1,825 research outputs found

    A petri net formalization of a publish-subscribe process system.

    Get PDF
    Publish/subscribe systems are getting more and more integrated into the execution of business processes in process aware information systems. This integration enables the distribution of the process logic and increases the scalability and adaptability of the process enactment infrastructure. A consequence is however that the original specified process model doesn't accurately represent the actual running process anymore, as the publish/subscribe specific operations are not incorporated into the original model. In this paper we propose a formal model of a publish/subscribe system that can be integrated into a business process model, creating in this way an accurate representation of the actual runtime process. The resulting model can be used for model checking the executable process: inspect system properties, discover problems and validate changes.

    Start Time and Duration Distribution Estimation in Semi-Structured Processes

    Get PDF
    Semi-structured processes are business workflows, where the execution of the workflow is not completely controlled by a workflow engine, i.e., an implementation of a formal workflow model. Examples are workflows where actors potentially have interaction with customers reporting the result of the interaction in a process aware information system. Building a performance model for resource management in these processes is difficult since the required information is only partially recorded. In this paper we propose a systematic approach for the creation of an event log that is suitable for available process mining tools. This event log is created by an incrementally cleansing of data. The proposed approach is evaluated in an experiment

    An evaluation of the software architecture efficiency using the Clichés and behavioral diagrams pertaining to the unified modeling language

    Get PDF
    The software architecture plays essential role for the development of the complicated software systems and it is important to evaluate the software architecture efficiency. One way to evaluate the software architecture is to create an executable model from the architecture. Unified Modeling Language (UML) diagrams are used to describe the software architecture. UML has made it easy to use and to evaluate the necessary requirements at the software architecture level. It creates an executable model from these diagrams; yet, since the UML is a standard semi-formal language for describing the software architecture, evaluating the software architecture is not directly possible through it. Furthermore, in order to evaluate the software architecture, one needs to turn the actual model into the formal model. In this study, first we describe the architecture using the UML. Then, some properties of the software architecture are mentioned using the UML sequence diagram, deployment diagram, use case diagram, and component diagram. The necessary information associated with the qualitative characteristic of efficiency will be margined as clichés and labels to these diagrams. The independent and dependent components will be extracted from the component diagram. Finally, the resulted semi-formal model will be mapped into a formal model based on the colored Petri net and finally the evaluation will take place

    Customizable service-oriented Petri net controllers

    Get PDF
    In industrial automation, service-orientation is a relatively new and ascending concept and thus, concrete integrated methodologies are missing to accomplish the required development tasks. A suitable approach is to use the powerful set of features that Petri nets formalism provides for such dynamic systems. This paper presents a token game template that is part of the open methodology for the development of customized Petri nets controllers, targeting the engineering of service-oriented industrial automation. This template is based on a state machine specification for the life-cycle of transitions that leaves several options open for extending it with features depending on the application. The practical use and implementation should bring, among others, featured-full and integrated modeling, analysis and control capabilities, which is required by service-oriented ecosystems. This core structure was used and validated in the development of control applications for an industrial automation system.The authors would like to thank the European Commission and the partners of the EU IST FP6 project “Service-Oriented Cross-layer infrastructure for Distributed smart Embedded devices” (SOCRADES), the EU FP6 “Network of Excellence for Innovative Production Machines and Systems” (I*PROMS), and the European ICT FP7 project “Cooperating Objects Network of Excellence” (CONET) for their support

    Profiling the publish/subscribe paradigm for automated analysis using colored Petri nets

    Get PDF
    UML sequence diagrams are used to graphically describe the message interactions between the objects participating in a certain scenario. Combined fragments extend the basic functionality of UML sequence diagrams with control structures, such as sequences, alternatives, iterations, or parallels. In this paper, we present a UML profile to annotate sequence diagrams with combined fragments to model timed Web services with distributed resources under the publish/subscribe paradigm. This profile is exploited to automatically obtain a representation of the system based on Colored Petri nets using a novel model-to-model (M2M) transformation. This M2M transformation has been specified using QVT and has been integrated in a new add-on extending a state-of-the-art UML modeling tool. Generated Petri nets can be immediately used in well-known Petri net software, such as CPN Tools, to analyze the system behavior. Hence, our model-to-model transformation tool allows for simulating the system and finding design errors in early stages of system development, which enables us to fix them at these early phases and thus potentially saving development costs

    Abridged Petri Nets

    Full text link
    A new graphical framework, Abridged Petri Nets (APNs) is introduced for bottom-up modeling of complex stochastic systems. APNs are similar to Stochastic Petri Nets (SPNs) in as much as they both rely on component-based representation of system state space, in contrast to Markov chains that explicitly model the states of an entire system. In both frameworks, so-called tokens (denoted as small circles) represent individual entities comprising the system; however, SPN graphs contain two distinct types of nodes (called places and transitions) with transitions serving the purpose of routing tokens among places. As a result, a pair of place nodes in SPNs can be linked to each other only via a transient stop, a transition node. In contrast, APN graphs link place nodes directly by arcs (transitions), similar to state space diagrams for Markov chains, and separate transition nodes are not needed. Tokens in APN are distinct and have labels that can assume both discrete values ("colors") and continuous values ("ages"), both of which can change during simulation. Component interactions are modeled in APNs using triggers, which are either inhibitors or enablers (the inhibitors' opposites). Hierarchical construction of APNs rely on using stacks (layers) of submodels with automatically matching color policies. As a result, APNs provide at least the same modeling power as SPNs, but, as demonstrated by means of several examples, the resulting models are often more compact and transparent, therefore facilitating more efficient performance evaluation of complex systems.Comment: 17 figure

    Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Full text link
    Service-oriented sensor-actuator networks (SOSANETs) are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the \pi-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the \pi-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0
    • …
    corecore