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Résumé 

La détection et la caractérisation automatisée des cellules constituent un enjeu important 

dans de nombreux domaines de recherche tels que la cicatrisation, le développement de 

l'embryon et des cellules souches, l’immunologie, l’oncologie, l'ingénierie tissulaire et la 

découverte de nouveaux médicaments. Étudier le comportement cellulaire in vitro par 

imagerie des cellules vivantes et par le criblage à haut débit implique des milliers d'images 

et de vastes quantités de données. Des outils d'analyse automatisés reposant sur la vision 

numérique et les méthodes non-intrusives telles que la microscopie à contraste de phase 

(PCM) sont nécessaires. Comme les images PCM sont difficiles à analyser en raison du 

halo lumineux entourant les cellules et de la difficulté à distinguer les cellules individuelles, 

le but de ce projet était de développer des algorithmes de traitement d'image PCM dans 

Matlab® afin d’en tirer de l’information reliée à la morphologie cellulaire de manière 

automatisée. Pour développer ces algorithmes, des séries d’images de myoblastes 

acquises en PCM ont été générées, en faisant croître les cellules dans un milieu avec 

sérum bovin (SSM) ou dans un milieu sans sérum (SFM) sur plusieurs passages. 

 

La surface recouverte par les cellules a été estimée en utilisant un filtre de plage de 

valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinétique de croissance 

cellulaire. Les résultats ont montré que les cellules avaient des taux de croissance 

similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linéaire 

avec le nombre de passages. La méthode de transformée par ondelette continue 

combinée à l’analyse d'image multivariée (UWT-MIA) a été élaborée afin d’estimer la 

distribution de caractéristiques morphologiques des cellules (axe majeur, axe mineur, 

orientation et rondeur). Une analyse multivariée réalisée sur l’ensemble de la base de 

données (environ 1 million d’images PCM) a montré d'une manière quantitative que les 

myoblastes cultivés dans le milieu SFM étaient plus allongés et plus petits que ceux 

cultivés dans le milieu SSM. Les algorithmes développés grâce à ce projet pourraient être 

utilisés sur d'autres phénotypes cellulaires pour des applications de criblage à haut débit 

et de contrôle de cultures cellulaires.  
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Abstract 

Automated cell detection and characterization is important in many research fields such as 

wound healing, embryo development, immune system studies, cancer research, parasite 

spreading, tissue engineering, stem cell research and drug research and testing. Studying 

in vitro cellular behavior via live-cell imaging and high-throughput screening involves 

thousands of images and vast amounts of data, and automated analysis tools relying on 

machine vision methods and non-intrusive methods such as phase contrast microscopy 

(PCM) are a necessity. However, there are still some challenges to overcome, since PCM 

images are difficult to analyze because of the bright halo surrounding the cells and blurry 

cell-cell boundaries when they are touching. The goal of this project was to develop image 

processing algorithms to analyze PCM images in an automated fashion, capable of 

processing large datasets of images to extract information related to cellular viability and 

morphology. To develop these algorithms, a large dataset of myoblasts images acquired in 

live-cell imaging (in PCM) was created, growing the cells in either a serum-supplemented 

(SSM) or a serum-free (SFM) medium over several passages. As a result, algorithms 

capable of computing the cell-covered surface and cellular morphological features were 

programmed in Matlab®. 

 

The cell-covered surface was estimated using a range filter, a threshold and a minimum 

cut size in order to look at the cellular growth kinetics. Results showed that the cells were 

growing at similar paces for both media, but their growth rate was decreasing linearly with 

passage number. The undecimated wavelet transform multivariate image analysis (UWT-

MIA) method was developed, and was used to estimate cellular morphological features 

distributions (major axis, minor axis, orientation and roundness distributions) on a very 

large PCM image dataset using the Gabor continuous wavelet transform. Multivariate data 

analysis performed on the whole database (around 1 million PCM images) showed in a 

quantitative manner that myoblasts grown in SFM were more elongated and smaller than 

cells grown in SSM. The algorithms developed through this project could be used in the 

future on other cellular phenotypes for high-throughput screening and cell culture control 

applications. 
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Chapter 1. Introduction 

The study of how cells react to different culture conditions is facilitated by the use of 

microscopy to record the cellular responses over an extended period of time (5-10 days), 

generating for each experiment over 100 GB of image data consisting of about 40,000 

frames, with up to thousands of cells in each frame (Kang, Miller et al. 2006). Automated 

cell detection and tracking is important in many research fields such as wound healing, 

embryo development, immune system studies, cancer research, parasite spreading, tissue 

engineering, stem cell research and drug research and testing (Paduano, Sepe et al. 

2010). Studies of in vitro cellular behavior typically involve thousands of cells, and 

interpreting these vast amounts of data via manual analysis is time-consuming, costly and 

prone to human error (Theriault, Walker et al. 2012). In response to the need for 

automated analysis tools, machine vision methods were developed to detect and track 

cells in time-lapse microscopy, but cell segmentation remains an extremely challenging 

task (Theriault, Walker et al. 2012). In cell-based research, an accurate quantification of 

cell numbers is important for further analysis, and before the advent of high-throughput 

screening (HTS) manual cell counting in each image and the use of a hemacytometer 

were standard methods (Polzer, Haasters et al. 2010). However manual counting is too 

time consuming and tiring in HTS applications and the use of the hemacytometer requires 

trypsinization for adherent cells, thus being quite intrusive and providing only rough 

estimates of cell numbers (Polzer, Haasters et al. 2010). As a consequence, for 

microscopy-based HTS applications, there is a great need for automated cell counting and 

image processing methods that are robust and reliable (Polzer, Haasters et al. 2010). 

 

In order to optimize the formulation of culture media for growing in vitro animal or human 

cells, HTS is becoming a widely accepted methodology since it can test a huge variety of 

molecule combinations (growth factors, cytokines, etc.) at different concentrations using 

design of experiments (DOE) techniques. In order to assess the impact of culture 

conditions on the growth of animal cells, HTS platforms increasingly rely on microscopy, 

since it is possible to extract critical information from image processing such as the degree 

of confluence (cell-covered surface), cell counts, cellular morphology, cell-cell interations 

and provide information about how cells grow, move or even undergo differentiation. 

Because of the huge quantity of data and images that can be generated even by a single 

HTS experiment, image mining techniques (Berlage 2005; Berlage 2007) are required, 
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involving as much automation as possible for image processing. In fact, user interations is 

of the main bottleneck in high-throughput imaging applications, and therefore the 

development of more reliable and automated image analysis techniques for cellular 

imaging remains an important goal in computational molecular biology and microscopy-

based HTS (Cheng and Rajapakse 2009). 

 

From an automation and robustness perspective, fluorescence microscopy has several 

advantages in microscopy-based HTS such as the possibility to target specific molecular 

markers with fluorescent probes (e.g. immunofluorescence) and also it makes image 

processing for single-cell segmentation and tracking easier and reliable since it yields 

higher signal to noise ratio images compared to brightfield or phase contrast microscopy 

(Ali, Gooding et al. 2007). For segmenting cells stained with a fluorophore, a common and 

simple approach is to first binarize the image using a thresholding technique and then use 

the watershed transform on either intensities, gradients, shapes, other measures or a 

combination of all of those (Padfield, Rittscher et al. 2011). However, fluorescence 

microscopy for HTS has also several drawbacks. For instance, adding antibodies, dyes or 

fluorophore probes into a cell culture involves procedures that are time consuming and is 

an intrusive process that can affect cellular biology mainly due to cytotoxicity (Polzer, 

Haasters et al. 2010). Also, fluorescence microscopy can induce cellular damage due to 

UV exposition (Frigault, Lacoste et al. 2009), which can be detrimental for the cells, not 

mentioning that the residual labeling molecules can make it difficult to use the same cells 

afterwards for cell therapy. As a consequence, there is a need to develop non-intrusive 

HTS methods relying on microscopy that could provide as much information as possible 

about the cells. These drawbacks explain why the present project aims at developing 

imaging techniques relying on phase contrast microscopy (PCM), which are less intrusive. 

 

Phase-contrast microscopy (PCM) is a well-established tool to image living cells in 

biomaterials engineering research (Theriault, Walker et al. 2012). PCM has the advantage 

of being non-invasive to study cells that are sensitive to phototoxicity (Xiong, Chia et al. 

2011). There is still a need to develop image processing methods to analyze PCM images, 

since only a small number of commercially available softwares is capable of quantifying 

cells, and these softwares are often elaborate, costly, customized for specific applications 

or often require profound programming skills that are not accessible for every researcher 

(Polzer, Haasters et al. 2010). Image mining and processing algorithms comprise a large 
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array of methods and tools that can be freely or commercially available, and these 

softwares need to balance between being too open-source (only experienced 

programmers can operate them) or too closed-source (too rigid in their usage or too 

expensive to develop and maintain) (Berlage 2005). Even if there is a growing number of 

reports about image processing algorithms for PCM images, it is difficult to compare them 

directly because each algorithm is designed for different situations, including different 

imaging modalities, microorganisms or cell types, and benchmark datasets (especially for 

PCM). Ways to evaluate different techniques on a common basis are not readily available 

(Theriault, Walker et al. 2012). 

 

Key issues still remain to be addressed in image analysis algorithm development 

(especially for PCM images) and this area is still described as one of the greatest 

remaining challenges in screening applications (Carpenter, Jones et al. 2006). The 

bottleneck today is putting and analyzing together images, image-derived information and 

metadata from experimental databases to allow for the analysis of global patterns and to 

distinguish and evaluate the information at different levels (pixel level, segmented object 

level, culture conditions level and pattern level) (Berlage 2007). While existing softwares 

aim at analyzing particular assays for particular cell types, high throughput image analysis 

has mainly been impractical unless an image analysis expert developed a customized 

solution or unless a commercial package was used with its built-in algorithms applicable 

for a limited set of cellular features or for a limited set of cell phenotypes (Carpenter, Jones 

et al. 2006). There still exists a clear need for powerful and flexible open-source platforms 

for high-throughput cell image analysis (Carpenter, Jones et al. 2006). Many research 

groups developed automated cell counting and characterization platforms, but most of 

them rely on high-contrast images produced in fluorescence using labeling or are tailored 

for specific applications and require elaborate programming skills inaccessible for many 

researchers (Polzer, Haasters et al. 2010). Also, the varying experimental approaches 

reported in the literature demand considerable ressources (in terms of tuning) for setting-

up the segmentation parameters and for performing features selection and occurences 

classification (Berlage 2005). 

 

As a consequence, the aim of this project was to develop robust and reliable image 

processing algorithms for PCM-based high-throughput screening applications. To develop 

these image processing techniques, human myoblasts were imaged in live-cell microscopy 
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(in PCM, so it is not intrusive), studying the impact of culture time, passage number and 

culture media on the cells. The images acquired during this project were used to develop 

and test the algorithms and image processing approaches proposed (summarized in three 

articles). The techniques developed during this project are robust enough so they can be 

applied on a large database of PCM images, providing information about cellular growth 

kinetics and cellular morphology. The image processing approaches developed through 

this project are robust against uneven illumination and noise in order to ensure that reliable 

information is obtained from PCM (Kenong, Gauthier et al. 1995), making it possible to 

detect overall patterns related to culture conditions and cellular phenotypes. Even though 

the algorithms were developed for myoblasts, they may be used and tuned for other 

applications involving adherent cell lines such as endothelial cells (Hoesli, Garnier et al. 

2014). 

 

For perfoming HTS experiments relying on microscopy, a good knowledge of cell culture 

(particularly of the cell line studied), microscopy and image processing methods is 

required. Once the images are acquired and processed, multivariate techniques are 

required to extract pertinent information from a large number of image features to highlight 

the best (or the worst) culture conditions. The literature review presented in Chapter 2 

focuses mainly on these four items (cell culture, microscopy, image processing and 

multivariate analysis), which are important background knowledge in every microscopy-

based HTS project.  

 

The aim of this PhD project was to develop image processing algorithms to analyze live-

cell images acquired in phase contrast microscopy in order to extract valuable data. The 

ultimate goal is to be able to use (in the future) these algorithms in high-throughput 

screening applications involving live-cell imaging.  As a basis for this project, a human 

myoblast cell line (provided by the lab of Dr. J.P. Tremblay, CRCHUL) was used to test the 

algorithms developed in this PhD project, as it was known that the cells morphology is 

influenced by the culture medium used. The methodology used to acquire microscopic 

images to build a database (relative to the culture media used and the passage number) is 

provided in Chapter 3. The algorithms developed were published in several papers. A 

simple algorithm using a range filter, a threshold and a pixels size filter was tuned to 

estimate the cell-covered surface in each image in order to assess the myoblasts growth 

kinetics through passages (Chapter 4). To relate the texture patterns within PCM images 
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to the cells morphology, a new MIA algorithm relying on the continuous undecimated 

wavelet transform (UWT-MIA) was developed (Chapter 5). The UWT-MIA was then tested 

on the whole PCM image database to establish a statistical link between the culture 

medium used and the morphology of the cells (Chapter 6). These algorithms provide the 

ability to estimate cell counts and analyze the morphology of adherent cells grown on flat 

surfaces in PCM without performing single cell segmentation, and could be beneficial for 

future high-throughput screening applications. A link between cellular morphology and cell 

type could be investigated in future work, and, if confirmed, the image processing 

techniques developed could be used to assess cellular functionality in real time. 
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Chapter 2. Literature Review 

2.1 High throughput Screening (HTS) 
High throughput screening (HTS) or high content screening (HCS) is directed at evaluating 

the response of experimental pharmaceuticals or cytotoxins on large numbers of 

increasingly small cell samples arranged in microarrays (Freshney 2010). HTS refers more 

generally to the quantification of processes that are defined spatially and temporally in the 

array of cells (Berlage 2005). The main advantage of a HTS system is that they can assay 

simultaneously a very large number of samples with relatively few cells while recording 

and reducing data instantaneously with minimal manual intervention (e.g. via image 

processing) (Freshney 2010). 

 

A good overview of the whole process behind a high throughput screening experiment was 

presented by Rimon (2011), and is presented in Figure 2-1. The first step is to define the 

biological question to answer. Then, depending on the system to study, the appropriate 

labeling methods and HTS platforms are identified. Once the screening is completed, the 

images (or other forms of data) are processed using different softwares performing data 

extraction and classification (machine learning or object classifiers). Quality control is 

usually performed using false positives and false negatives samples that need to be 

recognized by automatic data processing softwares. If quality control criteria are not met, 

image and data processing steps need to be repeated in order to have robust results. Data 

analysis allows biological hypotheses to be formulated, confirmed or infirmed via statistical 

analysis. Finally, to help the scientific community comparing results (and the performance 

of the image processing and data analysis algorithms), data should be shared and made 

available to an accessible database. 

 

As technology evolves, highly-performant high throughput screening platforms appeared 

on the market, providing the ability to analyze in an automated fashion a large quantity of 

samples. However, as pointed out by Rimon (Rimon and Schuldiner 2011), there is a 

danger that as it becomes easier to process large quantities of samples to produce very 

large datasets, it becomes also harder to process all this data to obtain valuable biological 

information and conclusions. Sydney Brenner referred to this phenomenon by saying that 

high throughput experiments are in danger of creating “low-input, high-throughput, no-

output biology” (Brenner 2008). Even though high throughput screening platforms are 
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maturing, a major goal remains to develop high throughput screening technologies that will 

be “systematic, accurate, fast and unbiased without giving up the requirement to provide 

profound and highly informative data” (Rimon and Schuldiner 2011). One of the main 

challenges is to process all the data in a robust manner to be able to draw significant and 

reliable scientific conclusions. 

Another main challenge is to be as little intrusive as possible when performing HTS 

experiments to make sure that additives do not influence too much cellular behaviors, as 

already mentioned (Polzer, Haasters et al. 2010). 

 

Figure 2-1 : Whole process behind high throughput screening (HTS) experiments 

(adapted from Rimon and Schuldiner (2011)). 
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The labeling methods (to highlight cellular structures of interest) and the experimental 

strategies (HTS platforms) chosen will influence the type and quality of information that 

can be obtained (whole organism or single cell structure and behavior), as illustrated in 

Figure 2-2. It is thus very important to consider all the aspects of the biological questions 

to solve in order to identify the appropriate experimental set-up. 

 

Figure 2-2 : Influence of labeling methods and experimental strategies on the type 

and quality of information that can be obtained on whole organism or single cell 

structure and behavior (adapted from Rimon and Schuldiner (2011)). 
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For HTS applications, the most common labeling methods are given in Table 2-1. 

Table 2-1 : Labeling methods in HTS (Rimon and Schuldiner 2011) 

Cell component of 

interest 

Labeling method 

Ions Chemical sensors 

Genetically encoded sensors 

Sugars Fluorescent analogs 

Lipids Lipids dyes 

Anti-lipid antibodies 

Lipid-binding fluorescent fusion proteins (for example: a PH 

domain fused to GFP) 

Proteins Antibodies 

Fluorescent fusion proteins 

DNA, RNA Probes 

DNA- and/or RNA-binding proteins 

Promoter activity by fluorescent reporters 

Organelles Antibodies 

Fluorescent fusion proteins 

Lipid dyes 

Bright-field microscopy 

Whole cells Membrane lipid dyes 

Bright-field microscopy 

Antibodies 

 



 11 

HTS platforms relying on microscopy use different types of optical set-ups to obtain the 

information required to draw conclusions via image processing. Usually data extracted 

from image processing needs to be processed by machine-learning algorithms (or 

classifiers). A good review paper on how to use image features and machine-learning 

methods to distinguish cellular phenotypes in HTS was written by Sommer et al. (2013). 

