643 research outputs found

    Monitoring of jute/hemp fiber hybrid laminates by nondestructive testing techniques

    Get PDF
    Abstract Damage following static indentation of jute/hemp (50 wt.% total fiber content) hybrid laminates was detected by a number of nondestructive testing (NDT) techniques, in particular, near (NIR) and short-wave (SWIR) infrared reflectography and transmittography, infrared thermography (IRT), digital speckle photography (DSP), and holographic interferometry (HI), to discover and evaluate real defects in a laminate with a complex structure. A comparative study between thermographic data acquired in the mid- (MWIR) and long-wave infrared (LWIR) spectrum bands, by pulsed (PT) and square pulse (SPT) thermography, is reported and analyzed. A thermal simulation by COMSOL® Multiphysics (COMSOL Inc., Burlington, MA, USA) to validate the heating provided is also added. The robust SOBI (SOBI-RO) algorithm, available into the ICALAB Toolbox (BSI RIKEN ABSP Lab, Hirosawa, Japan) and operating in the MATLAB® (The MathWorks, Inc., Natick, MA, USA) environment, was applied on SPT data with results comparable to the ones acquired by several thermographic techniques. Finally, segmentation operators were applied both to the NIR/SWIR transmittography images and to a characteristic principal component thermography (PCT) image (EOFs) to visualize damage in the area surrounding indentation

    Measurement, optimisation and control of particle properties in pharmaceutical manufacturing processes

