87 research outputs found

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Technologies of Mobile Communication

    Get PDF
    Long-Term Evolution (LTE) is a new technology recently specified by 3GPP-Third Generation Partnership Project on the way towards fourth-generation mobile. This thesis presents the main technical features of this technology as well as its performances in terms of peak bit rate and average cell throughput, among others. LTE entails a big technological improvement as compared with the previous 3G standards. 1 However, this thesis also demonstrates that LTE performances do not fulfill the technical requirements established by ITU-R to classify one radio access technology as a member of the IMT-Advanced family of standards. Thus, this thesis describes the procedure followed by 3GPP to address these challenging requirements. Through the design and optimization of new radio access techniques and a further evolution of the system, 3GPP is laying down the foundations of the future LTE-Advanced standard, the 3GPP candidate for 4G

    A study of mobile VoIP performance in wireless broadband networks

    Get PDF
    Voice service is to date still the killer mobile service and the main source for operator revenue for years to come. Additionally, voice service will evolve from circuit switched technologies towards packet based Voice over IP (VoIP). However, using VoIP over wireless networks different from 3GPP cellular technologies makes it also a disruptive technology in the traditional telecommunication sector. The focus of this dissertation is on determining mobile VoIP performance in different wireless broadband systems with current state of the art networks, as well as the potential disruption to cellular operators when mobile VoIP is deployed over different access networks. The research method is based on an empirical model. The model and experiments are well documented and based on industry standards for voice quality evaluation. The evaluation provides results from both experiments in a controlled laboratory setup as well as from live scenarios. The research scope is first, evaluate each network technology independently; second, investigate vertical handover mobility cases; third, determine other aspects directly affecting end user experience (e.g., call setup delay and battery lifetime). The main contribution of this work is a systematic examination of mobile VoIP performance and end user experience. The research results point out the main challenges for achieving call toll quality, and how derive the required changes and technological performance roadmap for improved VoIP service. That is, investigate how the performance and usability of mobile VoIP can eventually be improved to be a suitable substitute for circuit switched voice. In addition, we evaluate the potential disruption to cellular operators that mobile VoIP brings when deployed over other access networks. This research extends the available knowledge from simulations and provides an insight into actual end user experience, as well as the challenges of using embedded clients in handheld devices. In addition, we find several issues that are not visible or accounted for in simulations in regard to network parameters, required retransmissions and decreased battery lifetime. The conclusion is that although the network performance of several wireless networks is good enough for near toll quality voice in static scenarios, there are still a number of problems which make it currently unfeasible to use as a primary voice service. Moreover, under mobility scenarios performance is degraded. Finally, there are other issues apart from network performance such as energy consumption, hardware limitations and lack of supporting business models (e.g., for WiFi mesh) that further limit the possibility of rolling out mobile VoIP services

    A framework to provide charging for third party composite services

    Get PDF
    Includes synopsis.Includes bibliographical references (leaves 81-87).Over the past few years the trend in the telecommunications industry has been geared towards offering new and innovative services to end users. A decade ago network operators were content with offering simple services such as voice and text messaging. However, they began to notice that these services were generating lower revenues even while the number of subscribers increased. This was a direct result of the market saturation and network operators were forced to rapidly deploy services with minimum capital investment and while maximising revenue from service usage by end users. Network operators can achieve this by exposing the network to external content and service providers. They would create interfaces that would allow these 3rd party service and content providers to offer their applications and services to users. Composing and bundling of these services will essentially create new services for the user and achieve rapid deployment of enhanced services. The concept of offering a wide range of services that are coordinated in such a way that they deliver a unique experience has sparked interest and numerous research on Service Delivery Platforms (SDP). SDP‟s will enable network operators to be able to develop and offer a wide-variety service set. Given this interest on SDP standardisation bodies such as International Telecommunications Union – Telecommunications (ITU-T), Telecoms and Internet converged Servicers and Protocols for Advanced Networks) (TISPAN), 3rd Generations Partnership Project (3GPP) and Open Mobile Alliance (OMA) are leading efforts into standardising functions and protocols to enhance service delivery by network operators. Obtaining revenue from these services requires effective accounting of service usage and requires mechanisms for billing and charging of these services. The IP Multimedia subsystem(IMS) is a Next Generation Network (NGN) architecture that provides a platform for which multimedia services can be developed and deployed by network operators. The IMS provides network operators, both fixed or mobile, with a control layer that allows them to offer services that will enable them to remain key role players within the industry. Achieving this in an environment where the network operator interacts directly with the 3rd party service providers may become complicated