The objective of a HTS experiment is to verify if a perturbation (e.g. treatment with a drug, 

small interfering RNA or genetic manipulation) would lead to a new cellular phenotype 

which is characterized by a change in cellular morphology, protein expression level or 

anything that can be measured by imaging biosensors (Sommer and Gerlich 2013). More 

and more HTS applications relying on microscopy and image processing are reported in 

the literature. For instance, an automated microscopy HTS set-up was used as a drug 

screening platform to identify molecules capable of fighting resistant microbes such as 

Staphylococcus aureus (Rajamuthiah, Fuchs et al. 2014), to quantify changes in the 

cytoskeleton of cancerous cells which are submitted to different drugs (Vindin, Bischof et 

al. 2014) and to identify cellular morphologies that are specific to a certain gene 

knockdown (Failmezger, Frohlich et al. 2013). Using microscopy-based HTS platforms 

requires background knowledge in cell culture, microscopy (applied to biological samples), 

image processing and multivariate analysis. A literature review on these four subjects is 

provided in the next sections. 

2.2 Culture of myoblasts 

2.2.1 Cell culture 

Muscle precursor (satellite) cells and myoblasts are eukaryotic cells that belong to the 

myogenic lineage. They play an important role in myogenesis, the process of muscle 

generation and repair, in which myoblasts multiply, differenciate and ultimately undergo 

fusion to actual or new muscle fibers (see Section 2.2.3). Myoblasts can be cultivated in 

order to treat by cell therapy muscular dystrophy, a medical condition in which the patients 

skeletal muscles weaken and progressively disappear because of the absence of a 

functional protein named dystrophin (Hoffman, Brown et al. 1987). In cell therapy, healthy 

myoblasts are cultivated in vitro and transplanted into dystrophic patients in order to fuse 

to their muscle fibers and express dystrophin (Skuk, Goulet et al. 2007). 

Myoblasts can be grown in vitro onto a support, which is particularly suitable for HTS 

experiments since it is possible to control the pH, the temperature, the osmotic pressure, 
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the culture medium and the O2 and CO2 partial pressures (Freshney 2000, p.4). The 

efficiency of different supports for the culture of myoblasts as well as different fusion 

inhibitors were already tested in the literature (Boudreault, Tremblay et al. 2001). 

Myoblasts used for HTS and research applications are generally seeded in a multiwell 

plate or a T-flask and are incubated for about 4-5 days until they are confluent (meaning 

that the adherent cells cover most of the surface available). The advantage of using 

multiwell plates for proliferation tests is to be able to test in parallel different culture 

conditions (such as different culture media), providing the opportunity (using an automated 

microscope) to image each well (and several locations within each well) through time in a 

HTS fashion. Using 6 or 12 wells multiwell plates is preferable, since they decrease the 

variability in the cell count results compared to 24 or 96 wells multiwell plates. Also, 6 or 12 

wells multiwell plates are easier to image in phase contrast microscopy, since it is easier to 

maintain phase contrast on a larger area (lower meniscus effect). 

Since the culture medium used has an important impact on cellular growth and 

functionality, providing essential nutrients and critical chemical messengers to the cells, it 

is important to replace it frequently (medium change). Myoblasts growth is influenced by 

cytokines in the culture medium, which are factors that are released by cells that will 

induce receptor-mediated effects on the proliferation, differentiation or inflammation of 

other cells (Freshney 2010). Growth factors present in the culture medium will also enable 

a chemical communication between cells and influence their cell cycle via signalling 

pathways. However several cytokines have a short lifespan in culture medium at the 

incubation temperature, and thus the culture medium is usually changed every 2-3 days. 

For example, the concentration of Fibroblast Growth Factor 2 (FGF-2) can decline as 

much as 80% after 24 hours at 37 0C without heparin (Caldwell, Garcion et al. 2004). 

According to Freshney (Freshney 2000), the factors that would indicate that the culture 

medium should be changed are a drop in pH and a change in cell morphology (a 

deteriorating morphology is usually a sign that it is time to change the culture medium). 

The cell concentration and the type of cells will influence the rate of change of the culture 

medium (Freshney 2000). 

Once the cells reach about 80% confluence, it is preferable to harvest them via 

trypsinization so they do not differentiate furthermore and form myotubes. Trypsinization is 

the process in which a proteolytic enzyme (trypsin) is added to the cell culture to break 

down the proteins that attach the cells to their substrate (e.g. T-flask surface) (Freshney 
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2010). Figure 2-3 shows typical images of myoblasts imaged at 10X in phase contrast 

microscopy at low (A) and high (B) confluence as well as undergoing fusion to form 

myotubes (C): 

 

Figure 2-3 : Typical images of myoblasts at low (A) and high (B) confluence, as well 

as undergoing fusion (C) at a magnification of 10X 

A passage is achieved when the cells are put back into culture (at a lower concentration) 

after being trypsinized. Trypsinization is performed at the end of a cell culture (at 

confluence) to harvest cells. The cells obtained from a fresh biopsy can be cultivated and 

expanded over several passages, as shown in Figure 2-4. 

 

Figure 2-4 : Illustration of how cells from a biopsy can be cultivated over several 

passages 

The number of passages performed (related to the age and the number of generations 

associated to the cells) has a non-negligeable effect on the performance of the cell 

cultures: higher doubling times, less growing cells, decrease in cellular density, enhanced 

contact inhibition, difficulty to adhere to a solid substrate and a decrease of the response 

to growth factors. According to Freshney (Freshney 2000), for a particular cell line, it is 

possible to grow the cells over several passages up to a point where they go into 

senescence (maximum number of divisions programmed genetically). This phenomenon 



14 
 

would be due to the incapacity of the terminal DNA sequences of telomeres to replicate 

after each division, and the result is a progressive shortening of the telomeres up to a point 

that the cells are not capable of dividing anymore (Freshney 2000). Also, trypsinization can 

alter the cells metabolism and can be unfavorable to human stem cells as unnecessary 

passaging must be avoided to preserve the cells plasticity (Polzer, Haasters et al. 2010). 

2.2.2 Culture medium 

Most cell lines are grown in a serum-supplemented medium, in which a serum (animal 

blood extract from which cells and coagulation proteins are removed) is added to a basal 

medium (containing glucose, salts, amino acids, etc.) and several additives. The most 

popular sera for tissue culture are fetal bovine serum (FBS) and calf serum (CS). Serum 

contains growth factors, proteins, and hormones which promote cell proliferation and cell 

adhesion (Freshney 2010). Since it is a biological extract, its exact compositon (in terms of 

growth factors, lipids, etc.) is not known and varies for each lot. As a consequence, using 

serum for cell culture has several drawbacks such as physiological variability, shelf life 

limitations, quality control issues and potential contamination problems (Freshney 2010). 

These issues explain why important research efforts are made for developing and testing 

serum-free media for cell culture, for which the composition is known and can be 

controlled (fully defined media). 

For the culture of human myoblasts, three culture media were used in this project: a 

serum-supplemented medium (SSM), a serum-free medium (SFM) and a differentiation 

medium (DFM).  

As described by Parent (2009), a standard SSM medium for the culture of myoblasts uses 

MCDB120 as a basal medium (see Table C-4 for composition) supplemented with FBS 

and a few additives (SSM composition provided in Table C-1). 

Since several growth factors and cytokines can favor muscle cells mitosis, it is possible to 

replace FBS to elaborate a serum-free medium (Deasy, Jankowski et al. 2001). A patent 

for a serum-free medium (SFM) called LOBSFM was submitted by Parent et al. (2009). 

This medium can sustain the growth of human myoblasts as efficiently as a SSM over 60 

days, using different growth factors, cytokines and additives. The LOBSFM (referred to as 

SFM) composition is provided in Table C-2. 
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When a cell culture reaches a high degree of confluence (80%-90%), one can replace the 

culture medium by a differentiation medium (DFM) to induce myoblast fusion (formation of 

myotubes) (Parent 2009). A typical DFM is constituted of a standard medium (RMPI, F12 

or MCDB120) with ITS (1X) (Parent 2009). It is possible to add 2% of horse serum (HS) to 

favor fusion (Parent 2009). A DFM medium was tested on human myoblasts by Parent 

(Parent 2009), which can induce the formation of myotubes in 2 to 3 days. Another option 

is to use the Wnt signalling pathway to promote myotubes formation by using a culture 

medium supplemented with human recombinant Wnt-3A (rh-Wnt3A) (Agley, Velloso et al. 

2012). 

According to Parent (2009), even if the cells grown in SFM express less desmin in their 

cytoskeleton than the cells grown in SSM, they keep their capacity to differentiate and to 

undergo fusion. The culture medium used has an influence on surface markers and 

receptors associated to myogenic cells (see Section 2.2.3.1). However, even if myoblasts 

grown in SFM lose desmin and have a decreasing number of NCAM receptors with time, 

they keep their capacity to form myotubes after six weeks of culture (Parent 2009). 

2.2.3 Cellular phenotypes associated to the myogenic lineage 

Myogenesis is a complex process in which muscles are generated through several distinct 

phases during the development of the embryo and in the adult organism (Bentzinger, 

Wang et al. 2012). In the perinatal phase, muscle resident myogenic progenitors first 

proliferate and their growth rate decreases as the number of myonuclei (nuclei of a muscle 

fiber (Shenkman, Turtikova et al. 2010)) reaches steady state and myofibrillar protein 

synthesis peaks (Bentzinger, Wang et al. 2012). When the muscle is mature, progenitors 

become quiescent and reside within the muscle as satellite cells (Bentzinger, Wang et al. 

2012). Adult skeletal muscles constitute renewable organs that rely on homeostasis 

mechanisms to compensate for cellular turnover, and their myogenesis depends on the 

activation of satellite cells so they can differentiate into new myofibers (Charge and 

Rudnicki 2004; Bentzinger, Wang et al. 2012). The myogenesis process associated with 

the repair of damaged mature muscle tissue is relatively well known: large numbers of 

satellite cells expand and differentiate to repair the tissue and re-establish homeostatis 

(Rudnicki, Le Grand et al. 2008; Bentzinger, Wang et al. 2012). Figure 2-5 shows how 

myofibers in a typical skeletal muscle are surrounded by satellite cells. 
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Figure 2-5 : Typical skeletal muscle with myofibers surrounded by satellite cells 

(adapted from Charge et al. (2004) and Danoviz et al. (2012)) 

Different cellular phenotypes are involved in myogenesis: stem cells (embryonic 

progenitors), satellite stem cells, satellite committed cells, proliferating myoblasts, 

quiescent myoblasts (myocytes) and myofibers/myotubes (Charge and Rudnicki 2004; 

Bentzinger, Wang et al. 2012).(Bentzinger, Wang et al. 2012) For the purpose of the 

current project, only myogenic lineage phenotypes are considered (shown in Figure 2-6). 
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Figure 2-6 : Different phenotypes in the myogenic lineage as well as relevant 

molecular markers (adapted from Bentzinger et al. (2012)) 



18 
 

Stem cells can generate myoblasts or satellite cells. Myoblasts (positive for MyoD and/or 

Myf5) are muscular cells that can get out of their cell cycle to become quiescent. Once the 

myoblasts become quiescent (myocytes), they can then fuse and form multinuclear cells 

called myotubes or myofibers. Satellite cells can generate proliferating myoblasts. 

However satellite cells are difficult to cultivate, since they have a strong tendancy to 

differentiate rapidly into myoblasts (Montarras, Morgan et al. 2005; Bentzinger, Wang et al. 

2012). 

 

Satellite stem cells and commited satellite cells form a niche. The satellite stem cell 

polarity and spindle orientation relative to the basal lamina determines whether the stem 

cell division will be symmetric or asymmetric (Rudnicki, Le Grand et al. 2008). Planar 

divisions (parallel to the basal lamina) are symmetrical, generating identical daughter stem 

cells (Rudnicki, Le Grand et al. 2008). In contrast, apical-basal divisions (900 relative to the 

basal lamina) are asymmetrical, with one daughter cell remaining a satellite stem cell at 

the basal surface and a commited satellite daughter cell destined for differentiation on the 

apical surface (Rudnicki, Le Grand et al. 2008). It is possible to distinguish different 

myogenic cellular phenotypes by relying on several molecular markers and sometimes by 

looking at cellular morphology. 

2.2.3.1 Molecular markers 

Several molecular markers (cell surface, cytoskeletal and transcription factors markers) 

can be used to distinguish myogenic cellular phenotypes. A rough list of important 

molecular markers (associated genetic factors) is provided by Buckingham, Bajard et al. 

(2003). 
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Table 2-2 : List of molecular markers (genetic factors) associated to different stages 

of skeletal muscle formation (Buckingham, Bajard et al. 2003) 

Stage Associated genetic 

factors 

Delamination Pax3, c-met 

Migration c-met/HGF, Lbx1 

Proliferation Pax3, c-met, Mox2, Msx1, 

Six, Myf5, MyoD 

Determination Myf5, MyoD 

Differentiation Myogenin, Mcf2, Six, 

MyoD, Myf6 

Specific muscle formation Lbx1, Mox2 

Satellite cells Pax7 

 

 

For example, the molecular markers listed in Table 2-3 are expressed by proliferative and 

quiescent satellite cells (Charge and Rudnicki 2004). 
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Table 2-3 : Molecular markers for satellite cells (Charge and Rudnicki 2004) 

Molecular Markers Quiescent 

Satellite 

Cell 

Proliferative 

Satellite 

Cell 

Cell surface   

M-cadherin +/- + 

Syndecan-3 + + 

Syndecan-4 + + 

c-met + + 

VCAM-1 + + 

NCAM + + 

Glycoprotein Leu-19 + + 

CD34 +/- +/- 

Cytoskeletal   

Desmin - + 

Transcription factors   

Pax7 + + 

Myf5 +/- + 

MyoD - + 

MNF + + 

MSTN + -/+ 

IRF-2 + + 

Msx1 + - 

 

Deasy and Jankowski (Deasy, Jankowski et al. 2001) present an overview of the different 

molecular markers of interest providing information on the stem cells as they undergo 

differentiation to generate myofibers. Figure 2-7 shows the molecular markers associated 

to the whole differentiation process (Deasy, Jankowski et al. 2001). 
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Figure 2-7 : Molecular markers associated to the differentiation of stem cells to 

muscle cells (adapted from Deasy et al. (2001)) 

The expression of several molecular markers as the cells undergo differentiation in the 

myogenic lineage was illustrated by Bentzinger et al. (Bentzinger, Wang et al. 2012), and 

is shown in Figure 2-6. MyoD, Myf5, Myogenin and MRF4 (also known as Myf6) are 

regulating genes collectively expressed in the skeletal muscle lineage and are referred to 

as the myogenic regulatory factors or MRFs (Bentzinger, Wang et al. 2012). Several 

progenitors remain as satellite cells in postnatal muscles and form a heterogeneous 

population of stem and commited satellite cells (Bentzinger, Wang et al. 2012). Activated 

committed satellite cells (myoblasts) can return to the quiescent state when the muscle is 

regenerated (Bentzinger, Wang et al. 2012). Six 1/4 and Pax 3/7 regulate the early lineage 

specification; Myf5 and MyoD commit cells to the myogenic phenotype as the expression 

of the terminal differentiation genes (when the myocytes fuse to form myotubes) are 

performed by both MyoG (myogenin) and MRF4 (Bentzinger, Wang et al. 2012). 

To characterise a cellular lineage and different cellular phenotypes, immunofluorescence 

assays or ELISA techniques can be used (Freshney 2000). These techniques rely on 
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antibodies specific to the molecular markers of interest. The most popular marker to 

differenciate myoblasts from other types of cells is the desmin protein (cytoskeleton 

protein). After fixing the cells with ethanol (95%), it is possible to incubate the cells with a 

desmin antibody, to rince and to incubate again with a secondary antibody tagged with a 

fluorophore such as Alexa 488 or Alexa 546 (Parent 2009). Usually the cells nuclei are 

stained with DAPI to be counted. It is recommended to perform the test on at least 500 

cells to have a representative sample of the population’s phenotype. Several surface 

markers such as NCAM and MHC (Myosin Heavy Chain) can be used to detect myoblasts 

via flow cytometry (Parent 2009). 

2.2.3.2 Morphology 

According to Freshney (2000), myogenic cells (myoblasts) proliferate and migrate in a 

random fashion on a substrate and align themselves as they reach confluence. Myoblasts 

then undergo a fusion (final differentiation) process to form multinucleated cells 

(myotubes). It is possible to cultivate myogenic cells over several passages by a series of 

trypsinization/seeding, but once cells undergo final differentiation (fusion), their 

proliferation is difficult to estimate. 

This change in cellular morphology as myogenic cells undergo differentiation is illustrated 

roughly by Bentzinger et al. (2012) (see top of Figure 2-7) and also by Rudnicki et al. 

(2008) in Figure 2-8, where small round mononucleated embryonic progenitors can 

differentiate and produce long multinucleated myotubes, a process in which transcription 

factors have an important role. It is possible to separate satellite cells from myotubes using 

flow cytometry (by differentiating cells as they are Pax3 positive or negative) when 

processing muscular tissue (Montarras, Morgan et al. 2005). The separated cells can be 

plated afterwards to observe their morphology (Montarras, Morgan et al. 2005). This 

means that with the proper molecular markers (detected by antibodies/fluorescent 

markers), it is possible to separate the different myogenic phenotypes and to plate them to 

check their morphology. 
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Figure 2-8 : Rough description of the cellular morphology through the myogenic 

lineage (adapted from Rudnicki et al. (2008)) 

However, it is important to note that other factors such as culture conditions will influence 

cellular morphology and myogenic differentiation. For example, the differentiation of the 

mouse myoblast cell line C2C12 can be accelerated by a high gravitational force in vitro 

(Nakajima, Hashimoto et al. 2011): the myoblasts thicken and have a different 

morphology. The differentiation of myoblasts to myofibers was verified by applying 

periodical electrical impulses to observe contractive movements. 

