2 is discussed. Because the Monte Carlo
Bootstrap approach is extensively employed in this thesis, the realization of this method
with 13CFLUX2 is presented at the end of this paragraph (Efron and Tibshirani, 1993).

3.2.1. Tools and Libraries

The 13CFLUX2 toolbox (Weitzel et al., 2013) consists of 20 stand-alone applications with
a rich set of configuration parameters, a comprehensive C++ programming library, and
a variety of convenience scripts. 13CFLUX2 programs are grouped in three categories:
core simulation tools, sampling and analysis programs, and peripheral conversion and
reporting utilities. A summary of the 13CFLUX2 tools is found in appendix C. The
13CFLUX2 C++ programming library allows the implementation of custom MFA appli-
cations by offering interfaces to a variety of classes, e.g., simulation, optimizer, model and
measurement data access, and highly optimized internal utility functions.

3.2.2. Model and Simulation Data Formats

Being developed for several years in parallel, 13CFLUX2 and the SWF could be success-
fully aligned to use the same data exchange file formats.

• FluxML: metabolic network models are represented in XML documents. The XML
format contains information about stoichiometry, metabolic network structure in-
cluding metabolic reaction and atom transition networks, measurement specifica-
tions (which are arranged in measurement groups for each type of labeling), and
initial flux values.

• FWDSIM : results from simulation and parameter estimation are stored in another
XML document. The XML format includes estimated flux values, application run-
time information, and solver and optimizer configuration parameters.
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• HDF5 : bulk data, such as matrices of floating point values, experimental and simu-
lated measurement data, system states, or sensitivity information are stored in the
HDF5 file format (Folk, Cheng, and Yates, 1999).

The unification of data types is a crucial element of the SWF because it eases the
realization of composite 13C-MFA programs to larger (semi-automated) workflows. For
instance, a researcher can customize the visualization of data obtained from 13CFLUX2
simulations for his particular requirements (cf. § 6.4). These workflow programs are
then reused in an iterative fashion for modified simulation parameters (e.g., input model
variations).

Because the employed data formats are standardized across various programming lan-
guages and scientific computing tools, 13C-MFA applications can be created with greater
flexibility (e.g., this allowed the realization of the workflows described in §§ 6.4 and 6.8,
which use different programming languages).

3.2.3. Using the 13CFLUX2 Software in 13C-MFA Workflows

The 13CFLUX2 toolbox is a versatile collection of programs that can be used to realize
various steps of the 13C-MFA procedure. Here, a brief categorization of workflows using
13CFLUX2 is presented. A comprehensive mapping of 13CFLUX2 and other tools to the
overall procedure in the context of the SWF is discussed in chapter 5 (cf. fig. 5.1 for an
overview). The following types of 13C-MFA workflows using the 13CFLUX2 toolbox are
identified:

• Simulation workflows: to automate repetitive tasks, researchers often employ
simple shell scripts that invoke sequences of 13CFLUX2 programs and other tools.
These (sub-) workflows are often used to perform simulations on the scientist’s
workstation before deploying the workflow on a HPC resource.

• Non-automatic workflows: 13CFLUX2 tools are used in workflows involving
other tools and human interaction. For instance, post-processing of simulation
outcomes are typically performed using data analysis tools such as MATLABTM

or Microsoft ExcelTM.

• Command-line use: assuming valid input files (e.g., FluxML models) are present,
13CFLUX2 programs are directly executed on a Linux console terminal. This ap-
proach requires in-depth knowledge of the 13CFLUX2 toolbox and basic Linux
system know-how. Experienced scientists frequently use 13CFLUX2 with the
command-line during the modeling phase.

• Custom MFA programs: new MFA tools are developed using the 13CFLUX2
libraries to implement specialized functions. For instance, a Monte Carlo bootstrap
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(MCB) parameter estimation application running on the FZJ super computer with
MPI demonstrates the feasibility of this approach1.

Addressing the above uses of 13CFLUX2, chapter 6 discusses several examples that are
implemented with the SWF.

3.2.4. Runtime Behavior of 13CFLUX2 Simulations
13C-MFA simulation programs show a great variance in runtime and memory usage, de-
pending on the given input. 13CFLUX2 programs that use optimizers, like fitfluxes or
edopt, are inherently non-deterministic in their runtime behavior. In addition, many al-
gorithms are difficult to parallelize due to their dependence on model complexity. To
demonstrate the variance in memory usage and runtime behavior of 13CFLUX2 sim-
ulations, four network models of different sizes are chosen. Table 3.1 summarizes the
characteristics of the network models.

file size pools reactions C-atoms measurements system dimensions
(kB) (fluxes) (unred./red.)

Model 1 5 6 7 15 5 5/2
Model 2 24 34 65 141 115 30/18
Model 3 139 76 117 404 906 51/72
Model 4 81 90 106 418 502 23/71

Table 3.1.: Overview of network model characteristics. The four models differ in file size,
model size (i.e., number of defined metabolite pools, reactions, C-atom tran-
sitions, and reduced and unreduced system dimensions), and in the number of
specified measurement groups.

Each model is run 1,000 times with fwdsim and, respectively, fitfluxes. The resulting
mean and standard deviation values of the runtime and memory measurements are shown
in Table 3.2. The models run with fwdsim in the order of several seconds, while the
runtime of fitfluxes inherently depends on the input parameters. Thus, the simulations
times are in the order of seconds, minutes, or hours. With Model 4, fwdsim consumes at
most 200 MB RAM. The peak memory usage of fitfluxes is below 300 MB.

3.2.5. Monte Carlo Bootstrap Realization in 13CFLUX2
In order to describe the integration of long-running calculation tasks into the 13C-MFA
workflow, an easy to parallelize, sampling-based Monte Carlo approach is chosen. With
this conceptually simple approach, the reliability of the resulting flux estimations can
be assessed. Here, the MCB generates an ensemble of simulated data sets mimicking
repeated experimental data from random numbers according to a probability distribution

1 This application is realized by Sebastian Niedenführ and Birgit Stute as part of the Advanced Course on
13C-based Metabolic Flux Analysis (unpublished; see http://13cflux.net/13cflux2/courses.jsp).
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fwdsim fitfluxes
time (s) mem (MB) time (s) mem (MB)

Model 1 0.05 ± 0.00 40.93 ± 0.01 0.10 ± 0.02 56.14 ± 4.00
Model 2 0.32 ± 0.02 54.75 ± 0.01 84.44 ± 33.61 73.05 ± 3.82
Model 3 8.72 ± 0.14 91.02 ± 0.02 2106.42 ± 633.72 144.48 ± 2.91
Model 4 1.86 ± 0.02 188.34 ± 0.01 11726.95 ± 5726.51 280.39 ± 3.39

Table 3.2.: Benchmarks with fwdsim and fitfluxes reveal a great variance in memory usage
and simulation runtime depending on the input network model. The simula-
tions are performed on a server with Intel c⃝ Xeon c⃝ X7350 with 2,93 GHz and
128 GB RAM. The servers run openSUSE Linux version 12.3 with Linux kernel
version 3.7.10.

(Efron and Tibshirani, 1993). For each sample (i.e., artificial measurement data set)
the model fitting step is repeated. Evaluating the resultant flux estimates finally yields a
measure of confidence in the estimated flux parameters. Each random data set is processed
independently, hence, the MCB is inherently parallel. A brief review of the mathematical
foundations of MCB is presented in appendix A.

3.2.5.1. Implementation of the MCB Algorithm with 13CFLUX2

Because the MCB method is used in many simulation workflows discussed in this thesis,
the implementation of the algorithm with 13CFLUX2 is presented in detail next. The
MCB method is parameterized by the number of mimicked (artificial) measurements N
and the number of initial vectors M . Due to the law of large numbers, the reliability of the
estimated confidence intervals grows with the increasing sampling number N (Papoulis
and Pillai, 2002). For a set of experimental measurements with given uncertainties, the
MCB method has been realized with 13CFLUX2. The algorithm takes a FluxML model
file, the number of sample measurements, and the number of free fluxes as its input. The
procedure consists of three phases (cf. algorithm 1):

1. Preparation: the ssampler call in line 2 seeds M randomly distributed initial flux
values. These flux values are stored in the sample file SAMPLES. Following the
specification of the measurements’ probability distribution, N artificial data sets
are generated in the outer loop using perturb in a new FluxML model file FMLP

(line 6). In the inner loop (line 7), an initial flux value from SAMPLES is assigned
to each perturbed model FMLP with the command setfluxes in line 10.

2. Parameter fitting: for each FluxML model (V ) a FWDSIM file (F) is written by
the parameter estimation program fitfluxes (line 12). Each of these XML format-
ted result files contains optimization-specific data, like estimated flux values, best
residual, simulation runtime, and optimizer parameters.
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3. Data filtering and post-processing: the set of N ×M FWDSIM files generated
by the parameter estimation step are collected. The collectfitdata program (line 13)
condenses FWDSIM files into a binary HDF5 file for subsequent workflow tasks,
e.g., for post-processing and data analysis with MATLABTM.

Algorithm 1 13CFLUX2 realization of the MCB algorithm

MFA-MCBootstrap(FML, N , M )
1 ▷ Generate M random initial flux vectors
2 SAMPLES ← ssampler(FML, M )
3 for i← 1 to N
4 do
5 ▷ Model with perturbed measurements
6 FMLP ← perturb(FML)
7 for j ← 1 to M
8 do
9 ▷ Insert random initial fluxes

10 V [i, j]← setfluxes(FMLP , SAMPLES [j])
11 ▷ Parameter estimation
12 F [i, j]← fitfluxes(V [i, j])
13 R← collectfitdata(F)

While the sampling of random measurements and initial flux values is comparably
fast, the parameter fitting step consumes the vast bulk of computing time2. Because the
input data is pair-wise independent, parameter estimation can be performed in a parallel
manner, i.e., fitfluxes can be executed for each pair (i, j) simultaneously. This is exploited
for parallel implementations of the MCB algorithm as described in § 5.2.

3.3. Metabolic Network Modeling and Visualization with Omix

The importance of user-centric and graphical guidance to perform the 13C-MFA proce-
dure has been recently discussed in the literature (Nöh, Droste, and Wiechert, 2015).
Omix3 is conceived as primary visualization and modeling tool in the FZJ/IBG-1 13C-
MFA toolchain. The software graphically assists the network modeling process, i.e., the
specification of mixing input substrates, measurement models, network constraints, flux
directionalities, and atom transitions of reactions (Droste, 2011). By providing specialized

2 For instance, the simulation runtime of 1,000 samples with Model 3 is 2106.42 ± 633.72 s with fit-
fluxes and 32.44 ± 0.24 s with ssampler. Furthermore, the high standard deviation of the optimization
compared to the raw forward simulation time emphasizes the problem.

3 Omix web site: http://www.omix-visualization.com/; last accessed: May 22, 2017

25

http://www.omix-visualization.com/


Chapter 3. Basic Concepts

Figure 3.2.: Screenshot of the Omix user interface. a) The central window component
is the drawing area for network diagrams. Toolbars containing icons around
this component make various editing options available. Sidebars provide in-
formation about network properties. b) Atom transitions of the reactions can
be edited graphically with drag and drop.

visualization methods, Omix is employed to explore and analyze the outcome of 13C-MFA
studies. Figure 3.2 depicts screenshots of the Omix user interface.

During the realization of 13C-MFA workflows with both tools, Omix and the SWF,
several technical challenges are identified, which are worthwhile to improve (Dalman,
Droste, et al., 2010). Because Omix is typically run on the scientist’s local workstation,
the handling of model and result files during the modeling and visualization phase means
that the interaction between the different modeling, simulation, visualization, and analysis
tools needs the exchange of files with other tools (export, save, transfer, etc).

This procedure becomes at least cumbersome and error-prone – if not impossible –
in the large-scale: firstly, large-scale simulations are infeasible to be performed on local
nodes. Instead, these simulation jobs need to be deployed on a compute cluster or cloud
computing resources. Secondly, in the FZJ/IBG-1, Omix (which is developed in Java) is
executed on researcher workstations on Microsoft Windows operating systems, while the
13CFLUX2 simulation toolbox is optimized to run on Linux and Unix operating systems.

The optimization of such technical tasks is one step towards a unified and, thus, more
standardized way of performing 13C-MFA (challenge C2). Beside the variance in runtime
and memory usage, 13C-MFA tasks can be performed locally or in a distributed fashion.
For instance, networks are tested on the scientist’s workstation during the modeling phase,
while a compute cluster is employed to perform large-scale Monte Carlo simulations.
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Fortunately, Omix provides an extensible plug-in mechanism which eases the integration
with third-party tools. Specifically, Omix and 13CFLUX2 programs are combined by
employing these plug-ins and the SWF web services. Later sections present the design
(§ 4.2.2) and implementation (§ 5.1) of the SWF web service interfaces. The challenging
variety of 13C-MFA simulations using the scientific workflow approach taken by this thesis
is discussed in chapter 6 in due detail.

3.4. Cloud Computing with Hadoop MapReduce

Because the 13C-MFA workflow employs several highly-specialized software packages
(which are possibly maintained by a third-party), it is desirable to integrate these tools
seamlessly into a distributed computing environment. Like many other contemporary
scientific workflow projects, this work addresses computationally challenging tasks by
employing sophisticated cloud computing solutions. Cloud computing in general is cov-
ered in depth elsewhere in the literature (e.g., Mell and Grance, 2011; Buyya, Broberg,
and Gościński, 2011; Erl, 2014).

In recent years, the MapReduce architectural pattern has evolved as a generic, domain-
independent processing method for large amounts of data. Several MapReduce implemen-
tations have emerged that utilize cluster and cloud computing resources for performing
computationally demanding tasks in an embarrasingly parallel4 fashion. With MapRe-
duce, an elegant approach to implement Monte Carlo methods (the Bootstrap algorithm
in particular) massively parallel on local clusters and cloud computing HPC resources is
available (Scott, Blocker, and Bonassi, 2016).

The usefulness of MapReduce is demonstrated in various scientific disciplines (especially
life sciences) has been presented multiple times in the literature (e.g., Pratx and Xing,
2011; Wall et al., 2010; Matsunaga, Tsugawa, and Fortes, 2008). MapReduce and the
cloud-capable de-facto standard implementation Hadoop MapReduce is briefly recapitu-
lated in the next paragraphs. On the example of the aforementioned MCB algorithm, the
applicability of this approach in 13C-MFA applications is demonstrated in this thesis.

3.4.1. The MapReduce Programming Model

Two functions, map and reduce, are required to be implemented by the user with the
following prototypes (Dean and Ghemawat, 2004):

map (k1, v1)→ list (k2, v2)
reduce (k2, list(v2))→ list (v2)

These interfaces are similar to those present in Lisp and other functional programming
languages. list denotes a list of objects, k1 and k2 represent key types, v1 and v2 are
value types. The input key/value pairs (k1, v1) are pairwise independent, thus, map can be

4 https://en.wikipedia.org/wiki/Embarrassingly_parallel
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invoked in parallel for all pairs, yielding an intermediate list of mapped (k2, v2) pairs. For
each key k2, the corresponding values v2 are grouped and passed to the reduce function,
which merges – or reduces – final result values to a list of type v2.

3.4.2. Apache Hadoop MapReduce
The open-source Apache Hadoop project has emerged as the de-facto standard imple-
mentation for the MapReduce programming model (White, 2009). Providing custom map
and reduce functions, Hadoop automatically manages parallel and fail-safe execution of
these functions on traditional clusters as well as on-demand cloud infrastructures. As an
outstanding feature, MapReduce jobs may be defined by using native libraries (e.g., C++
and Java), or by providing map and reduce as console applications for the streaming API.

3.4.3. Amazon’s Elastic Map Reduce Cloud Service
To deploy Hadoop jobs in the cloud, Amazon’s cloud Hadoop offering named Elastic Map
Reduce (EMR) is employed. EMR is built on top of the web storage service Amazon
S3 and the virtual infrastructure service Amazon EC2. On-demand resource access to
computational nodes and storage is possible by web service interfaces without knowledge
or control of the technology and the infrastructure provided. Virtual machine instances
are used like dedicated physical hosts typically within a few minutes after the provisioning
request. The configuration is customized with respect to the number of CPUs, amount of
RAM, and instance storage. In addition to these settings, the price per time slot varies
(Dörnemann, Juhnke, and Freisleben, 2009). Pre-configured virtual machines running
Hadoop are offered that obviate the need for setting up an own Hadoop cluster.

3.4.4. Distributed MCB Implementation with Hadoop MapReduce
The presented MCB algorithm with 13CFLUX2 is easily applied to the MapReduce pro-
gramming model. Given a list of prepared FluxML files (i.e., configured with artificial
measurements and random initial flux values), Algorithm 2 depicts a straight-forward
MapReduce solution of the MCB procedure. A remarkable feature of this solution is
that the 13CFLUX2 tools are used as-is to parallelize the simulation on cloud computing
resources. Thus, with Hadoop MapReduce and Amazon’s EMR, a cloud solution for 13C-
MFA is available. § 5.2 presents the implementation details of the Hadoop MapReduce
approach taken in this thesis.
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Algorithm 2 Parallel MCB algorithm with MapReduce

Map(Filename, FML)
1 ▷ Parameter estimation
2 FWDSIM ← fitfluxes(FML)
3 ▷ Success indicates whether the execution of fitfluxes was successful
4 return (Success, FWDSIM )

Reduce(Success, FWDSIMList)
1 ▷ Only collect successful fitfluxes runs
2 if Success = True
3 then return collectfitdata(FWDSIMList))
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Chapter 4.

Design and Architecture of the Scientific
Workflow Framework

Various definitions for software architecture exist in the literature. In this work, the
functional units and their arrangement as well as the sum of all software components, their
interfaces, and interconnections are understood as the system’s software architecture. In
this sense, it’s main purpose is to document and to show the "big picture" of the software
(Hohmann, 2003). A popular way to represent software architectures is the so-called "4+1
model", which consists of four different views (logical, process, physical, and development)
and a set of scenarios that put the different views together (Kruchten, 1995).

By roughly following this scheme, this chapter is mainly concerned with the presentation
of the SWF from a logical view (cf. fig. 4.1). Thereby, the components are distributed
in a classical three layer architecture (Fowler, 2002). The data tier (§ 4.1) provides
persistent storage resources, while the application tier (§ 4.2) contains the processing and
service layers of the workflow execution environment and, thus, represents the heart of the
SWF. Web-based user interfaces to access scientific and process data produced throughout
various stages of the 13C-MFA workflow are included in the presentation tier (§ 4.3).

By taking a physical view on the software architecture, the deployment of the SWF
components is discussed in the context of the FZJ/IBG-1 server infrastructure (§ 4.4).
Although explicit discussions concerning the remaining views are omitted in this chapter,
the 4+1 model is complemented by situational process view discussions (e.g., § 5.2.1) and
the use cases (cf. chapter 6). These general design decisions are made for the SWF:

• Design Decision 1: The SWF follows the SOA paradigm, hence, functional
components of the 13C-MFA procedure (i.e., tasks of sub-workflows) are wrapped
and exposed as web services whenever possible. While some programming languages
come with convenient web service facilities (e.g., Java, C#, Python, or Ruby),
extending programs written in C, C++, or Fortran with such an interface requires
a dedicated wrapper layer (Erl, 2004). These applications are attributed as legacy,
despite the fact that many modern high-performance applications are developed in
a programming language that enables the exploitation of the underlying hardware
(Kumar et al., 2003).
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• Design Decision 2: While it is possible to develop every part of the SWF from
scratch, existing software solutions (i.e., libraries and tools) are employed whenever
feasible and new components are developed only when necessary.

In a similar manner, design decisions that are derived from the specific requirements of
the 13C-MFA procedure and the employed tools are highlighted as the three layers of the
SWF design are presented in subsequent sections.
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Chapter 4. Design and Architecture of the Scientific Workflow Framework

4.1. Data Tier
13C-MFA workflows involve both, raw and pre-processed, inputs and outputs, i.e., exper-
imental data, biochemical information, metabolites, reaction pathways, atom mappings,
models, and simulation data (Wiechert, 2001; Yang, 2013; Zamboni, Fendt, et al., 2009).
The employed tools and the data, have both their own data formats. Hence, the SWF
needs to support – at least to some extent – facilities to load and convert these formats.
Besides the data, biological and technical meta-information is vitally important (how is
the experiment performed? What simulation parameters are used in the study?). To cope
with this heterogeneous information, different data storage technologies are used: rela-
tional databases for bulk data, a version control system for documents, and a cloud-based
storage solution.

4.1.1. Storage of Scientific Raw Data in Relational Databases

Because scientific raw data (e.g., measurements) is typically recorded once and accessed
many times thereafter, relational SQL databases are employed to store this kind of infor-
mation persistently.

• Design Decision 3: Experimental data is managed in the open source PostgreSQL
software, which offers SQL:2008 compliance, database clustering, and transactions
(Obe and Hsu, 2014). In addition, PostgreSQL provides a JDBC driver which allows
the integration with a Java Enterprise application server (Rubinger and Burke,
2010).

• Design Decision 4: Scientific raw data is distributed on three databases which are
identified in the 13C-MFA context: a database for experimental data and measure-
ments, a model database, and a unified database to represent reaction information.

4.1.1.1. Measurement Database

This database is part of JuMeDaS (Jülich Measurement Data Selector), a management
system for analytical raw data from middle- and high-throughput experiments with 13C
isotope tracers (developed by Miebach, 2012). Figure 4.2 summarizes the database schema
which consists of eight tables grouped in three categories: analytical data, process data,
and measurement meta information.

4.1.1.2. Model Database

The model database provides interfaces to organize and access model documents. The
following tables are defined in the database (cf. fig. 4.3).

• The models tables organizes the model metadata, i.e., the associated project, name
and description of the model, owner, and insertion date.
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Figure 4.2.: UML diagram of the JuMeDaS measurement database schema. The tables are
grouped in three categories: measurement data (blue), process data (yellow),
and metadata (cyan).

• Models are organized in projects, where the access permissions are organized per
project in the permissions table.

• Because typical 13C-MFA workflows frequently modify a model, the
model_versions table tracks the various changesets of a model including a
history log.

• The files table contains metadata of the actual model file, i.e., name, type, and
location in the filesystem (which is backed by a VCS project repository; cf. § 4.1.2).

The access to the model database is realized in the ModelManager EJB1. The management
of experiments is realized in the ExperimentManager EJB2.

4.1.1.3. Reaction Database

JuMetReD (Jülich Metabolic Reaction Database) unifies the access to various knowledge
sources in the context of metabolic reactions and pathways (Fuhrmann, 2010). Because
the tracking of atom transitions is required for 13C-MFA, this information is annotated
to the reactions in addition. The database consists of 21 tables and is grouped in four

1 The WSDL of the model manager web service provides details on the available operations: https:
//www.13cflux.net/ModelDB-ejb/ModelManager?wsdl; last accessed: May 22, 2017

2 The WSDL of the experiment manager web service provides details on the available operations: https:
//www.13cflux.net/MeasurementDB-ejb/ExperimentManagerImpl?wsdl; last accessed: May 22, 2017
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Figure 4.3.: UML diagram of the JuMetReD model database schema. Five tables are
defined: models, projects, permissions, model_version, and files.

parts: compounds, reactions, hierarchical entities, and literature. Originally developed as
an independent Java Enterprise tool, JuMetReD is fully merged into the SWF3.