    Get PDF
    Previously held under moratorium from 2 June 2020 until 6 June 2022.The understanding and optimisation of particle properties connected to their structure and morphology is a common objective for particle engineering applications either to improve materialhandling in the manufacturing process or to influence Critical Quality Attributes (CQAs) linked to product performance. This work aims to demonstrate experimental means to support a rational development approach for pharmaceutical particulate systems with a specific focus on droplet drying platforms such as spray drying. Micro-X-ray tomography (micro-XRT) is widely applied in areas such as geo- and biomedical sciences to enable a three dimensional investigation of the specimens. Chapter 4 elaborates on practical aspects of micro-XRT for a quantitative analysis of pharmaceutical solid products with an emphasis on implemented image processing and analysis methodologies. Potential applications of micro-XRT in the pharmaceutical manufacturing process can range from the characterisation of single crystals to fully formulated oral dosage forms. Extracted quantitative information can be utilised to directly inform product design and production for process development or optimisation. The non-destructive nature of the micro-XRT analysis can be further employed to investigate structure-performance relationships which might provide valuable insights for modelling approaches. Chapter 5 further demonstrates the applicability of micro-XRT for the analysis of ibuprofen capsules as a multi-particulate system each with a population of approximately 300 pellets. The in-depth analysis of collected micro-XRT image data allowed the extraction of more than 200 features quantifying aspects of the pellets’ size, shape, porosity, surface and orientation. Employed feature selection and machine learning methods enabled the detection of broken pellets within a classification model. The classification model has an accuracy of more than 99.55% and a minimum precision of 86.20% validated with a test dataset of 886 pellets from three capsules. The combination of single droplet drying (SDD) experiments with a subsequent micro-XRT analysis was used for a quantitative investigation of the particle design space and is described in Chapter 6. The implemented platform was applied to investigate the solidification of formulated metformin hydrochloride particles using D-mannitol and hydroxypropyl methylcellulose within a selected, pragmatic particle design space. The results indicate a significant impact of hydroxypropyl methylcellulose reducing liquid evaporation rates and particle drying kinetics. The morphology and internal structure of the formulated particles after drying are dominated by a crystalline core of D-mannitol partially suppressed with increasing hydroxypropyl methylcellulose additions. The characterisation of formulated metformin hydrochloride particles with increasing polymer content demonstrated the importance of an early-stage quantitative assessment of formulation-related particle properties. A reliable and rational spray drying development approach needs to assess parameters of the compound system as well as of the process itself in order to define a well-controlled and robust operational design space. Chapter 7 presents strategies for process implementation to produce peptide-based formulations via spray drying demonstrated using s-glucagon as a model peptide. The process implementation was supported by an initial characterisation of the lab-scale spray dryer assessing a range of relevant independent process variables including drying temperature and feed rate. The platform response was captured with available and in-house developed Process Analytical Technology. A B-290 Mini-Spray Dryer was used to verify the development approach and to implement the pre-designed spray drying process. Information on the particle formation mechanism observed in SDD experiments were utilised to interpret the characteristics of the spray dried material.The understanding and optimisation of particle properties connected to their structure and morphology is a common objective for particle engineering applications either to improve materialhandling in the manufacturing process or to influence Critical Quality Attributes (CQAs) linked to product performance. This work aims to demonstrate experimental means to support a rational development approach for pharmaceutical particulate systems with a specific focus on droplet drying platforms such as spray drying. Micro-X-ray tomography (micro-XRT) is widely applied in areas such as geo- and biomedical sciences to enable a three dimensional investigation of the specimens. Chapter 4 elaborates on practical aspects of micro-XRT for a quantitative analysis of pharmaceutical solid products with an emphasis on implemented image processing and analysis methodologies. Potential applications of micro-XRT in the pharmaceutical manufacturing process can range from the characterisation of single crystals to fully formulated oral dosage forms. Extracted quantitative information can be utilised to directly inform product design and production for process development or optimisation. The non-destructive nature of the micro-XRT analysis can be further employed to investigate structure-performance relationships which might provide valuable insights for modelling approaches. Chapter 5 further demonstrates the applicability of micro-XRT for the analysis of ibuprofen capsules as a multi-particulate system each with a population of approximately 300 pellets. The in-depth analysis of collected micro-XRT image data allowed the extraction of more than 200 features quantifying aspects of the pellets’ size, shape, porosity, surface and orientation. Employed feature selection and machine learning methods enabled the detection of broken pellets within a classification model. The classification model has an accuracy of more than 99.55% and a minimum precision of 86.20% validated with a test dataset of 886 pellets from three capsules. The combination of single droplet drying (SDD) experiments with a subsequent micro-XRT analysis was used for a quantitative investigation of the particle design space and is described in Chapter 6. The implemented platform was applied to investigate the solidification of formulated metformin hydrochloride particles using D-mannitol and hydroxypropyl methylcellulose within a selected, pragmatic particle design space. The results indicate a significant impact of hydroxypropyl methylcellulose reducing liquid evaporation rates and particle drying kinetics. The morphology and internal structure of the formulated particles after drying are dominated by a crystalline core of D-mannitol partially suppressed with increasing hydroxypropyl methylcellulose additions. The characterisation of formulated metformin hydrochloride particles with increasing polymer content demonstrated the importance of an early-stage quantitative assessment of formulation-related particle properties. A reliable and rational spray drying development approach needs to assess parameters of the compound system as well as of the process itself in order to define a well-controlled and robust operational design space. Chapter 7 presents strategies for process implementation to produce peptide-based formulations via spray drying demonstrated using s-glucagon as a model peptide. The process implementation was supported by an initial characterisation of the lab-scale spray dryer assessing a range of relevant independent process variables including drying temperature and feed rate. The platform response was captured with available and in-house developed Process Analytical Technology. A B-290 Mini-Spray Dryer was used to verify the development approach and to implement the pre-designed spray drying process. Information on the particle formation mechanism observed in SDD experiments were utilised to interpret the characteristics of the spray dried material

    Development of Ti-Fe-based powders for laser additive manufacturing of ultrafine lamellar eutectics