 

The culture medium used can influence (via its cytokines, growth factors and hormones) 

the cellular metabolism, growth kinetics and phenotype of myogenic cells and thus their 

morphology. For example, myoblasts grown in SFM (LOBSFM) contain more granules, 

form more vacuoles and are more elongated (more delicate) than myoblasts grown in 

SSM, showing a certain degree of cellular deterioration. Also, when inducing cellular 

fusion, freshly isolated muscle precursor cells (MPCs) expanded and differentiated in the 

presence of rh-Wnt3A formed larger myotubes (with a greater average size) than 

untreated controlled MPCs (Agley, Velloso et al. 2012). 

2.2.4 Cell morphology 

2.2.4.1 Morphology characterization 

Cells respond to environmental signals that regulate their behavior (cell differentiation, 

division and migration), and scientists and engineers study changes in their morphology to 

understand the influence of those signals (Theriault, Walker et al. 2012), involving 
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sometimes image processing for cell segmentation. The behavior of vascular smooth 

muscle cells and fibroblasts is interesting to observe in order to investigate cell-substrate 

interactions in vitro (Theriault, Walker et al. 2012). The morphology of adherent cells can 

be roughly assessed qualitatively according to their spread, polarization and orientation, as 

illustrated in Figure 2-9 (Theriault, Walker et al. 2012). Just after seeding, cells are defined 

as “non-spread” and are characterized by a small round area surrounded by a high 

contrast halo due to the reflection of the incident light on their spherical membrane 

(Theriault, Walker et al. 2012). This appearance is also typical of cells undergoing division 

or apoptosis (Theriault, Walker et al. 2012). The transition from the “non-spread” to the 

“spread” state involves the polymerization of the cytoskeleton elements to push outward 

the cell membrane and increase the area of the cells attached to the substrate (Theriault, 

Walker et al. 2012). After the initial spreading, the cells can either be “polarized” or “non-

polarized”: non-polarized cells have a smooth round membrane whereas polarized cells 

have extended protusions (pseudopods) supported by their internal cytoskeleton 

(Theriault, Walker et al. 2012). Cells in the polarized state can be classified has being 

oriented or not: non-oriented cells have protusions evenly distributed around the cells as 

stongly polarized cells show a significant level of bilateral symmetry (Theriault, Walker et 

al. 2012). 

 

Figure 2-9 : Qualitative characterization of the morphology of adherent cells in PCM 

(adapted from Theriault et al. (2012)) 
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However, since the cells shape changes continuously, they can go through partial states 

(partially spread, polarized or oriented), and thus intermediate labels should be considered 

(Theriault, Walker et al. 2012). 

Quantitative mathematical models were also developed to assess cellular morphology. For 

example, a top-down rule-based mathematical model to explore the basic principles 

related to mechanochemical events involved in animal cell migration was proposed by 

Satulovsky et al. (2008). In their work, the cells were modeled as a shape machine that 

protrudes or retracts in response to a combination of local protusion and global retraction 

signals (depending of what is in the culture medium), and an optimization algorithm was 

used to identify the parameters that generate specific shapes and migration patterns. The 

authors were able to account for the behavior of Dictyostelium under a large collection of 

conditions, imaging the cells in PCM with a magnification of 40X (Satulovsky, Lui et al. 

2008). It appeared that motile activities in different regions of a cell collectively determine 

the cell shape, and that these are linked to cellular growth and viability (Satulovsky, Lui et 

al. 2008). The shape machine model is illustrated in Figure 2-10 (Satulovsky, Lui et al. 

2008). 
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Figure 2-10 : Shape machine model for cellular morphology (adapted from 

Satulovsky et al. (2008)) 

A cell is modeled by its perimeter points and its center defined as its geometrical centroid 

at a given frame. The distance between the perimeter points and the centroid (xc, yc) 

corresponds to the radiuses ri expressed in polar coordinates (θi, ri), with i ranging from 10 

to 3600 (roughly one point per degree) (Satulovsky, Lui et al. 2008). For each frame or time 

point, the balance between the local protusion signal and the global retraction signal is 

performed, and as each radius varies in length, the cell will move. The cell can move its 

perimeter points away from the center by localized protusions (in green) or towards the 

center by retraction (in red), and the centroid position can be updated accordingly 

(Satulovsky, Lui et al. 2008). Each radius length will change depending on the protusion 
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signal (collective signalling activities stimulating actin polymerization near the membrane) 

and the retraction signal (long range signals that stimulate myosin-dependent contractility). 

The balance between the protusion and retraction signals (modelled by differential 

equations with specific parameters) will determine the evolution of the points at the cell 

perimeter (Satulovsky, Lui et al. 2008). It is then possible to characterize the shape and 

migration of the cells with several metrics such as the maximal radius, actual area, area 

fluctuations, speed, roundness and persistence (Satulovsky, Lui et al. 2008). It is important 

to note that this model deals with the cell shape and migration in two dimensions, and it is 

unnecessary to consider the conservation of the total volume of the cells, assuming that 

the cells will change their height in the third dimension. The movement of the centroid as a 

result of perimeter extension and retraction implies adhesive interactions with the 

substrate and thus implies energy and work not taken into account in the model 

(Satulovsky, Lui et al. 2008). 

Most quantitative models describing cellular shape and motility use a large number of 

experimental parameters coming from the literature (protein concentration, kinetic 

constants, rheological moduli of the cytoplasm, etc.). In the model proposed by Satulovsky 

et al. (2008), underlying mechanochemical events are implicitly taken into account in the 

mathematical rules and constaints, with each parameter representing a “lumping” of many 

molecular interations. Such a model aims at being combined with experimental 

manipulations to determine the function of specific molecules or structures in cell migration 

and morphology (Satulovsky, Lui et al. 2008). 

2.2.4.2 Morphology and cellular state 

Changes in cell shape (morphological changes) constitute a macroscopic manifestation of 

different intracellular molecular processes such as the actin-polymerization pressure at the 

cell edge, myosin-dependent contraction of the actin network, the adhesion to an 

extracellular matrix and membrane tension (Ambuhl, Brepsant et al. 2012), thus providing 

insights into the cellular state. Cellular morphology is one of the fundamental criteria to 

visually classify cells into histologic types, since there is a strong relationship between the 

shape of the cell and its functional integrity in several specialized cells such as neurons 

(Olson, Larson et al. 1980). Aspect of shape maintenance in cells has been linked to 

growth control in normal cells, and several observations suggest that the shape of 

adherent cells changes during viral and oncogenic transformations (Olson, Larson et al. 

1980). 
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Because of the link that exists between cell morphology and state, it can be hypothesised 

that cell shape is also related to cell health. According to Freshney (2000), it is vital to 

observe the morphology of the cells during a cell culture do detect any deterioration, such 

as granules around the nucleus, vacuoles in the cytoplasm or an increase in roundness 

that would be due to the fact that the cells detach from the substrate. Such deteriorations 

in cellular morphology can be due to a problem with the culture medium, a contamination 

issue or related to cellular senescence, and capturing these potential problems as early as 

possible is important since they are often irreversible (Freshney 2000). 

 

From a modelling perspective, cellular shape dynamics can be simulated via a 

mathematical model based on specific hypotheses about the internal dynamics and the 

state of the cells (as illustrated by Satulovsky et al. (2008)). Cellular shape simulations can 

be compared to experimentally observed cell shapes measured by live-cell imaging using 

segmentation and tracking computation algorithms to analyse microscopic images 

(Ambuhl, Brepsant et al. 2012). These simulations can link cellular state to cellular 

morphology from a mathematical perspective. 

2.2.4.3 Measuring the morphology of myogenic lineage cells 

The accurate measurement of the morphological characteristics of adherent cells with 

nonuniform shapes (such as cells of the myogenic lineage) is difficult (Agley, Velloso et al. 

2012). Myoblasts usually generate pseudopods, which are transient protusions of the 

cellular membrane used for locomotion and phagocytosis which are important to detect 

correctly via image processing when performing mobility and morphology studies (Zimmer, 

Labruyere et al. 2002). Because pseudopods are usually partly or entirely localized outside 

of the focal plane, they appear at a much lower contrast than most of the cell membrane in 

PCM, and thus tend to be treated by snakes (active contours) as occlusions and are 

ignored (Zimmer, Labruyere et al. 2002). Also the correct detection and analysis of 

myotubes in microscopic images is associated with several challenges which make their 

size analysis difficult, as described in Table 2-4 (adapted from Agley et al. (2012)). A 

traditional method for measuring myotube size is to calculate the average myotube 

diameter derived from multiple measurements along their length (Agley, Velloso et al. 

2012). However this method cannot deal with the often irregular conformations of these 

cells in vitro (Agley, Velloso et al. 2012). A common method to characterize the degree of 

differentiation of myogenic cells is the fusion index, which is the number of nuclei inside 
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myotubes as a percentage of the total number of nuclei in the entire field of view 

(Boudreault, Tremblay et al. 2001; Agley, Velloso et al. 2012) counted using a stain (DAPI 

or Hoechst). 

 

Table 2-4 : Challenges related with the size analysis of myotubes in microscopic 

images (Agley, Velloso et al. 2012) 

Challenges Implications for myotubes size analysis 

Many myotubes are non-

cylindrical 

Diameter measurements would be roughly 

inaccurate. 

Large variability in myotube sizes Averaging myotube sizes may conceal an 

experimental finding at a particular point within the 

size range. 

Nuclear clustering It is difficult or impossible to calculate a fusion index 

and nuclear incorporation. 

Presence of mononuclear cells in 

myotube cultures 

High-throughput analysis based on proteins 

associated with terminal differentiation (e.g., MHC) 

may pick up myoblasts, which express also these 

markers (i.e. it is not specific). 

Formation is highly dependent on 

seeding density 

High plating densities improve the statistical 

likelihood of myoblasts differentiation, fusion and 

myotube formation. However this may overwhelm 

and conceal the effect of an experimental agent on 

fusion. The inverse might be true for low seeding 

densities. 

Whole myotubes often extend 

beyond limits of image field 

Many experimenters may be reporting the 

measurement of myotubes when they are in fact 

measuring segments of myotubes or 

“myosegments”. 

Experimenter bias in manual 

image processing 

Techniques such as diameter measurements, 

manual tracing of myotubes, and selection of 

“small” or “large” myotubes are all open to bias. 
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When examining epifluorescence microscopic images, Agley et al. (2012) suggested the 

following criteria to identify single human myotube or myosegment: 

1. Cellular entities with more than two nuclei; 

2. Cellular entities that express MHC; 

3. Polynucleated structures satisfying points 1 and 2 joined by any common 

cytoplasmic region (with no separating boundaries) are considered as a single 

myotube or myosegment; 

4. If the entire outer membrane is visible within the image, the cell is defined as a 

myotube; 

5. If the entire cell body/outer membrane is not visible within the image, the cell is 

classified as a myosegment. 

 

The common method to image myoblasts and myotubes is to use molecular markers and 

to take epifluorescence or confocal microscopic images. For example, using 

epifluorescence microscopy (immunocytochemistry) with proper fluorescent markers, it 

was possible to quantify the cytoplasm and nuclei surface of myotubes (stained with 

Hoechst for nuclei and marked for MHC for their cytoplasm) as well as the cytoplasmic, 

nuclear and myonuclear areas of myoblasts (stained with Hoechst for nuclei, marked for 

desmin for their cytoplasm and marked for Ki67 to highlight specific areas within the nuclei 

associated to proliferative cells) (Agley, Velloso et al. 2012). It was then possible to use 

different shape features (via image processing) to characterize their morphology (Agley, 

Velloso et al. 2012). 

2.2.5 Cellular growth 

2.2.5.1 Introduction 

For most microorganisms, growth is an essential response to their physical, chemical and 

nutritional environment (Shuler and Kargi 1992). In a proper culture medium, 

microorganisms such as animal cells will extract nutrients from their environment and will 

use them for biosynthesis, product formation and energy production (Shuler and Kargi 

1992). As a consequence, cellular growth can be considered as an autocatalytic process 

(Shuler and Kargi 1992) in which the number of cells will increase over time due to their 

own replication. The increase of cell number over time in a batch set-up (most of the time 

animal cells are cultivated in T-flasks or multiwell plates) can be represented by a growth 

curve generated by manually counting cells at specific time intervals, by image analysis of 
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the growing culture or by colorimetric tests (Freshney 2010). Growth curves can be 

analyzed further by fitting kinetic models with varying degree of complexity and number of 

parameters to quantify and predict the behavior of the cells according to their environment. 

The degree of precision of the growth kinetic parameters estimated highly depends on the 

cell counting methods used. There are mainly two classes of methods to determine cellular 

growth: direct and indirect methods (Freshney 2010): 

 Among direct methods, hemacytometer counting and the use of a Coulter counter 

are the most popular. A hemacytometer is a glass slide with a small chamber 

having a known volume which is used to manually count cells from a culture 

sample. The cells are counted over a specified surface and are translated back into 

an estimate of the cellular concentration. A Coulter counter is a machine that 

processes a cell culture sample and estimates the cell concentration by measuring 

fluctuations in electrical resistance (Freshney 2010). Image processing methods 

relying on single-cell segmentation in microscopic images (via image processing) 

can also be considered as a direct method. 

 

 Among indirect methods, several platforms can correlate cellular concentration to 

the mitochondrial activity (XTT), to the total DNA quantity (CyQuant) or to the DNA 

synthesis rate via the incorporation of [3H] thymidine (Parent 2009; Freshney 

2010). 

Several factors influence growth kinetics. Cytokines, oxygen and nutrients have an 

important impact on growth rates, and should be at some point incorporated into kinetic 

models (Tabatabai, Bursac et al. 2011). Also, the initial seeding concentration used at the 

beginning of each culture can impact cellular growth (Brinkmann, Lutkemeyer et al. 2002). 

For myoblasts coming from a biopsy, the number of passages can have an impact on 

growth kinetics (Juneau, Garnier et al. 2013). 

When using brighfield or phase contrast microscopy images to assess growth kinetics of 

adherent cells, it can be really difficult to segment them individually. It is possible to use 

the cell-covered surface (degree of confluence) instead (He, Wang et al. 2007), assuming 

that the number of cells is roughly proportional to the cell-covered surface (Topman, 

Sharabani-Yosef et al. 2011). 
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2.2.5.2 Kinetic growth models 

There are two types of kinetic growth models: models that consider that a cell population 

can grow without any limitations (unbounded models) and models that consider that the 

cell population can’t grow over a limited carrying capacity (bounded models). Usually it is 

possible to fit an unbounded model at low cell concentrations (low confluency) and to fit a 

bounded model on a whole range of cell concentrations. 

2.2.5.2.1 Unbounded models 

At the beginning of a cell culture, there can be a lag phase followed by an exponential 

growth phase (Shuler and Kargi 1992). The biomass X (usually expressed in cells/mL) 

varies through time as a function of a specific growth rate μ (in h-1). Usually, at low cell 

concentrations (low confluence), cells have an exponential growth phase that can be 

modeled by a first order kinetic model (Shuler and Kargi 1992): 

dX

dt
= μX (2-1) 

With the initial boundary condition X=X0 at t=0, it is possible to integrate the previous 

equation to obtain the following equation (Shuler and Kargi 1992): 

X = X0eμt (2-2) 

The doubling time (DT) of a cell culture is defined as the time required to double the 

number of cells. It is expressed relative to μ as follows (Shuler and Kargi 1992): 

DT =
ln 2

μ
=

0.693

μ
 (2-3) 

Another interesting unbounded model is the Sherley model that accounts for non-dividing 

cells (Deasy, Jankowski et al. 2003): 

X = X0 [0.5 +
1−(2∝)

t
DT

+1

2(1−2∝)
] (2-4) 

Where α is the mitotic fraction, DT is the cell division time and X0 is the initial cell 

concentration. A kinetic model proposed by Deasy and Jankowski (2003) for stem cells 

includes terms for proliferative (mononucleated) and non-proliferative differentiated 

(polynucleated) cells, taking into account the heterogeneity of the myogenic population. 

This model takes also into account the mortality of the cells (variable M): 
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XMononucleated + XPolynucleated = X0 [0.5 +
1−(2∝)

t
DT

+1

2(1−2∝)
] − M (2-5) 

This model was used to fit data from time-lapse microscopy live cell imaging with images 

taken every 10 minutes over 5 days (in phase contrast). The number and the nature of the 

cells were assessed by lineage trees. Cells were counted using Hoechst labeling and their 

proliferative nature was assessed by immunostaining (Deasy, Jankowski et al. 2003). They 

have also shown that there is an increase in the cells cycle time when a confluency higher 

than 50% is reached, explaining why the cells behave overall under a logistic model 

(Deasy, Jankowski et al. 2003). A weakness of the Sherley and Deasy models is that they 

don’t consider a maximum carrying capacity (growth is unbounded, like the exponential 

model) (Tabatabai, Bursac et al. 2011). 

2.2.5.2.2 Bounded models 

Among all models describing a sigmoidal growth curve, it is possible to consider the 

logistic model, the Gompertz model, the Richards model, the hyperbolastic models 

(Tabatabai, Bursac et al. 2011) and the Michaelis-Menten model (Shuler and Kargi 1992). 

