3 research outputs found

    Mining and Predicting Smart Device User Behavior

    Get PDF
    Three types of user behavior are mined in this paper: application usage, smart device usage and periodicity of user behavior. When mining application usage, the application installation, most frequently used applications and application correlation are analyzed. The application usage is long-tailed. When mining the device usage, the mean, variance and autocorrelation are calculated both for duration and interval. Both the duration and interval are long-tailed but only duration satisfies power-law distribution. Meanwhile, the autocorrelation of both duration and interval is weak, which makes predicting user behavior based on adjacent behavior not so reasonable in related works. Then DFT (Discrete Fourier Transform) is utilized to analyze the periodicity of user behavior and results show that the most obvious periodicity is 24 hours, which is in agreement with related works. Based on the results above, an improved user behavior predicting model is proposed based on Chebyshev inequality. Experiment results show that the performance is good in accurate rate and recall rate

    Uncovering perceived identification accuracy of in-vehicle biometric sensing

    Get PDF
    Biometric techniques can help make vehicles safer to drive, authenticate users, and provide personalized in-car experiences. However, it is unclear to what extent users are willing to trade their personal biometric data for such benefits. In this early work, we conducted an open card sorting study (N=11) to better understand how well users perceive their physical, behavioral and physiological features can personally identify them. Findings showed that on average participants clustere

    The digital ‘connected’ earth: open technology for providing location-based services on degraded communication environments

    Get PDF
    In the current world, it is easy to listen that everybody and everything is connected. Over this connected world, the concept of location-based services has grown in order to provide digital services in everyplace and at every time. Nevertheless, this is not 100% true because the connection is not guaranteed for many people and in many places. These are the Degraded Communications Environments (DCE), environments where the availability of high-speed communications is not guaranteed in at least the 75% of the time. This paper works over the experience of a previous work in developing light protocols that do not need broadband for communication. This work provides an extension of these protocols for the inclusion of mobile devices as elements of the communication process and a set of libraries to allow the development of applications in DCE. The work done has involved the development of two frameworks: an Android framework that makes the incorporation of Android devices easier and a server-based framework that provides the server side for the development of the referred applications. A use case that uses these two frameworks has been developed. Finally, all technology developed is available throw a public Git repository
    corecore