4.1.2. Version Control Systems for Storing Document Data

Unlike bulk data, document-based files (especially FluxML models, but also spreadsheet
files containing evaluated raw data) are constantly reviewed and changed in the course
of a typical 13C-MFA study. While it is technically possible to store documents in a
relational database, performance degradation is to be expected in the long run, especially
for larger documents (Sears, Ingen, and Gray, 2006). In addition, especially text-based
documents will consume the full file data space in the RDBMS, even for small changes.

Design Decision 5: A Version Control System (VCS) is employed to organize these
documents efficiently, e.g., by tracking each modification with a change history per file
and per folder (Tichy, 1982). Modern VCS solutions store files incrementally, sometimes
even binary data which is beneficial for space consumption and performance (Hudson,
2002).

4.1.2.1. Subversion and Other VCS Software

Table 4.1 compares five popular VCS solutions that are selected from existing open source
and commercial software packages4 for inclusion into the SWF: Subversion, CVS, Perforce,

3 The integration into the SWF is realized by Runkel, 2009 as part of his diploma thesis
4 A comprehensive list of other VCS software is found at Wikipedia: https://en.wikipedia.org/wiki/
List_of_version_control_software; last accessed: May 22, 2017.
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Subversion CVS Perforce Mercurial git
GUI client yes yes yes yes yes

console client yes yes yes yes yes
API support yes yes no yes yes

Java client lib. SVNKit no no no JGit
Python client lib. PySVN no no native GitPython
atomic operations yes no yes yes yes
directory tracking yes no no no no

open source yes yes no yes yes
VCS style client-server client-server client-server distributed distributed

comm. support CollabNet none yes none GitHub Inc.

Table 4.1.: Comparison table of popular VCSs. The decision criteria include the avail-
ability of GUI and console clients, Java and Python API support, atomic
committing of a set of changed files, and the ability to track empty folders in
the VCS.

Mercurial, and git. The most important decision criteria for the VCS software in the
context of 13C-MFA are: the availability of GUI and console clients, support for writing
custom clients in Java and Python, atomicity (i.e., check-ins of multiple documents are
performed as whole or not at all), and tracking of empty directories (which is useful for
tracking project templates).

Design Decision 6: The Apache Subversion software is employed to store document-
oriented data (Collins-Sussman, Fitzpatrick, and Pilato, 2008). Table 4.2 summarizes the
available clients for Subversion: the Microsoft Windows Explorer plug-in TortoiseSVN,
the svn command-line, the Java programming library SVNKit, and the Python SVN client
library PySVN.

4.1.3. Cloud Storage
Complementing traditional local devices, cloud computing infrastructures provide storage
renting services that have become popular in computational biology, most commonly the
Amazon S3 cloud service (Palankar et al., 2008). One of the pillars of cloud computing
are web services which are used to directly integrate the Amazon S3 storage (https:
//aws.amazon.com/s3/). The Amazon S3 command-line utility s3cmd or a web service
interface can be employed to access, modify, or delete data in the cloud. As Amazon
S3 provides a web-based user interface, published data files can be instantly shared with
other scientists via the Internet.

Design Decision 7: Amazon’s S3 service is used as cloud storage.
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TortoiseSVN svn SVNKit PySVN
add/rm/ci/co/diff/log yes yes yes yes

check-in per file yes yes yes yes
check-in per folder yes yes no yes

check-in of file selection yes no no yes
programmable no no yes (Java) yes (Python)

usability easy intermediate easy difficult
allows partial checkouts yes yes n/a yes

requires check-out yes yes no yes
search revision history yes yes yes yes

search in repository yes (Explorer) yes (grep) no no

Table 4.2.: Comparison of four Subversion VCS clients. (a) TortoiseSVN, a graphical tool
with advanced access features; (b) the standard console tool svn for perform-
ing expert tasks; (c) custom Java client application the SVNKit library; and
(d) custom Python client scripts utilizing the PySVN Python library. The us-
ability aspect is a subjective measure and reflects the required user experience
to use this tool effectively.

4.2. Application Tier
Within the application layer, the overall business logic of the SWF is realized. The very
core of the SWF is the workflow engine, which is responsible for managing and executing
the workflow applications. In particular, the engine orchestrates access to data layer
services, computational services, and allows for the deployment of simulation tasks on
cluster or cloud computing resources. These services (including those provided by the
workflow engine) are then utilized by the presentation layer (cf. § 4.3).

4.2.1. Workflow Engine

In the SWF, the workflow engine is responsible for executing control-flow programs. An
expressive language (i.e., Turing-complete) is required to represent scientific workflows,
which are typically non-deterministic, iterative, and recursive (W. v. d. Aalst and Stahl,
2011). The SWF is designed as a system of loosely-coupled applications, therefore, it must
be possible to compose workflows from standard SOAP and REST web services (cf. Design
Decision 1). Because the business web services are usually executed instantaneously,
synchronous service interfaces are considered to be sufficient. However, in the 13C-MFA
context, support for long-running tasks is a must.

In practice, a general-purpose programming language suffices to realize even complex
13C-MFA applications. Conversely, a specialized workflow engine (i.e., BPEL-based) of-
fers many benefits for large-scale modeling of complex workflows, e.g., with graphical
tools, BPMN compatibility, and cloud-awareness (Dörnemann, 2013). For the SWF, the
following design decisions are made:
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• Design Decision 8: The general-purpose programming language Python is em-
ployed in the SWF to compose ad-hoc workflows. Several reasons are factored into
this decision:

– Python is widely used in the life sciences community (Cock et al., 2009).
– Because Python is among the five most popular programming languages5, a

vast amount of literature, internet resources, and add-on modules are available.
– Python is one of the best languages in terms of interoperability with other

programming languages, e.g., with Shell, C or C++, which is in particular
relevant for the SWF (Bissyandé et al., 2013).

• Design Decision 9: Because ActiveBPEL is designed to seamlessly integrate in
any SOA environment, the SWF provides optional support for BPEL-based work-
flows.

The Python workflow approach as well as a brief comparison with ActiveBPEL (in-
cluding the scientific workflow extensions discussed in Dörnemann, 2013) is presented
next.

4.2.1.1. Python Tools and Libraries in the 13C-MFA context

To facilitate the ad hoc realization of 13C-MFA workflows, several open source Python
libraries and tools are integrated into the SWF. Specifically, the workflow engine in-
teroperates with any installed application tool by accessing web-service wrappers that
have well-defined I/O interfaces. By employing the Python programming language as
the workflow engine, 13C-MFA applications can be flexibly composed with the immediate
availability of a plenitude of standard libraries and third-party components. Specifically,
the following libraries are essential for the development of most 13C-MFA workflows (see
also use cases in chapter 6):

• NumPy and SciPy provide high-level scientific computing functionality, e.g., numer-
ical and statistical methods (J. Stewart, 2014).

• The HDF5 Python library h5py (Collette, 2013) as well as the Python modules csv
and xml support the most important 13C-MFA file formats.

• urllib3 (urllib3.readthedocs.org/) is chosen to implement REST clients,
while SOAP clients are implemented with SUDS (pypi.python.org/pypi/suds-
jurko/). To provide REST web services, the Python Bottle module (bottlepy.
org/) is employed.

• PySVN is used to access Subversion repositories out of a workflow program.
5 The TIOBE programming community index aggregates the popularity from various internet search

engines such as Google, YouTube, Bing, or Amazon. See http://www.tiobe.com/tiobe_index?page=
index; last accessed: May 22, 2017
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Requirement ActiveBPEL Python
Turing-complete language yes yes
SOAP web services yes library
REST web services no library
long-running tasks WSRF yes
HPC support yes library
cloud computing support yes library
DBMS access SOAP only library
document repository access SOAP only library
graphical modeling yes (BPMN) yes (UML)

Table 4.3.: Comparison of ActiveBPEL and Python as workflow engine. Using a broad
range of freely available extensions, Python largely covers the requirements of
the SWF. By providing SOAP web service interfaces, ActiveBPEL is easily
integrated into the SWF.

4.2.1.2. Comparison of Python and ActiveBPEL

A specially-tailored version of the open source software ActiveBPEL, which includes sup-
port for long-running processes, scalability, reliability (in terms of fault tolerance), and
data security is included as part of the SWF (Dörnemann, 2013). As ActiveBPEL runs
in a Java Servlet Container (such as Apache Tomcat), it fits well into the overall software
architecture of our SWF. Table 4.3 compares ActiveBPEL with Python according to the
requirements of the SWF.

4.2.2. 13CFLUX2 and Other Simulation Tools

Simulation programs are integrated into the SWF using a dedicated interlayer that wraps
the original application and provides suitable interfaces (e.g., web services or Java). Be-
cause most of the workflows discussed in this thesis employ 13CFLUX2, the legacy wrap-
per component needs to provide a mechanism to handle the specific parameters of these
programs. While most parameters are program-specific, some options are shared among
13CFLUX2 tasks in the workflow. For instance, all programs of a simulation workflow
should use the same provenance store settings to enable complete workflow traceability
(cf. § 4.2.5).

Design Decision 10: Develop a novel lightweight legacy software wrapper with Java
and web service interfaces.

An analysis of existing legacy wrappers reveals that existing approaches are either
complicated to use, or too restricted in their functionality (the results of the research
are detailed in Dalman, Juhnke, et al., 2010). Therefore, a new Java library called
FluxCore is developed that fills this gap. FluxCore is designed to provide object-oriented
interfaces for all programs of the 13CFLUX2 software collection (cf. fig. 4.4). Using
JAX-WS, the Java Servlet FluxWS provides SOAP web service interfaces in an Apache
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Figure 4.4.: Layers of the 13CFLUX2 legacy wrapper architecture. A workflow application
accesses 13CFLUX2 by three successive interfaces (from left to right): (a)
FluxWS is a SOAP web service API; (b) FluxCore is a thin wrapper that
provides a native Java interface; and (c) 13CFLUX2 can be invoked directly
using Shell or Python scripts.

Tomcat container for all public methods in FluxCore. With this extensible and lightweight
design, FluxCore is also compatible with third-party command-line tools as well. Because
FluxCore and FluxWS easily enable the integration of (legacy) simulation tools into the
SWF in a service-oriented manner, § 5.1 provides an in-depth discussion about the specific
realization of 13CFLUX2 web services.

4.2.3. Third-Party Software
Computationally demanding and data-intensive applications are best executed on high-
end workstations and computer clusters. While the SWF imposes no technical restrictions
on employing traditional HPC tools and libraries (as opposed to cloud-based solutions
using web service interfaces), the following third-party tools are selected to realize HPC
applications in combination with the SWF.

• Design Decision 11: MPI is a well-known event-driven distributed programming
interface (Pacheco, 2011). Using mpi4py (mpi4py.scipy.org/; part of SciPy), MPI
is easily used with Python programs.

• Design Decision 12: ZeroMQ is a networking library that is designed
around a set of powerful communication design patterns such as request-reply or
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publish-subscribe (Hintjens, 2013). PyZMQ (github.com/zeromq/pyzmq/) pro-
vides Python interfaces for ZeroMQ.

Both solutions can be used with the 13CFLUX2 libraries to realize performance-
optimized 13C-MFA simulations. Standalone third-party tools, such as Omix, access
the SWF services (e.g., databases or 13CFLUX2) via web service interfaces. Conversely,
third-party web services are easily accessed from Python or BPEL workflow programs.
Typically, the realization of web service clients is trivial in most modern programming
languages. For instance, the following code presents a Python program that accesses
KEGG REST web services (Kanehisa and Goto, 2000):

1 import urllib3
2 url = ’http://rest.kegg.jp/info/kegg’
3 http = urllib3.PoolManager()
4 r = http.request(’GET’, url)
5 print("content:␣%s" % r.read())

Similarly, a SOAP web service client using SUDS can be reviewed in appendix B.5.

4.2.4. Cluster and Cloud Computing with Hadoop MapReduce
While clusters and grids continuously evolved to satisfy the ever increasing requirements
of scientific computing in the last decades, only recently commercially successful cloud
computing services emerged in a pervasive manner. By employing Amazon’s cloud of-
fering, the availability of virtually unlimited resources to perform computations with
large-scale 13C-MFA models is now in reach. The primary motivation is to provide robust
and failure-tolerant cloud-aware 13C-MFA applications using Hadoop MapReduce. Per-
formance analysis of Hadoop MapReduce and its parameterization has been subject to
various studies in different contexts (e.g., Zaharia et al., 2008; Jiang et al., 2010; Ibrahim
et al., 2010; S. B. Joshi, 2012). In summary, these general design decisions are made for
the SWF:

• Design Decision 13: Hadoop MapReduce is employed to perform large-scale
simulation tasks.

• Design Decision 14: Amazon AWS (including EMR and S3) is employed to
outsource simulations on virtual cloud resources.

The remainder of this paragraph discusses the design decisions made to integrate
13CFLUX2, and the choice of configuration parameters to optimally run 13C-MFA simu-
lations in Hadoop MapReduce environments.

4.2.4.1. Using 13C-MFA Simulation Tools with Hadoop MapReduce

The Hadoop MapReduce framework is optimized to execute programs using plain strings
as input and output. This Hadoop MapReduce streaming API is very convenient because
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simulation jobs are realized using the simulation programs directly. The applicability
of this approach is demonstrated on the example of a raw MS chromatogram alignment
script in § 6.1. Although 13CFLUX2 simulation programs operate on XML string files,
Hadoop MapReduce requires each data item in a specific format. While XML data is easily
converted using Shell or Python scripts, there is a significant effect on the performance
as discussed in § 6.5.

As an alternative to this straightforward approach, a family of Java programs (called
FluxHadoop and FluxHadoop2 ) is developed as part of the SWF which employs the Hadoop
MapReduce Java API (cf. § 5.2). 13CFLUX2 programs are accessed by Java applications
via the API of the FluxCore library. In addition, this implementation allows the use of
binary data types, e.g., HDF5. Both, the straightforward and the Java approach, have in
common that the realization of Hadoop jobs is possible with minimal programming effort,
while the original 13CFLUX2 software is untouched.

Design Decision 15: Two strategies to execute existing simulation tools with Hadoop
MapReduce are realized in the SWF, where each approach has its own challenges and
advantages. Depending on the concrete problem, the use of either the streaming API, or
the native Java bindings to realize MapReduce jobs is advertised.

4.2.4.2. Configuring the Hadoop MapReduce Software for Simulation Tasks

The runtimes of 13CFLUX2 simulations are non-deterministic, while the MapReduce ar-
chitectural design pattern is typically used to uniformly process large amounts of data
(i.e., in terms of gigabytes or terabytes) (Dean and Ghemawat, 2004). 13C-MFA models
often require only several kilobytes of storage space, and currently even the most compre-
hensive models take up only a few hundred kilobytes. Fortunately, Hadoop MapReduce
offers with more than 200 parameters a way to tune the runtime performance for our type
of applications (White, 2009).

In particular, the following parameters have been selected to conduct 13CFLUX2 sim-
ulation tasks.

• mapred.task.timeout: by raising the default maximum task timeout from 10 min-
utes to a sufficient maximum (e.g., 24 hours), long-running simulations are no longer
aborted by Hadoop.

• mapred.tasks.speculative.execution: by default, Hadoop MapReduce performs
speculative execution of parallel tasks. While this compute-ahead feature is benefi-
cial for pure data processing tasks, performance issues with long-running simulation
tasks with Hadoop have also been identified elsewhere in the literature (Wall et al.,
2010). Hence, speculative task execution is disabled for this kind of simulation job.

• Rather than processing huge amounts of data, our primary use of Hadoop is to
elegantly parallelize a job on a distributed infrastructure. mapred.map.tasks,
mapred.reduce.tasks, and mapred.max.split.size allow the optimization of the
data segmentation (chunking) for the map and reduce processors.
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In summary, the performance of 13CFLUX2 simulations can be improved by carefully
adjusting the selected default configuration parameters of the Hadoop MapReduce frame-
work.

4.2.5. Provenance Collection Framework

Because 13C-MFA studies consist of a number of non-deterministic and in parts recursive
workflow steps, the researcher needs to keep track of a plenitude of metadata includ-
ing input data files (e.g., measurement data, models), output data files (e.g., simulation
outcomes, logs), and other documents (e.g., related studies or lab protocols). The informa-
tion that is needed to reproduce and understand a scientific workflow task is summarized
with the term provenance data (Moreau, Groth, et al., 2008). This section discusses the
requirements and design criteria of a software module that supports the tracking and
organization of scientific workflow provenance data.

4.2.5.1. Requirements for a 13CFLUX2 Provenance Framework

The ability to capture, manage, and query metadata is one of the major advantages of
using scientific workflow solutions in general (Davidson and Freire, 2008) and the SWF in
particular (the results of the research are detailed in Dalman, Weitzel, Wiechert, et al.,
2011). As pointed out, typical 13C-MFA workflows consist of several modeling, simulation,
and analysis steps. As with other parts of the SWF, the provenance collection framework
is a custom-tailored solution with the focus on 13C-MFA workflow applications using
13CFLUX2. By supporting the scientist in organizing and tracing provenance messages
for each of these steps, the provenance data of the whole workflow is made accessible.

Notably, inspection of the provenance data in the SWF is not limited to a retrospective
analysis. Besides monitoring the current status (is the task pending, running, or finished?)
of the workflow execution on distributed computing environments, the online provenance
approach for the SWF also allows for life monitoring of analysis results on demand. This
is a very effective decision-making feature for the scientist who invokes compute-intensive
13C-MFA applications because it can save significant amounts of time and money. For
instance, long-running flux estimation processes may come to nothing, which can be
detected by an experienced modeler through continuous inspection of the specific process
data. Additionally, as unintended abortions of simulation tasks can happen at any time,
it is especially useful to track such premature program exits (e.g., due to program errors,
resource shortage, or modeling issues).

4.2.5.2. Software Design after the Provenance Life-cycle Model

The provenance life-cycle model describes the phases that an item of provenance data
perambulates in a computer system (Moreau, Groth, et al., 2008). This model is taken as
a design guide for the design of the provenance collection framework. It consists of four
parts (cf. fig. 4.5):
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Figure 4.5.: The provenance life-cycle model consists of four phases: (1) creating, (2)
recording, (3) querying, and (4) managing provenance data (Moreau, Groth,
et al., 2008).

1. Creating: provenance data is created by a provenance-aware application. In the
13C-MFA context, 13CFLUX2 tools (and other programs) need to be extended by
the capability of generating provenance data.

2. Recording: the provenance store is an application that captures and manages prove-
nance messages. Entries generated from provenance-aware applications are stored
in-memory, or (if needed) persistently saved in a file.

3. Querying: after the recording, scientists often need to obtain selective information
on the provenance data of specific items (e.g., log messages from a failed workflow
step). Thus, the provenance store provides the ability to be queried and filtered for
messages of interest. Eventually, the scientist also submits the extracted information
of interest to the Subversion project repository.

4. Managing: the provenance life-cycle model distinguishes between user roles (working
with scientific information in the store), and administrator roles (managing the store
itself). While this differentiation is also important in the SWF approach (especially
in a multi-user context), the actual persistence layer (and thus, the management of
the store contents) is handled within Subversion repositories.

The provenance server collects metadata and log messages from simulation applications
running on the compute nodes online (i.e., while running). The collected data can be
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Figure 4.6.: The overall design of the log collector consists of two parts: a high-level web
service API that is integrated into the 13C-MFA workflow framework, and
a low-level network-attached provenance framework. 13CFLUX2 command-
line programs are accessed by a web service wrapper.

accessed by the scientist via a web-based interface. In summary, the following design
decisions are derived for the provenance collection framework (cf. fig. 4.6):

• Design Decision 16: The design of the provenance collection solution of the
SWF includes four basic building blocks following the provenance life-cycle model:
(i) a library to emit provenance log messages (fluxlog); (ii) provenance store (flux-
prov); (iii) a query client (provclient); and (iv) web service interfaces for managing
provenance stores on demand.

• Design Decision 17: The framework is split in two layers. While the service
layer offers standardized web service interfaces to other components of the SWF,
the application layer is optimized for high-performance. Specifically, custom binary
network transport protocols are employed for low-latency and high-throughput com-
munication.

• Design Decision 18: Provenance stores in the SWF are private to the user
which simplifies the overall design of the provenance collection framework. User
management and persistence of provenance information is organized in Subversion
project repositories.

• Design Decision 19: Several open source C or C++ logging libraries are available
which support many features. For instance, Apache log4cxx6 is a prominent logging

6 See https://logging.apache.org/log4cxx/.
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library with support for wide character Unicode and multiple inheritance-based log-
ging contexts. However, existing libraries have a noticeable impact on performance
(Synesis Software Pty Ltd, 2010). Hence, following the design of 13CFLUX2, a
lightweight logging library is developed from scratch.

• Design Decision 20: 13CFLUX2 programs are extended by parameters to control
the provenance collection behavior. This way, the scientist can decide whether a
13CFLUX2 task is to be monitored at the expense of runtime performance.

4.2.5.3. TCP, UDP, and SCTP Network Transport Protocols

Because typical 13CFLUX2 simulation workflows generate lots of log messages (espe-
cially when several simulation workflows run in parallel), it is worthwhile to optimize the
performance of the provenance collection framework. In general, when a networking com-
munication channel is highly loaded, the effect is observable in the transport layer, e.g.,
message losses or slow-downs are seen (Tanenbaum, 2002). While there are several trans-
port layer protocols available in Linux and other modern operating systems, three of the
most widely used protocols7 with different usage characteristics are chosen for capturing
provenance messages in the SWF (cf. table 4.4):

Features UDP TCP SCTP
reliable transport no yes yes

preserves ordering no yes optional
connection-oriented no yes optional

strict message boundaries yes no yes

Table 4.4.: Comparison table of employed network transport protocols UDP, TCP, and
SCTP. These protocols mainly vary in the reliability of the packet transport,
whether messages arrive in the same order as sent, and whether an explicit
connection between sender and receiver is required.

• TCP is a connection-oriented streaming protocol. Because the message transfer
is reliable, TCP is employed as the default protocol in the provenance collection
framework.

• UDP is selected in 13C-MFA workflows where overall performance is more impor-
tant than accuracy. For instance, it is tolerable to occasionally miss residual or flux
values that are being monitored during a parameter estimation process (cf. § 6.7).
Although the underlying UDP protocol gives no guarantees about the ordering of
transmitted datagrams, the provenance framework ensures this by using timestamps
in fluxprov and fluxlog.

7 See also https://en.wikipedia.org/wiki/Transport_layer.
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• SCTP is, despite being available for more than a decade on the Linux operating
system, a lesser known alternative to both, TCP and UDP (R. Stewart, 2007).
Specifically, SCTP addresses the reliability and blocking issues in TCP and UDP.
In many private networking environments (such as the FZJ/IBG-1 IT infrastructure;
cf. § 4.4), SCTP can be readily used as drop-in replacement for collecting provenance
data in the SWF.

§ 5.3.5 discusses the performance differences of the three transport protocols with a use
case employing 13CFLUX2.

Design Decision 21: TCP is chosen as default transport protocol for the SWF
provenance collection framework. UDP and SCTP protocols are selectable as configura-
tion parameter.

4.3. Presentation Tier

On top of the SWF, the presentation layer enables the scientist to compose, run, monitor,
and steer workflow applications. To this end, services that provide static and dynamic web
pages of the Internet domain 13cflux.net are implemented in this layer. This way, this
solution adapts well-established web technology that is also found in other general-purpose
SWFs, e.g., Galaxy (Goecks et al., 2010) or Taverna (Hull et al., 2006) and specialized
bioinformatics platforms such as MeltDB (Neuweger et al., 2008). The software design of
the SWF web site is driven by the following requirements:

• Enable the presentation of information about research projects and related content
to prevalent Internet web clients.