All those models use a maximum carrying capacity (Xmax) and require an initial cell 

concentration (X0 at t0 = 0) to be solved. In the case of adherent cells, the space available 

on the substrate for cellular growth is limited, and a bounded model considers the 

maximum support capacity of the culture environment by incorporating a parameter for the 

maximum cell quantity achievable (Xmax). If the culture is monitored from the beginning to 

the end, a logistic model can be used to represent the cell concentration as a function of 

time (Shuler and Kargi 1992): 

dX

dt
= CmaxX (1 −

X

Xmax
) (2-6) 

For most animal adherent cells, there is some form of contact inhibition since, as the cells 

grow and reach a higher density on the substrate, they form clusters and only the cells at 

the periphery would have the space required to undergo mitosis. A kinetic model 

incorporating contact inhibition in the specific growth rate μ was proposed by Lim and 

Davies (1990), in which C and μmax are kinetic parameters: 

dX

dt
= μX (2-7) 
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μ = μmax [1 − exp (−C (
Xmax−X

Xmax
))] (2-8) 

To represent the complexity of stem cells growth, more advanced mathematical models 

(involving more parameters) are also proposed in the literature, such as the Richards, the 

Gompertz, the Weibull and the hyperbolastic models (Tabatabai, Williams et al. 2005; 

Tabatabai, Bursac et al. 2011). Assuming that both the surface available for the cells and 

the substrate in the culture medium are limited, the Michaelis-Menten model (Shuler and 

Kargi 1992) can be considered and is expressed as follows (assuming that substrate 

consumption is directly proportional to the number of cells): 

dX

dt
=

μmax(Xmax−X)X

KS∗YX/S+(Xmax−X)
 (2-9) 

Where μmax is the maximum growth rate when there are no limitations and KS*YX/S is a 

parameter representing the negative impact of substrate consumption and surface 

availability on cellular growth. 

2.2.5.3 Myogenic cell growth kinetics 

For primary human myoblasts, Boudreault et al. (2001) reported a μmax between 0.57 and 

0.78 d-1 using a serum-supplemented medium (SSM), depending on the surface/volume 

ratio used for cell cultures. For the LOBSFM culture medium (SFM), a DT of 1.05 days, 

corresponding to a μ of 0.66 d-1, was reported (Parent 2009), meaning that both SSM and 

SFM media used for this PhD project induce similar myoblasts growth kinetics (in terms of 

cell counts). 

2.3 Microscopy 

2.3.1 Types of microscopy 

According to Freshney (2000, p.37), an inverted microscope is an essential tool to observe 

a cell culture regularly, providing a mean to detect different problems such as a change in 

cells morphology or even contamination. A microscope can also provide the opportunity to 

observe cells when testing different conditions and performing high throughput screening 

experiments. 

A microscope is by definition an apparatus relying on a set of lenses to obtain a 

magnification of an observed specimen (Cox 2007). A lens is a piece of glass that 

redirects parallel light rays towards a precise point location (focus). The distance between 
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the focus and the lens is called focal distance. The magnification effect comes from the 

fact that the smaller the focal distance is, the bigger the real image obtained is. In a 

microscope, the utilization of a second lens (two lenses in series) to redirect the light 

towards the eye creates a virtual image which is much bigger than the object, as illustrated 

in Figure 2-11: 

 

Figure 2-11 : A second lens to redirect the light towards the eye of the observer 

creates a virtual image much bigger than the original object (adapted from Cox 

(2007)) 

A short description of the different types of microscopes for studying biological samples is 

provided in Table 2-5. It is possible to find more details in Cox (2007). Since phase 

contrast microscopy (PCM) and hyperspectral microscopy (HM) are of particular interest 

for this thesis, they are described in more details in dedicated sections. 
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Table 2-5 : Short description of the different types of microscopes 

Brightfield Microscopy (BF) 

 Koehler illumination: a lens is placed directly in front of the lamp (lamp condenser), 

ensuring a uniform illumination at the focal point of the lens, for the specimen.  

 The field iris can adjust the area of the specimen exposed to light.  

 The condenser redirects the light towards the specimen, and the condenser iris controls 

the angle at which the light reaches the specimen. 

 A variant is Quantitative Phase Microscopy (QPM), in which a stack of brightfield images 

is processed (Curl, Harris et al. 2004; Selinummi, Ruusuvuori et al. 2009). 

Darkfield Microscopy (DF) 

 Only the light diffracted by the specimen can form an image, and only the structure of 

the specimen of interest is visible.  

 The specimen or the structure under study will be illuminated, and the background will 

stay dark since it does not diffract light.  

 A ring at the condenser only allows light rays arriving at an angle larger than the 

acceptation angle of the objective to pass, making sure that no incident light will be 

conserved. 

Phase Contrast Microscopy (PCM) 

 The specimen diffracts light and creates a delay of around ¼ λ. 

 A piece of glass with a ring carved on it is placed at the focal point of the lens of the 

objective, creating an additional delay of ¼ λ for the diffracted rays.  

 Globally, the diffracted light rays have a delay of ½ λ compared to incident light rays, 

creating destructive interference that highlights the structure of the sample (appearing in 

black on a bright background). 

 Digital holography microscopy (DHM) can combine phase contrast microscopy and 

holography to record 3D information of an object (e.g. cells) via interfering wave fronts 

from a laser (Mõlder, Sebesta et al. 2008). 
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Differential Interference Contrast Microscopy (DIC) 

 In front of the light source, a polarizer is used to polarize the incident light.  

 Just before the condenser, a Wollaston cube divides the incident light beam into two 

light beams and a second Wollaston cube placed behind the objective recombines the 

two polarized light beams. 

 An analyzer is used to bring both light beams back to the same polarization, thus 

creating interference patterns. 

 Between the two polarized light beams, there is already a phase delay of ¼ λ because of  

a “¼ λ plate”.  

 Biological specimens induce an additional phase shift of ¼ λ for incoming light, providing 

an overall phase shift of ½ λ (destructive interference).  

 DIC microscopy is commonly used to observe thick specimens such as protozoa and 

small organisms.  

 Similar to quantitative phase microscopy, 4 dimensions (4D) DIC microscopy is an 

automated system that can record DIC images at multiple focal planes and at multiple 

time points (Hamahashi, Onami et al. 2005). 

Epifluorescence Microscopy (EFM) 

 Ploem illumination: the objective serves also as a condenser. 

 The UV light goes through an excitation filter that only allows specific wavelengths to 

reach the specimen.  

 The dichroic mirror reflects short wavelength excitation light and allows longer 

wavelengths light (emitted by fluorescence) to go to the observer, acting as a beam 

splitter.  

 The barrier filter blocks all remaining excitation light before it arrives to the camera or to 

the observer, and provides the opportunity to distinguish fluorescence generated by 

different fluorophores. 
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Confocal Microscopy (CM) 

 To image the whole specimen, it is necessary to scan the sample point by point with a 

moving stage or scanning mirrors.  

 Light emitted by the laser is reflected by a dichroic mirror towards scanning mirrors to 

scan the whole specimen through the objective. 

 Fluorescent light emitted by the specimen is collimated by scanning mirrors and goes 

through a dichroic mirror. The fluorescent light is then focused in the pinhole and filtered 

by additional dichroic mirrors to measure light intensity at different wavelengths (different 

channels). 

 The main advantage of CM in comparison to EFM resides in the pinhole plate that can 

exclude fluorescent light emitted outside the focal plane, thus reducing the interference 

caused by background light emissions, providing higher quality images (Haaland, Jones 

et al. 2009). 

Multiphotons Microscopy (MPM) 

 Works in a way similar than CM, at the exception that photons with longer 

complementary wavelengths are required to excite electrons from the fluorophore 

instead of a single photon. 

 Excites the fluorophore with lower energy light, which is easier to perform, avoids 

photobleaching and specimen degradation. 

 Fluorophore excitation will occur only at the specimen focal plane (where the laser 

beams converge) and is less likely to happen higher or lower than the focal plane, thus 

implying that the use of a pinhole plate is unnecessary. 

 It is possible to have a detector that acquires a whole spatial image (CCD) instead of a 

single dot at a time (as in CM). 
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2.3.1.1 Phase contrast microscopy (PCM) 

It was in the 1930s that a dutch physicist (Zernike) came up with the idea to use a phase 

delay between incident light and the light diffracted by the specimen to create interference 

to enhance the contrast of images (Cox 2007). Figure 2-12 shows the optical path of the 

light in a phase contrast microscope. 

 

Figure 2-12 : Optical path associated to phase contrast microscopy (adapted from 

Cox (2007)) 

A ring is placed at the condenser, allowing only incident light (orange arrows) incoming at 

a certain angle to illuminate the specimen. The specimen diffracts light (red arrows) and 

creates a delay of around ¼ λ (depending on the refractive index of the cells). A piece of 

glass with a ring carved on it is placed at the focal point of the lens of the objective, and 

this difference in thickness induces an additional delay of ¼ λ for the diffracted rays (red 

arrows in Figure 2-12) (Cox 2007). Globally, the diffracted light rays have a delay of ½ λ 

compared to incident light rays, creating destructive interference. This interference 

highlights the structure of the sample, and the specimen appears in black on a bright 

background. 

Phase contrast microscopy is recommended for thin and uniform specimens such as 

cellular monolayers (Cox 2007). PCM has the advantage of being a non-intrusive method 

that can highlight the structure and the shape of the cells, explaining why it was chosen for 

this PhD project. Phase contrast microscopy is typically used to characterize and track 
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adherent cells, even though some applications for cellular suspensions have been 

mentioned in the literature. For example, PCM was used to track suspensions of neural 

stem cells/neural progenitors using Haar-like features from the wavelet transform output to 

determine at which focus level these cells where the most likely located (Chao-Hui, 

Sankaran et al. 2012). Phase contrast microscopy is the preferred source of information 

when studying cell motility (Ambuhl, Brepsant et al. 2012) and has significant advantages 

when studying cells morphology and behavior since it provides good contrast for cell edge 

detection without exogenous dyes, it uses only moderate levels of light and is free of 

artefacts related with photobleaching and photo-damage that are common in fluorescence 

microscopy (Ambuhl, Brepsant et al. 2012). From an experimental perspective, if PCM is 

used in conjunction with fluorescence microscopy, using the phase-contrast channel for 

edge detection frees an additional fluorescence channel for observing intracellular markers 

(Ambuhl, Brepsant et al. 2012). 

Most phase objects, especially biological cells, have a constant refractive index ranging 

from n=1.36 to 1.37 at a wavelength of 546 nm (Otaki 2000). The phase difference (or 

delay) depends on the size of the object. Assuming a spherical object, the maximum 

phase difference δ and the diameter of the object are related by the following equation 

(Otaki 2000): 

δ = (
2π

λ
) (n′ − n)d (2-10) 

Where λ is the wavelength of light in vacuum, n’ is the refractive index of the phase object 

and n is the refractive index of the media. This equation shows that a thicker object (d 

increasing) will create a larger phase difference (δ increasing) for constant refractive 

indices (Otaki 2000). When imaging cellular monolayers, the thickest portions of the cells 

will create larger phase differences than thinner portions, as illustrated in Figure 2-13. 
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Figure 2-13 : Effect of specimen thickness on phase difference (adapted from Zeiss 

(2013)) 

2.3.1.2 Hyperspectral microscopy (HM) 

Hyperspectral microscopy is an imaging set-up that provides both spectral and spatial 

information about a sample under the form of stack of images, called a hyperspectral 

cube. It is actually the combination of a traditional microscope and a spectrometer (Gao, 

Kester et al. 2010). Different types of microscopes can be used to image fluorescent 

cellular specimen (Monici 2005), thus opening the door to couple these microscopes with 

hyperspectral cameras to capture whole light spectrum. The motivation behind the 

development of hyperspectral microscopy for biomedical applications comes from the fact 

that emission and reflection spectra of specimen contain a significant amount of 

information on the structure, the biochemistry and the physiology of cells. Hyperspectral 

cubes can be used at the cellular level to distinguish fluorophores that have similar 

emission spectra or at the tissue level for diagnosis purposes (Gao, Kester et al. 2010).  

In comparison to common optical microscopes, hyperspectral microscopy can acquire 

cubes of data constituted of grey scale images acquired at different wavelengths (Chunni, 

Qingli et al. 2010). This imaging set-up provides to researchers the possibility of getting 
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morphological information (spatial) and spectral information related to the biochemistry 

and the biology of the specimen (Chunni, Qingli et al. 2010). 

Most hyperspectral microscopes acquire hyperspectral cubes of data (see Figure 2-19) by 

scanning the sample in the spatial domain (like a confocal microscope coupled to a 

hyperspectral camera) or by scanning in the spectral domain by using an acoustic-optic 

tunable filter (AOTF) or a liquid crystal tunable filter (LCTF) (Gao, Kester et al. 2010). The 

use of a line spectrometer with a moving stage is also another option, and is called a “push 

broom” set-up (Chunni, Qingli et al. 2010). In this particular case, a CCD coupled with a 

diffraction grating provides an image with one spatial and one spectral dimension. It is then 

necessary to scan linearly the specimen under the camera to provide a second spatial 

dimension (Katari, Wallack et al. 2009; Polerecky, Bissett et al. 2009; Chunni, Qingli et al. 

2010). 

A push broom set-up can be used to measure the reflectance (using a Spectralon as a 

background that reflects incoming light), the transmission or the autofluorescence of a 

biological sample (Polerecky, Bissett et al. 2009). For example, Polerecky and Bissett 

(2009) use a line spectrometer, a moving stage and a microscope (magnification of 40X 

and 100X) to measure the quantity of pigments in biofilm and cyanobacteria samples 

coming from a coastal region to study benthic ecosystems. A magnification of 100X 

provides the opportunity to observe algae chloroplasts in fluorescence (Polerecky, Bissett 

et al. 2009). Katari and Wallack (2009) used an IX-70 Olympus microscope (magnification 

of 100X) equipped with a line spectrometer and a moving stage (to scan the specimen 

surface) to detect and distinguish up to 10 different fluorophores in visible light spectrum at 

the same time. They also modified their apparatus to measure near-infrared spectra (950-

1300 nm) to detect lead sulfite quantum dots in fixed mammalian cancer cells (Katari, 

Wallack et al. 2009). 

A new set-up called the Image Mapping Spectrometer (IMS) was developed to perform 

fluorescence hyperspectral microscopy with high resolution. This set-up is based on the 

deviation and the dispersion of local zones in the image by a special mirror (Mapping 

Mirror) and a prism (Gao, Kester et al. 2010). Each pixel on the CCD is associated with a 

single voxel in the hyperspectral data cube (Gao, Kester et al. 2010). A voxel can be 

considered as a measurement value (light intensity) in a three-dimensional volume (Cox 

2007). 
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2.3.2 Controlled environment for live cell imaging 

2.3.2.1 Chambers on microscope stage 

To keep the cells in a healthy environment (at the right temperature and CO2 

concentration), a vast array of environmental chambers exist and a growing number are 

becoming available (Cox 2007). 

In order to perform live-cell imaging, open chambers such as Petri dishes, multiwell plates 

or T-flasks, can be used, as they are exchanging gases with the atmosphere around them, 

even though they are sterile. These open chambers are more suitable for small scale 

experiments/production and high throughput screening applications applied to both 

adherent and suspension cells. These chambers hold a larger quantity of medium and can 

maintain their temperature for a long time because the thermal contact with the stage is 

poor (metal versus plastic), thus providing possibilities for longer live cell imaging 

experiments (Cox 2007). A major drawback can be the large temperature gradients across 

the plastic culture dish. Such temperature gradients can cause problems since a variation 

of as little as 0.5 0C can cause changes within cells. Without any additional equipment, 

these chambers are not able to keep a constant temperature and a viable CO2 

concentration for growing cells over several days. 

A perfusion (closed) chamber has a continual flow of culture medium over the sample (Cox 

2007). The culture medium is pumped from a holding tank kept at a constant temperature 

and sometimes exposed to gases (oxygen or CO2), thus providing both temperature and 

CO2 control for live cell imaging over several days. Usually the medium is flowed over the 

sample using a peristaltic pump or by gravity, and it is necessary to verify that no pressure 

effects are introduced into the chamber because of pulsing (Cox 2007). The drawbacks of 

a perfusion chamber are the difficulty to avoid bubbles formation and the intricate piping 

system involved. 

2.3.2.2 Microscope enclosure 

In order to provide both temperature and CO2 control for open and perfusion chambers, 

advanced systems for live cell imaging are using a microscope enclosure (Cox 2007), as 

illustrated in Figure 3-2 (IX81 OlympusTM microscope with enclosure used for this PhD 

project). In such an enclosure, it is possible to flow humidified air enriched with CO2 to 

maintain partial pressures in the culture medium, and the temperature inside the enclosure 

can also be controlled using a heating fan that is flowing air across the whole microscope 

stage and objective (Cox 2007). 
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Such a set-up can make the access to specific controls of the microscope difficult, but 

since many microscopes available on the market today are fully automated and can be 

operated from a computer, this is not a significant issue (Cox 2007). Since a moist 

atmosphere with high CO2 concentrations is corrosive and can be prone to fungal and 

bacterial growth, frequent drying and cleaning is required (Cox 2007). When using open 

chambers in a humidified CO2 incubator or in a microscope enclosure, evaporation can 

lead to an increase of osmolarity in the culture medium, which can influence the growth of 

mammalian cells drastically (Brinkmann, Lutkemeyer et al. 2002). When using multiwell 

plates, evaporation in peripheral wells is more significant than in central wells (Brinkmann, 

Lutkemeyer et al. 2002), and should be considered in experimental designs. For instance, 

the effect of evaporation on cells growth rate was assessed in 96-wells plates (Brinkmann, 

Lutkemeyer et al. 2002). 

