483 research outputs found

    Sensitivity analysis for models with dynamic inputs: a case study to control the heat consumption of a real passive house

    Get PDF
    International audienceIn this communication, we perform the sensitivity analysis of a building energy model. The aim is to assess the impact of the weather data on the performance of a model of a passive house, in order to better control it. The weather data are uncertain dynamic inputs to the model. To evaluate their impact, the problem of generating coherent weather data arises. To solve it, we carry out the Karhunen-Loève decomposition of the uncertain dynamic inputs. We then propose an approach for the sensitivity analysis of this kind of models. The originality for sensitivity analysis purpose is to separate the random variable of the dynamic inputs, propagated to the model response, from the deterministic spatio/temporal function. This analysis highlights the role of the solar gain on a high-insulated passive building, during winter time

    Numerical Methods for the Chemical Master Equation

    Get PDF
    The dynamics of biochemical networks can be described by a Markov jump process on a high-dimensional state space, with the corresponding probability distribution being the solution of the Chemical Master Equation (CME). In this thesis, adaptive wavelet methods for the time-dependent and stationary CME, as well as for the approximation of committor probabilities are devised. The methods are illustrated on multi-dimensional models with metastable solutions and large state spaces

    Numerical investigation of Differential Biological-Models via GA-Kansa Method Inclusive Genetic Strategy

    Full text link
    In this paper, we use Kansa method for solving the system of differential equations in the area of biology. One of the challenges in Kansa method is picking out an optimum value for Shape parameter in Radial Basis Function to achieve the best result of the method because there are not any available analytical approaches for obtaining optimum Shape parameter. For this reason, we design a genetic algorithm to detect a close optimum Shape parameter. The experimental results show that this strategy is efficient in the systems of differential models in biology such as HIV and Influenza. Furthermore, we prove that using Pseudo-Combination formula for crossover in genetic strategy leads to convergence in the nearly best selection of Shape parameter.Comment: 42 figures, 23 page

    Numerical solution for anti-persistent process based stochastic integral equations

    Get PDF
    In this article, we propose the shifted Legendre polynomial solutions for anti-persistent process based stochastic integral equations. The operational matrices for stochastic integration and fractional stochastic integration are efficiently generated using the properties of shifted Legendre polynomials. In addition, the original problem can be reduced to a system of simultaneous equations with (N + 1) unknowns in the function approximation. By solving the given stochastic integral equations, we obtain numerical solutions. The proposed method’s convergence is derived in terms of the error function’s expectation, and the upper bound of the error in L² norm is also discussed in detail. The applicability of this methodology is demonstrated using numerical examples and the solution’s quality is statistically validated by comparing it with the exact solution.Publisher's Versio

    Uncertainty quantification for problems in radionuclide transport

    No full text
    The field of radionuclide transport has long recognised the stochastic nature of the problems encountered. Many parameters that are used in computational models are very difficult, if not impossible, to measure with any great degree of confidence. For example, bedrock properties can only be measured at a few discrete points, the properties between these points may be inferred or estimated using experiments but it is difficult to achieve any high levels of confidence. This is a major problem when many countries around the world are considering deep geologic repositories as a disposal option for long-lived nuclear waste but require a high degree of confidence that any release of radioactive material will not pose a risk to future populations. In this thesis we apply Polynomial Chaos methods to a model of the biosphere that is similar to those used to assess exposure pathways for humans and associated dose rates by many countries worldwide. We also apply the Spectral-Stochastic Finite Element Method to the problem of contaminated fluid flow in a porous medium. For this problem we use the Multi-Element generalized Polynomial Chaos method to discretise the random dimensions in a manner similar to the well known Finite Element Method. The stochastic discretisation is then refined adaptively to mitigate the build up errors over the solution times. It was found that these methods have the potential to provide much improved estimates for radionuclide transport problems. However, further development is needed in order to obtain the necessary efficiency that would be required to solve industrial problems

    JDNN: Jacobi Deep Neural Network for Solving Telegraph Equation

    Full text link
    In this article, a new deep learning architecture, named JDNN, has been proposed to approximate a numerical solution to Partial Differential Equations (PDEs). The JDNN is capable of solving high-dimensional equations. Here, Jacobi Deep Neural Network (JDNN) has demonstrated various types of telegraph equations. This model utilizes the orthogonal Jacobi polynomials as the activation function to increase the accuracy and stability of the method for solving partial differential equations. The finite difference time discretization technique is used to overcome the computational complexity of the given equation. The proposed scheme utilizes a Graphics Processing Unit (GPU) to accelerate the learning process by taking advantage of the neural network platforms. Comparing the existing methods, the numerical experiments show that the proposed approach can efficiently learn the dynamics of the physical problem
    • …
    corecore