    Context awareness and related challenges: A comprehensive evaluation study for a context-based RAT selection scheme towards 5G networks

    Get PDF
    Ο αποτελεσματικός σχεδιασμός των δικτύων είναι απαραίτητος για να αντιμετωπιστεί ο αυξανόμενος αριθμός των συνδρομητών κινητού διαδικτύου και των απαιτητικών υπηρεσιών δεδομένων, που ανταγωνίζονται για περιορισμένους ασύρματους πόρους. Επιπλέον, οι βασικές προκλήσεις για τα συνεχώς αναπτυσσόμενα δίκτυα LTE είναι η αύξηση των δυνατοτήτων των υφιστάμενων μηχανισμών, η μείωση της υπερβολικής σηματοδότησης (signaling) και η αξιοποίηση ενός αποτελεσματικού μηχανισμού επιλογής τεχνολογίας ασύρματης πρόσβασης (RAT). Υπάρχουν ποικίλες προτάσεις στην βιβλιογραφία σχετικά με αυτές τις προκλήσεις, μερικές από τις οποίες παρουσιάζονται εδώ. Ο σκοπός της εργασίας αυτής είναι να ερευνήσει τις τρέχουσες εξελίξεις στα δίκτυα LTE σχετικά με την ενσωμάτωση EPC και WiFi και την επίγνωση πλαισίου (context awareness) στην διαχείριση κινητικότητας, και να προτείνει τον αλγόριθμο COmpAsS, έναν μηχανισμό που χρησιμοποιεί ασαφή λογική (fuzzy logic) για να επιλέξει την πιο κατάλληλη τεχνολογία ασύρματης πρόσβασης για τα κινητά. Επιπλέον, έχουμε ποσοτικοποιήσει το κόστος σηματοδότησης του προτεινόμενου μηχανισμού σε σύνδεση με τις σημερινές προδιαγραφές του 3GPP και εκτελέσαμε μια ολοκληρωμένη ανάλυση. Τέλος, αξιολογήσαμε τον αλγόριθμο μέσω εκτεταμένων προσομοιώσεων σε ένα πολύπλοκο και ρεαλιστικό σενάριο χρήσης 5G, που απεικονίζονται τα σαφή πλεονεκτήματα της προσέγγισής μας όσον αφορά τη συχνότητα μεταπομπών (handover) και τις μετρήσεις βασικών QoS τιμών, όπως ρυθμός μετάδοσης και καθυστέρηση.Effective network planning is essential to cope with the increasing number of mobile internet subscribers and bandwidth-intensive services competing for limited wireless resources. Additionally, key challenges for the constantly growing LTE networks is increasing capabilities of current mechanisms, reduction of signaling overhead and the utilization of an effective Radio Access Technology (RAT) selection scheme. There have been various proposals in literature regarding these challenges, some of which are discussed here. The purpose of this work is to research the current advances in LTE networks regarding EPC - WiFi integration and context awareness in mobility management, and propose the COmpAsS algorithm, a mechanism using fuzzy logic to select the most suitable Radio Access Technology. Furthermore, we quantify the signaling overhead of the proposed mechanism by linking it to the current 3GPP specifications and performing a comprehensive analysis. Finally, we evaluate the novel scheme via extensive simulations in a complex and realistic 5G use case, illustrating the clear advantages of our approach in terms of handover frequency and key QoS metrics, i.e. the user-experienced throughput and delay
    corecore