    Get PDF
    Years of academic research has gone into developing Ti-Fe-based ultrafine eutectic and near-eutectic alloys with remarkable mechanical properties. Cast ingots (few mm in dimensions) have demonstrated high compressive strengths (> 2 GPa) similar to bulk metallic glasses (BMGs), while retaining more than 15 % plasticity at room temperature [1–3]. However, conventional casting methods are incapable of providing uniform and high cooling rates necessary for growing such ultrafine microstructures over large dimensions without introducing significant heterogeneities. On the other hand, laser-based Additive Manufacturing (AM) techniques with inherently very high cooling rates like Selective Laser Melting (SLM) (ranging 106 K/s) or Laser Metal Deposition (LMD) (ranging 104 – 105 K/s) are appropriate for such microstructural growth and their track and layer-wise building approach maintains an almost constant cooling rate throughout bulk. This strongly motivates the development of high-quality powders for SLM and LMD trials. In this work, pre-alloyed powder of Fe-rich near-eutectic composition Fe82.4Ti17.6 (at %) was developed for LMD, while powders of two Ti-rich compositions: near-eutectic Ti66Fe27Nb3Sn4 (at %) and off-eutectic Ti73.5Fe23Nb1.5Sn2 (at %) were explored for SLM trials. Three gas atomisation methods, namely Crucible-based Gas atomisation (CGA), Crucible-Free atomisation (CFA) and Arc-melting Atomisation (AMA) were investigated for optimising powder production. In addition to conventional techniques, a novel methodology was proposed for one-step screening of powders’ key features based on advanced image analysis of X-Ray Computed Tomography (XCT) data. The methodology generated volume-weighted particle size distributions (which were validated against conventional laser diffraction), provided accurate estimations of internal porosity and quantitatively evaluated the 3D morphology of powders. In order to create a solidification knowledge dataset and further optimise the processing of powders under high cooling rates, in-depth microstructural studies were performed on these powders sieved into different particle size ranges (experiencing different solidification rates during atomisation). Results revealed that powder particle size is clearly related to, and can possibly predict, the solidification pathway followed during gas atomisation as well as its degree of completion. The ultrafine interlamellar spacing λ (< 190 μm) of lamellar eutectics observed in powders of near-eutectic compostitions increased almost linearly with particle size and revealed solidification rates similar to those encountered during SLM/LMD processing of the same or similar compositions. Therefore, this work highlights the potential of gas atomisation as a method to study rapid solidification and Laser-AM processing. Finally, two alloys were consolidated by AM using pre-alloyed powders and characterised mechanically, i.e. LMD-built Fe82.4Ti17.6 with lamellar eutectic microstructure and SLM-built Ti73.5Fe23Nb1.5Sn2 (off-eutectic) showing a unique “composite” microstructure of α-Ti and β-Ti grains strengthened by FeTi dispersoids that partially arranged themeselves as fine lamellas. Both alloys showed high compressive yield strengths (≈ 1.8 GPa and ≈ 1.9 GPa) at room temperature, with Ti73.5Fe23Nb1.5Sn2 showing high plasticity up to 20 %. The alloy showed higher tensile yield strength and elongation at intermediate temperatures (450 °C to 600 °C) than popular (α+β) aerospace alloys, like Ti-6Al-4V built by laser-AM [4–6]. LMD-built Fe82.4Ti17.6 largely remained brittle below 500 °C, but out-performed similar induction cast [7] and sintered alloys in compressive yield strength, thus proving an impressive candidate for compression-based applications (like tools) in the intermediate temperature range.Programa de Doctorado en Ciencia e Ingeniería de Materiales por la Universidad Carlos III de MadridPresidenta: Mónica Campos Gómez.- Secretaria: Carmen Cepeda Jiménez.- Vocal: María San Sebastián Ormazába

    Application of artificial vision algorithms to images of microscopy and spectroscopy for the improvement of cancer diagnosis