• Access to project-specific (or otherwise sensitive) web content needs to be protected
by user-based login. At the same time, some information (e.g., imprint) need to
be publicly accessible. Therefore, the web sites need to be designed with different
personas8 (i.e., with different access permissions and views on information) in mind.

• Because any internet web site is exposed to malicious attackers, dedicated security
measures must be implemented to protect sensitive data such as project content and
user credentials.

4.3.1. Software Components

It is common to distinguish between the web server and application server components,
e.g., for security and performance reasons (Chopra, Li, and Genender, 2007). The follow-
ing design decisions are made for the presentation layer:

8 In this text, persona is used synonymously with the term role.
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• Design Decision 22: The Apache HTTPD web server is the most widely used
open source Internet server software9 and is therefore chosen to handle internet web
requests (Bowen and Coar, 2008). Appendix D summarizes the configuration details
of the Apache HTTPD web server.

• Design Decision 23: The dynamic web content, i.e., research and non-scientific
content (e.g., user-related credentials) is realized in the Java EE-compliant JBoss 6
application server (Rubinger and Burke, 2010).

4.3.2. Web Page Design of 13CFLUX.net

The FZJ corporate design is included by using a HTML template10. Each web page
consists of a navigation menu (left), a page header (top) and footer (bottom). The page
content is displayed in the remaining space in the center.

Figure 4.7 shows the front web page of the portal server. The corresponding source
code is found in listing B.1 in appendix B. JSTL is employed to assemble HTML pages
using the design template and to include server-side JSP tags. The following custom JSP
tags are defined:

• cms:page: this is the root XML tag for the custom JSP content. The attribute
site references the content settings XML file for the 13CFLUX.net web portal.

• cms:pageAttr: with this tag the page title, custom CSS, and JavaScript files can
be specified.

• cms:security: page access is controlled using this tag. Setting the boolean at-
tribute requireLogin to false allows anonymous access to the page contents. The
attribute requireRole further restricts the access to the page to the specified group
of users.

• cms:securitySection: while cms:security provides access control mechanisms
for a whole page, this tag displays page sections depending on the user’s login-state
and role.

On client side, the pages are presented using HTML, CSS, JavaScript, and JQuery.

4.3.3. Content and Personas

The web portal of the SWF is used by different personas with varying user-interface
workflows (Mulder and Yaar, 2006). Each user is assigned to one or more roles which are
categorized as follows:

9 See for example: http://w3techs.com/technologies/cross/web_server/ranking/; last accessed:
February 9, 2016.

10 The corporate identity design of the FZJ web sites from 2009 has changed in the meantime. Thus, the
similarity between our web site and http://fz-juelich.de/ is restricted to logos and color schemes.
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Figure 4.7.: Screenshot of the www.13cflux.net front web page.

• Guests visit the web site to obtain basic information about 13C-MFA, publications,
tools, or specific projects. This is the default role for any user, hence, all non-
restricted pages are accessible by guests.

• Scientists have access to particular areas of the web portal. The
measurementdb-user role, for example, is allowed to view contents of the mea-
surement database.

• Administrators are permitted to perform tasks like user management.

The Java EE standard provides several facilities to realize a persona-oriented web portal.
Design Decision 24: Support for multiple roles that can be assigned to users.

The basic roles are: guests, scientists, and administrators. More roles can be added
on-demand, e.g., to control permissions for specific research projects.
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4.3.4. Ticket-based Authentication System
Workflow applications can be defined by a series of independent (web service) invocations.
To avoid a full authentication at each step, a suitable security mechanism is desired
(Todorov, 2007). With Stateful Session Beans11, Java EE provides a standardized way
to handle session tickets. However, these beans are normally memory-resident (i.e., non-
persistent) and designed to run a short time period (Jamae and P. Johnson, 2009). By
contrast, scientific workflow applications are typically long-running, i.e., in the order days
or weeks.

The Central Authentication and Authorization System (CAAS) is the ticket-based access
and authentication component of the SWF web portal. It features the role-based ticket
authentication system CAAS which is based on CAS12, a single sign-on Java library. The
CAASHandler EJB provides public interface methods to check the validity of a ticket,
to prolong the ticket’s expiry, and to get information about the ticket. The tickets are
persistently stored in the CAAS database. Figure 4.8 depicts the database schema for
the user management which consists of seven tables.

Design Decision 25: Realize a ticket-based authentication mechanism to grant
access to web portal services. Extend the life-time of such an authentication ticket until
the workflow execution is finished.

4.3.5. SVNKit Web Integration
The design of the Subversion repository access within the web portal using SVNKit is
shown in fig. 4.9. Following the three-tier design, the user frontend for accessing and
managing the repository is realized in several JavaServer Pages. The logic is implemented
by two management (ModelRepository and RepositoryManager) and helper classes
(DirEntry and LogEntry). The actual repository operations (e.g., creating a new file revi-
sion) is provided by the SVNKit library in the Java namespace org.tmatesoft.svn.core.
The net.x3cflux.repository.entity interfaces the database EJBs to store repository
meta information (such as user access mapping).

These repository operations are implemented in the web portal: browse the repository
tree, download, modify, create new file or new file revision, and delete. By mapping the
Subversion (SSH) user keys to CAAS credentials, the scientist is relieved from explicitly
authorizing to the repositories.

Figure 4.10 depicts a web portal screenshot viewing the above template repository
structure. With this web interface, a scientist accesses the repository content and history
with a web browser.

11 In the Java Enterprise context, a bean refers to an application running in the web application server
context.

12 CAS web site: https://apereo.github.io/cas/; last accessed: May 22, 2017
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Figure 4.8.: UML diagram of the CAAS database schema. User-related data is stored
in the users table. While the roles table associates a list of users to a
role (via roles_users), the rolesets tables can arbitrarily group roles (via
roleset_roles) and users (via rolesets_users) together. The tickets
table is used to provide a time-limited authentication to a particular user.
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Figure 4.9.: Diagram of repository integration classes using SVNKit.
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Figure 4.10.: Screenshot of the SVNKit web site. Using this interface, a scientist can
download, add, update, delete, or read the changelog of a particular file
from any web browser.
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4.4. Deployment Considerations
The SWF is designed to be accessible from public Internet web clients. Therefore, vari-
ous security and service reliability measures are identified and implemented in the SWF
deployment architecture:

• Secure Transport: Because web servers are generally scanned by malware appli-
cations for open networking ports, all service accesses except HTTP and HTTPS are
restricted to trusted hosts (i.e., from the intranet). To protect web-based communi-
cation between client and web service, the use of HTTPS is forced for the exchange
of sensitive data13 because a security system is only as strong as its weakest link
(Ferguson, Schneier, and Kohno, 2010, page 5).

• Virtualization: While it is possible to deploy the SWF on a single host, the
distribution of the services on multiple nodes offers advantages in terms of security,
scalability, and service reliability. By separating publicly accessible Internet services
from internal services on dedicated (virtual) machines, compromised hosts only have
a confined impact on the whole system (Spector, 2000).

• Service Reliability: Service robustness and data integrity are crucial requirements
for storage clusters like database systems and repository servers. When a node or
a service fails, it is desirable to keep the downtime at a minimum. To ensure
robustness, the cluster monitoring service Nagios14 is employed. Thus, when a node
fails, automatic recovery scripts are executed which restore the service operation.
Data integrity is ensured by utilizing various levels of redundancy, i.e., by employing
RAID systems, NAS storages, and external backup solutions (Hick and Shalf, 2009).

• Performance: The web server needs to be able to handle several hundred simul-
taneous HTTP requests per second. Because the Java Enterprise application server
hosts the dynamic web site, client requests typically consume considerable amounts
of CPU and memory resources. Typical web clients of the web site are malware bots,
automatic web crawling robots, or actual users (Milstein, Biersdorfer, and MacDon-
ald, 2006, chapter 8). Thus, to mitigate possible web performance issues, the web
server is separated from the application service. Because adding compute nodes to
the Hadoop cluster is easily possible, load bottlenecks in the simulation cluster are
eliminated with new or additional hardware (Sammer, 2012). Alternatively, perfor-
mance peaks can be handled by employing on-demand cloud computing resources,
e.g., with ActiveBPEL (Dörnemann, 2013).

In summary, these design decisions are derived for the SWF deployment:
13 The Electronic Frontier Foundation advocates the general use of HTTPS. Thus, they offer the free web

browser plugin HTTPS Everywhere to prefer encrypted transport over plain HTTP on client side. The
SWF provides HTTPS for all web sites. See https://www.eff.org/https-everywhere/; last accessed:
May 22, 2017

14 Nagios web site: http://nagios.org/; last accessed: May 22, 2017
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• Design Decision 26: Implement basic security measures, i.e., use HTTPS for
web clients and (REST) web services whenever possible, expose only necessary net-
working services, and grant access to data only for authenticated users.

• Design Decision 27: Use virtualization and redundancy techniques to minimize
service downtimes. In addition, modern virtualization stacks employ Kernel-based
Virtual Machine (KVM) or operating system level virtualization, which have prac-
tically no added performance impact (Newman, 2015, chapter 6).

• Design Decision 28: To ensure scalability and performance stability, split the
services on different physical hosts (e.g., by using virtualization technology).

To demonstrate these considerations for the deployment of the scientific workflow frame-
work, fig. 4.11 depicts an overview of the hardware infrastructure at FZJ/IBG-1.
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Figure 4.11.: Overview of the local cluster infrastructure at FZJ/IBG-1. The data center
operates the supercomputer cluster and provides general IT services, i.e.,
backup, storage, networking, e-Mail, firewall, and monitoring. The SWF
uses three virtual machines on a two-host VMware ESX server cluster: the
web and application server (ibt-v707), a hot-standby backup server (ibt-
v709), and the Hadoop master (ibt-v708). The IBG compute cluster cur-
rently consists of three identically configured cluster nodes (ibt-011, ibt-012,
and ibt-013). 13CFLUX2, a Tomcat Servlet Container, a Subversion Repos-
itory, and HDFS distributed storage services are running on each node.
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4.5. Chapter Summary
For the SWF, 28 design decisions are made that are valid for 13C-MFA in particular and
model-based metabolic engineering approaches in general. Taken individually, many of
these design decisions are also found in other scientific workflow approaches (in fact, some
decisions are inspired by existing solutions). The aggregation of all design decisions, which
are derived from the computational challenges C1–C5 of 13C-MFA applications, forms the
overall design of the SWF.

A quantitative look at the distribution of the individual design decisions reveals that
the SWF mainly focuses on the application tier, i.e., 15 decisions out of 28 are defined in
the middleware layer. Conversely, the design of data-driven or choreographed workflow
frameworks (which are popular especially in bioinformatics) have primarily emerged from
data management15 and visualization requirements (Curcin and Ghanem, 2008). More-
over, these (mostly monolithic) workflow frameworks integrate the scientific visualization
as part of the system, whereas the SWF approaches the visualization of 13C-MFA models
and simulation outcomes as decoupled steps (though, the automation of visualization and
simulation cycles is – at least in parts – still possible as shown in §§ 6.2, 6.4 and 6.8).

15 For instance, most of the services listed in the Taverna Workbench User Manual are designed to perform
data extraction, querying, and format conversion. See: http://dev.mygrid.org.uk/wiki/display/
tav250/User+Manual.
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Chapter 5.

Service-oriented 13C-MFA Solutions

Due to its universality by design and its extensive functionality, 13CFLUX2 is deemed
as the heartpiece of the SWF. Its modular and "headless" architecture eases the com-
position of computational tasks to larger 13C-MFA workflows. However, to transfer the
complete 13C-MFA procedure to the SWF, the aforementioned challenges need to be tack-
led, namely, data organization (C1), standardization of tools and data (C2), interactive
workflow steering (C3), distributed computing (C4), and service orientation (C5). This
chapter displays how the SWF addresses these challenges by employing a service-oriented
approach.

By realizing Java and web service interfaces, a modern and standardized method to
access 13CFLUX2 programs is provided by the SWF (§ 5.1). With these interfaces, com-
putationally demanding jobs are deployed on cluster and cloud computing resources using
the Apache Hadoop MapReduce framework (§ 5.2). § 5.3 presents the provenance collec-
tion services, a framework that enables the gathering of metadata. The SWF document
storage concept improves the traceability and reproduction of 13C-MFA studies in general
(§ 5.4). Finally, auxiliary visualization, simulation, and data conversion tools complement
the 13CFLUX2 services in combination with the SWF (§ 5.5). Figure 5.1 depicts the tools
that are proposed in this work to realize the steps of the 13C-MFA procedure. Although
13CFLUX2 plays a central role in the SWF implementation, the underlying ideas are
readily transferable to other 13C-MFA tools that provide appropriate APIs.
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Figure 5.1.: The 13C-MFA workflow – revisited. Software used in this thesis to realize
typical 13C-MFA applications include the 13CFLUX2 toolbox (blue boxes),
third-party tools (gray boxes), and newly developed programs (red boxes).
The central arrows indicate principal transitions from 13C-MFA workflow
steps (rounded boxes), while the straight connector lines show the typical
utilization of a tool within a particular workflow step. Some tools are used
in more than one workflow step, however, in the drawing software compo-
nents are only drawn once (Omix being the exception due to its dual role as
modeling and visualization tool).
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5.1. Making 13CFLUX2 Service-oriented
To use existing programs in composite applications, they need to provide suitable inter-
faces to communicate within the SWF. In this work, the FluxCore and FluxWS libraries
implement lightweight Java and web service interfaces for legacy programs. On the ex-
ample of 13CFLUX2, the adequacy of the taken approach to make legacy command-line
tools service-oriented (and thus, to integrate them into the SWF) is described.

5.1.1. Extending Legacy Tools with Java Interfaces using FluxCore
A command-line program is understood as a user-space process which performs a non-
interactive computation task (Peterson and Silberschatz, 1985). Linux command-line
programs usually interact with the operating system environment (e.g., the login shell)
via the following standard I/O conventions (Love, 2013):

• Standard input stream is used by the program to read application data (such as file
content).

• Program output text1 is written to the standard output stream.

• User text messages are written to the standard error stream.

All 13CFLUX2 programs are designed to follow these conventions. Because the stan-
dard input and standard output streams of 13CFLUX2 programs are compatible to each
other (i.e., FluxML or FWDSIM formats are used), the composition of these tools to
simple workflows is easily possible, e.g., using the pipes and filters architectural design
pattern (Hohpe and Woolf, 2003). To extend command-line programs with a Java inter-
face using the FluxCore library, a constructor (realized as static initializer method) and
a configuration method are implemented (cf. fig. 5.2). This way, the FluxCore library
provides a variety of features:

• Extensibility: by inheriting from the FluxServiceBase, the access to command-line
parameters which are common to all 13CFLUX2 programs (e.g., logging options) is
centralized for all 13CFLUX2 program classes. Likewise, the internal handling of a
program (e.g., starting, stopping, setting input and output streams) is realized in
the abstract ServiceBase class. Thus, Java interfaces for command-line programs
are easily added to the SWF by inheriting from ServiceBase.

• Virtual workspace: the heart of the FluxCore library is ExecutionContext. This
class manages a virtual workspace for each active program, including input and
output files, and an error code if the program has terminated. Because the virtual
workspace is backed by a dedicated folder on the filesystem, it may be used to
exchange file data between subsequent workflow steps.

1Some programs, such as GNU tar, also support writing binary data to the console output to allow
"chaining" of programs using pipes.
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Figure 5.2.: UML class diagram of the FluxCore library. Each 13CFLUX2 program is
wrapped by a Java class from the net.x3cflux.services package (bottom).
These classes inherit from a more generalized execution and processing en-
gine in the net.x3cflux.core package (top). Thus, the integration of new
command-line tools is comparable easy to realize. The command-line argu-
ments are automatically generated from an XML Schema file which eases the
utilization of workflow arguments (right).

• Signal handling: by utilizing the standard Linux operating system signal hand-
ling (i.e., POSIX signals), running applications may be immediately terminated
(SIGKILL) or notified to gracefully interrupt the processing (SIGINT). Many
command-line programs already implement a set of signals. For example, inter-
rupting the execution of a console program with control-C, the SIGINT signal is
passed by the Linux operating system to the program (Love, 2013). In fitfluxes, the
current parameter optimization iteration is aborted when SIGINT is received and
a FWDSIM file is printed based on the last valid optimization values.

5.1.2. Web Service Interfaces for Long-running Simulation Tasks

Services (and in particular web services) are understood as a standardized and interop-
erable set of interfaces which expose functions of a software component (Josuttis, 2007).
Because web services are typically stateless, the execution of (potentially long-running)
simulations has two consequences:
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1. The web service call itself is blocking, i.e., the web service call by the client will
return after the simulation is finished.

2. State management has to be realized on top of the web service execution.

The Web Services Resource Framework (WSRF) addresses the realization of industry-
grade standardized stateful web services and, thus, is ideally suited to work with other WS-
* standards such as WS-Addressing or WS-Notification (Banks, 2006). Notably, WSRF
is also used together with BPEL (Dörnemann, Smith, and Freisleben, 2008). § 5.2.3.2
presents an example where WSRF is used in a BPEL workflow.

However, well-tested and easy-to-use open source WSRF libraries outside the Java pro-
gramming language are (to the author’s best knowledge) rather uncommon. To fill this
gap in the SWF, FluxWS is developed as a lightweight library to realize stateless and
stateful web services using plain SOAP. As an outstanding feature, FluxWS provides a
custom-tailored parameterization concept for configuring 13CFLUX2 web service appli-
cation. Exemplarily, the realization of the Fitfluxes web service within FluxWS is shown
at the end of this paragraph.

5.1.2.1. FluxWS Web Service API

FluxWS provides two SOAP web service interfaces to invoke 13CFLUX2 programs:

1. Synchronous calls are blocking until the web service processing is finished (in which
case the standard output result from the FluxCore call is returned), or an error
occurred and a SOAPFault exception is returned.

2. Asynchronous calls immediately return with a string-based handle which refers to
a unique ExecutionContext entity. In the context of FluxWS, this string is called
JobTicket. A web service client may perform the following operations on the web
service using the JobTicket object:

• delete: stop the job with a POSIX SIGKILL signal and remove the execution
context data.

• stop: send a graceful job termination signal (realized as POSIX SIGINT signal).

• isRunning: determine the job execution status.

• listFiles: return a list of file names in the execution context.

• getFileData and getFileSize: return file data.

• waitFor: wait for a specified amount of time until the job is terminated. This
method synchronizes the client-side execution of the service call.

The utilization of FluxWS using a Python SOAP web service client with the SUDS
library is demonstrated in appendix B.5.
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5.1.2.2. Workflow Parameterization Concept of FluxWS

While 13CFLUX2 programs are parameterized independently from each other in a com-
posite simulation, some program arguments have in practice the same value for all tasks
within a workflow run. The selection of FluxML configurations, the provenance collec-
tion behavior, and logging parameterization are identified as common 13CFLUX2 pro-
gram arguments. In addition, several arguments are shared between simulation programs,
e.g., optimizer parameters and solver configuration are uniformly defined in 13CFLUX2.
FluxCore provides a consistent mapping to ease the parameterization and composition of
complex workflow applications:

S : (P, C) ↦→ R

Here, the 13CFLUX2 service S maps a XML-based parameter string C and the service
parameter P to the service result R. Typically, P is a FluxML model and R is XML or
HDF5 data comprising simulation data. The workflow-specific configuration C is passed
throughout each workflow step. Using this parameter XML document2, 13CFLUX2 pro-
grams are configured individually. This parameterization concept leverages the composi-
tion of 13C-MFA workflows with stateless web services.

5.1.2.3. The Fitfluxes Web Service

To demonstrate the lightweight character of FluxWS and the underlying FluxCore li-
braries, the differences of the synchronous and asynchronous realization of the Fitfluxes
web service are shown. The synchronous Fitfluxes service endpoint implementation
consists of 11 lines of code (comments, logs, and error handling omitted):

1 public byte[] Fitfluxes(byte[] fmlcontent, Parameter P) throws Fault {
2 Fitfluxes srv = Fitfluxes.create();
3 srv.setInputContent(fmlcontent);
4 srv.setParameter(P);
5 try {
6 return srv.run("stdout");
7 }
8 finally {
9 srv.getExecutionContext().cleanup();

10 }
11 }

Line 2 instantiates the Fitfluxes service object. After passing the input data (line 3)
and workflow parameters (line 4), the program is run with stdout as program output file
name in the execution context (line 6). This is a synchronous program execution, hence
the result data is immediately returned and the execution context is cleaned up (Line 9).

Besides the common asynchronous web service functions (e.g., waitFor or stop), the
specific Fitfluxes realization for this API consists of a "start" method:

2The FluxCore parameter XML format is defined in the following XSD schema: http://13cflux.net/
fluxparameter; last accessed: May 22, 2017
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1 public JobTicket FitfluxesStart(byte[] fmlcontent, Parameter xmlparams) throws
Fault {

2 Fitfluxes srv = Fitfluxes.create();
3 srv.setInputContent(fmlcontent);
4 srv.setParameter(xmlparams);
5 String ctx_id = srv.start();
6 JobTicket ticket = new JobTicket(ctx_id);
7 return ticket;
8 }

While the Fitfluxes call blocks until the simulation is finished, FitfluxesStart im-
mediately returns with a JobTicket. The identifier of the execution context is retrieved
after asynchronously starting the task execution (line 5). With this context identifier, a
JobTicket instance is created and returned to the caller (lines 6-7).

5.2. 13CFLUX2 in the Cloud with Apache Hadoop MapReduce

This section presents the solution of this thesis for deploying computationally demand-
ing 13C-MFA simulations on cloud computing resources using Hadoop MapReduce. On
the example of 13CFLUX2, our primary simulation tool in the 13C-MFA environment,
three realized variants of the MCB algorithm are presented: a straightforward approach
which calls 13CFLUX2 programs from the command-line, an improved approach (called
FluxHadoop) using FluxCore and the Hadoop Java API, and a specialized version (called
FluxHadoop2 ) that utilizes local CPU cores of a compute node. The general life-cycle of
a 13CFLUX2 simulation in a Hadoop MapReduce cloud setup is described first.

5.2.1. Life-Cycle of a 13CFLUX2 simulation using Hadoop MapReduce

In the SWF realization, the simulation life-cycle with Hadoop MapReduce in Amazon’s
cloud consists of five steps:

1. Upload scientific data to the S3 cloud storage. The cloud storage is used to exchange
data between the SWF and the EMR service. Amazon provides a variety of ways
to upload scientific data, i.e., a web GUI, a command-line program, and a REST
web service interface as part of the AWS SDK3.

2. Reserve virtual Hadoop cluster resources. The on-demand initialization of virtual
resources includes the specification of the node type, the number of virtual nodes,
and the selection of an operating system image. For our purposes, the official Debian
Amazon Machine Image (AMI)4 is chosen as base operating system for all simulation
tasks in the cloud.

3See https://aws.amazon.com/tools/.
4See https://wiki.debian.org/Cloud/AmazonEC2Image/.
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3. Virtual machine initialization (bootstrapping). Because the AMI is a general-purpose
Linux operating system, the specific software tools (e.g., 13CFLUX2) need to be
installed during the VM startup. This process is called bootstrapping. The AWS
credentials to access the scientific data from the S3 storage are as well installed by
the bootstrap startup script.