2.3.3 Cell culture sample integrity 

2.3.3.1 Non-intrusive analysis 

2.3.3.1.1 Visible light 

When no additives are added to the cell culture sample, a simple halogen light can be 

used to study cells with minimal detrimental effects on the cell culture. However, halogen 

light can have small negative effects such as transferring heat to the cell culture sample 

because of NIR wavelengths. It is therefore recommended to minimize as much as 

possible the exposure of the cells to halogen light when performing live cell imaging 

experiments over long periods. 

2.3.3.1.2 Autofluorescence 

Autofluorescence is a phenomenon related to the fact that cells produce endogenous 

fluorophores that can emit low energy light when exposed to UV light (without the need to 

add anything to the culture). The autofluorescence of certain molecules was investigated 

by Chance in the last century (Chance, Schoener et al. 1979). Cells contain molecules that 

can become fluorescent when excited with UV light at the right wavelength (Monici 2005). 

The majority of the cells autofluorescence comes from their mitochondria and their 

lysosomes (Monici 2005). The main endogenous fluorophores are the pyridinic coenzyme 

(NADPH), flavoproteins, aromatic aminoacids and lipo-pigments (Monici 2005). The 

reduced form of NADH (NADPH) has a maximum excitation wavelength at 340 nm and a 

maximum emission wavelength at 450 nm (Monici 2005). In the case of flavoproteins, only 
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the oxidized form is fluorescent with an excitation wavelength between 360 and 450 nm, 

and an emission wavelength at 520 nm (Monici 2005). According to Monici (2011), the 

fluorescence associated with these endogenous fluorophores can help quantify the 

energetic metabolism of cells and tissues. In fact, changes in the status of tissues and 

cells during physiological and pathological processes can modify the quantity and the 

distribution of endogenous fluorophores, explaining why autofluorescence can be a good 

metabolic indicator (Monici 2005). Excitation and emission spectra of endogenous 

fluorophores associated to autofluorescence are provided by Monici (2005). 

According to Sanchez (2010), the degree of autofluorescence of the cells can be used to 

estimate the quantity of NADPH in breast cancer cells, to distinguish normal, precancerous 

and cancerous epithelial cells and to define metabolic changes related to apoptosis and 

necrosis. This phenomenon would be due to the fact that NADH is an important coenzyme 

for several metabolic processes, including anaerobic glycolysis, the electron transport 

chain and the citric acid cycle (Sanchez, Prow et al. 2010). The intracellular concentration 

of NADH (and its distribution) is a natural metabolic indicator of pathological and 

physiological changes in cells, and the concentration of NADPH (related to the redox 

potential of each cell) can be estimated by measuring the cells autofluorescence 

(Sanchez, Prow et al. 2010). Peaks related to autofluorescence can be detected and 

quantified using multivariate analysis techniques. For instance, using Multivariate Curve 

Resolution (MCR), Haaland (2009) was able to detect, by exciting at 488 nm, two peaks 

related to flavoproteins (depending of the state of oxidation). 

Several articles report the use of autofluorescence as an indicator of cellular health. 

Experiments performed in vitro and in vivo by Monici (2005) on uterine cervical cells 

showed a significant difference in autofluorescence between normal and cancerous cells. 

The autofluorescence of keratinocytes cultivated ex vivo can be used as an indication of 

cellular viability, and this measure can be coupled with pH and oxygen consumption data 

to draw conclusions about cellular health (Sanchez, Prow et al. 2010). The main 

advantage is to be able to estimate the viability of individual cells by looking at their 

autofluorescence instead of measuring the viability of the whole cell population. The 

autofluorescence increases when cells undergo apoptosis, and decreases when they 

undergo necrosis (Sanchez, Prow et al. 2010). Autofluorescence of tissues in visible and 

near-infrared domains can be used to have a good contrast between normal tissues and 

cancerous tissues from kidney biopsies (Demos, Lieber et al. 2005). 
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The link between autofluorescence intensity and the cell cycle, the cells age and the 

culture conditions should be explored with caution (Monici 2005). Several authors report 

that autofluorescence intensity is very low for freshly seeded cell cultures and increases 

during the exponential growth phase. However, the inverse situation was reported for 

monolayers of adherent cells and suspended cells, implying that results can vary 

significantly (Monici 2005). The autofluorescence coming from mitochondria, associated 

with the respiratory chain, can be affected by metabolic poisons such as rotenone and 

antimycin A (Monici 2005). These substances are known inhibitors of the electron 

transport chain, inducing an increase in cellular autofluorescence related to an 

accumulation of NADPH (Monici 2005). 

Even though using autofluorescence to assess cellular health is considered to be a non-

intrusive analysis since there are no additives added to cell samples, exposure to UV light 

can have a negative impact on cell cultures. Monici (2005) considers autofluorescence 

analysis to be non-destructive, but recognizes that exposure to UV light can cause cellular 

damages. 

2.3.3.2 Intrusive analysis 

When using BF, PCM or DIC microscopy, there is often little contrast between the cells 

and the background, and image processing and analysis remains difficult. Even though 

autofluorescence could be used (according to the literature) to evaluate cellular health 

(related with the metabolism), it is highly probable that it won’t be enough to distinguish 

cells phenotypes (myoblasts, myocytes, etc.) and determine the status of the cells in the 

cell cycle (apoptosis, necrosis, mitosis) only by microscopy. There is often a need to use 

complementary tools (additives) to distinguish cells from both a chemical and a visual 

perspective. The use of additives in a cell culture is considered an intrusive analysis, since 

those chemicals can influence cells behavior and prevent using the cells produced for cell 

therapy. 

2.3.3.2.1 Dyes 

Several dyes are available to color the nucleus and the cytoplasm of the cells, creating an 

additional contrast to distinguish the cells from the background, and also highlighting 

individual organites. These colorations are generated by the absorption of specific 

wavelength in the visible spectrum. Eosin and hematoxylin are good examples of dyes 

commonly used (Siddiqi, Li et al. 2008). Multiple acidic and basic dyes are used in 
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histology to color cellular structures, and are listed for example in Ross and Pawlina 

(2006). 

2.3.3.2.2 Fluorophores 

Fluorescence is a phenomenon in which a molecule (fluorophore) can emit visible light 

when excited with UV light. A molecule is said to be fluorescent when the absorption of a 

photon pushes an electron towards a higher energy level (higher orbital)(Cox 2007). This 

excited electron then reemits a photon when coming back to a lower energy level (lower 

orbital). However, since a part of the absorbed energy is lost as heat, the emitted photon 

has less energy that the absorbed photon (higher wavelength)(Cox 2007). A fluorophore is 

considered to be a fluorescent organic molecule that is used in microscopy. There are 

several types of fluorophores that can be used in a cell culture. 

An important element to consider when using fluorescent molecules is a phenomenon 

called photobleaching, in which a fluorescent molecule will get oxidized over time and will 

lose its capacity to be fluorescent after a long exposure to UV light (Cox 2007). The 

propancy of a fluorophore to undergo photobleaching highly depends on the experimental 

environment, and the exact mechanisms are not well understood, even though several 

measurement techniques and kinetic models are proposed in the literature (Widengren 

and Rigler 1996). 

Immunolabeling uses antibodies as highly specific probes to mark specific targets on the 

cells (Cox 2007). In direct labeling, a fluorophore is attached directly to the primary 

antibody. In indirect labeling, the fluorophore is attached to a secondary antibody which 

binds to the primary antibody to highlight specific cellular structures (Cox 2007). 

Fluorescent stains are fluorescent probes that target specific components or 

compartments of the cells (Cox 2007). Some probes can be used on living cells, and 

others can only be used on fixed cells because they do not penetrate within cells or are 

broken down by them (Cox 2007). Some stains can color the nucleus (DAPI, Hoechst) and 

several organites such as mitochondria, the endoplasmic reticulum and lysosomes (for 

example, Mitotracker® for mitochondria) (Cox 2007). 

It is possible to genetically modify (by transfection) eukaryotic and prokaryotic cells so they 

can produce fluorescent proteins, providing the opportunity to observe in real time (through 

microscopy) several biological processes (Tsien 2009). An excellent literature review on 
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fluorescent proteins available is provided by Shaner and Tsien (Shaner, Steinbach et al. 

2005; Tsien 2009). The fluorescent proteins mentioned are evaluated according to their 

brightness, their ease of expression, their photostability, their subjectivity to 

oligomerization, their toxicity and their environmental sensitivity. 

2.3.3.2.3 Quantum dots 

Quantum dots (or « QDs ») are more and more used as fluorescently labelled inorganic 

compounds to highlight specific molecules in living systems (Monici 2005). Quantum dots 

have several advantages over organic fluorophores, since they are brighter, have a good 

resistance against photobleaching, have wide excitation spectra while having narrow 

emission spectral bands (Haaland, Jones et al. 2009). All those characteristics, 

considering also the fact that large emission spectra can be obtained just by playing with 

the size of the quantum dots, explain why QDs constitute an ideal tool for microscopy 

involving fluorescence (Haaland, Jones et al. 2009). 

2.3.4 Microscopic image acquisition 

When using microscopy in general to observe cells in a live cell imaging set-up, several 

technical aspects related with microscopic image acquisition must be considered in order 

to get the most relevant information out of each experiment. Amongst all the technical 

aspects, the degree of magnification (related with resolution), the acquisition grid (related 

with imaging frequency), the illumination (related with exposure time) and focus 

adjustment are very important.  All those technical aspects are linked together, since a 

modification in one has an impact on the other. For example, for a given cycle time, 

increasing the exposure time will likely decrease the maximum imaging frequency 

achievable. Also, increasing the degree of magnification of the images will increase the 

resolution in each image, but a larger acquisition grid to scan the same spatial area of the 

sample will be required. 

2.3.4.1 Magnification and resolution 

The degree of magnification (and resolution) required depends on what is desired to 

observe or quantify. For instance, low magnification (5X, 10X) is usually used for cell 

tracking or to characterize tissues. An intermediate magnification (20X) may be used to 

observe how cells interact between each other and to have an overall idea of their 

morphology. High magnification (40X and higher) is used to observe cells internal 

structures, to track for instance specific proteins inside cells or to track cellular membranes 
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(Satulovsky, Lui et al. 2008). The degree of magnification is usually controlled by choosing 

the appropriate objective (4X, 10X, 20X, 40X, 60X, 100X). 

Each objective provides a specific resolution (depending of the degree of magnification). 

The resolution provided by an objective is the minimal distance between two points in an 

image that can be distinguished. The resolution obtained depends on the wavelength of 

the incoming light (λ), the acceptance angle of the objective (half angle θ) and the 

refraction index of the medium (n), as illustrated in the following equation (Cox 2007): 

R =
λ

2n sinθ
=

λ

2NA
 (2-11) 

Where R is the resolution (nm) and NA is the numerical aperture of an objective (usually 

written on one side of the objective). 

Most algorithms available for phase contrast microscopy work well for low resolution 

images, but struggle with high resolution images, thus requiring more development 

(Ambuhl, Brepsant et al. 2012). 

2.3.4.2 Acquisition grid and imaging frequency 

When imaging a specimen with a microscope, it is usually impossible to capture the whole 

sample within one single image at the appropriate resolution. It is thus required to capture 

several contiguous images in order to scan the surface of the specimen. The tiling pattern 

used when scanning the specimen is called the acquisition grid and the distance between 

each field of view captured determines the degree of overlap between images. A sufficient 

degree of overlap must be used to ensure that no information is lost (oversampling). These 

concepts are illustrated in Figure 2-14 with the standard Lena image. 
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Figure 2-14 : Acquisition grid and overlap concept 

Because of the overlap between frames, it is necessary to determine the area common to 

two adjacent frames and to register them (get rid of information redundancy), as illustrated 

in Figure 2-14. There are several approaches to image registration. For example, to 

register images from an acquisition grid and compensate for translation, rotation and 

scale, Padfield developed an algorithm based on the Fourier transform for fluorescent 

images (Padfield, Rittscher et al. 2011). Some software packages (such as ImageJ) 

propose plugins performing image registration. 

 

The size of the acquisition grid will dictate the spatial accuracy of the phenomenon 

observed. The larger the grid size, the bigger the area of the sample that is observed, and 

the more representative the data is. This is because there is an intrinsic variability within a 

cell population growing on a surface due to a random distribution of the cells when seeding 

at the beginning of a cell culture and also as a result of cell movements afterwards. The 

grid size can thus have an effect on cell properties measured by automated image 

processing, from cell counts to cell morphological features. For example, the effect of the 

acquisition grid on estimated cell counts from the analysis of microscopic images was 

assessed in 96 well plates imaged at 10X (Brinkmann, Lutkemeyer et al. 2002). The 

authors showed that the measure was reliable even if only 3 images per well were 
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analyzed (Brinkmann, Lutkemeyer et al. 2002), but that would not be necessarily the case 

at higher magnifications. A last consideration for setting-up the acquisition grid size is 

specific requirements for image processing. For instance, the acquisition grid size can be 

adjusted if a subsampling of the images is required in order to perform a quadtree 

decomposition to classify image patches into different categories for area segmentation 

(Qian, Peng et al. 2009). 

 

The size of the acquisition grid will influence the temporal imaging frequency (the larger 

the grid size, the lower the imaging frequency achievable). The imaging frequency is 

defined as being the number of times the microscope can image the whole acquisition grid 

per unit of time in a live cell imaging experiment. To measure a specific phenomenon, the 

imaging frequency must be adapted in order to capture as much information as possible in 

the shortest time while providing as much spatial information as possible (scanning the 

largest area). So there is a tradeoff between the size of the acquisition grid (spatial 

information resolution) and the imaging frequency achievable (temporal resolution). 

2.3.4.3 Illumination and exposure time 

Illumination intensity is important in microscopy and can be adjusted on most microscopes 

by tuning the voltage of the light source. Illumination intensity should be high enough to be 

able to differentiate cellular from background regions in an image (higher contrast, (Cox 

2007)). Two manipulated variables are available in order to ensure a proper contrast for 

image processing: light source voltage (illumination intensity) and camera exposure time. 

Some automated microscope offer the possibility to adjust automatically the light source 

voltage and the camera exposure time by an algorithm using an objective function. Since 

cells are very sensitive to light exposition (also NIR light can heat the culture medium), the 

intensity of the light source should be as low as possible. To compensate, it is needed to 

increase the exposure time of the camera, thus increasing the time required to acquire 

each image (this can have a detrimental effect on imaging frequency). As a consequence, 

there is a tradeoff between illumination intensity and exposure time. The exposure time 

required for a particular situation will be highly influenced by the performance of the 

camera CCD (related with the signal-to-noise ratio associated to the status of the CCD 

(Cox 2007)). 

Illumination variations within a single image are a common challenge for microscopic 

image processing, and sometimes require preprocessing steps. A potential problem is with 
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the light coming from non-focal planes making its way to the CCD of the camera (mostly in 

fluorescence microscopy). To remove the impact of out-of-focus light in microscopic 

images, deconvolution techniques are required. For optical phase images (mostly PCM), 

the source of intensity variations may be caused by the shadowing of steep-sided culture 

wells, meniscus irregularities and non-uniformity of the plastic base used in culture plates 

(Curl, Harris et al. 2004). These sources of intensity variations are unavoidable in live cell 

imaging experiments. As a result contaminated images may have large brightness and 

contrast changes (Xiong, Chia et al. 2011). For phase contrast microscopy in particular, 

one of the main challenges is the “halo” effect, which causes spurious bright areas around 

phase objects that induce large phase shifts (Otaki 2000). When using PCM to image 

multiwell plates, the liquid meniscus (related with the surface tension of the culture 

medium) can have a strong effect on illumination variations (DeVaney 2008). In fact, the 

liquid meniscus acts as an optical lens, deviating incident light coming thru a well. Hence, 

as we move away from the center of the well, the images are getting brighter, and we 

loose the phase contrast (the images are similar to brightfield images). This problem is 

illustrated in a mosaic in Figure 2-15, where 1521 images were acquired to image an 

entire well of a 24 wells multiwell plate in PCM (20X): it is possible to see the loss of phase 

contrast from the center towards the periphery of the well. 

 

Figure 2-15 : Mosaic of 1521 images acquired to image an entire well of a 24 wells 

multiwell plate in PCM (20X): there is a loss of phase contrast at the well periphery. 
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Image processing techniques  (background correction, deconvolution techniques) can be 

used to compensate for illumination problems. Another way is to use hardware 

modifications to get rid of those problems. For example, plate inserts are available on the 

market and can be put inside each well of a multiwell plate to get rid of the meniscus effect 

(DeVaney 2008). To reduce the artifact halo effect around cells, one can perform a 

hardware modification on the objective of the microscope via apodization (Otaki 2000).  An 

apodized phase plate consisting of a ¼ wavelength phase shift ring with a transmittance of 

25% is used with a pair of adjacent rings which have a transmittance of 50% (Otaki 2000). 

The apodized phase plate is placed at the back focal plane of the objective, reducing the 

halo of phase objects and providing enhanced inner details. Another approach is to use 

the automated features of the microscope to optimize the illumination set-up frame by 

frame. For example, it is possible to take a series of images with different exposure times 

and to use a high dynamic range approach to highlight the cells and the information in a 

same summary image (HRD image), even though there are huge illumination differences 

throughout the same well (Xiong, Chia et al. 2011). In this method, a summary image 

(HDR image) is created by combining multiple-exposure images for each field of view 

followed by a background subtraction using a Gaussian blurred image (to reduce the effect 

of uneven background illumination) and finally cells are segmented using a level set 

method (Xiong, Chia et al. 2011). 

2.3.4.4 Focus adjustment 

Focusing can be defined as adjusting the distance setting of a lens in order to produce a 

sharp image on a camera CCD (MIR 1999). In that sense, a well-focused image will 

ensure that the objects captured will have sharp contours as an out-of-focus image will 

have objects with blurry contours. Adjusting the objective height to have the right focus is 

important when imaging adherent cells using an inverted microscope. It is required to tune 

the focus properly  to ensure that the details associated with the cells and their boundaries 

are not fuzzy, and that most of the light reaching the camera CCD is coming from the cells. 