    Full text link
    El diagnóstico final de la mayoría de tipos de cáncer lo realiza un médico experto en anatomía patológica que examina muestras tisulares o celulares sospechosas extraídas del paciente. Actualmente, esta evaluación depende en gran medida de la experiencia del médico y se lleva a cabo de forma cualitativa mediante técnicas de imagen tradicionales como la microscopía óptica. Esta tarea tediosa está sujeta a altos grados de subjetividad y da lugar a niveles de discordancia inadecuados entre diferentes patólogos, especialmente en las primeras etapas de desarrollo del cáncer. La espectroscopía infrarroja por Transformada de Fourier (siglas FTIR en inglés) es una tecnología ampliamente utilizada en la industria que recientemente ha demostrado una capacidad creciente para mejorar el diagnóstico de diferentes tipos de cáncer. Esta técnica aprovecha las propiedades del infrarrojo medio para excitar los modos vibratorios de los enlaces químicos que forman las muestras biológicas. La principal señal generada consiste en un espectro de absorción que informa sobre la composición química de la muestra iluminada. Los microespectrómetros FTIR modernos, compuestos por complejos componentes ópticos y detectores matriciales de alta sensibilidad, permiten capturar en un laboratorio de investigación común imágenes hiperespectrales de alta calidad que aúnan información química y espacial. Las imágenes FTIR son estructuras de datos ricas en información que se pueden analizar individualmente o junto con otras modalidades de imagen para realizar diagnósticos patológicos objetivos. Por lo tanto, esta técnica de imagen emergente alberga un alto potencial para mejorar la detección y la graduación del riesgo del paciente en el cribado y vigilancia de cáncer. Esta tesis estudia e implementa diferentes metodologías y algoritmos de los campos interrelacionados de procesamiento de imagen, visión por ordenador, aprendizaje automático, reconocimiento de patrones, análisis multivariante y quimiometría para el procesamiento y análisis de imágenes hiperespectrales FTIR. Estas imágenes se capturaron con un moderno microscopio FTIR de laboratorio a partir de muestras de tejidos y células afectadas por cáncer colorrectal y de piel, las cuales se prepararon siguiendo protocolos alineados con la práctica clínica actual. Los conceptos más relevantes de la espectroscopía FTIR se investigan profundamente, ya que deben ser comprendidos y tenidos en cuenta para llevar a cabo una correcta interpretación y tratamiento de sus señales especiales. En particular, se revisan y analizan diferentes factores fisicoquímicos que influyen en las mediciones espectroscópicas en el caso particular de muestras biológicas y pueden afectar críticamente su análisis posterior. Todos estos conceptos y estudios preliminares entran en juego en dos aplicaciones principales. La primera aplicación aborda el problema del registro o alineación de imágenes hiperespectrales FTIR con imágenes en color adquiridas con microscopios tradicionales. El objetivo es fusionar la información espacial de distintas muestras de tejido medidas con esas dos modalidades de imagen y centrar la discriminación en las regiones seleccionadas por los patólogos, las cuales se consideran más relevantes para el diagnóstico de cáncer colorrectal. En la segunda aplicación, la espectroscopía FTIR se lleva a sus límites de detección para el estudio de las entidades biomédicas más pequeñas. El objetivo es evaluar las capacidades de las señales FTIR para discriminar de manera fiable diferentes tipos de células de piel que contienen fenotipos malignos. Los estudios desarrollados contribuyen a la mejora de métodos de decisión objetivos que ayuden al patólogo en el diagnóstico final del cáncer. Además, revelan las limitaciones de los protocolos actuales y los problemas intrínsecos de la tecnología FTIR moderna, que deberían abordarse para permitThe final diagnosis of most types of cancers is performed by an expert clinician in anatomical pathology who examines suspicious tissue or cell samples extracted from the patient. Currently, this assessment largely relies on the experience of the clinician and is accomplished in a qualitative manner by means of traditional imaging techniques, such as optical microscopy. This tedious task is subject to high degrees of subjectivity and gives rise to suboptimal levels of discordance between different pathologists, especially in early stages of cancer development. Fourier Transform infrared (FTIR) spectroscopy is a technology widely used in industry that has recently shown an increasing capability to improve the diagnosis of different types of cancer. This technique takes advantage of the ability of mid-infrared light to excite the vibrational modes of the chemical bonds that form the biological samples. The main generated signal consists of an absorption spectrum that informs of the chemical composition of the illuminated specimen. Modern FTIR microspectrometers, composed of complex optical components and high-sensitive array detectors, allow the acquisition of high-quality hyperspectral images with spatially-resolved chemical information in a common research laboratory. FTIR images are information-rich data structures that can be analysed alone or together with other imaging modalities to provide objective pathological diagnoses. Hence, this emerging imaging technique presents a high potential to improve the detection and risk stratification in cancer screening and surveillance. This thesis studies and implements different methodologies and algorithms from the related fields of image processing, computer vision, machine learning, pattern recognition, multivariate analysis and chemometrics for the processing and analysis of FTIR hyperspectral images. Those images were acquired with a modern