4. Perform the simulation job. The input data is split into chunks and processed by
the Hadoop software. Because the data chunks are pair-wise independent, the user-
specified map and reduce programs can be invoked on all available VMs in parallel.

5. Retrieve the workflow outcome. After the job is finished, the output data is placed
at the specified URN for further processing by subsequent workflow tasks. With the
exception of log files, all allocated resources are disposed by the Hadoop framework.
These logs can be inspected by the scientist in case of a Hadoop failure.

While Amazon cloud resources require the on-demand initialization of the VM re-
sources, local Hadoop clusters are readily available to perform simulation jobs.

5.2.2. Straightforward MCB with 13CFLUX2 and Hadoop MapReduce
A straightforward approach to realize the MCB algorithm with Hadoop MapReduce is to
use references to FluxML model files in the Hadoop distributed storage (HDFS) instead
of passing file content as values. The deployment script performs five steps to prepare
and deploy the job in the Hadoop cluster:

1. Create directories on the HDFS storage with the command hadoop -dfs -mkdir
fmlfiles.

2. Prepare FluxML files with randomized samples locally using the 13CFLUX2 pro-
grams ssampler, perturb, and setfluxes.

3. Upload the FluxML documents with the command hadoop dfs -put fmlfiles
${HDFSROOT}/fmlfiles.

4. Invoke Hadoop MapReduce with this command:

hadoop jar hadoop-streaming.jar
-input "${HDFSROOT}/fmlfiles"
-output "${HDFSROOT}/tmpoutput"
-mapper "mc_mapper"
-reducer "mc_reducer"

mc_mapper and mc_reducer are simple Python wrapper scripts that invoke
fitfluxes and collectfitdata. For example, the key-value pair (0,
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${HDFSROOT}/model0.fml) is passed to map. Likewise, the intermediate pair (0,
${HDFSROOT}/fwd0.fml) is processed by reduce, which eventually returns (0,
${HDFSROOT}/result0.hdf5).

5. The computed result is downloaded from the HDFS storage with the command
hadoop dfs -get ${HDFSROOT}/collect.hdf5 collect.hdf5, while the results
of failed computations are dropped.

When the map tasks are distributed within a network of nodes (step 4), the commu-
nication overhead has to be taken into account (Pacheco, 2011). Therefore, to balance
between the number of parallel tasks and the expected computation of a simulation, the
granularity parameter G is introduced to the MCB algorithm, i.e., every task computes
G Monte Carlo iterations (cf. algorithm 3). To keep the implementation as simple as
possible, only one reduce task per Hadoop job is employed, however, this as a significant
effect on the performance (cf. § 6.5).

Algorithm 3 MCB algorithm with Hadoop MapReduce utilizing a granularity parameter.
The key difference between the original map function is the outer loop which processes
G ≥ 1 Monte Carlo iterations. The Hadoop MapReduce function context.write is called
to emit a key-value pair for each iteration. The keep the code readable, the error-handling
has been omitted. The error variable SUCC is set to FALSE if either fitfluxes or setfluxes
fails.

Map(INFNAME , FML)
1 for k ← 1 to G
2 do
3 ▷ Model with perturbed measurements
4 FMLP ← perturb(FML)
5 for j ← 1 to M
6 do
7 ▷ Parameter estimation
8 FWDSIM ← fitfluxes(setfluxes(FMLP , SAMPLES [j]))
9 ▷ Write FWDSIM result to shared folder with unique name

10 FNAME ← makeFileName(INFNAME , j, k)
11 storeFile(FWDSIM , FNAME)
12 ▷ SUCC indicates whether fitfluxes was successful
13 context.write(SUCC, FNAME)

5.2.3. FluxHadoop: Improved Implementation of the MCB
Beside the tuning parameter G, two aspects of the straightforward streaming implemen-
tation critically influence the parallel execution of the MCB algorithm. Firstly, using file
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Figure 5.3.: FluxHadoop architecture overview. FluxML documents are stored in the Ama-
zon S3 repository. Data is passed through the Hadoop framework in four
steps: (1) Data splits from the sequence file are passed to the map tasks. (2)
FWDSIM files generated from fitfluxes are passed to the reduce tasks. (3)
CSV results are written to the HDFS storage. (4) The CSV data is transferred
back to S3, where the user can access the result files.

references (which consume only small amounts of storage) causes many read and write
operations on the Hadoop MapReduce filesystem HDFS (Sammer, 2012). Notably, HDFS
is by default configured to replicate 64 MB chunk blocks on three HDFS nodes, i.e., three
blocks are completely written for every write operation. Secondly, employing only one
reduce task per Hadoop job limits proper scaling of the MCB implementation. Clearly,
Hadoop jobs with a large number of nodes will suffer from a noticeable performance loss5.
Addressing these issues of the MCB streaming version, a new Java-based implementation
called FluxHadoop is provided with three major improvements (cf. fig. 5.3):

5 The question of optimally partitioning of Hadoop jobs into suitable chunks is discussed on the Hadoop
MapReduce wiki: http://wiki.apache.org/hadoop/HowManyMapsAndReduces; last accessed: May 22,
2017
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1. The FluxML files generated in the preparation phase of the algorithm are packed
into the Hadoop-specific input format SequenceFile using the original file name as
key and the file content as value. The HadoopPacker program combines multiple
FluxML files into a single sequence file.

2. Because HadoopPacker creates native SequenceFile objects, the data file is directly
readable by the Hadoop framework. After performing the computation, the mapper
(using fitfluxes via FluxCore) emits the original file names as input keys, along with
the corresponding FWDSIM result data as intermediate pairs. Because fitfluxes and
fwdsim2csv employ standard input and standard output streams, the realization of
FluxHadoop benefits from a reduced number of I/O operations in the HDFS storage
(Miner and Shook, 2012).

3. Compared to merging multiple binary HDF5 files is a complex operation, the con-
catenation of CSV files is simple. Therefore, the reducer is implemented by the
13CFLUX2 program fwdsim2csv that emits CSV files consisting of lines of comma-
separated values of interest in the format: error-code, input file name, residual
values, and estimated flux values. In case the subsequent workflow steps require the
data format to be HDF5, CSV files can be easily converted using h5py (Collette,
2013).

5.2.3.1. Realization of FluxHadoop

To illustrate the interfaces and interactions between 13CFLUX2 and Hadoop, implemen-
tation details of FluxHadoop are presented in the following. The Java package FluxHadoop
consists of the classes MCBMain, Map and Reduce. Implementing the Hadoop Tool inter-
face, MCBMain is responsible for setting up the Hadoop job. Specifically, input and output
types are assigned with the methods setInputFormatClass, setMapOutputKeyClass,
setMapOutputValueClass, setOutputKeyClass and setOutputValueClass. In Flux-
Hadoop, the Map Java class performs the actual map operation with an input key/value
pair. The computation is executed by the following code fragment:

String xmlpath = context.getConfiguration().get(paramfile);
Parameter fluxparams = FluxParameter.getParameter(xmlpath);
Fitfluxes flux = new Fitfluxes(value, fluxparams);
byte[] res = flux.run();

In the SWF, 13CFLUX2 is parameterized with an XML file. Using the Hadoop
configuration mechanism, the parameter file (paramfile) contains the constant string
net.x3cflux.hadoop.mcb.fluxparamfile. With the HadoopJarStepConfig, the file flux-
parameter.xml is passed to the Hadoop framework with the Amazon SDK. The EMRin-
vokeHadoop.sh script is used to pass this parameter as argument to Hadoop.

With context.write(key, value) at the end of the Map class, the result of this
operation is emitted to the Hadoop framework, where context is an instance of the Hadoop
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Context class. Likewise, the Reduce class is implemented using the 13CFLUX2 Java
wrapper class FWDSIM2CSV. An error-code (i.e., 0 for success, a negative number otherwise)
and the processed FML file name is prepended to the output CSV data. The Hadoop
framework transfers CSV files from finished reduce tasks to the persistent S3 storage.
The number of output files corresponds to the number of reduce tasks.

5.2.3.2. Monte Carlo Bootstrap Master Application on Amazon EMR

Figure 5.4 presents MCMapReduce, a BPEL realization of the MCB algorithm using
Amazon’s EMR cloud service. These Java classes are realized in MCMapReduce:

• AmazonElasticMapReduceClient is responsible for setting up and configuring the
EMR cloud resources. AWS credential access and compute nodes are configured, i.e.
number and type of nodes are specified. The Amazon SDK provides a comprehensive
REST API to perform this task.

• EMR jobs are configured and executed with the RunJobFlowRequest class.

• The API class HadoopJarStepConfig is utilized to define FluxHadoop as implemen-
tation of the Hadoop map and reduce functions.

Beside initializing the cloud resources and defining the EMR job steps, MCMapReduce
provides a WSRF web service interface. After starting a MCB job, MCMapReduce polls
the Amazon service for state changes. The workflow then registers as a state change lis-
tener, being automatically notified using WS-Notification when the services have finished
computation (fig. 5.4, step 5). In the meantime, the workflow (or workflow branch if there
is more than one) is suspended.

5.2.4. Hybrid-Parallel Parameter Estimation
In recent years, the number of cores per CPU has drastically increased, and this trend
is likely to continue (Pacheco, 2011). Although Hadoop MapReduce not only distributes
computational tasks on cluster nodes, but also on all cores of a node, N×M fitfluxes tasks
are scheduled for the MCB algorithm with FluxHadoop. This has two consequences on
the performance: firstly, each fitfluxes call is traversed through a stack of Java code (i.e.,
the FluxCore library, the Hadoop MapReduce Java API, the Hadoop TaskTracker, and
the Java Virtual Machine) which adds increased runtime and memory usage (Sammer,
2012). Secondly, each fitfluxes has an overhead of computational tasks for loading the
FluxML file, verifying the integrity of the standard equations, computing the matrices,
and (after finishing the parameter estimation) writing out the FWDSIM XML files.

Both problems are addressed by FluxHadoop2, which employs multifitfluxes, a multi-
process variant of fitfluxes (§ 5.5.3 provides a detailed description of multifitfluxes). Flux-
Hadoop2 introduces the configuration option K as the number of simultaneous param-
eter estimation processes per map task. Hence, by combining Hadoop MapReduce with
a shared memory parallelization approach, only N ×M/K tasks need to be scheduled
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Figure 5.4.: Embedding the Hadoop MCB algorithm into a BPEL workflow. A workflow
executed in a BPEL engine invokes the MCMapReduce service via a SOAP
call (1). Using the AWS API, a Hadoop job is started (2) and the job is
executed on cloud computing resources (3). The MCMapReduce service polls
for the completion of the simulation job (4) and eventually returns a SOAP
notification (5).

by the Hadoop framework. Each map task performs M multi-start optimizations, thus,
K ≤M and K ≥ 1 tasks are executed in parallel on a node. Because multifitfluxes emits
M flux vectors as HDF5 formatted data, these intermediate outputs need to be converted
to CSV results. Therefore, a different converter is employed to implement the reduce
step (i.e., hdf5tocsv instead of fwdsim2csv; cf. § 5.5.5). Table 5.1 summarizes the findings
of the three introduced MCB realizations using the Hadoop MapReduce framework. In
§ 6.6, the performance improvements of FluxHadoop2 are presented.
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Streaming FluxHadoop FluxHadoop2
13CFLUX2 binding Python FluxCore FluxCore
map program fitfluxes fitfluxes multifitfluxes
reduce program collectfitdata fwdsim2csv hdf5tocsv
Number of mappers N ×M N ×M N ×M/K
Number of reducers 1 ≥ 1 ≥ 1

Table 5.1.: Comparison of the MCB realizations with Hadoop and 13CFLUX2. Only one
reducer is employed in the straight-forward streaming version. Because the
hybrid version employs k cores per node using multifitfluxes instead of
fitfluxes, only N ×M/K map tasks need to be scheduled by the Hadoop
framework.

5.3. Provenance Collection Services
In the SWF, the collection of provenance data can be controlled by employing the four
basic building blocks of the framework in 13C-MFA workflows: (i) the fluxlog library,
(ii) the provenance store fluxprov, (iii) the provenance query client provclient, and (iv) a
web service interface for managing provenance stores on demand. This section describes
how to integrate and use these services efficiently in 13C-MFA workflows. Because the
SWF provenance collection components allow the operation with TCP, UDP, or SCTP,
suggestions for choosing the optimal transport protocol is given at the end of this section.

5.3.1. Creating Provenance Data using the Fluxlog Library
The fluxlog library is used to extend applications with the ability to emit messages to a
provenance store. Although fluxlog is shipped as part of the 13CFLUX2 toolbox6, the
library can be used with any C++ program to create provenance data. The following
features are offered by fluxlog:

• Immediate output: provenance messages are created and published immediately.
Thus, the execution of workflow steps can not only be observed post-mortem but
online as well.

• Various log types: support for level of detail for different logging types, i.e., error,
warning, notice, information and five additional types of debug messages.

• Multiple streams: emit provenance messages to multiple output streams (e.g., a file
and a networking interface).

• Performance optimized: The fluxlog library is developed with special focus on mem-
ory and runtime efficiency. Depending on the application’s parameterization, logging

6 The API design and implementation of fluxlog is jointly developed with the 13CFLUX2 original author
Michael Weitzel.
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Figure 5.5.: Simplified UML diagram of the fluxlog class library. Publisher classes are
registered in the LogManager singleton instance. By calling the log method,
provenance messages are committed to all registered log publishers which
subsequently decide on the log level whether to emit the messages. Further
attributes (e.g., message formatting or coloring) can be configured in the
publisher base class LogMessagePublisher.

can be activated at runtime for certain log types. By employing C/C++ macros,
logging types can be disabled at compile time and, thus, impose zero runtime over-
head on performance-sensitive simulations.

The UML class diagram of fluxlog is shown in fig. 5.5. To make an application prove-
nance aware using fluxlog, the following steps need to be realized:

1. Select a logging publisher method: the abstract LogMessagePublisher class provides
interfaces for concrete provenance log publishers. Besides the publish function,
which emits the provenance messages, various commonly used methods are provided,
e.g., to define the output format (formatMessage). There are several concrete
publisher classes available: FilePublisher emits messages in files or the standard
console output. To disable the output entirely on runtime, the NullPublisher
class is employed. Under Linux, the file descriptor publisher FDPublisher is used
to send messages to files. Specifically, because networking interfaces are accessed
via file descriptors on Linux, this class is employed as base class for the networking
publishers (TCPPublisher, UDPPublisher, and SCTPPublisher).
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Figure 5.6.: Simplified UML diagram of the provenance store fluxprov. The Server class
represents the provenance store. While multiple provenance sources (i.e.,
sinks from TCP, UDP or SCTP protocols) can be connected at a time, at
most one query client is allowed to be active which is represented by the
Drain class. Query clients are connected via TCP. The Socket class is a
simple abstraction of the Unix socket interface (Stevens, Fenner, and Rudoff,
2003). The LogInfo class describes provenance messages and is imported
from the fluxlog library.

2. Configure the logging behavior : the LogManager class is a singleton class that is
used to configure an application for its logging behavior. In 13CFLUX2 programs,
the parameter −l controls the output of the provenance data. In fluxlog this is
performed with the SETLOGLEVEL macro which accepts the most significant ordered
enumerator type (i.e., ERROR, WARNING, NOTICE, INFO, and five DEBUG
levels).

3. Emit provenance information: fluxlog offers two ways to emit logging messages: a
macro is used to emit general messages (e.g., fINFO or fTHROW); secondly, by inher-
iting from a publisher, a custom stream for emitting specific data can be realized.
Instead of using the aforementioned macros, messages are emitted directly using the
class publish method.

5.3.2. Recording of Provenance Data

Beside the creation of log messages in an application, both, smart capturing and fast
transport of provenance data to a provenance store are performance critical tasks. Cap-
turing provenance messages from distributed 13CFLUX2 applications requires an efficient
communication between a fluxlog program and the provenance store fluxprov. Hence, the
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fluxprov program sits in-between programs using the fluxlog library and the provenance
query client provclient. Figure 5.6 summarizes the UML class design of fluxprov.

The provenance store can be queried while at the same time log messages from
13CFLUX2 programs are captured. We call this monitoring feature online capable. To
allow such an online monitoring of provenance data and to keep the design of the prove-
nance framework simple, fluxprov provides two distinct networking sockets. Because the
first socket collects the provenance data, it is termed sink. 13CFLUX2 provenance mes-
sages are erased from the store after being queried, therefore, the second socket is called
drain.

The binary representation of a provenance message (of type LogInfo) is defined in the
fluxlog library and shared with the provenance store. The LogInfo structure consists of
the following metadata types: log type, process ID, hostname, file name, line and function
name in the application source, and a record creation timestamp.

5.3.3. Querying the Provenance Store

provclient is a command-line query tool that sends requests for provenance messages to
the fluxprov drain socket. A request can be parameterized with specific filters:

• Hostname: Designated simulation hosts can be selected by a network address or a
hostname.

• Message type: Specific messages can be filtered by log type, e.g., only error and
warnings can be requested.

• Timestamp: Messages captured within a time window are requested.

• Message: This option allows to filter messages by a regular expression.

An additional filter parameter, discard, controls the retention policy of queried mes-
sages. The user may keep queried messages in the database to perform multiple queries
to the provenance store. Request filters are implemented as command-line parameters
of provclient. POSIX regular expressions are used to implement this feature (Goyvaerts
and Levithan, 2012). Finally, provclient allows flexible formatting of any selection of
message and metadata fields as customized output string. This way, captured provenance
messages can be easily converted to CSV or XML files.

5.3.4. Managing Provenance Services

To work with the provenance collection framework, the scientist needs to be able to
perform these tasks:

• Start and stop the fluxprov program.

• Execute 13CFLUX2 programs that are parameterized to log into a provenance store.
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• Query the provenance store contents.

• Submit queried provenance information persistently to the Subversion project repos-
itory.

Performing these tasks on a single machine is easily possible, e.g., by using the
command-line. Because the framework transparently supports communication via TCP,
UDP, or SCTP protocols, the use of the SWF provenance collection solution is likewise
easy in a private networking environment. However, in a web environment (e.g., the In-
ternet), the access to arbitrary networking ports is usually restricted by strict firewall
rules. To overcome this issue, the provenance framework provides web service interfaces,
i.e., fluxprov and provclient is started or stopped remotely using the FluxCore library.

FluxCore not only provides the ability to control 13CFLUX2 programs, but also a
mechanism to pass common parameters within a workflow. Specifically, the provenance
collection behavior is set-up in the flux parameter XML document. For instance, the fol-
lowing configuration of a fluxprov publisher sends the provenance data to the provenance
store loghost.13cflux.net on port 9099 via UDP:

1 <parameter>
2 <common>
3 <logpublisher>
4 udp:loghost.13cflux.net:9099
5 </logpublisher>
6 </common>
7 </parameter>

5.3.5. Choosing the Network Transport Protocol

The provenance collection framework uses TCP as default transport protocol between
the provenance-aware applications using fluxlog and the fluxprov service. To evaluate
the influence of the network transport protocol on the overall performance of 13CFLUX2
simulations, a series of simulation experiments is conducted. Using UDP, TCP, and
SCTP protocols, the provenance data emitted from a multifwdsim workflow is captured
by a fluxprov service.

The experiments are conducted on two servers with 64 GB RAM and four Xeon X7350
processors, each with four CPU cores which are connected via Gigabit Ethernet (exclu-
sive usage; with only a Layer-2 switch in-between). The first server creates 16 parallel
simulation jobs with 1,000 samples each of a medium-scale FluxML model, while the sec-
ond server runs fluxprov. The simulations are performed with the highest verbosity level
producing 6,688,000 log data packets with a total size of 297,010,295 bytes.

As a reference, the simulation runs in 9:40 minutes with local file provenance data
collection. Sending provenance data via TCP takes 10:05 minutes, i.e., compared to the
local reference, a slowdown of approximately 5% is measured. The fastest network based
transfer is achieved with UDP (9:43 minutes, less than 1% overhead). With a runtime of
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9:49 minutes, SCTP is faster than TCP. The difference between UDP and SCTP, however,
is surprisingly small. The number of packets not being captured by the fluxprov service
was found to be less than 2% via SCTP. Table 5.2 summarizes the results.

local file UDP TCP SCTP
elapsed time (mm:ss) 9:40 9:43 10:05 9:49

packets (recv/send ratio) 100% 99.04% 100% 100%
slow-down ratio – 0.51% 4.31% 1.55%

Table 5.2.: Comparison between local file and networking protocols. To obtain the refer-
ence execution time, the provenance messages are redirected into a file on the
local system. The other measurements are performed in a local networking
environment (two compute nodes with Gigabit Ethernet interfaces). While
the second best performance is achieved with UDP (with only 3 seconds over-
head), there is a measurable amount of lost packets. TCP is 25 seconds slower
(4.3% slow-down) with no packet losses. Likewise, the simulation is performed
reliably, but with only 9 seconds slow-down (1.5%).

From the tests it can be concluded that the provenance solution is fast. Although 283
megabytes of provenance data is generated in the experiment, the total simulation time
increases by less than 1% in the best case. The measurements show that SCTP is superior
to UDP and TCP in the given environment. Because the availability of SCTP is currently
restricted to specially-confined computer networks (Tanenbaum, 2002), TCP is a default
that works everywhere and has only little performance overhead on simulations with a
high volume of provenance data.

5.4. Version-Controlled 13C-MFA Workflows
In the 13C-MFA domain, until now only loose guidelines for publishing results have been
proposed (Crown and Antoniewicz, 2013). These guidelines concentrate exclusively on
end-point reporting and lack information that enables the repetition of the computa-
tional workflow or the tracing of a model’s evolution. Going beyond this, the SWF doc-
ument storage concept is inspired by the MIASE guidelines (minimal information about
a simulation experiment7) (Waltemath et al., 2011). Similar to MIAPE for proteomics
experiments (C. F. Taylor et al., 2007) and the MIRIAM for annotating models (Novère
et al., 2005), MIASE guidelines aim at defining the necessary information to perform
reproducible simulation experiments.

5.4.1. Standard Project Template
For Subversion, a standard template has been developed to organize all information and
data generated and used in a 13C-MFA research project. Intermediate results, programs

7See co.mbine.org/standards/miase/
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(as source code or binary), metadata (e.g., which and how programs are invoked), and
further information is collected there. Thus, when starting a new 13C-MFA project, a
fresh repository is created that contains the following sub-folders:

• raw_data: raw measurement data files and intermediate results (e.g., .xls or .csv
files).

• results: the final outcome of the study (e.g., .fml files).

• protocols: laboratory protocols that were used in the study.

• provenance_data: all log files, program execution parameters, and other technical
metadata generated during the study.

• tools: custom executable scripts or programs utilized by the scientist.

• notes: the researcher’s verbatim notes, comments, screenshots, and other media
data that are captured during the study.

In this structure, the version-controlled files accumulate throughout the 13C-MFA
project. Superfluous data (e.g., logs that are only relevant for an ongoing simulation
process) can be curated by the modeler, if appropriate.

5.4.2. Accessing SWF Projects via Web Service Interface
In the SWF, services access exchange files (input, output, and metadata) using the cor-
responding project repository. This way, all information is preserved while at the same
time the exchange of data is standardized. The access to the project repositories is again
realized as web service. RepoManager is a RESTful web service to manage and access
SWF project repository data. The application employs Python and PySVN to provide
the following services (cf. appendix B.6):

• /init/<repo>: initialize a repository with name <repo>. Thereby, all sub-folders
of the standard project template are created.