Figure 2-16 shows examples of images taken at the right and wrong focus. Taking images 

at the wrong focus can have an impact on the accuracy of the results, since fuzzy cells 

might not be detected, cells boundaries can hardly be identified and the texture inside cells 

cannot be analyzed properly. 
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Figure 2-16 : Examples of images taken at the wrong and right focus (myoblasts 

imaged at 40X in PCM) 

When using a large acquisition grid, the focus plane can change between fields of view 

because of different factors. A non-uniform focus profile between fields of view can be 

caused by a tilt in the microscope multiwell plate or slide, by a non-uniform thickness of the 

sample holder or the sample itself and by the presence of a meniscus in the liquid. For 

example, an optimal focus profile at the bottom of a well in a 24 wells multiwell plate 

obtained by an autofocus algorithm (Metamorph®) is shown in Figure 2-17. 

 

Figure 2-17 : Example of an optimal focus profile at the bottom of a well in a 24 wells 

multiwell plate. At each well location (for x and y coordinates), the Metamorph® 

autofocus utility found the optimal focus. The optimal focuses are provided as a 

topographic map, with isolines providing the z-coordinate level (focus plane height). 
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2.3.4.4.1 Autofocus algorithms 

From Figure 2-16, it is possible to see that usually out-of-focus images are associated with 

objects that lose their texture (the cells are fuzzy, and we do not see the fine details inside 

them), and this can be used to detect images that are not at the right focus. For example, 

Padfield used wavelets to detect out-of-focus images by looking at the loss of texture and 

by computing a defocus ratio (Padfield, Rittscher et al. 2011). Since focus has an impact 

on image texture analysis, using an autofocus algorithm to ensure that each image is 

acquired at the right focus is really important to ensure data quality. In this work, the 

autofocus algorithm readily available in Metamorph® was used (unfortunately no details 

were provided by the manufacturer about the algorithm used by the software). Most 

autofocus algorithms can be classified into four categories: derivative-based algorithms 

(assuming that well-focused images have more high-frequency content, including gradient 

methods and wavelet methods), statistics-based algorithms (using variance and 

correlation), histogram-based algorithms (using the histogram of an image) and intuitive 

algorithms (mainly based on thresholding) (Yu, Duthaler et al. 2005). An autofocus 

algorithm generally calculates some features in the image as the microscope depth is 

shifted (adjusting the height of the objective for inverted microscopes), and the global 

maximum (or minimum) of a curve fitted onto the calculated feature values is chosen as 

the true focal depth or the right focus (Dashan, Padfield et al. 2010). With an autofocus 

application, there is a risk that some tiles in a whole acquisition grid might not be at the 

best focus because of local variations. A method was suggested to detect out-of-focus tiles 

by looking at the variation of features calculated in the overlapping regions between 

adjacent tiles (Dashan, Padfield et al. 2010). Wavelets are particularly suitable to assess 

focus quality, since the blurring in out-of-focus images increases energy in low-pass bands 

and decreases energy in high-pass bands (Hui, Weibin et al. 2006). 

Focus adjustment in hyperspectral microscopy can be very difficult, certainly for systems 

using a “push broom” hyperspectral camera with one spatial and one spectral dimension. 

This is due to the fact that one needs to move the sample to obtain an image. It is hard to 

assess focus quality without looking at overall image quality and textural details. A solution 

is to put the system in “autofocus mode” and to acquire several hyperspectral cubes at 

different focal planes one after the other until the right focus is identified by analyzing each 

image obtained (Katari, Wallack et al. 2009). Another method is to manually change de 

focus by looking at one specific spatial line (hopefully capturing fine details) in a 
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hyperspectral image (slice of the hyperspectral cube) and to choose the focus that gives 

the most precise details (“sharp” details or refined texture) (Polerecky, Bissett et al. 2009). 

2.4 Image processing 

2.4.1 Definition of a digital image 

A grey level digital image is a rectangular array of measured values of some property of 

interest collected from the area under study, and in which the array elements are called 

pixels (short for picture elements) (Rodenacker and Bengtsson 2003). Each pixel 

represents the integrated intensity of light measured over the spatial extent of the pixel, 

which depends on the optical and spectral properties of the imaging system. The 

measured intensity is proportional to the quantity of light transmitted/reflected/diffracted 

(with or without interference) or emitted by fluorescence. The image array has at least two 

spatial dimensions, but since all objects have intrinsically three dimensions, it is common 

to capture 3D images via confocal, deconvolution or multiphoton fluorescence microscopy 

(Rodenacker and Bengtsson 2003). Figure 2-18 shows an example of a typical 2D digital 

image. 

 

Figure 2-18 : Example of a 2D digital image (myoblasts imaged in PCM at 20X) 

An additional dimension can be obtained by limiting the spectral range over which a 

sensor registers light, providing the capacity to obtain more or less well resolved spectra of 

a two dimensions image (spectral image) (Rodenacker and Bengtsson 2003). The most 

common spectral image is the RGB image, having three spectral channels: red, green and 

blue. In fluorescence microscopy, it is possible to use narrow bandwidth limiting filters that 

can match the property of specific stains, and the superposition of the different images 

acquired with different filters can provide a spectral image with a certain number of 
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spectral channels (Rodenacker and Bengtsson 2003). Alternatively, the “push broom” set-

up can be used to acquire spectral images (hyperspectral cubes) of transmitted or emitted 

light with varying spectral resolutions. Figure 2-19 shows an example of a hyperspectral 

image having two spatial dimensions and one spectral dimension. For example, a spectral 

cube of myoblasts grown in SFM (imaged in PCM at 20X) was acquired using a push 

broom set up (slices in the y and λ dimensions), and the information is summarized in a T1 

score image generated by Principal Component Analysis (PCA). 

 

Figure 2-19 : Example of a hyperspectral image, with two spatial dimensions and 

one spectral dimension. The information is summarized via a T1 score image 

generated by Principal Component Analysis (PCA). 

Another dimension that can be considered is time. If the specimen is subjected to 

processes changing it through time, it is possible to acquire successive images spaced at 

proper time intervals to monitor these changes. When performing live cell imaging, digital 

images can be processed statically or dynamically (considering the images acquired as a 

time series) (Miura 2005). 

A digital image can then possess up to 5 dimensions (three spatial, one spectral and one 

temporal dimension) (Rodenacker and Bengtsson 2003). For each image, one can 
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analyze these different dimensions to extract features and important information via image 

processing techniques. 

2.4.2 Fourier transform of a digital image 

The Fourier transform of an image consists of a transformation from a spatial domain to a 

frequency domain. Since no information is lost or added (simply a change of referential), 

this transform is reversible. For a digital image f(x,y) of size M by N in the spatial domain, 

its discrete Fourier transform (DFT) can be computed by the following equation (Gonzalez 

and Woods 2008): 

F(u, v) = ∑ ∑ f(x, y)e
−j2π(

ux
M

+
vy
N

)

N−1

y=0

M−1

x=0

 

 (2-12) 

In which u and v are respectively horizontal and vertical spatial frequencies (in cycles) and 

x and y are respectively horizontal and vertical spatial coordinates (in pixels). Since the 

Fourier transform is reversible, the inverse discrete Fourier transform (IDFT) from F(u,v) 

can be calculated by the following equation (Gonzalez and Woods 2008). 

f(x, y) =
1

MN
∑ ∑ F(u, v)e

j2π(
ux
M

+
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N

)

N−1

v=0

M−1

u=0

 

(2-13) 

To compute this transform on 2D images, the functions fft2 and ifft2 are used in Matlab®. 

An example is provided in Figure 2-20 for an MxN image. 



 59 

 

Figure 2-20 : Example of a Fourier transform of a 2D digital image of dimension  

M by N 

It is important to note that the Fourier transform of a digital image generates a matrix of 

complex numbers. The maximum frequencies associated with a Fourier transform of an 

image are M/2 and N/2 cycles, since higher frequencies are associated to aliasing 

(process in which high frequencies in a signal are assimilated to lower frequencies due to 

under-sampling according to the Nyquist criterion (Gonzalez and Woods 2008)). The 

maximum frequency in an image corresponds to a series of black and white pixels 

alternating every two pixels. Note that the frequencies u and v in the frequency domain 

may have various units (cycles for the entire image length or height, cycles per pixel and 

rad per pixel) as needed. For instance, the maximum horizontal frequency is M/2 cycles for 

the entire image length, corresponding to 0.5 cycles per pixel or π rads per pixel. 

Noteworthy, since M and N are different (most images are not square in size), the 

frequency resolution (difference in frequency between two adjacent points in the FFT 

transform of an image) is not the same for u and v (Gonzalez and Woods 2008). For 
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instance, the horizontal frequency resolution (Δu) is 1/M cycles per pixel and the vertical 

frequency resolution (Δv) is 1/N cycles per pixel. 

The Fourier transform matrix can be processed to compute the magnitude (Mag), the 

phase angle (PA) and the power spectrum (PS) associated with the complex numbers 

(Gonzalez and Woods 2008). The formulas are given as follows (Gonzalez and Woods 

2008), for which Re(u,v) and Im(u,v) refer to the real and imaginary portions of the Fourier 

transform matrix F(u,v): 

Mag(u, v) = √Re(u, v)2 + Im(u, v)2 (2-14) 

PA(u, v) = arctan [
Im(u,v)

Re(u,v)
] (2-15) 

PS(u, v) = Re(u, v)2 + Im(u, v)2 (2-16) 

Figure 2-21 shows the Mag (Magnitude), PS (Power spectrum) and PA (Phase angle) 

matrices for a typical live cell image acquired in phase contrast microscopy (PCM). 

 

Figure 2-21 : Magnitude, power spectrum and phase angle matrix associated to the 

DFT of a typical PCM image 
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The power spectrum (similar to the magnitude) and the phase angle provide information 

about the signal frequency profile present in an image, and the orientation of the signal. 

Figure 2-22 and Figure 2-23 show the phase angle and power spectra matrices of typical 

images of myoblasts grown in SSM and SFM (both media described in Table C-1 and in 

Table C-2). It is clearly shown that cells grown in SFM are associated with signals of 

higher frequencies (higher values that are located further away from the power spectrum 

center). The power spectrum can also detect the orientation of the signal in each image 

(higher values perpendicular to the orientation of the cells at high degrees of confluence). 

 

Figure 2-22 : Phase angle and power spectra matrices for images of cells grown in 

SSM 
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Figure 2-23 : Phase angle and power spectra matrices for images of cells grown in 

SFM 

2.4.3 Image pre-processing 

Since microscopic images can be contaminated by uneven illumination or by out-of-focus 

light, image pre-processing can be used to enhance their quality before further processing. 

PCM microscopy is a technique that converts small phase shifts caused by transparent 

specimens into light amplitude variations that can be captured by the observer or by the 

CCD of the camera (An-An, Kang et al. 2012).  Due to the optical principle and the 

imperfections due to the phase shifting process, PCM provides images containing  several 

artifacts such as halos (local contrast reversal surrounding the specimen) and shade-offs 

(gradual bending of the intensity profile of a large flat specimen from the edges to the 

center) (An-An, Kang et al. 2012). Removing these artifacts from microscopic images can 

facilitate automated image processing in order to perform cell segmentation and cell 

tracking (Zhaozheng and Kanade 2011). Pre-processing techniques available can be 

roughly classified as background correction, spatial filtering and frequency filtering. 
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2.4.3.1 Background correction 

When processing a microscopic image, there is an incentive to remove information related 

with the background (spatial intensity gradients due to uneven illumination, optical 

imperfections of culture plates, small cellular debris, etc.) in order to identify group of pixels 

belonging to cells. Several background correction strategies are reported in the literature. 

2.4.3.1.1 Brightfield and phase contrast microscopy 

The main problem in brightfield and in phase contrast microscopy images is uneven 

illumination, which creates brighter and darker regions in microscopic images (spatial 

intensity gradients). Background correction can be used to compensate by dividing each 

image by a smooth filtered version of itself (Kang, Miller et al. 2006). Another method is to 

acquire a reference image (an “empty” image taken under the same conditions) and to 

subtract it from the original image (Burgemeister, Nattkemper et al. 2010). To amplify 

pixels associated to high intensity differences (most likely associated to cells) and to dim 

out pixels with low brightness associated to the background, one can also use a sigmoidal 

function (Burgemeister, Nattkemper et al. 2010). 

To correct images for uneven illumination, morphological operations such as Top-hat and 

Bottom-hat filters can be used (Gonzalez and Woods 2008; Kachouie, Fieguth et al. 2010). 

To subtract the background of PCM images, a filter called the rolling ball algorithm (also 

called Top-hat filter) is commonly used (Polzer, Haasters et al. 2010). In the rolling ball 

algorithm, a local background value is determined for every pixel by averaging over a very 

large ball neighborhood (structuring element) around the center pixel. This value is 

hereafter subtracted from the original image for each pixel, removing low frequency spatial 

variations associated with the background. The radius of the ball should be set to at least 

the size of the largest object in the image (Sternberg 1983).  

As a background correction strategy, the histogram of the image can be modified. For 

example, as a pre-processing step for analyzing PCM images, it is possible to stretch the 

contrast and to perform histogram equalization (Sakuma and Tanaka 2011). If a series of 

images is acquired through live cell imaging experiments, both the images histogram and 

temporal information can be used to spot background pixels, since their intensity will 

remain fairly constant through time compared to pixels associated to cells (Kachouie, 

Fieguth et al. 2007). 
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2.4.3.1.2 Hyperspectral microscopy 

Background correction/removal is an inherent difficulty in hyperspectral microscopy. 

Several techniques are proposed in the literature. For instance, it is possible to use two 

calibration images, one dark where no light is reaching the CCD of the camera (noise or 

dark current) and one white reference image for which the specimen support is used, but 

without the cells (Siddiqi, Li et al. 2008). This method is used to remove the effect of 

uneven illumination, the effect of scanning lines, and the impact of the lamp, the culture 

medium and the glass/plastic support on the cellular reflectance or transmittance spectra 

measured (Siddiqi, Li et al. 2008). For reflectance images, it was also proposed to 

compute the ratio of the specimen images to a white reference image using a 99% 

reflectance standard such as Spectralon (Polerecky, Bissett et al. 2009). For transmittance 

images acquired in hyperspectral microscopy, it is recommended to compute the ratio of 

the specimen images to a white reference image (empty specimen support) (Polerecky, 

Bissett et al. 2009). 

To correct the spectra measured by a hyperspectral camera in a confocal microscope, it is 

possible to perform a PCA on a dark image (dark hyperspectral cube) and to subtract the 

rank-one PCA dark image obtained from each measured hyperspectral cube (Haaland, 

Jones et al. 2009). For a more uniform analysis, it is recommended to correct the 

hyperspectral cubes for a noise following a Poisson distribution and a CCD submitted to a 

Gaussian noise (Haaland, Jones et al. 2009). To remove noise, a threshold can be used to 

set to zero any pixel value associated to a signal-to-noise ratio lower than a specified limit 

(Cutler, Haaland et al. 2009). 

2.4.3.2 Spatial filtering 

Spatial filtering (commonly called “convolution” in the literature) is a very versatile 

operation that has a broad spectrum of applications in image processing (Gonzalez and 

Woods 2008). A spatial filter consists of a neighborhood (usually a small rectangle) and a 

predefined operation that is performed on the image pixels encompassed by the 

neighborhood (Gonzalez and Woods 2008). The filtering operation creates a new value in 

the filtered matrix with the coordinates corresponding to the center of the neighborhood 

whose value is a function of the values in the neighborhood (Gonzalez and Woods 2008). 

The filtered image is generated as the center of the neighborhood (filter window) visits 

each pixel in the image. Figure 2-24 shows a raw image filtered with an average filter of 

size N1 by N2 (neighborhood). 
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Figure 2-24 : Spatial filtering using the average filter of size N1 by N2 

If the operation performed on the raw image pixels is linear, then the filter is linear 

(Gonzalez and Woods 2008). A typical linear filter of size m by n applied on a raw image 

can be expressed by the following image (Gonzalez and Woods 2008): 

g(x, y) = ∑ ∑ w(s, t)f(x + s, y + t) 

b

t=−b

a

s=−a

 

 (2-17) 

Where g(x,y) is the filtered matrix obtained from the raw image f(x,y), and w(s,t) are the 

filter coefficients (scalars) associated to the window of size m = 2a+1 by n = 2b+1. 

On the other hand, if the operation on the pixel values captured by the filter is not linear, 

then it is called a non-linear filter. Order-statistic filters (median, entropy, range and 

standard deviation filters) are a common class of non-linear filters, since they are based on 

the ranking of the pixels encompassed by the filter window (Gonzalez and Woods 2008). 