benchtop FTIR microspectrometer from tissue and cell samples affected by colorectal and skin cancer, which were prepared by following protocols close to the current clinical practise. The most relevant concepts of FTIR spectroscopy are thoroughly investigated, which ought to be understood and considered to perform a correct interpretation and treatment of its special signals. In particular, different physicochemical factors are reviewed and analysed, which influence the spectroscopic measurements for the particular case of biological samples and can critically affect their later analysis. All these knowledge and preliminary studies come into play in two main applications. The first application tackles the problem of registration or alignment of FTIR hyperspectral images with colour images acquired with traditional microscopes. The aim is to fuse the spatial information of distinct tissue samples measured by those two imaging modalities and focus the discrimination on regions selected by the pathologists, which are meant to be the most relevant areas for the diagnosis of colorectal cancer. In the second application, FTIR spectroscopy is pushed to their limits of detection for the study of the smallest biomedical entities. The aim is to assess the capabilities of FTIR signals to reliably discriminate different types of skin cells containing malignant phenotypes. The developed studies contribute to the improvement of objective decision methods to support the pathologist in the final diagnosis of cancer. In addition, they reveal the limitations of current protocols and intrinsic problems of modern FTIR technology, which should be tackled in order to enable its transference to anatomical pathology laboratories in the future.El diagnòstic final de la majoria de tipus de càncer ho realitza un metge expert en anatomia patològica que examina mostres tissulars o cel¿lulars sospitoses extretes del pacient. Actualment, aquesta avaluació depèn en gran part de l'experiència del metge i es porta a terme de forma qualitativa mitjançant tècniques d'imatge tradicionals com la microscòpia òptica. Aquesta tasca tediosa està subjecta a alts graus de subjectivitat i dóna lloc a nivells de discordança inadequats entre diferents patòlegs, especialment en les primeres etapes de desenvolupament del càncer. L'espectroscòpia infraroja per Transformada de Fourier (sigles FTIR en anglès) és una tecnologia àmpliament utilitzada en la indústria que recentment ha demostrat una capacitat creixent per millorar el diagnòstic de diferents tipus de càncer. Aquesta tècnica aprofita les propietats de l'infraroig mitjà per excitar els modes vibratoris dels enllaços químics que formen les mostres biològiques. El principal senyal generat consisteix en un espectre d'absorció que informa sobre la composició química de la mostra il¿luminada. Els microespectrómetres FTIR moderns, compostos per complexos components òptics i detectors matricials d'alta sensibilitat, permeten capturar en un laboratori d'investigació comú imatges hiperespectrals d'alta qualitat que uneixen informació química i espacial. Les imatges FTIR són estructures de dades riques en informació que es poden analitzar individualment o juntament amb altres modalitats d'imatge per a realitzar diagnòstics patològics objectius. Per tant, aquesta tècnica d'imatge emergent té un alt potencial per a millorar la detecció i la graduació del risc del pacient en el cribratge i vigilància de càncer. Aquesta tesi estudia i implementa diferents metodologies i algoritmes dels camps interrelacionats de processament d'imatge, visió per ordinador, aprenentatge automàtic, reconeixement de patrons, anàlisi multivariant i quimiometria per al processament i anàlisi d'imatges hiperespectrals FTIR. Aquestes imatges es van capturar amb un modern microscopi FTIR de laboratori a partir de mostres de teixits i cèl¿lules afectades per càncer colorectal i de pell, les quals es van preparar seguint protocols alineats amb la pràctica clínica actual. Els conceptes més rellevants de l'espectroscòpia FTIR s'investiguen profundament, ja que han de ser compresos i tinguts en compte per dur a terme una correcta interpretació i tractament dels seus senyals especials. En particular, es revisen i analitzen diferents factors fisicoquímics que influeixen en els mesuraments espectroscòpiques en el cas particular de mostres biològiques i poden afectar críticament la seua anàlisi posterior. Tots aquests conceptes i estudis preliminars entren en joc en dues aplicacions principals. La primera aplicació aborda el problema del registre o alineació d'imatges hiperespectrals FTIR amb imatges en color adquirides amb microscopis tradicionals. L'objectiu és fusionar la informació espacial de diferents mostres de teixit mesurades amb aquestes dues modalitats d'imatge i centrar la discriminació en les regions seleccionades pels patòlegs, les quals es consideren més rellevants per al diagnòstic de càncer colorectal. En la segona aplicació, l'espectroscòpia FTIR es porta als seus límits de detecció per a l'estudi de les entitats biomèdiques més xicotetes. L'objectiu és avaluar les capacitats dels senyals FTIR per discriminar de manera fiable diferents tipus de cèl¿lules de pell que contenen fenotips malignes. Els estudis desenvolupats contribueixen a la millora de mètodes de decisió objectius que ajuden el patòleg en el diagnòstic final del càncer. A més, revelen les limitacions dels protocols actuals i els problemes intrínsecs de la tecnologia FTIR moderna, que haurien d'abordar per permetre la seva transferència als laboratoris d'anatomia patològica en el futur.Peñaranda Gómez, FJ. (2018). Application of artificial vision algorithms to images of microscopy and spectroscopy for the improvement of cancer diagnosis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/99748TESI