• /list: return a list of all available repositories.

• /list/<repo>: list the content of the repository <repo>.

• /add_project/<repo>/<name>: add a new project with name <name> to the
previously initialized repository with name <repo> (see /init above).

The above operations are invoked as a REST URL with a base URL, e.g., http:
//localhost:8080/. Using the open source cURL software8, the REST service is easily
accessed from the command line, e.g., curl http://localhost:8080/list executes the
/list operation.

8see: https://curl.haxx.se/
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5.5. Revisiting the 13C-MFA Workflow: Auxiliary Tools
Beside the standard tools 13CFLUX2 and Omix, a couple of features are identified for
general usage (and further standardization) of 13C-MFA workflows using the SWF:

• Visualization of input substrate mixtures (drawMixingTriangle).

• Measurement resampling in FluxML documents (perturb and multiperturb).

• Simulation tools that exploit multi-core compute nodes (multifwdsim,
multifitfluxes).

• Collection and extraction of simulation data (collectfitdata).

• A conversion tool from FluxML HDF5 data to CSV (hdf5tocsv).

These tools are distributed as part of the 13CFLUX2 toolbox (Weitzel et al., 2013).
Figure 5.1 highlights the software components that are (co-)developed as part of the SWF
to complete the realization of semi-automated 13C-MFA workflow applications.

5.5.1. drawMixingTriangle: Using Python instead of MATLAB
drawMixingTriangle.m is a MATLABTM program to visualize input substrate mixture
triangles resulting from an in silico experimental design study and published as part
of the 13CFLUX2 toolbox (Weitzel et al., 2013). MATLABTM is very popular in the
scientific community, however, several issues need to be considered when integrating
MATLABTM programs into a service-oriented environment such as the SWF (see also
the official MATLABTM site; Edelhofer, 2014):

• MATLABTM is commercial and the standard licensing model is per user. Thus, to
provide a web service that executes the MATLABTM interpreter, strict authenti-
cation of all users of such a web service must be provided. MathWorks provides a
special Distributed Computing Server which is instead machine-bound.

• It is possible to integrate MATLABTM programs into other applications, by em-
ploying the C/C++ code generator9,10.

• The integration of graphical MATLABTM programs with other software compo-
nents can involve architectural and implementation effort (Lamprecht, Margaria,
and Steffen, 2009).

On the example of drawMixingTriangles, it is demonstrated that the SWF approach to
employ Python and NumPy instead of MATLABTM is a viable option. These steps are
conducted for the new implementation:

9 MATLABTM Coder: https://mathworks.com/products/matlab-coder/
10 Coder supports only a subset of the MATLAB language (Edelhofer, 2014).
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• Because matplotlib provides a MATLABTM-compatible syntax, a large amount of
visualization could be adapted with only minor syntactical changes.

• The conversion of MATLABTM matrix operations to NumPy involves several pitfalls
that need to be considered carefully. For example, the following operations are
functionally equivalent:
# MATLAB
R = [0, -1, -min( T(:, 2)); 1, 0,-min(T(:, 1))]
# Python/NumPy
R = numpy.array( [[0., -1., -min(T[:,1])], [1., 0., -min(T[:,0])]]);

Aside from being slightly more verbose, the NumPy version has some minor semantic
changes, e.g., array indexes are starting with 0 instead of 1. A collection of all
differences between MATLABTM and NumPy is found on the SciPy web site11.

• drawMixingTriangle processes data in HDF5 format generated by the edscanner
tool. To access HDF5 data out of a Python program, the H5Py library is used
(Collette, 2013).

• The computation of quantiles is realized with scipy.stats.mstats.mquantiles.

In comparison, the new implementation offers several improvements: (a) the design is
completely object-oriented, thus, its parts (i.e., the drawing and the computation part is
separated from each other in the new implementation), are reusable; (b) the application
is a stand-alone command-line program with the 13CFLUX2 I/O and parameter conven-
tions; and (c) the implementation is functionally superior because different image formats
and quality options are offered in addition.

5.5.2. perturb: Completion of the MCB Implementation
To implement the bootstrap method in 13CFLUX2, original measurements need to be
replaced with randomized samples (Efron and Tibshirani, 1993). Algorithm 4 presents
the perturb procedure in pseudo-code. The generateNoise function (Line 11), which
is part of the 13CFLUX2 C++ library, overwrites the measurement group according
to the measurement model with randomized values. Thereby, the normal distribution
function with the parameters µ (measured sample value) and σ (the standard deviation
obtained from the measurement device) is employed in the measurement model. An in-
depth description of the 13CFLUX2 measurement model is found elsewhere (Weitzel,
2009)[chapter 4].

5.5.3. Multitools: Exploiting Simulation Performance on Local Nodes
Up until now, a researcher has three options to perform Monte Carlo simulations using
13CFLUX2 and the SWF: (i) small-scale simulations are easily performed with fitfluxes
11 "NumPy for Matlab Users" porting guide: http://wiki.scipy.org/NumPy_for_Matlab_Users
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Algorithm 4 Perturb algorithm

PERTURB(FMLIN , FMLOUT , GROUPTYPES)
1 ▷ Read FluxML document from file
2 FLUXML ← readFluxML(FMLIN )
3 MGROUPS ← FLUXML . getMGroups()
4 for each MG in MGROUPS
5 do
6 if MG ∈ GROUPTYPES
7 then
8 ▷ Resample selected measurement group using the 13CFLUX2
9 ▷ library method generateNoise. It is ensured that the sum

10 ▷ of all measurement values within MG equals 1.
11 MG . generateNoise()
12 ▷ Write randomized data into a new FluxML file
13 FLUXML . writeFluxML(FMLOUT )

on a local node utilizing a single compute core; (ii) large-scale simulations are deployed on
a Hadoop MapReduce cluster or cloud computing resource; and (iii) medium-scale simu-
lations can be performed on multiple cores on a local compute node using the 13CFLUX2
program multifit (Weitzel et al., 2013).

Multifit is realized as Perl script that performs multi-start parameter estimations by
invoking ssampler, fitfluxes, and setfluxes in a multi-tasked fashion. Due to this design,
for M multi-start samples the FluxML input needs to be parsed and analyzed once for
ssampler, and M times for fitfluxes and setfluxes, respectively (i.e., 1 + 2 ×M times in
total).

Multifitfluxes addresses these issues by using the 13CFLUX2 C++ library (and, simi-
larly, multi-core variants for fwdsim and perturb are realized as well). Figure 5.7 depicts
the class diagram of multifwdsim, multifitfluxes, and multiperturb. The realization of these
tools is summarized as follows:

• The classes MultiFitFluxes, MultiForwardSimulation, and MultiPerturb imple-
ment the functionality of the three tools.

• Inspired by the MapReduce design pattern, the JobManager class provides an en-
vironment for processing the abstract methods map and process (which are imple-
mented by the above classes) in parallel.

• The helper classes FluxMLManager and CollectDataStore provide access to
FluxML and HDF5 data files.
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Figure 5.7.: UML class diagram of multifwdsim, multifitfluxes, and multiperturb.

• Because FluxSimulator utilizes FluxMLManager to process input FluxML files (in-
stead of parsing each input separately), this class is employed by MultiFitFluxes
and MultiForwardSimulation. The 13CFLUX2 library methods are used to per-
form the optimization and simulations, respectively.

These tools demonstrate the feasibility of custom-tailored 13C-MFA applications in the
SWF using the 13CFLUX2 libraries. The performance advantages of this approach (in
terms of runtime and memory consumption) compared to the utilization of fitfluxes are
demonstrated in § 6.6.

5.5.4. collectfitdata: Consolidate the Outcome of MCB Simulations
A full MCB simulation job often generates millions of FWDSIM files out of a single
FluxML input model. For this vast amount of data, it is desirable to perform a pre-
analysis where flux data from a smaller batch of MCB simulation files (e.g., with 30,000
files) is extracted and summarized and in a single HDF5 file. With this HDF5 data, fluxes
are visualized (using Python and matplotlib) and subsequent workflow steps are decided
by the researcher, e.g., update the model or perform a full-scale MCB simulation.

collectfitdata is a specially-tailored C++ helper tool to extract fluxes from multiple
FWDSIM files and consolidate them into a single HDF5 file. Given a directory con-
taining the FWDSIM files (PATH) and a selection of collection items (C) as input, the
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collectfitdata procedure is described in algorithm 5. 13CFLUX2 library functions (e.g.,
SimDocMultiReader) are used to implement collectfitdata. To reduce the computational
effort depending on N , the FWDSIM validation is performed only once in line 5.

Algorithm 5 COLLECTFITDATA Algorithm

COLLECTFITDATA(PATH , C )
1 ▷ Acquire and sort list of FluxML documents
2 FILES ← readDirectory(PATH )
3 ▷ Create reader (assuming non-empty list of regular files)
4 ▷ Only the first file is fully parsed and validated
5 S ← SimDocMultiReader(FILES [0 ], C )
6 ▷ Create HDF5 file and create data fields
7 H5 ← initializeHDF5Output(C )
8 for each F in FILES
9 do

10 ENTRY ← S.extractFWDSIMData(F)
11 H5 .appendData(ENTRY )
12 H5 .Close()

5.5.5. hdf5tocsv: A High-Performance Data Conversion Tool
Although HDF5 is an highly efficient format for storing and organizing scientific bulk data,
it is sometimes necessary to stick to a simpler text format such as CSV. For instance,
the CSV-based outcome of Hadoop MapReduce tasks can be merged using a simple file
concatenation operation. Furthermore, spreadsheet processing tools like Microsoft Excel
2013 support textual input in the CSV format only.

The hdf5tocsv tool is developed as part of the SWF to convert 13CFLUX2-compatible
HDF5 files, such as the output from ssampler, multifitfluxes, or collectfitdata, to CSV
text files. By using the 13CFLUX2 and HDF5 libraries, this program requires 80 lines of
C++ code (excluding argument parsing code and help texts; cf. appendix B.2). hdf5tocsv
supports various formatting options, e.g., omitting the CSV header (which eases the
concatenation operation), and changing the default delimiter from ’,’ to another character.
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Use Cases

This chapter illustrates the utilization of the SWF on concrete use cases. As a guideline
for this chapter, selected examples are taken from the complete 13C-MFA workflow as
presented in fig. 1.2. § 6.1 describes parallel data processing of raw MS measurement
data. By analyzing the steps a scientist performs during the creation of 13C-MFA models,
the principles of hiding technical details in the SWF are covered (§ 6.2). A large-scale
simulation involving 50,000 samples of two variants of a BCG vaccine model is presented
in § 6.3. § 6.4 demonstrates the non-deterministic nature of typical 13C-MFA applica-
tions on an exploration workflow that essentially narrows down the flux solution space of
a model (Schuster, Dandekar, and Fell, 1999). The runtime performance of the Hadoop
MapReduce MCB algorithm on purely local, cloud computing resources, and mixed envi-
ronments is explored in §§ 6.5 and 6.6. Using the provenance collection framework, § 6.7
covers the online tracking of residual data, which is created in the course of a 13C-MFA
simulation workflow. Finally, the chapter closes with a workflow that combines multi-
ple phases of modeling, simulation, analysis, and visualization with the interaction of a
researcher (§ 6.8).

6.1. Mass Spectrometer Data Analysis with Hadoop DTW in R

To obtain usable data for 13C-MFA analyses from raw MS measurements typically a
series of processing steps need to be performed (Miebach, 2012). Hyphenated methods
(e.g., GC-MS or LC-MS), which are typically used in 13C-MFA experiments, yield chro-
matograms that are composed of large sets of consecutive mass spectra (Gross, 2011).
Each chromatogram dataset has three dimensions: retention time, intensity, and m/z
value. However, because the obtained mass spectra contain experimental errors, one step
of the MS data processing workflow is to perform an alignment correction of the mass
spectra retention time shifts in the chromatogram. PA_alignAndChooseSpectra.R is a
script implemented by Max von Haugwitz1 in the R programming language that performs
the alignment correction using the Dynamic Time Warp (DTW) method (Giorgino, 2009).

On the example of this script, the integration of legacy tools in the scientific workflow
and the parallelization of otherwise serial processing tasks is demonstrated in this use
case.

1 This script is provided by Max von Haugwitz as part of his doctoral thesis (Haugwitz, 2016).
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Methods
The input data is provided by Stephan Miebach as part of his doctoral thesis (Miebach,
2012). A series of C. glutamicum wild type measurements consisting of a pre-processed
list of 101 measurements are stored in CSV files with a total of 7,171 alignment entries.
The analytical data is graphically pre-processed using the JuMeDaS tool. JuMeDaS is
connected to the SWF by accessing the measurement database service using SOAP web
service interfaces. The R script processes the input chromatogram and generates aligned
data. Because the mass spectra are pair-wise independently, parallel processing using
Hadoop MapReduce is possible.

DTWHadoop, the parallel version of the alignment script, is implemented using the
Java Hadoop MapReduce API and the FluxCore library (cf. §§ 5.1.1 and 5.2.3). The
Hadoop map function simply executes the script with the following command:

Rscript PA_alignAndChooseSpectra.R key thres filterwidth

Here, Rscript is the R interpreter that executes the PA_alignAndChooseSpectra.R script
with its parameters. key is a unique text identifier, thres a correlation threshold, and
filterwidth the smoothing width of a Gaussian filter. Because the outputs from map are
adequate for further processing (CSV formatted results), the reduce function is realized
as an idempotent function, i.e., the data is passed through as-is.

Results
The computation of all data sets takes 28 minutes on a single core. Employing two nodes
with a total of 32 cores, the simulation time is reduced to less than three minutes. The R
script is reused as-is, and only 150 lines of Java code is needed to implement DTWHadoop.

Discussion
This use case highlights two aspects. Firstly, the software components of the parallel
MCB use cases are mostly reused. Although originally designed to integrate 13CFLUX2
tools into the SWF, the FluxCore library is reused for a (non-13CFLUX2) R script im-
plementing the DTW method. Secondly, The realization with the SWF saves 90% of
the total computation time. However, the relatively low parallel efficiency of about 0.30
indicates that the taken approach has a measurable performance overhead.

6.2. Metabolic Reaction Network Modeling Workflow
The core of any 13C-MFA study is the metabolic network modeling workflow (cf. fig. 6.1).
It consists of sub-tasks involving model set-up and acquisition of measurement data sets
within a graphical environment, the evaluation of the model equations, and the visualiza-
tion of data and simulation results. Human intervention and the integration of various
knowledge and data sources is crucial in each step of the modeling workflow (Dalman,
Droste, et al., 2010).
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Figure 6.1.: A simple 13C-MFA workflow. This workflow consists of the four steps model
editing, configuration, parameter estimation with measurement data and vi-
sualization of parameter estimation results.

The realization of such a 13C-MFA study involves several software tools and bioscientists
often have to carefully handle subtle technical (i.e., IT-related) problems. For instance,
13CFLUX2 is a collection of command-line programs that exclusively runs on Linux
operating systems. However, researchers are often working with a Microsoft Windows
software environment where the explorer-like tool WinSCP2 is used to exchange files with
a remote Linux compute node and the PuTTY terminal emulator3 to open a Secure Shell
(SSH) command-line session to such a Linux computer. During the modeling process with
Omix in such a Microsoft Windows environment, intermediate models frequently need to
be run with fitfluxes or other 13CFLUX2 programs on a remote Linux node. From the
user’s perspective, one such run consists of the following six steps:

1. Save and export the model to the local filesystem during the editing process in
Omix.

2. Copy the model file on a Linux workstation with WinSCP.

3. Open command-line console to the Linux workstation by starting a SSH session
using PuTTY.

4. Invoke fitfluxes and store the resulting FWDSIM file locally.
2WinSCP web site: https://winscp.net/.
3PuTTY web site: http://www.putty.org/.
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5. Transfer the FWDSIM results back (again using WinSCP).

6. Load the FWDSIM file into Omix to visualize the results.

In the following, a metabolic network modeling and visualization workflow is presented
which frees the scientist from technical tasks by using the web services of the SWF.

Methods

The modeling and visualization workflow is realized by interconnecting Omix with
13CFLUX2 (Nöh, Droste, and Wiechert, 2015). By using the same file formats (e.g.,
FluxML, FWDSIM, or HDF5), the employed tools are made compatible to each other.
The SWF provides access to the 13CFLUX2 toolbox with the FluxWS component. Hence,
by realizing an Omix plugin interface, 13CFLUX2 programs are accessed via SOAP web
services (Dalman, Droste, et al., 2010). Omix offers user-driven dialogs that improve the
usability of 13C-MFA workflows even for inexperienced users (Nöh, Droste, and Wiechert,
2015). For instance, the network model being edited in Omix is sent to the 13CFLUX2
fitfluxes service, which returns the simulated flux values. These values are immediately
shown in the model view of Omix, e.g., the arrow thickness represents the computed flux
values by utilizing the OVL capabilities (Droste et al., 2010).

Results and Discussion

The SWF serves for organization of complex analysis processes involved in 13C-MFA
applications. By encapsulating technical details and avoiding recurrent issues, sources for
errors are minimized, the evaluation procedure for 13C labeling experiments is accelerated
and, moreover, becomes documentable. Being able to access the services provided by the
SWF out of Omix allows the researcher to perform many 13C-MFA steps out of a GUI
application like Omix. The presented solution liberates the researcher from performing
six purely technical and error-prone steps.

6.3. Simulating and Comparing BCG Vaccine Models

To demonstrate the SWF on a large-scale example, a combined simulation study of two
models of the H37Rv vaccine strain of M. tuberculosis (BCG) organism is conducted. The
models are structurally identical, however, they differ in their growth rate as discussed
elsewhere in detail in the literature (Beste, Bonde, et al., 2011). The two models are
henceforth called BCG_fast and BCG_slow. While this use case focuses on the gen-
eral feasibility of a large scale 13C-MFA simulations in the cloud, § 6.5 presents several
13CFLUX2 in Monte Carlo Bootstrap simulation studies in HPC and cloud environments
in detail.
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Figure 6.2.: Boxplot comparing distributions of emp1 net (left) and ana1 net (right) fluxes
from the M. tuberculosis vaccine models BCG_slow and BCG_fast. The
complete 13C-MFA study results of the M. tuberculosis H37Rv organism is
found in the literature (Beste, Nöh, et al., 2013). The script for this drawing
is displayed in appendix B.7.

Methods

The models consist of 41 pools and 74 reactions with a mean forward simulation time
of 0.34 seconds. However, performing parameter estimation requires a high number of
optimizer iterations, i.e., more than 1,200 iterations with a runtime of about 9 minutes
per flux vector on the IBG-1 server. For each model, N = 1, 000 artificial measurements
with M = 25 initial flux distributions are used resulting in 50,000 optimization runs in
total. FluxHadoop is employed to perform the simulations on 20 Amazon EMR cloud
High-CPU extra large instances with 152 CPU available for simulations.

Results

The total experiment runtime takes 24 hours and 23 minutes. The sequence file generated
from 50,000 packed FluxML files takes 418 MB hard disk space and the resulting CSV files
have a total size of 52 MB. The total cost of the computation using the Amazon EMR
services is $384. Differences of specific flux values between the two BCG variants can
now be identified using the SWF services. For example, fig. 6.2 depicts boxplots of the
emp1 net and ana1 net flux distributions which are created using Python and matplotlib
(cf. appendix B.7).

Discussion

To demonstrate the usefulness of the SWF, a large-scale Monte Carlo bootstrap simulation
on 20 instances in the Amazon cloud is conducted on a biological meaningful model
pair. Exemplarily, two flux distributions are extracted and visualized from the resulting
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CSV files with a Python script. Because all steps – the invocation of the Hadoop cloud
deployment, the download from the Amazon S3, and the generation of a boxplot image
per flux value – are available as command-line calls, it is possible to automate the whole
workflow chain with a Python script (this issue is covered in § 6.4).

There are several areas of future work. By extending the above workflow, visual tools
(i.e., Omix) will be able to show boxplots and other graphics by interactively selecting
a flux of interest. Two technical prerequisites (i.e., augmenting an application by a web
service interface and organizing simulation results) are presented in subsequent use cases
(cf. §§ 6.7 and 6.8). Having implemented the MCB algorithm for a scalable on-demand
cloud solution employing 20 virtual instances, the next step is to perform studies with
even larger models. For instance, the availability of metabolic network models with several
hundred dimensions hints at future trends towards even larger problems that should be
approached by MapReduce in a cloud.

6.4. Data-intensive Exploration of Flux Solution Spaces

The very first step for a modeler after assembling and proofreading the 13C-MFA network
is to get an overview of possible flux solutions that are compliant with the underlying
network structure. While the stoichiometry and the imposed flux constraints define the
flux solution space (Schuster, Dandekar, and Fell, 1999), labeling measurements effectively
narrow this theoretical solution space. However, at this point, it is not clear whether there
is only one or there are various flux that explain the measured data well. Obviously, this
information is crucial for further analysis. One way of generating a rough impression of
the effective flux solution space and its geometric characteristics (e.g., size, eccentricity)
is to apply an explorative-oriented flux sampling workflow.

The proposed workflow consists of the following steps:

1. Sample n randomized flux vectors (samples) in the flux solution space using a Gibbs
sampler as described in Weitzel et al., 2013. It should be noted that due to dimen-
sionality, the volume of the flux space increases fast and flux samples rapidly get
sparse (Bellman, 1957). Clearly, the larger the number of samples n chosen, the
better the exploration coverage of the flux space.

2. For each flux sample, the emerging in silico labeling patterns are simulated (forward
simulation).

3. The discrepancy between the in silico and the actual measurement data is calculated,
which gives rise to the residual sums of squares value. The smaller the residual value,
the better the model fit to the real measurements.

4. The fluxes and residual values are extracted from the simulation outcome. The
results are sorted by residual value and the samples with the m smallest residuals
are kept (m is a user-specified number with m≪ n).
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Figure 6.3.: Explorative 13C-MFA simulation data with the C. glutamicum network
model. Left: histogram showing the distribution of residuals generated by
random sampling simulations. Exemplarily, the m = 1, 000 best performing
flux samples (to the left of the red line) out of a total of n = 100, 000 are
selected for further exploration. These samples may be suitable seeds for
flux fitting later in the course of the analysis. Right: Scatter plot of the se-
lected 1,000 flux samples to visually investigate the residual landscape. Color
ranges from blue (low residual values) to red (high residual values). Note,
that due to the high dimensionality of the flux space, trends rather than
clear-cut separations by residual value can be expected in low dimensional
projections. Flux names: gnd – glucose-6-phosphate dehydrogenase, pyk –
pyruvate kinase. Values are given relative to the substrate uptake rate.

5. The m flux samples with the smallest residuals are visualized to identify alternative
flux solutions. Selected sampling results are shown in fig. 6.3.

With the dimensionality of the problem (23 in our case, but possibly several hundred
for large scale networks (Ravikirthi, Suthers, and Maranas, 2011)), this type of explo-
rative analysis easily becomes data-intensive. Therefore, two solutions are proposed: a
single-node implementation that is adequate for small-to-mid-sized models and a Hadoop
MapReduce variant for large-scale models with a high-dimensional flux space. Starting
with the single node solution, specific code changes are highlighted that are necessary for
deployment in the cloud.