2.4.3.3 Frequency filtering 

For linear filters, there is a direct relationship between filtering in the spatial domain and 

filtering in the frequency domain provided by the convolution theorem (Gonzalez and 

Woods 2008). For an image f(x,y) associated with its Fourier transform F(u,v), and a linear 

filter h(x,y) associated to its own Fourier transform H(u,v), the convolution theorem is 

expressed as follows (Gonzalez and Woods 2008): 

f(x, y) △ h(x, y) = F(u, v).∗ H(u, v) (2-18) 

f(x, y).∗ h(x, y) = F(u, v) △ H(u, v) (2-19) 
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In which △ is the convolution operator for two matrices and “.*” is the element-by-element 

multiplication of two matrices. This means that the convolution of an image in the spatial 

domain with a linear filter is equivalent to the element-by-element multiplication of the 

Fourier transforms of the image and that of the linear filter. It is then possible to obtain the 

filtered Fourier transform of the image G(u,v) by the following equation: 

G(u, v) = F(u, v).∗ H(u, v) (2-20) 

Since this is an element-by element multiplication, convolving an image with a linear filter 

can be more efficient in the frequency domain than in the spatial domain, for which it is 

necessary to scan spatially the whole image, pixel by pixel, and to compute a function from 

each pixel’s neighborhood. Even though it is necessary to compute the Fourier and the 

inverse Fourier transform of the product, the Fast Fourier Transform (FFT) algorithm is 

already optimized to minimize computational costs and to be very efficient (in comparison 

to performing the convolution in the spatial domain). Figure 2-25 shows the example of a 

cell image convolved with a Gaussian low pass filter (linear) in the frequency domain in 

order to remove high frequency noise. 

 

Figure 2-25 : Convolution of an image with a linear (Gaussian) filter in the frequency 

domain 

In an optical imaging system (when using a microscope for instance), if the true image is 

contaminated (convolved) with a linear degradation function that may be related with the 

system itself or to unwanted signal from out-of-focus light (named point spread function or 
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“PSF” (Cox 2007)), the Fourier transform of the real image F(u,v) is contaminated by a 

degradation function D(u,v) and the system acquires a contaminated image C(u,v): 

C(u, v) = F(u, v).∗ D(u, v) + N(u, v) (2-21) 

Where N(u,v) is an extra term to take into account interference noise (Gonzalez and 

Woods 2008). Since image degradation can be modeled as a result of convolution, image 

restoration techniques usually try to find a proper linear filter (good estimate of D(u,v)) that 

can invert this process, thus recovering the real image F(u,v) from the contaminated image 

C(u,v). This method is called “image deconvolution” (Gonzalez and Woods 2008). 

Since noise is usually associated with high frequencies in an image and background with 

low frequencies, it is possible to filter out details in an image using low pass, high pass or 

band pass filters (depending on the situation). For example, to filter background noise in 

fluorescent images, the undecimated wavelet transform (with a hard threshold on the detail 

coefficients) can be used (Olivo-Marin 2002). Alternatively, one can use the Fourier 

transform as a tool to differentiate noise from signal patterns in spectral images (Sanchez, 

Prow et al. 2010). 

2.4.3.3.1 Brightfield and phase contrast microscopy 

By looking at the phase contrast optics (mathematical modelling), PCM images can be 

relatively well explained by a linear imaging model, and it is possible to use a quadratic 

function to restore the authentic phase contrast images without artifacts such as halos and 

shade-offs (Yin, Li et al. 2010). The cells in the restored images (F̂(u, v)) could be 

segmented easily by simple thresholding (Yin, Li et al. 2010). It is possible to restore a 

PCM or a DIC image by minimizing a regularized quadratic cost function that is adaptable 

to input image properties, considering a whole image sequence (Zhaozheng and Kanade 

2011). In order to do so, an obscured airy kernel is used for phase contrast microscopy 

and a Difference-of-Gaussian kernel is used for DIC images in an iterative deconvolution 

algorithm (Zhaozheng and Kanade 2011). Under a positive phase contrast microscope, 

adherent stem cells grown in culture appear as dark objects surrounded by bright halos, 

and the phase contrast image can be approximated by a linear imaging model (An-An, 

Kang et al. 2012).  In phase contrast microscopy, image formation can be seen as a linear 

process with the following degradation function (Yin, Li et al. 2010): 

D(u, v)PHASE CONTRAST = δ(u, v) − airy(√u2 + v2) (2-22) 
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This approach could be interesting for cases in which the optical path stays relatively the 

same. However, as in the case of this work, since several locations in several wells are 

imaged, this degradation function is much likely not constant (as it is the case for the 

optimal focus). This is due to the non-uniformity of the cell culture plate and the meniscus 

effect. 

2.4.3.3.2 Hyperspectral microscopy 

When analyzing hyperspectral cubes obtained in fluorescence microscopy, one of the 

major problems is related with the noise generated by fluorescent molecules that are out-

of-focus. In an epifluorescence microscope, thick specimens can produce an image that 

represents the sum of the in-focus details convolved with the blurry out-of-focus details 

(Monici 2005). This effect is not too significant for low magnification images (10X or lower), 

for which the depth-of-field is important (Monici 2005). For higher magnifications, several 

methods were developed to get rid of the noise in thicker specimen, such as confocal 

microscopy, multiphoton microscopy and image deconvolution for epifluorescence 

microscopy. These methods provide the opportunity to perform an optical sectioning of the 

noise generated by out-of-focus light, avoiding a physical sectioning of the specimen 

during its preparation (making the specimen thinner) (Monici 2005). In a fluorescence 

image, the intensity of each pixel is linearly related by convolution to the fluorescence 

intensity of each point in the specimen (Monici 2005). As a consequence, the influence of 

each element in the optical path (filters, lenses, etc.) can be removed by a deconvolution 

algorithm that can compensate for the loss of contrast and for the blurring caused by noise 

(Monici 2005). The advantage of using an epifluorescence microscope coupled to a 

deconvolution technique instead of using a confocal microscope (laser excitation light) is 

that the cells and tissues are exposed to a milder excitation light, thus making this 

technique less destructive (Monici 2005). When using fluorophores, deconvolution 

techniques can be very useful to deconvolve the autofluorescence signal of the cells from 

the main fluorescence signal (Constantinou, Dacosta et al. 2009). 

2.4.4 Segmentation algorithms 

Many segmentation algorithms are described in the literature for segmenting/highlighting 

cells in microscopic images. By definition, a segmentation algorithm subdivides an image 

into its constituent regions or objects (usually cells for microscopic images), and the extent 

to which the subdivision is carried out depends on the problem to be solved (Gonzalez and 
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Woods 2008). Segmenting the image into relevant objects and background regions is a 

critical and difficult step in each image processing scheme, as the objects or regions need 

to be analyzed further to make important conclusions (Rodenacker and Bengtsson 2003). 

For cytological applications, a whole range of segmentation algorithms is available, from 

simple thresholding techniques to the extraction of features for each pixel followed by their 

classification into different classes or sub-regions (Rodenacker and Bengtsson 2003). The 

choice of the features depends on the characteristics of the sub-areas to be discriminated 

(Rodenacker and Bengtsson 2003). 

As a result of the segmentation process, each object identified is linked to a mask O, 

which is the set of all pixels p=(x,y) that are included in the mask (p ε O) (Rodenacker and 

Bengtsson 2003). It is also possible to define C ⊂ O as the ordered set of pixels of the 

contour or border of the object (Rodenacker and Bengtsson 2003). As a result, after a 

segmentation process, each set O describes the zone of measurement and C describes 

the border of the object as a list of coordinates (Rodenacker and Bengtsson 2003). From a 

computation perspective, the result of the segmentation process generates a 

Segmentation Map (SM), in which each pixel is assigned a class, as illustrated in Figure 

2-26. In the Segmentation Map, two objects are identified (O1 in red and O2 in green), and 

their respective borders C1 and C2 are highlighted in blue. Background pixels are assigned 

the class 0 and are colored in black. 

 

Figure 2-26 : Image segmentation process, in which a Segmentation Map (SM) is 

generated from a raw image 
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To perform object segmentation in images, Gonzalez et Woods (2008) classify roughly 

segmentation algorithms as they are based on edge detection, on region detection or on 

pattern recognition. An overview of these methods is presented in the following sections. 

2.4.4.1 Edge detection methods 

Edge detection methods are based on gradients between the contour of the objects to be 

segmented and the background. Many methods are using filters to detect edges, such as 

the Sobel filter, the Canny filter, the Prewitt filter and the Marr-Hildreth edge detector 

(Gonzalez and Woods 2008). The Canny filter algorithm can be quite effective since it 

uses two thresholds to detect strong and weak edges, and weak edges are only accepted 

if they touch a strong edge (Canny 1986). Gradient filters, which compute the local 

derivative of pixel intensities, can also be used to process PCM images, since cells and 

membranes are surrounded by a bright halo (strong gradients between the interior of the 

cells, the cells membrane and the background). Numerous applications of edge detection 

filters in live cell imaging are mentioned in the literature. For example, the contour of 

artificial phospholipid vesicules was segmented by looking at the maximum gradient in 

PCM images (Usenik, Vrtovec et al. 2011). A robust edge detection method using a local 

adaptive Gaussian kernel convolution was used to detect neural stem cells (Taoyi, Yong et 

al. 2010). To select the resolution at which a cell edge was the most pronounced, a multi-

scale approach was used by downsampling by a factor of 2k the original image followed by 

the computation of the intensity gradient matrix and finally by computing the magnitude of 

the upsampled gradient matrix having the same size than the original image (Theriault, 

Walker et al. 2012). 

 

The most advanced techniques to detect object boundaries are active contours (Kass, 

Witkin et al. 1988) and level set methods (Sethian and Adalsteinsson 1997), in which an 

energy function related to the area around a closed curve that partitions an image is 

minimized iteratively, thus making the curve evolve until it converges and captures objects 

within the image (Chan and Vese 2001; Lankton 2009). The basic idea of both active 

contour models (or snakes) and level set methods is to evolve a curve by calculating the 

energy around it, subject to constraints within an image, in order to detect the objects 

boundaries (cells for example) (Zhou 2007). The main difference between active contours 

and level set methods is in their implementation and how the curve is computed. Both 

methods require an initial segmentation (boundary) at the first iteration. Also, active 

contours usually keep the same number of objects from one iteration to the other, 
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compared to level sets where contours can merge or be created (the number of objects 

detected in the image is not constant). 

2.4.4.1.1 Level sets 

In active contours (snakes), a parameterization of a closed curve discretized into P points 

is required. The curve is deformed iteratively from iteration t to iteration t+1 in order to 

minimize an energy function (Zimmer, Labruyere et al. 2002; Miura 2005). However 

traditional edge-based active contours (in which the image energy is computed by the 

integral of a locally computed edge map along the contour) usually provide poor results on 

fluorescence microscopy images when the boundaries are fuzzy and sensitive to 

initialization (Cheng and Rajapakse 2009). Even if new active contours models have been 

developed in the last few years, level set methods (geometric active contours) are 

becoming more popular since they don’t require an explicit parameterization and do not 

suffer from any constraints on the topology as snakes do (Cheng and Rajapakse 2009). 

The region-based approach used in many level set methods provides strong robustness to 

noise and allows segmentation of cells with blurred edges (Cheng and Rajapakse 2009). 

 

A level set is a representation of a curve that doesn’t require parameterization, and uses a 

mapping function ф(x,y) having the same dimensions than the original image (I(x,y)). 

Regions inside a contour have negative values, regions outside a contour have positive 

values and pixels on the contour have a value of zero (signed distance function (Lankton 

2009)). Figure 2-27 shows the evolution of a contour through a level set representation 

applied to an inverted phase contrast microscopy image containing cells. The Matlab® 

algorithm used was available freely on the internet from Lankton (2009). A significant 

number of iterations was required to detect the contour of one cell (18,000), thus making 

this particular approach difficult to implement and to use for analyzing in real time PCM 

images (for cell culture control purposes) or even for HTS applications producing an 

important quantity of images. 
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Figure 2-27 : Example of the evolution of a level set representation for segmenting a 

cell. A significant number of iterations is required to achieve a segmentation. 

The goal is again to minimize the energy captured by the contour (E(ф(x,y))). The 

evolution of the level set will be influenced by the internal and external energy captured by 

the contour that will act as a force on the contour (F(ф(x,y))), as the energy is minimized. 

The evolution of the level set is based on its derivative, which is a function of different 

energies inside and outside the contour expressed as a force (Demirkaya, Asyali et al. 

2009): 

 

∂ϕ(x,y)

∂t
= F(ϕ(x, y))|∇ϕ(x, y)| (2-23) 

The level-set evolves from one iteration to the other (from iteration t to iteration t+1) with 

the following equation: 
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ϕ(x, y)t+1 = ϕ(x, y)t + [
∂ϕ(x,y)

∂t
]

t
dt (2-24) 

The time/iteration interval dt must be adjusted to ensure that the level set evolves as fast 

as possible (minimize computation times), but not too fast to ensure convergence. Several 

energy-minimization functions (F(ф(x,y))) are reported in the literature. The simplest is 

based on the motion by mean curvature introduced by Osher and Sethian (Chan and Vese 

2001): 

 

∂ϕ(x,y)

∂t
= |∇ϕ(x, y)|div (

∇ϕ(x,y)

|∇ϕ(x,y)|
) (2-25) 

More complex approaches are also reported in the literature, depending on the energy 

functions and energy-minimization strategies used. For example, it is possible to use the 

image gradient to stop the evolution of the curve (Chan and Vese 2001): 

 

∂ϕ(x,y)

∂t
= |∇ϕ(x, y)| [−ν +

ν

max(G(x,y))−min (G(x,y))
(|G(x, y)| − min (G(x, y)))] (2-26) 

Where ν is a constant (tuning parameter), and G(x,y) is defined as the gradient of the 

convolution between a Gaussian filter g(x,y,σ) and the raw image I(x,y): 

G(x, y) = ∇[g(x, y, σ) △ I(x, y)] (2-27) 

Amongst the energy functions used, the reduced form of the Mumford-Shah function, that 

incorporates three tuning parameters (α, λI and λO) for the evolution of the level set ф(x,y), 

is quite general (Cheng and Rajapakse 2009): 

 

∂ϕ(x,y)

∂t
= (α∇

∇ϕ(x,y)

|∇ϕ(x,y)|
− λI(I(x, y) − μI)

2 + λO(I(x, y) − μO)2) δ(ϕ(x, y)) (2-28) 

Where μI and μO are respectively the mean intensity of the pixels in I(x,y) inside and 

outside the boundary. The first term smoothens the contour (curvature) as the other two 

terms drive the contour towards the actual object boundary (Cheng and Rajapakse 2009). 

Since images can incorporate a large number of complex objects, several methods 

computing local energies have been developed. To have a review of these energy 

functions, the readers are referred to Lankton (2009). 
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2.4.4.1.2 Applications 

There are numerous applications of active contours and level set methods in microscopy. 

For example, these methods were used to count and characterize myocytes (Acton, Yang 

et al. 2009), cancer cells (Said, Karam et al. 2007; Ersoy, Bunyak et al. 2008) and 

neutrophils (Min, Shengyong et al. 2009). 

 

Active contours and level set methods are frequently used in combination with other image 

processing methods to achieve good segmentation and tracking performances in PCM. 

For example, a pose-shape manifold algorithm combined with an active contours method 

was used to segment myocytes and characterize their shape (Basu and Acton 2009). An 

active contours segmentation method combined with a PCA outlier detection algorithm (to 

improve robustness, and have a higher segmentation accuracy) was also successful for 

segmenting leukocytes (Saha, Ray et al. 2009). Active contours were also used to refine 

the segmentation of cells after pre-processing steps (Schilling, Miroslaw et al. 2007; 

Bradhurst, Boles et al. 2008). 

 

One of the main challenges when using active contours and level set methods is to have a 

good initial contour (initialization) that will ensure a proper convergence (usually seeding is 

required). A level set method was used to detect stem cells boundaries after seeding (cell 

centers identified) using a criteria to avoid crossing of different boundaries (Huiming, 

Xiaobo et al. 2009). To segment cells in brightfield images, Ali et al. (2007) used a level 

set contour that was initialized on a defocused image (with an improved intensity contrast) 

and that was evolved towards the correct boundary using images of improving focus. 

 

Phase contrast microscopy images containing cells are difficult to segment with active 

contours and level sets because of the low contrast between the cells and the background 

and because it is difficult to extract accurately the contour of the cells surrounded by a halo 

(Orikawa and Tanaka 2010). In fact, the intense and irregular halo surrounding the cells in 

PCM images causes the edge indicator function (gradient) to pull the level set towards the 

halo boundary at the exterior of the cells (Ambuhl, Brepsant et al. 2012). Despite these 

challenges, active contours and level sets are often used to perform or refine cell 

segmentation in phase contrast microscopy images. For example, cell candidates were 

identified in PCM using an adaptive rough segmentation (for seeding) followed by a level 

set method to evolve the contour of the seeds to the actual cell contours, allowing cell 
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division but prohibiting cell fusion (from a cell segmentation perspective) using constraints 

(Kang, Miller et al. 2006). An advanced level-set method was used to segment neural stem 

cells and progenitors in PCM images (Xiong, Chia et al. 2011). Active contours were used 

to segment and track Entamoeba histolytica in PCM images (Zimmer, Labruyere et al. 

2002). Level set segmentation was also used to characterize the movements of the 

contours of keratocyte cells in high resolution phase contrast microscopy to reveal cell 

edge dynamics (Ambuhl, Brepsant et al. 2012), proposing an energy function that would 

give better results for processing PCM images. To partly solve the problems associated 

with the halo surrounding the cells when using level sets, a top-hat transform was used, 

subtracting the morphological closing of the image from the original image itself (using a 

disk-shaped structuring element with a radius about the width of the halo) during an 

intermediate phase of energy minimization (Ambuhl, Brepsant et al. 2012). 

2.4.4.2 Region detection methods 

2.4.4.2.1 Morphological operations 

Morphological operations are basic and powerful tools for extracting image components 

that are useful for the representation of a region’s shape (Gonzalez and Woods 2008). 