    Energetically Autonomous Tactical Robots

    Get PDF
    Autonomous vehicle research has been on the rise in recent years. The need for autonomous vehicles and functions is growing for both everyday driving and military use. Current techniques have been shown to adequately navigate vehicles around a closed course. However, in hostile situations, where the objective timeframe is unclear, an autonomous vehicle alone would not be reliable in carrying out a mission. In this work, a system capable of both recognizing and acquiring biomass for self-fueling is investigated. Incorporating such a system with an autonomous vehicle would allow for a self-sustaining vehicle capable of being sent on a mission indefinitely. A study is done on the feasibility and requirements of a fully integrated system. It has been shown that the system is able to accurately distinguish and obtain a biomass source in a multi object environment. This biomass is then sent to an engine for burning and conversion to electrical energy. The energy is then stored in a system of batteries and used to sustain the operation of the platform

    Digital Image Processing Applications

    Get PDF
    Digital image processing can refer to a wide variety of techniques, concepts, and applications of different types of processing for different purposes. This book provides examples of digital image processing applications and presents recent research on processing concepts and techniques. Chapters cover such topics as image processing in medical physics, binarization, video processing, and more

    Biological image analysis

    Get PDF
    In biological research images are extensively used to monitor growth, dynamics and changes in biological specimen, such as cells or plants. Many of these images are used solely for observation or are manually annotated by an expert. In this dissertation we discuss several methods to automate the annotating and analysis of bio-images. Two large clusters of methods have been investigated and developed. A first set of methods focuses on the automatic delineation of relevant objects in bio-images, such as individual cells in microscopic images. Since these methods should be useful for many different applications, e.g. to detect and delineate different objects (cells, plants, leafs, ...) in different types of images (different types of microscopes, regular colour photographs, ...), the methods should be easy to adjust. Therefore we developed a methodology relying on probability theory, where all required parameters can easily be estimated by a biologist, without requiring any knowledge on the techniques used in the actual software. A second cluster of investigated techniques focuses on the analysis of shapes. By defining new features that describe shapes, we are able to automatically classify shapes, retrieve similar shapes from a database and even analyse how an object deforms through time