Methods
The single-node implementation of workflow consists of two parts (cf. fig. 6.4):

(a) Sampling and simulation: in essence, a Python program executes the 13CFLUX2
tools ssampler and multifwdsim to generate random samples and forward simulation
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Figure 6.4.: Overview of the sampling-oriented flux space exploration workflow. The in-
dividual workflow steps are presented in the middle row, while the employed
tools are displayed in the bottom row. The input and output parameteriza-
tion of these tools is shown on the top layer.

results, respectively (sample_and_filter_multi, cf. appendix B.8). By reading the
simulation results using the Python modules numpy and h5py, the workflow yields
a CSV file as output containing the m best flux solutions along with their residual
values.

(b) Scripted visualization: using the Python modules numpy, matplotlib, csv,
and gzip, two visualization programs are realized to analyze the data output
(plot_histogram, plot_scatter; cf. appendices B.9 and B.10).

The Hadoop MapReduce variant of the workflow is similar with respect to the inputs
and outputs of the workflow. Hence, the realization is a drop-in replacement for the
sampling and simulation step (a), while the scripted visualization step (b) can be reused.
Nevertheless, there are technical differences between the single-node and the Hadoop
variant of the simulation workflow (the employed scripts are displayed in appendix B.11):

• Hadoop deployment is prepared with a shell script (prepare_hadoop_uc1). Specifi-
cally, the FluxML file (value) is prepended with a serial number (key), transformed
to fit in a single line, and passed to the Hadoop Streaming API. The xmllint tool,
which is part of the open source Libxml library4 is used to canonicalize the FluxML
content. Here, canonicalize means that the simulation results are combined in a

4Libxml version 2.9.2 is employed; project web site: www.xmlsoft.org/.
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Hadoop-compatible text file with one string line per flux sample and tab-delimited
key-value pairs per line.

• Sampling and simulation is performed with the Hadoop script map_uc1. Because
the input of a map processor is always a pair of identifier (key) and FluxML content
(value), the latter needs to be extracted before the 13CFLUX2 program sequence is
invoked. Here again, the code of the single-node implementation is largely reusable.

• Instead of extracting the m best random samples, the Hadoop script reduce_uc1
script filters the samples by residual value. To this end, a provisional threshold is
determined by employing the aforementioned single-node variant of this workflow
with a small batch size (e.g., with n = 10, 000 and m = 1, 000). Samples exceeding
a certain threshold are discarded. The reason for this change is performance: while
filtering n samples by threshold is an O(n) operation, extracting the best m results
requires a sorting step of all outputs which involves O(n log(n)) operations (Cormen
et al., 2009). Thus, the complexity is significant for the runtime, especially when
millions of samples are processed.

Results and Discussion

Using the tools and services provided by the SWF allows a realization of the computational
part of the exploration algorithm in a single script that consists of essentially 37 lines of
comprehensible Python code. Notably, the conversion of a single-node to a distributed
computing variant on a Hadoop MapReduce HPC resource (e.g., Amazon’s cloud) needs
only a few changes: an additional preparation script for the deployment and map reduce
scripts with 35 lines of code in total are added to transform the input/output data to the
necessary form. As demonstrated by the semantic change from extracting by threshold
instead of the best m flux vectors, tailored algorithmic adaptations are needed to effec-
tively translate computational problems to larger scale. Apart from this, the use case
demonstrates the benefits of deploying data-intensive simulation jobs on cloud computing
resources.

6.5. Cloud Monte Carlo Bootstrap 13C-MFA Workflows

In the 13C-MFA context, MCB is an exemplary application for computationally demand-
ing simulation job. By parallelizing the MCB, a significant amount of time can be saved.
This section investigates two computational MCB workflows that are deployed on virtual
nodes in the cloud. Firstly, a series of MCB simulations with three models are conducted
on four different VM setups using Amazon’s EMR cloud offering. Thereby, the principle
feasibility of the taken approach by deploying 13CFLUX2 on cloud computing resources
is studied (cf. Dalman et al., 2010). Although the achieved time savings are impressive,
an in-depth analysis of the results reveals that there is potential for further optimization.
Hence, the second use case focuses on improving the MCB algorithm (Dalman et al.,
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2013). Compared with the first approach, an improvement of the performance by 64%
could be achieved with a large-scale model and virtual cloud setup. In absolute numbers,
the total simulation time improved from about 23 hours on a single compute core down
to less than half an hour on a cloud setup with eight VM nodes with eight cores each.

6.5.1. Common Methods

In the following, the similarities of the cloud experiments are presented, i.e., employed
network models, the parameterization of the MCB algorithm, and the Amazon EMR
setup. To gain a better understanding of the runtime behavior of the models, a series of
single core (i.e., non-parallel) measurements are conducted on a local cluster node first.
Likewise, T1 measurements are performed on Amazon virtual machines that are used to
compare the performance with the distributed Hadoop cloud implementation of the MCB
algorithm.

6.5.1.1. Network Models

Three metabolic network models of different size have been selected (cf. § 3.2.4):

1. Model 1 : a small toy network consisting of 6 pools, 8 reactions (Antoniewicz, Kelle-
her, and Stephanopoulos, 2006).

2. Model 2 : an essential central metabolism of C. glutamicum with 34 pools and 65
reactions (Petersen, 2001).

3. Model 3 : an extended C. glutamicum network with 76 pools and 117 reactions
(Petersen, 2001).

6.5.1.2. MCB Parameters

The choice of the number of independent optimization runs from M random initial flux
distributions depends on the degree of nonlinearity and conditionedness of the parameter
fitting problem. Thus, no general guideline can be given for the number of parameters
and the size of the search space. As suggested in the literature, M = 10 random initial
flux vectors and N = 1, 000 pseudo-measurement data sets are chosen as parameters for
the MCB algorithm (Chernick, 2007).

6.5.1.3. Local Single Core Simulations

Before deploying the model simulations on the Amazon cloud, the MCB algorithm with
the above setup is run on a single core on an IBG-1 server node. These measurements are
similar to the benchmark performed in § 3.2.4 and have the purpose to provide a deeper
understanding of the simulation times and the model behavior (cf. table 6.1). Note that,
while using the same methods, the average runtimes per model differ from the simulation
times in table 3.2. This difference is explained by the choice of a different optimizer.
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Here, the open source non-linear optimizer software IPOPT5 is selected. Due to licensing
reasons, the commercial NAG-C6 optimizer is restricted to simulation experiments on
IBG-1 compute nodes.

In summary, several factors are identified that constitute the non-deterministic nature
of 13C-MFA parameter estimation runtimes:

• The model size (defined by the number of pools and reactions) influences the simu-
lation runtime.

• The number and quality of measurements have an impact on the robustness of
the optimization procedure, thus, directly influencing the runtime of the parameter
estimation step.

• The parameterization and choice of the optimization routine influences the runtime
behavior.

Model 1 Model 2 Model 3
T1 total time (h) 0:30:42 1:51:57 19:40:40
total file size in (MB) 82 277 1,371
total file size out (MB) 79 470 2,081
optimization mean (s) 0.02 0.13 1.79
optimization min (s) 0.0016 0.1280 1.47
optimization max (s) 2.4711 0.7994 5.57
optimization total (h) 0:03:16 0:22:17 4:57:47

Table 6.1.: Computation times on local machine (single core usage). Raw total input
(FluxML) and output (FWDSIM ) data set sizes also reveal the differences
between the three models: a toy network (Model 1 ), a basic C. glutamicum
network (Model 2 ), and an extended C. glutamicum network (Model 3 ). The
last four rows show pure optimizer runtimes, i.e. without data processing,
network setup, or stoichiometric and topological analysis.

6.5.1.4. T1 Reference Measurements on Amazon Cloud Virtual Machines

To compute the speedup and parallel efficiency (PE) of a distributed algorithm, the single
core measurements (T1) have to be obtained. Table 6.2 shows the simulation time on a
single core virtual machine (T1). The reference simulation times are obtained from single
core measurements of Amazon EMR machine types from the instance class High-CPU

5https://projects.coin-or.org/Ipopt
6http://www.nag.com/numeric/CL/CLdescription.asp
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Model 1 Model 2 Model 3
simulation time (h) 0:42:03 2:01:09 22:44:13
collectfitdata (h) 0:00:17 0:01:04 00:13:51
fwdsim2csv (h) 0:07:18 0:07:07 00:09:22
total time T1(collectfitdata) (h) 0:42:20 2:02:13 22:58:04
total time T1(fwdsim2csv) (h) 0:49:21 2:08:16 22:53:35

Table 6.2.: Single core benchmark results on a local node. While Table 6.1 presents sin-
gle core measurements on the IBG-1 server, runtimes on High-CPU extra large
Amazon instances are shown here (10,000 flux vectors). Smaller network mod-
els are significantly faster using collectfitdata (T1(collectfitdata)) than process-
ing the simulation results with fwdsim2csv (T1(fwdsim2csv)). This effect is
reversed with the extended C. glutamicum model.

extra large. VMs from the instance classes High-CPU extra large and Standard extra large
are compared in § 6.5.2 with respect to their runtimes in a distributed Amazon EMR cloud
setup. Because 13CFLUX2 has a comparably low memory footprint, the High-Memory
instance class is omitted in the comparison studies. The T1 simulation time varies between
42 minutes and almost 23 hours on an Amazon instance, depending on the model.

6.5.2. Hadoop MapReduce Streaming Approach to the MCB Workflow
The purpose of this section is to investigate the general feasibility of deploying 13CFLUX2
and the MCB algorithm on Amazon’s EMR cloud computing service. Thereby, the ma-
chine types High-CPU extra large and Standard extra large are compared to each other
with respect to runtime performance and price per simulation.

Methods
The straightforward MCB realization using the Hadoop streaming API is employed for
the experiments. In the streaming experiments, S3 is used as the distributed file storage,
and the granularity parameter has been set to G = 10.

Results
Table 6.3 depicts the measurement results for the test networks. Compared to the overall
simulation time, the overhead to provide the VM cluster running Hadoop is low: de-
pending on the machine type and the number of requested resources, it varies between
2:40 minutes and 8:30 minutes. Among various factors, this effect predominantly depends
on the virtual cluster load and the locality of the virtual resources. Likewise, runtime
performance fluctuations are measured on the cloud resources which are also observed in
other studies (see, e.g., Zaharia et al., 2008; Jiang et al., 2010; Sehgal et al., 2011).
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Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Standard 4 machines, 4 cores Standard 8 machines, 4 cores

total time (h) 0:09:46 0:19:15 2:34:35 0:08:49 0:15:22 1:54:58
comp. time (h) 0:06:44 0:16:08 2:31:17 0:05:08 0:11:41 1:50:39
bootstrap (h) 0:03:02 0:03:07 0:03:19 0:03:41 0:03:07 0:04:19
total price ($) 2.78 2.78 8.34 5.56 5.56 11.12

High-CPU 4 machines, 8 cores High-CPU 8 machines, 8 cores
total time (h) 0:08:08 0:13:54 1:48:53 0:07:18 0:11:56 1:22:44
comp. time (h) 0:04:58 0:10,53 1:45:31 0:04:00 0:08:56 1:19:09
bootstrap (h) 0:03:10 0:03:01 0:03:22 0:03:19 0:02:59 0:03:34
total price ($) 2.78 2.78 5.56 5.56 5.56 11.12

Table 6.3.: Computation times on Amazon instance types Standard extra large (upper
rows) and High CPU extra large (lower rows). Three network models of dif-
ferent size are selected for the simulations: a toy network (Model 1 ), a ba-
sic C. glutamicum model (Model 2 ), and an extended C. glutamicum model
(Model 3 ). The MCB algorithm is executed with N = 1, 000 and M = 10 (i.e.,
10,000 flux vectors in total). Simulations on High CPU extra large take less
runtime than on Standard extra large Amazon instances. At the same time,
the cloud service costs are almost equal.

The simulation results reveal that the performance gain (decrease of runtime) is only
25% when the core count is doubled. A High-CPU extra large instance with 32 cores
(4 machines, 8 cores) is only 7.5% faster than a corresponding Standard instance (8
machines, 4 cores). Because a High-CPU extra large machine has 0.5 ECU more per
core than a Standard machine (i.e., 2.5 instead of 2 ECU), a performance gain of 25%
is expected. However, the measurements show that High-CPU extra large machines are
clearly preferable since the cost per core is half – therefore, the computation takes less
time and costs 50% less.

Discussion

These observations indicate that I/O throughput might be a bottleneck hampering the
expected 25% gain. Amazon Simple Storage Service (S3) performs poorly when small files
are read and written (Palankar et al., 2008). This problem occurs in these experiments,
since during one simulation run thousands of kB-sized files are processed from and to S3.
On that score, Amazon S3 is replaced by HDFS. Using the same setup as above (despite
replacing the storage technology), further measurements are conducted. It turns out that
Hadoop performs even worse than S3 in our scenario (about 12% higher total runtime).
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The reason is, again, the relatively small size of the simulation files, while Hadoop is
designed to process big data, i.e., total file volumes in the order of several hundreds of
terabytes and more (Sammer, 2012).

In this application, the intermediate results, the FWDSIM data (which averages to
about 79 kB per file), the full chunk size per I/O operation needs to be processed which
is 64 MB by default (White, 2009). Hence, each read and write on the HDFS filesystem
requires more than 800 times more I/O operations than required for the raw data. Fur-
thermore, to improve the fault-tolerance in jobs with hundreds of compute nodes, every
chunk written to HDFS is replicated on at least three nodes. In summary, this application
suffers from the fact that I/O operations on small files are expensive using S3 and HDFS.

Nevertheless, even with sub-optimal I/O performance, the time savings are impressive:
for example, 1:22:44 hours instead of 19:40:40 hours (18:17:56 hours less) are required
to compute the extended C. glutamicum network. The total cost for using the Amazon
service is $11.12 – clearly, one has to take into account that local resources also generate
cost (acquisition costs, electricity, administration, etc.). Further tuning of the algorithm
implementation should lead to even lower computation times. This is subject to the
revised MCB workflow in the following.

6.5.3. Cloud Monte Carlo Bootstrap Workflow – Revised
The previous use case showed that the deployment of 13CFLUX2 and a real-world appli-
cation on cloud computing resources is possible using Amazon’s EMR cloud computing
offering. Although the absolute time savings are indeed impressive, the parallel efficiency
is at best only 0.408 on 32 cores and 0.272 on 64 cores. This revised use case discusses
the measures taken to improve the parallel efficiency.

Methods
The revised MCB implementation, called FluxHadoop, addresses the shortcomings of the
streaming version. Functionally, the reduce step uses fwdsim2csv instead of collectfit-
data, thus, enabling the execution of parallel reduce steps. Consequently, other technical
changes, such as using the Java interface, employing the HadoopPacker application, and
fine-tuning Hadoop MapReduce parameters are as well implemented (cf. § 5.2.3).

Results
Table 6.5 summarizes the cloud runtime measurements. The extended C. glutamicum
network has a lower simulation runtime with FluxHadoop, but the smaller networks require
more time in comparison to the streaming version. With Model 1, the simulation time on
32 cores is 7:02 minutes (41% regression) and 5:05 minutes on 64 cores (27% regression).
Model 2 takes 10:20 minutes on 32 cores (5% improvement) and 5:46 minutes on 64 cores
(35% improvement). The best improvement is seen with Model 3. On 32 cores, the
simulation only takes 53:09 minutes (50% improvement) and 28:40 minutes on 64 cores
(64% improvement).
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Figure 6.5.: Barchart of the benchmark results on Amazon instances. The figure depicts
the simulation times on High-CPU extra large Amazon instances (left: four in-
stances (32 cores total), right: eight instances (64 cores total). The streaming
API version (yellow bars) performs faster with the smaller networks, however,
the revised FluxHadoop approach (blue bars) scales well with larger network
models. The parallel efficiencies of both approaches are easily computed using
the T1 measurements (using collectfitdata) from table 6.2 for 32 cores (Stream-
ing API, FluxHadoop): Model 1 (0.266, 0.188), Model 2 (0.351, 0.370), Model
3 (0.408, 0.810). Similarly, the results with 64 cores: Model 1 (0.165, 0.130),
Model 2 (0.214, 0.331), Model 3 (0.272, 0.751).

Discussion

One reason for the runtime difference of the investigated MCB cloud implementations
is caused by the execution of collectfitdata and fwdsim2csv, respectively (cf. table 6.1).
collectfitdata and fwdsim2csv vary in several aspects of their software design, i.e., imple-
mentation language, input parameters, and output. The simulation runtime performance
of the MCB workflow has been measured for three examples of different complexity. Par-
allelizing the reduce step of the MCB algorithm leverages the pressure of data collection
on a single node, and combined with tuning of Hadoop-specific parameters of FluxHadoop
eliminates the I/O performance bottleneck and leads to acceptable scaling behavior.

With the revised implementation, significant performance improvements are achieved,
in absolute and relative scales. While the new MCB implementation is a great enhance-
ment, there is still room for improvement: the best parallel efficiency achieved is 0.810.
One possible area for potential improvements is further tuning of Hadoop-specific pa-
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rameters. Optimal Hadoop parameters, however, depend on influencing factors that are
problem-specific like network model sizes or optimizer performance.

6.6. Hybrid Parallelization Approach for MFA Simulation
Workflows

This study aims at improving the performance of parallel simulations by extending the
MCB algorithm with a hybrid parallel implementation that combines Hadoop MapReduce
with shared memory parallelization techniques (cf. Dalman, Weitzel, Freisleben, et al.,
2011). Compared to the purely Hadoop-based FluxHadoop solution, the hybrid-parallel
realization (FluxHadoop2 ) is significantly faster while it simultaneously benefits from
reduced memory requirements.

This use case exploits the MCB algorithm by performing all M multi-start flux vectors
locally, while still using the Hadoop MapReduce framework to distribute N cloud tasks
(cf. § 5.2.4). It is shown that the algorithm and the Hadoop MapReduce Java program
are basically unchanged, i.e., this use case especially focuses on the challenges of replacing
the underlying 13CFLUX2 tool fitfluxes by multifitfluxes.

Methods

FluxHadoop is compared with FluxHadoop2 on the two-node institute cluster with 16
cores each. The MCB simulation is performed with N = 1, 000 and M = 20 on a small-
scale network (20 dimensions, 2 model parameters). While FluxHadoop is executed with
16 parallel Hadoop tasks, only four multifitfluxes tasks are executed per node with
FluxHadoop2. With k = 20 parallel parameter estimation threads per task, the server
nodes’ computing capacity is fully exploited.

On virtual Amazon High-CPU extra large nodes, FluxHadoop and FluxHadoop2 are
compared. The simulation runtime is computed on a node employing a single core (T1),
four (T32), eight (T64), and 16 nodes (T128). An experimental series employing a large
metabolic network model of Penicillium chrysogenum (328 dimensions, 18 model parame-
ters) is conducted (Niedenführ, 2014)7. By calling fitfluxes and fwdsim2csv using a Linux
shell script, the serial simulation runtime (T1) of 20,000 Monte Carlo bootstrap flux vec-
tors is computed on a virtual node. Three multifitfluxes map tasks per node are invoked
with k = 8 parameter estimation processes per task.

More than 200 adjustable parameters are provided to tune and customize the Hadoop
framework. The focus is on modifying few parameters, instead of optimizing the applica-
tions for specific Hadoop versions. For this experiment, the adjusted Hadoop parameters
are summarized in table 6.4, defaults from Hadoop and Amazon are retained otherwise.

7 A preliminary, unpublished version of the P. chrysogenum network model is used for the runtime
measurements. Niedenführ, 2014 discusses even larger variants of this model.
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Hadoop parameter value
mapred.child.java.opts -Xmx512m
mapred.map.tasks.speculative.execution false
mapred.max.split.size 262144
mapred.map.tasks 200
mapred.reduce.tasks 40
mapred.task.timeout 86400000

Table 6.4.: Custom Hadoop parameter settings used for the runtime benchmarks with
FluxHadoop and FluxHadoop2.

Results
With FluxHadoop2, the simulation with the small network consumes 3 minutes and 44
seconds and 1.3 GB memory in total. Compared to the non-hybrid FluxHadoop imple-
mentation the runtime is decreased by 33% (5:39 minutes) and 75% less total memory is
required (5.2 GB). fig. 6.6 depicts the results.

The runtime results for the P. chrysogenum model in the cloud are summarized in
fig. 6.7. On a single Amazon node the 20,000 vectors are simulated in 302 hours (T1).
While FluxHadoop performs faster than FluxHadoop2 on four and eight nodes, Flux-
Hadoop2 performs 20% faster than FluxHadoop on 16 nodes, i.e., 6 hours 20 minutes
instead of 7 hours 57 minutes. Notably, the parallel efficiency of the new hybrid parallel
approach is almost constant for the conducted cloud experiments (varying between 0.37
and 0.39).

Discussion
This study clearly shows a scalability improvement over the original implementation of
the MCB algorithm. The hybrid parallelization approach is faster than FluxHadoop –
both, locally employing a small-scale model, and a realistic simulation setup employing
16 virtual Amazon cloud nodes. While fitfluxes has a low memory footprint (cf. table 3.2),
the Java-based Hadoop MapReduce tasks require up to 325 MB per process8. Being a
shared memory application, multifitfluxes utilizes multiple compute cores on a node,
resulting in a massively reduced memory consumption behavior. The experiments show
that the parallel efficiency of the hybrid parallel approach is constant, i.e., runtime is
halved by doubling the number of employed compute cores. Future work will investigate
the low runtime performance on four and eight Amazon nodes of FluxHadoop2 compared
to FluxHadoop. In conclusion, the hybrid parallel 13C-MFA MCB service paves the way
to perform serialized statistical evaluations with even larger-scale networks in series.

8 The so-called residential set size (RSS) is measured, hence all shared memory pages per process are
measured (Love, 2013).
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Figure 6.6.: Results of a microbenchmark comparing FluxHadoop and FluxHadoop2. A
small test network model with 20,000 flux vectors in total is used to compare
FluxHadoop and FluxHadoop2 on two local cluster nodes. In this experiment,
the simulation time decreased by 33% (left), while the total RSS memory
usage decreased by 75% (right).
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Figure 6.7.: Runtime comparison of FluxHadoop and FluxHadoop2. The parallel efficiency
is defined as PE(P ) = T1/PTp, where T1 denotes the serial runtime and TP

the parallel runtime on P processing units.
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6.7. Online Residual Tracking

During the modeling of a 13C-MFA network, parameter estimation is performed inter-
actively by a researcher to explore model variants and their performance (e.g., runtime
behavior, goodness of fit, etc). With 13CFLUX2, parameter estimation is started with
several deliberately chosen initial flux vectors spread over the whole feasible flux space.
Using flux estimation, (hopefully) one solution is identified that explains the measured
values best. Monitoring the residual value of the optimization process gives an immediate
impression to the researcher especially compared to previous runs. For instance, it can be
seen whether the optimization approaches a local sub-optimal flux space area. Therefore,
observing 13C-MFA simulations is an advisable tool for researchers.

The use case demonstrates the advantages of the provenance collection solution. Exem-
plarily, the execution of fitfluxes with a medium scale model is interrupted after reaching
a predefined threshold. This experiment reveals simulation time savings of more than
80%.

Methods

The simulations are performed with the basic C. glutamicum model on two compute nodes
of the local institute cluster (Petersen, 2001). Provenance data is captured on the second
compute node with the fluxprov service. Using provclient on the scientist’s workstation,
the captured log messages are read from the fluxprov service. The residual value is
extracted from the provenance message using the following command line: provclient
-M "residual" | cut -d ’ ’ -f 5. By tracking the development of the residual value
in the provclient console, the scientist interrupts the parameter estimation process at will.