    New algorithms for the analysis of live-cell images acquired in phase contrast microscopy

    Get PDF
    La détection et la caractérisation automatisée des cellules constituent un enjeu important dans de nombreux domaines de recherche tels que la cicatrisation, le développement de l'embryon et des cellules souches, l’immunologie, l’oncologie, l'ingénierie tissulaire et la découverte de nouveaux médicaments. Étudier le comportement cellulaire in vitro par imagerie des cellules vivantes et par le criblage à haut débit implique des milliers d'images et de vastes quantités de données. Des outils d'analyse automatisés reposant sur la vision numérique et les méthodes non-intrusives telles que la microscopie à contraste de phase (PCM) sont nécessaires. Comme les images PCM sont difficiles à analyser en raison du halo lumineux entourant les cellules et de la difficulté à distinguer les cellules individuelles, le but de ce projet était de développer des algorithmes de traitement d'image PCM dans Matlab® afin d’en tirer de l’information reliée à la morphologie cellulaire de manière automatisée. Pour développer ces algorithmes, des séries d’images de myoblastes acquises en PCM ont été générées, en faisant croître les cellules dans un milieu avec sérum bovin (SSM) ou dans un milieu sans sérum (SFM) sur plusieurs passages. La surface recouverte par les cellules a été estimée en utilisant un filtre de plage de valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinétique de croissance cellulaire. Les résultats ont montré que les cellules avaient des taux de croissance similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linéaire avec le nombre de passages. La méthode de transformée par ondelette continue combinée à l’analyse d'image multivariée (UWT-MIA) a été élaborée afin d’estimer la distribution de caractéristiques morphologiques des cellules (axe majeur, axe mineur, orientation et rondeur). Une analyse multivariée réalisée sur l’ensemble de la base de données (environ 1 million d’images PCM) a montré d'une manière quantitative que les myoblastes cultivés dans le milieu SFM étaient plus allongés et plus petits que ceux cultivés dans le milieu SSM. Les algorithmes développés grâce à ce projet pourraient être utilisés sur d'autres phénotypes cellulaires pour des applications de criblage à haut débit et de contrôle de cultures cellulaires.Automated cell detection and characterization is important in many research fields such as wound healing, embryo development, immune system studies, cancer research, parasite spreading, tissue engineering, stem cell research and drug research and testing. Studying in vitro cellular behavior via live-cell imaging and high-throughput screening involves thousands of images and vast amounts of data, and automated analysis tools relying on machine vision methods and non-intrusive methods such as phase contrast microscopy (PCM) are a necessity. However, there are still some challenges to overcome, since PCM images are difficult to analyze because of the bright halo surrounding the cells and blurry cell-cell boundaries when they are touching. The goal of this project was to develop image processing algorithms to analyze PCM images in an automated fashion, capable of processing large datasets of images to extract information related to cellular viability and morphology. To develop these algorithms, a large dataset of myoblasts images acquired in live-cell imaging (in PCM) was created, growing the cells in either a serum-supplemented (SSM) or a serum-free (SFM) medium over several passages. As a result, algorithms capable of computing the cell-covered surface and cellular morphological features were programmed in Matlab®. The cell-covered surface was estimated using a range filter, a threshold and a minimum cut size in order to look at the cellular growth kinetics. Results showed that the cells were growing at similar paces for both media, but their growth rate was decreasing linearly with passage number. The undecimated wavelet transform multivariate image analysis (UWT-MIA) method was developed, and was used to estimate cellular morphological features distributions (major axis, minor axis, orientation and roundness distributions) on a very large PCM image dataset using the Gabor continuous wavelet transform. Multivariate data analysis performed on the whole database (around 1 million PCM images) showed in a quantitative manner that myoblasts grown in SFM were more elongated and smaller than cells grown in SSM. The algorithms developed through this project could be used in the future on other cellular phenotypes for high-throughput screening and cell culture control applications

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject
    corecore