Results

Figure 6.8 depicts the captured residual values from the fitfluxes run. Initially, the resid-
ual value of the network is 70,127. The global optimal residual value 1,748 (minimal
distance) is achieved after 18 seconds. With time, the residual value does not further
decrease considerably. In this scenario, an experienced scientist may choose to interrupt
the fitfluxes run prematurely after 3 seconds to obtain a residual value of about 2,500.
Thus, 15 seconds of time are saved, i.e., the total runtime is reduced by more than 80%.

Discussion

The use case demonstrates the provenance collection framework in action. It is a versatile
approach tailored to the demands of high-performance 13C-MFA simulation workflows
and distinguishes itself from other provenance solutions:

1. This provenance solution supports online operation. Because continuously generated
values from a 13C-MFA simulation can be captured on demand, the provenance

104



6.8. Interactive Hadoop-based 13C-MFA Workflow

� ���� ���� ���� ���� ���� ���� ���� ���� ����

��
�

��
�

���� ����

��
�
��
�
�
�
��
�
�
Ȃ
�
�
�
��
�
�

�������� �����
�� �������

Figure 6.8.: Residual values collected from a fitfluxes run. The total calculation time
is 18,000 ms, however after about 3,000 ms the residual no longer improve
significantly. Thus, by monitoring online provenance data, the simulation
could be interrupted prematurely and save a significant amount of the overall
simulation time.

collection solution enables interaction with 13C-MFA workflows that were out of
reach before.

2. The provenance tools integrate well into the SWF and the employed toolchain. The
provenance collection framework supports filtering messages by various metadata
and regular expressions for the message content.

The provenance framework is designed to support the requirements of 13C-MFA work-
flow applications. Because the presented provenance solution is by design non-intrusive
and provides clean interfaces, future work includes the application in other scientific do-
mains.

6.8. Interactive Hadoop-based 13C-MFA Workflow
The exploration workflow described in § 6.4 provides the modeler information as to
whether the model is – in principle – able to explain the observations. Moreover, as long as
the number of flux samples (n) is sufficiently large, it may also yield an overview of regions
in the flux space that are competitive in terms of the residual value. The next step in the
overall 13C-MFA procedure is the closer inspection and characterization of these regions,
which is usually accompanied with modifying the model, e.g., by integrating additional
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Figure 6.9.: Overview of the interactive 13C-MFA workflow. Gray boxes represent auto-
mated tasks, while reporting tasks are colored orange. Arrows indicate the
flow of control. Step 5 (turquoise) designates an interaction performed by the
scientist. The exploration workflow described in § 6.4 is embedded as sub-
workflow (upper branch). The Monte Carlo bootstrap sub-workflow (steps
6-7) is employed as described before (Dalman et al., 2013). The overall work-
flow includes several iterative steps and depends on the scientist’s decisions
upon inspecting intermediate results.

biochemical knowledge or updating measurements. In contrast to the sampling-based
explorative workflow described before, here a targeted optimization-driven strategy is
utilized which eventually supplies information on flux (non-)identifiabilities (Raue et al.,
2011). The latter step is vitally important for any 13C-MFA because it signals whether
measured data actually contain the information that is needed to reliably estimate the
unknown fluxes.

Due to its conceptual simplicity, the Monte Carlo bootstrap method is utilized as non-
linear statistical method of choice in combination with a multi-start heuristic (Efron and
Tibshirani, 1993; M. Joshi, Seidel-Morgenstern, and Kremling, 2006). If flux parameters
are found to be non-identifiable, either new measurement information has to be added or,
because such additional observations are rarely available in practice, the non-identifiable
fluxes have to be eliminated from the model (Raue et al., 2011). As fluxes may be cor-
related, the elimination process must be done in an iterative manner. The proposed
interactive 13C-MFA workflow consists of the following steps, as shown in fig. 6.9:

• The exploration workflow (steps 1-4) is performed to gain a basic "familiarity" with
the model as described before (cf. § 6.4).
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Figure 6.10.: Visualizations generated in the course of an interactive refinement work-
flow. Left: residual distribution of 1,000 flux fits with one of the interim
C. glutamicum model variants. Two solution clusters are visible that differ
only slightly in their residual values (2,460.8 and 2,462.2). Right: scatter
plot of glucose-6-phosphate dehydrogenase (gnd), and pyruvate kinase (pyk)
fluxes. The color of the dots codes the residual value. The visualization re-
veals that the flux solutions that underlie the two clusters have significantly
different pyk fluxes. Moreover, while the flux value of pyk is dispersed for
higher residual values, it is much more concise in case of the low residual
solution cluster. The plot provides an indication for the multimodality of
the nonlinear least-squares problem.

• With the visualizations of the exploration results, e.g., the distribution of residual
values and various scatter plots (cf. fig. 6.10) at hand the researcher updates and
refines the model according to the results if necessary (step 5). To assess the impact
of changes made, the scientist may return to step 1 before continuing with step 6.

• The Monte Carlo bootstrap algorithm is applied with the best flux samples (steps
6 and 7).

• The results of the bootstrap are analyzed and visualized (step 8).

• After updating the model (step 5), the researcher may choose to restart from step
6 (or step 1) until the non-identifiable fluxes are removed from the model.

This use case highlights the iterative and interactive nature of typical 13C-MFA model-
ing workflows. Notably, the single sub-workflow steps have quite heterogeneous runtime
profiles: compute-intensive and long-running bootstrap executions alternate with inex-
pensive analysis tasks. Amazon’s EMR cloud service is an elegant and straightforward
way to solve compute intensive and embarrassingly parallel tasks like the Monte Carlo
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bootstrap. Nevertheless, it does not make sense in all cases to await the final result of
long-running processes. For instance, flux estimation processes often show no significant
improvement in the residual value. In such cases, the run can be stopped prematurely.
With the provenance logging module, it is possible to safely interrupt processes, saving
time and money.

Methods
As indicated in fig. 6.9, the computational parts of the workflow are reused from other
use cases, i.e., the exploration workflow and the MCB workflow. These sub-workflows are
accessed via their web service interfaces. The model refinement and update task (step 5)
is purely user-driven. Similarly, the researcher decides at the end of step 8 whether the
outcome is sufficient, or further iterations are required. In addition to providing visualiza-
tions, the matplotlib scripts (plot_histogram, plot_scatter) also compute statistical
moments of the results, e.g., minimum, maximum, mean, standard deviation, or median.
Because the output file format (CSV) of steps 1-3 is equal to the MCB output (steps 6-7),
the visualization scripts (steps 4 and 8) are effectively the same.

Results
Reusability is regarded as one of the most important drivers for service-oriented solutions
(Josuttis, 2007). As already stated, 13C-MFA workflows rely on many recurring tasks.
These tasks may be seen as standard components either on atomic or already assembled
level. In this particular use case, it took four iterations of the iterative 13C-MFA workflow.
In each iteration of the workflow, non-identifiable fluxes are identified and eliminated
one by one from the set of unknowns. Additionally, information on (potentially locally)
optimal solutions of the least-squares regression is continuously gathered.

Discussion
By clearly implementing web service interfaces it becomes easy to assemble these tasks
in the wanted order, possibly by filling the missing gaps in between by writing scripts.
In this use case, it was shown how previously developed workflows (namely, the MCB
simulation workflow and the exploration workflow) are reassembled to a full-fledged inter-
active 13C-MFA application. The described workflow can be seen as a chassis workflow,
which is extensible by additional sub-workflows, e.g., the identification of fluxes is further
automated by applying the X-means clustering tool (Pelleg and Moore, 2000) to the final
outcome of the workflow (cf. fig. 6.11).

Likewise, by exchanging the simulation tool and visualization applications the overall
workflow can be flexibly modified to fit to a different context. Hence, the scientist is
supported in managing the sequence of "daily life" steps.
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Figure 6.11.: Identified clusters (blue boxes) of the C. glutamicum model. The
cluster image is generated using the X-means tool version 1.15 (Pel-
leg and Moore, 2000), while the frame and axes are drawn with mat-
plotlib (cf. fig. 6.10; right). X-means is called with kmeans kdtree
in pyk_gnd_v4.csv -D_DRAWPOINTS -D_INTERACTIVE, where the CSV file
pyk_gnd_v4.csv contains the workflow outcome after four iterations.
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Conclusions and Discussion

While the principle 13C-MFA procedure is seemingly straightforward, the specific steps
undertaken by a researcher are often driven by modeling decisions that are dictated by
the specific biological question under study, the observed data at hand, and computa-
tional considerations (Niedenführ, Wiechert, and Nöh, 2015). Thus, building high-quality
13C-MFA workflows requires modeling expertise and familiarity with a broad range of
specialized software tools. The examples presented illustrate the diversity of 13C-MFA
applications, which range from the modeling of complex microorganisms to sophisticated
statistical analyses of large-scale simulation data.

Following the conventional definition of a software framework (R. E. Johnson and Foote,
1988), the outcome of this thesis is an abstract design for solutions to a family of related
problems (rather than a mere collection of libraries and tools), which aims at providing
solutions to master the 13C-MFA procedure. Exposing special-purpose 13C-MFA tools
and data sources as services with unified interfaces allows for flexibly composing compu-
tational pipelines and workflow applications. Hence, the approach proposed by this thesis
– namely, designing the SWF as a collection of loosely-coupled modules that are glued
together with web services – supports scientists in the realization of 13C-MFA workflows.
Specifically, the five challenges identified in § 1.3 are addressed in this thesis as discussed
in the following.

7.1. Discussion
C1: Heterogeneous and flexible data and tool organization
A usable SWF for model-based evaluations needs to strike a balance between being a
mere collection of services and providing fully-integrated functionality, such as graphical
modeling and easy-to-use HPC deployment. The chosen design of the SWF allows that
both, the use of web services, which allow the flexible integration of otherwise diverse
applications, and the introduction of a VCS in addition to traditional databases, help to
organize different knowledge sources, experimental data, and models.

However, this flexibility also comes at a price: often, the automation of 13C-MFA
workflows utilizing third-party components is only seldom possible (if at all) to full extent
out of the box. Instead, the researcher needs to create a workflow that employs the
software and determine which intermediate information requires an expert decision. In
addition, input and output formats of some of the employed tools need to be adapted
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to adjacent workflow steps. While especially third-party bioinformatics software often
employ custom formats, a plenitude of data conversion libraries and utilities are available
that are ready for inclusion into the SWF. For instance, the biopython package provides
a broad range of Python interfaces for prominent bioinformatics tools including data
conversion utilities (Cock et al., 2009). As a result, the utilization of third-party tools in
13C-MFA workflows is supported by the SWF as shown in the various use cases.

C2: Standardization of processes and unifying software tools and data
Practical experience shows that many sub-tasks are repetitive and can be performed fol-
lowing standardized procedures. The SWF addresses this challenge with several measures:

• Organizing all electronic information of a 13C-MFA study using the SWF project
repository template allows researchers to quickly structure input, output, and other
data of a workflow. Moreover, this standardization eases the exchange of information
with other scientists.

• The unification of data formats to a core set (namely, FluxML, FWDSIM, HDF5,
and CSV) in combination with the utilization of web service interfaces eases the
composition of different tools (e.g., Omix and 13CFLUX2) to semi-automatic work-
flows.

• As demonstrated in the various use cases, several components of the SWF are de-
signed to be reusable in different contexts (e.g., the cloud Hadoop MapReduce
solution of the MCB method). Besides being proof-of-concept implementations,
the presented use cases employing these standard components can be considered as
blueprint solutions (or design patterns) for problems of similar category.

C3: Interactive research-driven workflow steering
The importance of the researcher in typical 13C-MFA studies cannot be emphasized
enough. The presented use cases involve the activity of an expert to direct the paths
of a workflow. Several components of the SWF are designed to ease the work of the
researcher. The web portal acts as resource and database central, the web services pro-
vide a programmable (that is, scriptable using the Python language) ad hoc workflow
interface, with Hadoop MapReduce a readily usable distributed computing framework is
accessible, the provenance collection framework offers online tracking of simulation data,
the VCS and its template is utilized to organize researcher data, and numerous (in parts
third-party) tools and libraries allow the creation of custom 13C-MFA applications.

C4: Distributed Computing
With the increasing complexity of metabolic reaction network models, there is a clear
need for a solution to deploy 13C-MFA simulations on distributed computing resources.
In this work, the Apache Hadoop MapReduce framework is chosen as central component
in the SWF to realize performance-intensive simulation tasks. On the example of the
MCB algorithm, the utilization of cluster and cloud computing resources is demonstrated
in multiple use cases. While the development and adaptation of MapReduce workflows
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is comparatively easy to realize, the performance measurement results also indicate that
there is room for improvement. Several measures, namely, the parameterization of the
Hadoop MapReduce framework and tuning of the MCB algorithm, have boosted the
overall runtime performance, thus, enabling the efficient work on large-scale 13C-MFA
models.

C5: Service orientation
Service orientation is not only a technical aspect, but regarded as a paradigm in the
design of the SWF. For instance, a biotechnologist working on a C. glutamicum organism
most likely wants to focus on the experimental steps rather than the details of the 13C-
MFA simulation tasks. Hence, understanding the computational tools of the 13C-MFA
procedure as services, purely technical steps (such as data conversion or deployment on
HPC resources) can be hidden from the researcher. In this work, 13CFLUX2 and other
13C-MFA tools are identified (cf. fig. 5.1) and embedded into the SWF using web services
and foreign programming language integration (e.g., Java and Python).

The use cases have demonstrated that this approach is feasible, however, a performance
penalty and the increased memory usage compared to pure 13CFLUX2 simulations is
also observed. However, especially in interactive workflows (e.g., modeling with Omix),
the availability of 13CFLUX2 tools as web service is an invaluable advantage because
the researcher is effectively liberated from several tasks such as file transfer and data
conversion.

7.2. Lessons Learned

Several insights are gained in the course of the development of the SWF that go beyond
the requirements in the 13C-MFA context.

• With a series of critical IT security issues being disclosed recently1, the necessity
of employing appropriate cryptographical methods (e.g., secure web communica-
tion via TLS or RSA public key data encryption) and the utilization of role-based
authentication to protect user data is highlighted.

• When this work started in 2008, SOAP-based web services were the de-facto industry
standard for providing machine-to-machine communication over the Internet. The
WS-BPEL standard is largely based other industry-grade WS-* standards, making
a standards-conform implementation of a workflow framework a complex endeavor.
Since then, REST has become a quasi-standard in web service and cloud applica-
tions, often combined with a scripting language such as Python or Ruby to develop
lightweight workflow applications. For instance, the Amazon Web Service SDK

1 Most prominently, the Heartbleed bug rendered applications using the OpenSSL library practically
useless against security threats. See http://heartbleed.com/. For a detailed overview of important
software vulnerabilities the author refers to the Common Vulnerabilities and Exposures list (CVE):
https://cve.mitre.org/.
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provides a comprehensive Ruby client library employing REST interfaces. Likewise,
upcoming versions of the Java programming language are increasingly emphasizing
the importance of REST for web and cloud applications (Evans, 2014). Therefore,
the focus of the SWF development has shifted over the years from BPEL and SOAP
to REST and scripted Python workflows.

• In the last decades, open source software has gained much interest in professional ap-
plications (Raymond, 1999). Especially, the bazaar-style decentralized approach of
software and knowledge sharing has quickened the development of successful bioin-
formatics platforms (e.g., NCBI, myExperiment), web databases (e.g., KEGG, Bio-
Cyc), and scientific bio tools (e.g., blast, bioperl/biopython) (Hope, 2008). Hence,
the professional use of open source development tools and libraries can be a benefi-
cial addition to purely commercial solutions2.

7.3. Outlook
There are several opportunities for future development:

• Because the tools developed at FZJ are currently being extended to the instationary
13C-MFA method, the established workflows (and their use with the existing tools)
will be revised and evaluated and, eventually, adapted and further generalized. The
service-oriented design of the SWF allows a quick adoption of novel methods and
tools in the 13C-MFA context.

• Today, experimental 13C-MFA data is mostly analyzed outside the biolabs. With
the ad hoc availability of distributed 13C-MFA simulation services and cheap mobile
devices, such as smart phones and tablets, simulations and data analyses can be
conducted while performing biological experiments. This is especially important in
labs with high biosafety levels (Bente et al., 2011). To use the SWF on touchless
mobile devices, further research to adapt the specific workflows and user interfaces
(e.g., the web portal) is required.

• Another area is simulation performance in distributed environments. While the ex-
amples impressively demonstrate a performance boost by employing HPC resources,
there is still room to improve the parallel efficiency of the simulation workflows.

2 The author has not only benefited from open source software during the development of the SWF,
but also contributed to open source projects. See for example: http://man7.org/linux/man-pages/
changelog.html and http://sourceware.org/ml/libc-alpha/2012-02/msg00444.html.
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Appendix A.

Mathematical Background

In the following, the mathematical background regarding MCB in the context of 13C-MFA
is briefly described.

A.1. Notation
Scalar variables are written in italic letters, while vectors are denoted with boldface letters.
The length or norm of a variable a is denoted with ∥a∥. The hat descriptor denotes an
estimated variable or function, e.g., â.

A.2. Estimation of Free Flux Parameters
The mathematical foundations of the 13C-MFA parameter estimation procedure is briefly
introduced now. The details can be reviewed in the literature (e.g., Weitzel, 2009[§§ 2.6
and 4.1 and 10.1]). The isotope-based 13C-MFA aims at estimating the vector of free
fluxes v̂f which describes the labeling measurement vector ym, such that:

v̂ = arg min
v̂f

D(v̂f ) (A.1)

The objective function D is defined as the residual sum of squares between the real
measurements ym and the weighted simulated measurements ys,ω. With ω being a mea-
surement group scaling factor and σ2

i the standard deviation of the ith measurement
ym,i ∈ ym.

∥ym − ys,ω∥2 = ∥ym − ω · ys∥2 =
∑

i

(ym,i − ω · (ys,i(vf ))2

σ2
i

(A.2)

A.3. Monte Carlo Bootstrap
In this work, the parametric MCB approach is employed to estimate the accuracy of
parameters (e.g., the above mentioned flux values) and statistical errors (Efron and Tib-
shirani, 1993). Let θ be a parameter of the distribution D. Because D and θ are unknown,
an estimation θ̂ = s(x) is derived with s(·) being an estimation function (cf. eq. (A.2)).
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x = (x1, ..., xn) is a random sample from the model density function fθ̂. The MCB
algorithm for estimating error parameters is then formulated as follows:

1. N bootstrap samples are drawn (i.e., generated from the parametric model):

fθ̂ → x∗i for i = 1, 2, ..., N (A.3)

2. For each sample i, perform an estimation of the distribution’s parameter:

θ̂∗(i) = s(x∗i) (A.4)

3. Compute mean and standard deviation for θ̂∗:

µ̂θ̂∗ =
∑N

i=1 θ̂∗(i)
N

(A.5)

σ̂2
θ̂∗ =

N∑
i=1

[θ̂∗(i)− µ̂θ̂∗ ]2

(N − 1) (A.6)

This algorithm yields the ideal bootstrap estimate as N approaches infinity.
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Source Code Listings

B.1. 13CFLUX.net front site JSP source code

1 <%@taglib uri="/cms" prefix="cms" %>
2

3 <cms:page site="13cflux-front">
4 <cms:pageAttr title="Welcome␣to␣the␣13CFLUX.NET␣Portal" />
5 <p><div>The Modeling and Simulation group of the IBG-1 has a strong focus on

the design of specific tools for modeling, simulating and visualizing
biochemical networks and for improving interdisciplinary communication.</
div></p>

6 <p>Currently, the following software packages are actively supported:</p>
7 <table>
8 <tr>
9 <td><img alt="flux2" src="/images/logo_13cflux2_hires.png" width=’250’/>

10 <p><div><a href="/13cflux2/">13CFLUX2</a> the new high-performance
simulator for quantifying intracellular fluxes by analysis of carbon
labeling experiments</div></p>

11 </td>
12 <td><p></p></td>
13 <td><img alt="omix" src="/images/logo_omix.png" width=’200’/>
14 <p><a href="/omix/">OMIX</a> a highly customizable visualization tool and

biochemical network editor</p>
15 </td>
16 </tr>
17 <tr>
18 <td><img alt="biopda" src="/images/logo_biopda.png" width=’200’/>
19 <p><a href="/biopda/">BioPDA3</a> an easy-to-use tool for online process

data analysis</p>
20 </td>
21 </tr>
22 </table>
23 </cms:page>

Listing B.1: Source code for the 13CFLUX.net front page.
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B.2. HDF5ToCSV

1 #include "HDF5ToCSV.h"
2 #include <charptr_array.h>
3 #include <HDF5Reader.h>
4 #include <GLabelMatrix.h>
5 #include <Error.h>
6 #include <NLgetopt.h>
7 #include <iostream>
8 #include <cstdlib>
9

10 struct HDF5ToCSVParams {
11 const char* in;
12 const char* out;
13 const char* data;
14 const char* columns;
15 bool no_header;
16 const char* delim;
17 charptr_array logpublishers;
18

19 HDF5ToCSVParams()
20 : in(NULL),
21 out(NULL),
22 data("/flux/data"),
23 columns("/flux/names"),
24 no_header(false),
25 delim(",")
26 {
27 logpublishers.add("fd:2");
28 }
29 };
30

31 using namespace flux;
32

33 static void read_HDF5_matrix( la::GLabelMatrix< double >& M, const std::string&
hdf5file,

34 const std::string& data, const char* columns )
35 {
36 la::HDF5Reader h5r(hdf5file);
37 h5r.read(M, data, NULL, columns);
38 }
39

40 static void write_CSV_file( const la::GLabelMatrix< double >& M,
41 const char* csv, const std::string& delim )
42 {
43 FILE* fd = stdout;
44 if (csv) {
45 fd = ::fopen(csv, "w");
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46 if (!fd) {
47 fERROR("Failed␣to␣open␣%s␣for␣reading!", csv);
48 exit(EXIT_FAILURE);
49 }
50 }
51 if (M.getColumnLabels()[0]) {
52 fprintf(fd, "\"%s\"", M.getColumnLabel(0));
53 for (size_t i = 1; i < M.cols(); i++) {
54 fprintf(fd, "%s\"%s\"", delim.c_str(), M.getColumnLabel(i));
55 }
56 fprintf(fd, "\n");
57 }
58 for (size_t i = 0; i < M.rows(); i++) {
59 fprintf(fd, "%f", M.get(i, 0));
60 for (size_t j = 1; j < M.cols(); j++) {
61 fprintf(fd, "%s%f", delim.c_str(), M.get(i, j));
62 }
63 fprintf(fd, "\n");
64 }
65

66 if (fd != stdout) {
67 ::fclose(fd);
68 }
69 }
70

71 int main(int argc, char** argv) {
72 SETLOGLEVEL(logINFO);
73 HDF5ToCSVParams params;
74 parse_command_line(argc, argv, params); // function omitted here
75 la::GLabelMatrix< double > M;
76 read_HDF5_matrix(M, params.in, params.data, params.columns);
77 write_CSV_file(M, params.out, params.delim);
78 exit(EXIT_SUCCESS);
79 }

Listing B.2: Source code for the HDF5ToCSV tool. Because the HDF5 and 13CFLUX2
libraries are used, the complete implementation requires 80 lines of code.
Parameter parsing and help text codes are omitted in the listing for the sake
of brevity.

B.3. Iterating many files on Linux
Because standard Linux tools (e.g., rm, find, or ls) employ non-constant time directory
iteration algorithms, a simple C++ program is developed fill this gap (Listing B.3).

1 static char buf[65536];
2
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3 int main(int argc, char* argv[]) {
4 const char* path = argv[1];
5 DIR* dir = opendir(path);
6 size_t count = 0;
7 struct dirent* dent;
8 while ((dent = readdir(dir))) {
9 /* skip non-regular files */

10 if (dent->d_type != DT_REG) {
11 continue;
12 }
13 count++;
14 std::string fname(path);
15 fname += std::string("/");
16 fname += std::string(dent->d_name);
17 std::stringstream strm;
18 strm << "./process_fwdsim.sh␣" << fname << "␣" << count << std::ends;
19 int ret = system(strm.str().c_str());
20 if (WEXITSTATUS(ret) != EXIT_SUCCESS) {
21 continue;
22 }
23 }
24 closedir(dir);
25 exit(EXIT_SUCCESS);
26 }

Listing B.3: C++ program to iterate large amounts of FWDSIM files in a directory.

Listing B.4 presents the process_fwdsim.sh script which simply invokes the open
source libxml tool xmllint.

1 OUT=simdata.csv
2 cat "$1" | tr ’\n’ ’ ’ > tmp_fwd
3 echo -e "$(basename␣$1)_$2\t$(xmllint␣--noblanks␣--exc-c14n␣tmp_fwd)" >> $OUT;
4 rm -- $1

Listing B.4: Shell script which is invoked by generate_fwdsim.cc to execute xmllint.

B.4. FWDSIM Post-Processing with Hadoop Streaming API
Listing B.5 depicts the implementation of the map function.

1 import sys
2 import xml.etree.ElementTree as ET
3 NS = ’http://www.13cflux.net/fwdsim’
4

5 for line in sys.stdin:
6 (key, value) = line.split(’\t’, 1)
7 (mod, seq) = key.rsplit(’_’, 1)
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8 F = ET.XML(value)
9 M = F.find(’{%s}measurements’ % NS)

10 res = M.get(’residual’)
11 print "%s\t%s␣%s" % (mod, seq, res)

Listing B.5: Realization of the Hadoop MapReduce map program in Python.

For each input line, map separates key and value strings (lines 5–6). From the key,
the model or experiment name (mod) and the Monte Carlo sequence number (seq) are
extracted (line 7). Using the Python XML parser, the residual value (res) is read (lines 8–
10). Finally, the map program writes the extracted values to standard out.

After combining all outputs from map by unique keys, the Hadoop framework invokes
a reduce processor with a key and a list of values. Thus, reduce is realized as shown in
Listing B.6.

1 import sys
2 residual_threshold = 10000.
3

4 for line in sys.stdin:
5 (mod, value) = line.split(’\t’, 1)
6 (seq, res) = value.split(’␣’, 1)
7 res = float(res)
8 if res < residual_threshold:
9 print "%s_%s,%f" % (mod,seq,res)

Listing B.6: Python implementation of the Hadoop FWDSIM filter reducer.

Like map, reduce extracts key and value from the standard input stream (line 4–5).
From the value field, the space-delimited values seq and res are extracted (lines 6–7).
Finally, if the res is below the threshold, the unique input key from map is reassembled
from mod and seq and returned with the residual value (lines 8–9).

B.5. Synchronous and Asynchronous Python SOAP web service
clients

This section demonstrates the utilization of FluxWS using a Python SOAP web service
client in detail. By using the Python web service library SUDS, the 13CFLUX2 web ser-
vices are accessed conveniently from the researcher’s local workstation (Ortel, Noehr, and
Gheem, last accessed: Mar 2016). For instance, the following client invokes a fitfluxes
simulation:

1 import sys;
2 import base64;
3 from suds.client import Client;
4

5 fml_f = open(sys.argv[1], ’rb’);
6 fluxml = fml_f.read();
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7 fml_f.close();
8 fml = base64.b64encode(fluxml);
9

10 F = Client(flux_wsdl_URL);
11 R = F.service.Fitfluxes(fml, None);
12 fwdsim = base64.b64decode(R);

Listing B.7: Python web service wrapper client. In this example, the 13CFLUX2
parameter estimation program fitfluxes is executed.

The Python web service client script shown in Listing B.7 reads a model file (line 5-7),
encodes the contents to base64 in line 8 (fml), and initializes the SUDS library with
the web service URL (line 10). The 13CFLUX2 program fitfluxes is called in line 11.
Because the outcome of the web service call is a base64 encoded document (R), the result
data is decoded to an XML string in line 12.

However, the execution of the Python script is non-deterministically blocked until the
simulation is finished (line 11). To leverage the handling with long-running processes, this
so-called synchronous invocation is substituted by the following sequence of web service
calls (cf. Listing B.8):

1 C = F.service.FitfluxesStart(fml, None);
2 F.service.waitFor(C, 30000);
3 R = F.service.getResult(C);
4 F.service.delete(C);

Listing B.8: Replacement calls for the asynchronous 13CFLUX2 fitfluxes web service
client.

After starting the simulation asynchronously, a persistent job context (C) is created
(line 1). To check the job status, the waitFor web service is called (line 2). If the
method returns within the given time threshold (here 30,000 ms), the simulation outcome
is returned by getResult (line 3); otherwise a timeout exception is thrown. Because C is
persistent across different program invocations, the delete web service method is invoked
at the end of the script (line 4).

B.6. RepoManager Web Service

1 import sys
2 import pysvn
3 import os
4 import shutil
5 from bottle import route, run, template
6 import subprocess
7

8 # Bind address and port of the REST service
9 host = ’localhost’
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10 port = 8080
11

12 proto = ’file://’
13 repo_root = ’/var/subversion/SWF_repositories’
14

15 # create a new repository on this server
16 # client call:
17 # curl http://<host>:<port>/init/repo
18 @route(’/init/<repo>’)
19 def initialize(repo):
20 subprocess.check_output("svnadmin␣create␣%s/%s" % (repo_root, repo),
21 shell=True )
22

23 # list repositories on server
24 # client call:
25 # curl http://<host>:<port>/list
26 @route(’/list’)
27 def list():
28 return os.listdir(repo_root)
29

30 # list repositories on server
31 # client call:
32 # curl http://<host>:<port>/list
33 @route(’/list/<repo>’)
34 def list(repo):
35 client = pysvn.Client()
36 return client.list(proto + repo_root + ’/’ + repo)
37

38 # add and initialize repository project paths
39 # client call:
40 # curl http://<host>:<port>/add_project/repo/myproject
41 @route(’/add_project/<repo>/<name>’)
42 def add_project(repo, name):
43 client = pysvn.Client()
44 try:
45 client.checkout(proto + repo_root + ’/’ + repo, repo)
46 project_name = repo + ’/’ + name
47 client.mkdir(project_name, ’Initial␣create’)
48 client.mkdir(project_name + ’/raw_data’, ’Initial␣create’)
49 client.mkdir(project_name + ’/results’, ’Initial␣create’)
50 client.mkdir(project_name + ’/protocols’, ’Initial␣create’)
51 client.mkdir(project_name + ’/provenance_data’, ’Initial␣create’)
52 client.mkdir(project_name + ’/tools’, ’Initial␣create’)
53 client.mkdir(project_name + ’/notes’, ’Initial␣create’)
54 client.checkin([repo], ’Initial␣repository␣checkin’)
55 except Exception as e:
56 shutil.rmtree(’./’ + repo)
57 raise e;
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58 shutil.rmtree(’./’ + repo)
59

60 # Start REST web service
61 run(host=host, port=port)

Listing B.9: Source Code of the RepoManager RESTful web service. The service provides
access to the SWF project repositories.

B.7. Boxplot Script for the BCG Comparison Use Case

1 #!/usr/bin/env python
2

3 import matplotlib
4 matplotlib.use(’Qt5Agg’)
5

6 import matplotlib.pyplot as mp
7 import csv
8 import numpy
9 import sys

10 import gzip
11

12 fluxnames = [’emp1’, ’ana1’, ’tca2’]
13

14 for flux in fluxnames:
15

16 # slow
17 fp = open(’BCG_slow.csv’)
18

19 csvfile = csv.reader(fp, delimiter=’,’)
20 data_net_slow = []
21 count = 0
22 header = []
23

24 for line in csvfile:
25 if count == 0:
26 header = line
27 index_n = header.index(flux + ’_S.net’);
28 print(header)
29 else:
30 val = float(line[index_n])
31 data_net_slow.append(val)
32 count += 1
33

34 # fast
35 fp = open(’BCG_fast.csv’)
36

37 csvfile = csv.reader(fp, delimiter=’,’)
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38 data_net_fast = []
39 count = 0
40 header = []
41

42 for line in csvfile:
43 if count == 0:
44 header = line
45 index_n = header.index(flux + ’_F.net’);
46 print(header)
47 else:
48 val = float(line[index_n])
49 data_net_fast.append(val)
50 count += 1
51

52 mp.rcParams.update({’font.size’: 16})
53 mp.boxplot([data_net_slow, data_net_fast])
54 mp.xticks([1, 2], [flux + ’.net␣slow’, flux + ’.net␣fast’])
55

56 mp.ylabel(’flux␣value’)
57 mp.savefig(flux + ’.svg’)

Listing B.10: Source Code of the boxplot script which is used in the BCG comparison use
case.

B.8. Sampling and Multicore Simulation Script

1 import sys
2 import subprocess
3 import numpy as np
4 import h5py
5

6 if len(sys.argv) < 4:
7 print("Usage:␣%s␣<fml>␣<N>␣<BESTM>" % sys.argv[0])
8 exit(-1);
9

10 fml = sys.argv[1]
11 N = int(sys.argv[2])
12 bestM = int(sys.argv[3]) # m best residuals
13

14 if bestM > N: bestM = N
15

16 samples = ’samples.hdf5’
17 fwdout = ’fwdout.hdf5’ # filename for simulation output
18

19 def getResidualsFromHDF5(f):
20 data = f[’/optimizer/residual’][0];
21 return list(zip(range(len(data)), data))
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22

23

24 def getFluxesFromHDF5(f):
25 names = f[’/flux/names’][0].astype(np.str_)
26 data = fwdhdf5[’/flux/data’]
27 return (names, data)
28

29

30 def printFluxes(residuals, fluxes):
31 N = bestM
32 D = len(fluxes[1])
33

34 # print header
35 print("residual", end="")
36 for j in range(D):
37 print(",␣%s" % fluxes[0][j], end="")
38 print()
39

40 for i in range(N):
41 print("%f" % residuals[i][1], end="")
42 for j in range(D):
43 print(",␣%f" % fluxes[1][j][i], end="")
44 print()
45

46

47 subprocess.check_output("ssampler␣-i␣%s␣-o␣%s␣-n␣%d␣-l␣/dev/null" % (fml,
samples, N), shell=True)

48 subprocess.check_output("multifwdsim␣-i␣%s␣-H␣%s␣-f␣%s␣>/dev/null␣2>&1" % (fml,
samples, fwdout), shell=True)

49

50 fwdhdf5 = h5py.File(fwdout, "r")
51

52 residuals = getResidualsFromHDF5(fwdhdf5)
53 residuals.sort(key = lambda tup : tup[1])
54 fluxes = getFluxesFromHDF5(fwdhdf5);
55 printFluxes(residuals, fluxes)

Listing B.11: Source Code of the sampling and simulation script. The script calls
the 13CFLUX2 programs ssampler and multifwdsim to generate random
samples and forward simulation results, respectively. Ignoring whitespaces
and sanity checks, the script only has 37 lines or code.

B.9. Histogram Plotting

1 import matplotlib
2 matplotlib.use(’Qt5Agg’)
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B.9. Histogram Plotting

3

4 import matplotlib.pyplot as mp
5 import csv
6 import numpy
7 import sys
8 import gzip
9

10 fp = None
11 if sys.argv[1].endswith(’.gz’):
12 fp = gzip.open(sys.argv[1])
13

14 if fp == None:
15 fp = open(sys.argv[1])
16

17

18 csvfile = csv.reader(fp, delimiter=’,’)
19 res = []
20 minres = None
21 maxres = None
22 count = 0
23

24 idx = (int(sys.argv[2]) if len(sys.argv) > 2 else 0)
25 label = (sys.argv[3] if len(sys.argv) > 3 else ’residual␣value’)
26

27 header = next(csvfile)
28

29 for line in csvfile:
30 val = float(line[idx])
31 res.append(val)
32 if minres == None or minres > val:
33 minres = val;
34 if maxres == None or maxres < val:
35 maxres = val;
36 count += 1
37

38 print("range␣[%f␣%f]" % (minres, maxres))
39 print("median:␣%f" % numpy.median(res))
40 print("mean:␣%f␣+/-␣%f" % (numpy.mean(res), numpy.std(res)))
41 print("count:␣%d" % count)
42

43 mp.hist(res, 100)
44 mp.xlabel(label)
45 mp.ylabel(’count’)
46

47 mp.show()

Listing B.12: Histogram visualization script using Python and matplotlib.
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B.10. Scatter Plot Visualization

1 import matplotlib
2 matplotlib.use(’QT5Agg’)
3

4 import matplotlib.pyplot as mp
5 import csv
6 import numpy
7 import sys
8 import gzip
9 import fluxes

10

11 max_samples = 2000.
12

13 csvfname = sys.argv[1]
14 x_idx = int(sys.argv[2])
15 y_idx = int(sys.argv[3])
16

17 fp = None
18 if csvfname.endswith(’.gz’):
19 fp = gzip.open(csvfname)
20

21 if fp == None:
22 fp = open(csvfname)
23

24 csvfile = csv.reader(fp, delimiter=’,’)
25 res = []
26 x = []
27 y = []
28 cnt = 0
29

30 header = next(csvfile);
31

32 for line in csvfile:
33 val = float(line[1])
34 if cnt < max_samples:
35 res.append(val)
36 x.append(float(line[x_idx]))
37 y.append(float(line[y_idx]))
38 cnt += 1
39

40 print(’Count:␣%d’ % (cnt))
41 print(’%d␣->␣%s␣[%f,␣%f]’ % (x_idx, header[x_idx], min(x), max(x)))
42 print(’%d␣->␣%s␣[%f,␣%f]’ % (y_idx, header[y_idx], min(y), max(y)))
43

44 mp.scatter(x, y, c=res)
45 mp.xlabel(header[x_idx])
46 mp.ylabel(header[y_idx])
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B.11. Scripts for the Data Exploration Use Case

47 mp.jet();
48

49 mp.show()

Listing B.13: Scatter plot script using Python and matplotlib.

B.11. Scripts for the Data Exploration Use Case

1 FML=$1
2 N=$2
3 OUT=simdata.csv
4

5 mkdir -p fwdsimout
6

7 ssampler -i $FML -n $N -o samples.hdf5
8 multifwdsim -i $FML -H samples.hdf5 -o fwdsimout
9

10 i=0
11 for m in $(find fwdsimout -type f); do
12 echo "Processing␣$m␣($i)␣...";
13 cat $m | tr ’\n’ ’ ’ > tmp_fwd
14 echo -e "$(basename␣${m})_${i}\t$(xmllint␣--noblanks␣--exc-c14n␣tmp_fwd)" >>

$OUT;
15 ((i++));
16 done
17

18 rm -Rf tmp_fwd samples.hdf5

Listing B.14: Shell script to prepare the deployment on a Hadoop MapReduce cluster.
The script is tested with GNU Bash version 4.3.

1 import sys
2 import xml.etree.ElementTree as ET
3 NS = ’http://www.13cflux.net/fwdsim’
4

5 for line in sys.stdin:
6 (key, value) = line.split(’\t’, 1)
7 (mod, seq) = key.rsplit(’_’, 1)
8 F = ET.XML(value)
9 M = F.find(’{%s}measurements’ % NS)

10 res = M.get(’residual’)
11 print("%s\t%s␣%s" % (mod, seq, res))

Listing B.15: Map script used in the data exploration workflow.

1 import sys
2 residual_threshold = 10000.
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3

4 for line in sys.stdin:
5 (mod, value) = line.split(’\t’, 1)
6 (seq, res) = value.split(’␣’, 1)
7 res = float(res)
8 if res < residual_threshold:
9 print("%s_%s,%f" % (mod,seq,res))

Listing B.16: Reduce script used in the data exploration workflow.
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Appendix C.

13CFLUX2 Tools

C.1. Simulation Tools

• fwdsim: the forward simulation tool solves the MFA equations, i.e., given a flux
vector and the FluxML model, isotopomers or cumomers are computed. The output
data of this tool is represented in the FWDSIM format.

• fitfluxes: by utilizing a non-linear optimizer, fitfluxes solves the inverse parameter
estimation problem of the MFA equations. The output of this tool is a FWDSIM
file.

• edopt: with a given definition of input substrates, edopt computes an optimal design
for subsequent ILEs (Möllney et al., 1999). The objective function is subject to a
statistical optimality criterion which is applied to the covariance matrix of each
sample (Atkinson and Donev, 1992). For each sample the flux covariance matrix is
computed.

• multifwdsim: combined with the output from ssampler, this tool operates on a set of
inputs rather than a single flux vector. Because the input model file is only parsed
and validated once per sample, multifwdsim processes large amounts of flux vectors
by magnitudes faster than simulating each flux with fwdsim. In addition, the flux
vector processing can be parallelized on all processors (resp. cores) on a compute
node. The output of this tool is either a directory containing FWDSIM files, or a
comprehensive HDF5 data file.

• multifit: This Perl script performs multi-start parameter estimations by invoking
ssampler, fitfluxes, and setfluxes in a multi-tasked fashion.

• multifitfluxes: like multifwdsim, this tool parallelizes multiple parameter estimations
on a single compute node. Accordingly, the output of multifitfluxes is either a direc-
tory with FWDSIM files, or an HDF5 data file. Because the processing of FluxML
data is minimized with multifitfluxes, it offers performance benefits compared to
multifit.
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C.2. Sampling and Analysis Programs
• ssampler : random fluxes within the constraints of a FluxML model are generated

with this tool. The output is a HDF5 file containing samples.

• sscanner : this tool serves three main purposes. Firstly, by scanning the model
stoichiometry and the model inequality constraints, the analytical center of the flux
space is assigned to the model flux values. Secondly, unbound free fluxes are set
with sscanner. Finally, user-defined and inferred flux inequality constraints are
presented.

• edscanner : by sampling the given input substrate space, this tool generates a mixing
simplex. For each sample the flux covariance matrix is computed. Unlike edopt, this
tool performs a grid sampling method instead of applying an optimizer search in
the mixing simplex space.

• perturb: measurement values of a FluxML model are randomly perturbed according
to the measurement model and stored alongside the original measurement values in
the model file. Thus, this tool is useful for performing statistical applications, like
the computation of Monte Carlo bootstrap statistics (Weitzel et al., 2013).

• multiperturb: like multifwdsim and multifitfluxes, this tool extends perturb by gen-
erating multiple random measurements from a single input. Likewise, the output
is either a directory containing multiple FluxML files, or a single HDF5 containing
measurement vectors.

C.3. Conversion Utilities and Reporting Tools
• collectfitdata: this helper utility collects specific information from multiple FWDSIM

input files into a single HDF5 output file. Currently, measurements, free fluxes, netto
fluxes, and exchange fluxes can be selected for collection.

• ftbl2fml: model files from the 13CFLUX format FTBL are converted to 13CFLUX2
FluxML using this tool Wiechert et al., 2001.

• fml2sbml: this tool converts FluxML model files to the SBML format (Hucka et al.,
2003). Unlike SBML, FluxML supports a notation for specifying labeling positions
and atom transitions. Hence, this information is lost when converting FluxML
models to SBML.

• fmllint: FluxML files are checked with fmllint. The XML models are syntactically
checked and validated against the FluxML schema.

• fmlstat: FluxML model statistics (e.g., number of reactions and pools) are displayed
with this tool.
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C.3. Conversion Utilities and Reporting Tools

• fwdsim2csv: this tool converts flux values, measurement norms, and optimization
residuals from FWDSIM files to a CSV formatted output. Thus, FluxML measure-
ments are easily exported to table spreadsheet programs.

• fwdsimflt: like fwdsim2csv, this program converts data from FWDSIM to a CSV
file. However, the tools differ in two aspects: (a) fwdsimflt is a conversion tool
from measurements, flux values, stoichiometry, standard deviations, unknown pa-
rameters, optimization flags, and isotopomer fractions in a CSV formatted output;
(b) while fwdsim2csv is designed to process multiple files into a single CSV output,
fwdsimflt generates the CSV data row-wise, i.e., a FWDSIM input file is converted
to a single CSV output file.

• sbml2fml: this tool converts SBML model files to the FluxML format. Thus, it is
the reverse operation of fml2sbml. However, the conversion data is restricted to the
stoichiometry.

• simreport: Generate a report of a simulation by analyzing FWDSIM files. The
generated output are simulated measurement values, norm values and differences
between model measurement values and simulated data.
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Appendix D.

Apache HTTPD Configuration

The Apache HTTPD web server is used as dispatcher for all incoming HTTP messages.
Thereby, the Apache HTTPD rewrite engine1 is employed to either handle incoming
request or forward to the JBoss application server. The decision is made on the accessed
resource address (Uniform Resource Locator; URL). The following URL substitution rules
are configured in the HTTPD web server:

• To validate FluxML and FWDSIM XML files, so called XML Schema Definitions
(XSD) are employed. In the SWF, the following configuration entry is used to access
the FluxML and FWDSIM XSD files:

RewriteRule ^/fluxml$ /srv/www/htdocs/schema/fluxml.xsd [L]
RewriteRule ^/fwdsim$ /srv/www/htdocs/schema/fwdsim.xsd [L]

• Information about Omix and the Omix library documentation is redirected to the
Omix web page http://omix-visualization.com.

• The access to the URL http://www.13cflux.net/x3cfluxlicense is passed to a
Perl CGI script2 which authenticates the usage of 13CFLUX2.

• To improve security, the access to the portal login sites is always redirected to the
corresponding HTTPS URL.

• Web services provided by other server nodes are passed through, e.g.,

RewriteRule ^/FluxWS/Flux(.*)$ \
http://ibt-v708:8080/FluxWS/Flux$1 [P,L]

In this example, ibt-v708 is an internal host (i.e., the host name is inaccessible
by an Internet client) that provides the FluxWS web service via the URL prefix
www.13cflux.net/FluxWS/Flux.

1 Details on the Apache HTTPD rewrite engine mod_rewrite and its configuration can be found here:
https://httpd.apache.org/docs/2.2/mod/mod_rewrite.html; last accessed: May 22, 2017

2 The CGI license script is developed by Michael Weitzel
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Appendix D. Apache HTTPD Configuration

• Standard HTTP error pages and static sites are rewritten to static pages to provide
a consistent error reporting to the user (e.g., when the JBoss server fails).

• Accesses to the URL www.13cflux.net/ is passed to the JBoss server using the
AJP protocol with the following rule:

RewriteRule ^/*(.*)$ ajp://localhost:8009/$1 [P,L]

If none of the above substitution patterns match, the application server will handle
the web request. Hence, this pattern is placed at the end of the rewrite engine rules.
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Appendix E.

SWF Services and Components

Since the SWF follows the SOA paradigm, functional components of the 13C-MFA pro-
cedure (i.e., tasks or sub-workflows) are wrapped and exposed as web services. In ad-
dition, several tools and libraries are part of the framework that support the realization
of 13C-MFA workflow applications. Table E.1 lists the most important 13C-MFA tools
and services categorized by type. From these components, as well as external tools and
services, analysis workflows are composed.
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