Morphological operations are based on mathematical set theory, and can be used on 

binary images (black and white pixels) or on grey scale images (Gonzalez and Woods 

2008). Morphological operations require a structuring element (SE), which is a small set or 

subimage used to probe an image under study (closely related to spatial convolution) for 

properties of interest (Gonzalez and Woods 2008). Usually, morphological operations are 

pre-processing or post-processing steps for more advanced segmentation techniques 

performed on a binary image (object versus background) or on a grey scale image, as they 

simplify image data by preserving shape characteristics and eliminating irrelevancies 

(Haralick, Sternberg et al. 1987). Among morphological operations, it is possible to 

consider dilation, erosion, opening and closing (Haralick, Sternberg et al. 1987) as well as 

basic morphological algorithms such as boundary extraction, hole filling, the extraction of 

connected components, the computation of the convex hull, thinning, thickening, objects 

skeletons detection and pruning (Gonzalez and Woods 2008).  

 

Morphological operators are often used to separate single cells in clusters in image 

segmentation, to refine the cellular contours detected and also to filter out objects that are 

smaller than a certain size (objects disappear under an erosion with a structuring element 
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of a specific size (Rodenacker and Bengtsson 2003)). As an example, morphological 

operators (using an octagonal structuring element) were used to segment cells nuclei in 

stained Pap smear images (Walker, Jackway et al. 1994). Morphological operators 

(dilation, erosion) were also used to roughly segment clustered cells in PCM images 

(Ambriz-Colin, Torres-Cisneros et al. 2006). A background correction step and a threshold 

followed by a series of dilations and erosions was used to identify the contour of yeast 

cells in microscopy images (Yu, Elbuken et al. 2011). For detecting cells in cytological 

material images, Rodenacker and Bengtsson (2003) proposed the following approach: the 

images are thresholded, the holes inside the mask of the cells are filled and borders of 

touching cells are deleted and cleaned by a series of opening and closing operations while 

cells that are too small are filtered out by a series of dilations and erosions (all 

morphological operations are performed with an octagonal structuring element of a given 

radius). 

2.4.4.2.2 Region splitting and growing methods 

The merge and split segmentation algorithm (or “quad-tree” segmentation) was first 

introduced by Horowitz  and Pavlidis (1976), and consists of splitting and merging regions 

in an image based on an homogeneity or similarity criterion. The algorithm starts with a 

node that encompasses the whole image, and splits the image into 4 regions (usually 

squares (Saad, Abu-Bakar et al. 2010)) based on the homogeneity of the regions. This 

procedure is repeated, and after each splitting step adjacent regions are merged if a 

similarity criterion is met.  This procedure is done until there are no changes in the 

segmentation result (Liow and Pavlidis 1988). The quad-tree method was used to segment 

histological plant cells, white blood cells, and red blood cells in microscopic images 

(ByoungChul, MiSuk et al. 2007). This technique was also used to segment brain lesions 

in MRI images (Saad, Abu-Bakar et al. 2010). 

 

In region growing segmentation, the first step is to highlight manually or by automatic 

methods (thresholding or other techniques) a region of interest in each object to be 

segmented (referred as “seeds”) (Adams and Bischof 1994). The seed pixels are grown to 

their neighbor’s pixels and those neighbor pixels will be included only if they satisfy 

specific conditions (Sulaiman, Isa et al. 2010). Usually potential pixels surrounding the 

regions are compared to the mean intensity of the pixels included in each region (Adams 

and Bischof 1994). This process is repeated until no more pixels can the added to each 
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region. There are several applications of region growing segmentation methods for 

processing cellular microscopic images. It is commonly used to segment the nuclei and the 

cytoplasm of stained cell images in fluorescence microscopy (using fluorophores) or 

brightfield microscopy (histological samples with dyes). This techniques was used to 

distinguish overlapping cervical cells in PAP tests color images (Sulaiman, Isa et al. 2010). 

The same technique was also applied to pseudo color images for PAP tests diagnostics. 

Pseudo color is a method of assigning colors to grey values according to a table of 

function (Sulaiman, Isa et al. 2010). A seeded region growing method (automatic seeding 

generated by a threshold) was used to generate blob features (avoiding exact cell 

segmentation) that were fed to a Support Vector Machine (SVM) classifier in order to 

detect  mouse mesenchymal stem cells undergoing mitosis in PCM images (Anan, Kang et 

al. 2010). Mitosis detection is based on the fact that cells undergoing mitosis have a 

drastic morphological change, both daughter cells having an “8” shape (Anan, Kang et al. 

2010). To detect cells undergoing mitosis, a region growing algorithm started (seeded) and 

stopped using two different thresholding techniques was used in PCM (Liu, Li et al. 2011). 

2.4.4.2.3 Nested kernels 

Nested kernels constitute a special case of region detection method, which are based on 

the computation of a local pixel pattern around the cells centroid (for example a Gaussian 

distribution of the grey level values). The goal is not to segment exactly cellular areas, but 

to give an indication of where the cells are for tracking purposes (track cells centroids). 

Nested kernels are increasingly used for cell tracking via a mean shift strategy. Since in 

phase contrast microscopy cells have a darker interior with a white halo around them, 

nested kernels can be roughly fitted on the region corresponding to the interior of a cell 

starting from its centroid. For example, a mean-shift procedure using 3 nested kernels 

(one attracted by the inner dark pixels, one attracted by the white halo pixels and one 

attracted by the external dark pixels) was used to roughly segment and track different 

kinds of cells in PCM (Debeir, Van Ham et al. 2005). Other kernels (oriented ellipse kernel, 

non-Gaussian kernel and non-Gaussian ellipse kernel) were proposed (Xiaodong, 

Houqiang et al. 2006) to capture areas associated with cells in fluorescence microscopy 

(more robust to changes in cells shape and orientation), and these kernels where used for 

cell tracking via a mean-shift process. Also, a Gaussian kernel was used to enumerate 

fluorescent spots in fluorescence microscopy (Selinummi, Ruusuvuori et al. 2009). 
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2.4.4.2.4 Watershed transform 

A classical method (that could be classified as a region growing algorithm) is the 

watershed transform, for which an image is compared to a topographical map in which 

minima are considered as low points and maxima as high points (Vincent and Soille 1991), 

and as water accumulates in low points, divisions between objects can be identified and 

regions are highlighted. A good literature review on the watershed transform technique is 

provided by Quanli et al. (2010). In fact, any grey scale image can be considered as a 

topographical surface or landscape, and the original watershed transform is a 

segmentation method that simulates a landscape being flooded by rain in which water will 

flow to some regional minima (Quanli 2010). Watershed lines that separate catchment 

basins are treated as boundaries between regions for the purpose of segmentation. An 

alternative model is based on an immersion simulation introduced by Vincent and Soille 

(1991), in which the surface is flooded from its regional minima and the merging of water 

from different sources is prevented by building dams, as illustrated in Figure 2-28. 

 

 

Figure 2-28 : Watershed algorithm approach: as water fills catchment basins, pixels 

in an image are grouped together, starting from minima, until two groups of pixels 

reach each other, thus detecting a watershed line (dam) (Vincent and Soille 1991). 

The image is thus partitioned into two different sets: catchment basins and watershed lines 

(dams), which result in a segmentation of the original image (Quanli 2010). The regions 

surrounded by watershed lines represent the set of pixels reachable by monotone 
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decreasing or increasing distance from the local maximum or minimum grey scale value 

(Rodenacker and Bengtsson 2003). The immersion method is based roughly on a sorting 

of the pixels in increasing order of their grey values, and on a “fast breadth-first scan” of 

the “plateaus” enabled by a first-in-first-out type data structure (Vincent and Soille 1991). 

Even though the watershed transform is commonly used for image segmentation, it often 

leads to over-segmentation due to local minima. To reduce the effect of over-

segmentation, as a pre-processing step, the H-minima transform is often used to prevent 

over-segmentation by suppressing all minima less than a particular depth (h) from the local 

pixel values (Cheng and Rajapakse 2009). A complementary algorithm to the watershed 

transform is the immersion simulation based self-organizing (ISSO) transform, which 

allows users to define a self-organizing function to model how the objects of interest 

should self-organize based on a priori information such as size, shape or border 

smoothness during the immersion process (Quanli 2010).  

 

In order to solve the over-segmentation issue, there are mainly two solutions: hierarchical 

(fragment merging) or marker-controlled watershed methods (Xiaodong, Houqiang et al. 

2006). Marker-controlled and hierarchical methods are often used to get rid of the over-

segmentation problem by providing strong prior information to preprocess the image 

before using the watershed transform, or by applying merging rules to post-process over-

segmented regions (Quanli 2010). In hierarchical methods, it is possible to use a 

connectivity-based approach (which might fail if the fragments are too big) or a shape and 

size-based approach (which is more effective, but still needs to be refined by post-

processing steps) (Xiaodong, Houqiang et al. 2006). When using marker-controlled 

watershed, minima are imposed by identifying predefined markers (Xiaodong, Houqiang et 

al. 2006), and this operation is usually referred to as “seeding”. For marker-controlled 

watershed to work and avoid over-segmentation, it is necessary to ensure that there is 

only one marker per object, thus making marker extraction a difficult task (Xiaodong, 

Houqiang et al. 2006). A marker is a set of connected pixels in an image which represents 

the existence of an object (Xiaodong, Houqiang et al. 2006). In a marker-controlled 

approach, flooding begins from the objects markers (imposed as global minima) instead of 

the regional minima. Since each marker represents one object, it is important to extract 

them correctly to avoid over-segmentation or under-segmentation (Xiaodong, Houqiang et 

al. 2006).  
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The segmentation performance of the watershed transform not only depends on the 

markers used but also on the marking function (the topographic surface flooded by water) 

computed from the binary image containing the markers, which should synthesize physical 

characteristics of the objects to segment (Fatima and Seenivasagam 2011). In order to 

properly identify the number of objects to be segmented, a marking function is usually 

used (Vincent and Soille 1991). In most cases, the inner or the outer distance transform is 

used on the binary image containing the markers to generate a marking function for the 

watershed transform (Cheng and Rajapakse 2009). For separation of partially overlapping 

objects in binary images, the inverse inner distance map is usually chosen as a classical 

marking function (Fatima and Seenivasagam 2011). For segmenting clustered cell nuclei, 

the outer inner distance map computing the distance from shape markers can be used, 

avoiding jagged boundaries of segmented objects (Fatima and Seenivasagam 2011). 

From a computational perspective, the outer distance transform converts a binary image 

into a distance map where every background pixel has a value corresponding to the 

minimum distance from shape markers (Fatima and Seenivasagam 2011). In comparison, 

the inner distance transform converts a binary image consisting of foreground and 

background pixels into a distance map in which each foreground pixel has a value 

corresponding to the minimum distance from the background (Cheng and Rajapakse 

2009). 

 

Figure 2-29 illustrates how a typical PCM raw image (A) can generate a significant over-

segmentation (B) when subjected to a watershed transform because of local minima (each 

colored region corresponding to one cell detected): 
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Figure 2-29 : A-Raw image; B-Watershed transform applied directly on a raw image. 

There is significant over-segmentation, with a large number of tiny objects 

segmented (one color for each group of pixel segmented). 

 

In order to avoid over-segmentation, using markers is almost mandatory, as illustrated in 

Figure 2-30. For segmenting a raw image (A), cellular regions are identified (B) by 

thresholding a range map of the image and after by filtering out cellular pixel groups 

smaller than a certain size (filter size of 5 pixels, threshold of 20 and minimum number of 

pixels of 5000). To compute cell markers (C), pixels having mid-range grey level values 

associated with regions inside cells (between 140 and 235) and linked to pixel groups 

larger than 500 pixels are highlighted and considered as object markers (red). To compute 

a background marker (C), the watershed lines identified by computing the watershed 

transform of the background binary matrix (inverse of cellular regions binary matrix 

computed in B) are used (red). In the background binary matrix, global minima are 

imposed for the pixels corresponding to object and background markers, and the 

watershed transform provides the segmentation result showed in D, for which there is one 

color per cell. 
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Figure 2-30 : A-Raw image; B-Cellular regions highlighted (green) for object 

markers; C-Background and object markers identified (red); D- Segmentation 

results using the watershed transform (one color for each cell). 

2.4.4.2.5 Applications 

The watershed transform is commonly used to segment stained cells in fluorescence 

microscopy (fluorophores) and in brightfield microscopy (using dyes) since the 

fluorophores and the dyes used can highlight specific regions inside the cells, thus 

providing ideal object markers. Numerous examples can be found in the literature. For 

example, a watershed method using markers generated by a series of morphological 

operators was used to segment and track cancer cells to study their cycle progression in 

fluorescence microscopy (Xiaodong, Houqiang et al. 2006): the seeds obtained by 

thresholding were refined using coarse and fine erosion structures through morphological 

operations (Xiaodong, Houqiang et al. 2006). Clustered nuclei in fluorescence microscopy 

images were segmented and separated by a rough segmentation using active contours (to 

generate seeds), by computing the inner distance map for each cluster detected, by 

identifying regional minima (by thresholding) and by using the H-minima transform (Fatima 

and Seenivasagam 2011). In fluorescence images of mouse neurons and Drosophila cells, 

nuclei were first roughly segmented by an active contour algorithm to generate seeds 

which were in turn used to segment whole cells using a watershed-like algorithm (Cheng 
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and Rajapakse 2009). A watershed method was used to segment stained cells for cancer 

diagnosis (Lu, Bai et al. 2008) relying on thresholding and edge detection (Gaussian 

coefficients gradient) to reduce over-segmentation. 

 

Using the watershed transform for segmenting unstained cells in PCM, DIC and brightfield 

microscopy is more challenging, since there are no molecular markers (fluorophores or 

dyes) to highlight specific regions inside the cells, making the identification of object 

markers more difficult. Despite this challenge, several authors developed methods to 

generate seeds in order to use the watershed transform while avoiding over-segmentation. 

For example, a seeded constrained watershed transform using a convolution between the 

image and a typical cell template (in order to identify seeds) was used to segment 

hematopoietic stem cells in DIC images (Kachouie, Fieguth et al. 2010), and performed 

well for round cells. Local features (such as variance) were used to generate foreground 

and background seeds to segment individual neural stem cells in clusters by the 

watershed transform applied to brightfield images (Qian, Peng et al. 2009). To segment 

neural stem cells in adherent culture conditions (brightfield microscopy), an hybrid image 

segmentation framework based on a self-organizing map and the seeded watershed 

algorithm was used (Xiang and Datian 2009). A watershed algorithm (combined with a 

growing region approach) with markers generated by a combination of a threshold and the 

distance transform was used to segment HeLa cells in PCM images (Orikawa and Tanaka 

2010). The watershed transform was used to segment different human cellular phenotypes 

in PCM coupled to holography (Mõlder, Sebesta et al. 2008). 

2.4.5 Pattern recognition 

2.4.5.1 Features definition 

In image processing, a feature is a quantitative value that can be used for pattern 

recognition. A pattern is an arrangement of descriptors or features that can be used to 

classify pixels within an image for segmentation (Gonzalez and Woods 2008) or for 

classification purposes. A good review of the different types of features used to study 

biological samples (cytometry) was provided by Rodenacker and Bengtsson (2003). When 

an image is analyzed, both the measured grey values of the pixels and the spatial 

arrangements of these values can be studied to generate numerical values or features that 

carry some information of interest about the imaged objects (Rodenacker and Bengtsson 

2003). 
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The feature generation process is illustrated in Figure 2-31. From a raw digital image, the 

selection of the measurement zone delimits the region to be quantified (e.g. cells nucleus, 

cytoplasm of whole cells, etc.) and requires some sort of segmentation that produces a 

map to count and localize the objects of interest (Rodenacker and Bengtsson 2003). It is 

also possible to perform a mathematical transformation of the raw digital image to highlight 

certain aspects of the distribution of pixel values (e.g. thresholding, grey level co-

occurrence matrix, Fourier Transform, etc.), thus producing a data array corresponding to 

a new image, a matrix of co-occurrence values or a frequency distribution (Rodenacker 

and Bengtsson 2003). The final step is a measurement process that produces a feature 

value (scalar) corresponding to a count, an integration or a selection performed on a 

segmentation map and/or a transformation data array (Rodenacker and Bengtsson 2003). 

For example, if a transformation performed on an image results in a frequency distribution 

(histogram), the distribution associated to this histogram can be characterized by several 

measurements (moments) such as an average, a standard deviation, a skew and a 

kurtosis (Rodenacker and Bengtsson 2003). 

 

Figure 2-31 : Feature generation process (adapted from Rodenacker and Bengtsson 

(2003)) 

As morphometric features express only the spatial arrangement of grey pixel values, 

densitometric features look at overall grey values without considering spatial distributions 

(Rodenacker and Bengtsson 2003). Textural and structural features are a combination of 

both since they consider both the spatial distribution of the grey values and the overall 

grey values (Rodenacker and Bengtsson 2003). As illustrated in Figure 2-32, features can 

be classified as intensity features, textural/structural features and shape/morphological 
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features (Rodenacker and Bengtsson 2003). The following sections provide more details 

about each type of features. 

 

Figure 2-32 : Different classes of features (adapted from Rodenacker and Bengtsson 

(2003)) 

It is important to note that features which are directly extracted from the raw image 

(primary features) can be combined to form new features (secondary features) that can 

better express the desired properties of the objects to be quantified (Rodenacker and 

Bengtsson 2003). In this PhD project, it was necessary to select the most appropriate 

features to characterize cellular clusters and individual cells imaged in PCM. 

2.4.5.2 Features selection 

There is almost an infinite number of features (or combination of features) that can be 

computed from a single image. Because of the huge number of features that can be 

generated and because they are often highly correlated, singular value decomposition 

(SVD) or principal component analysis (PCA) can be used to reduce the dimensionality of 

the features space (Jun, Cooper et al. 2010; Skoczylas, Rakowski et al. 2011). For 

example, a features space was reduced from 295 features to 25 latent variables using 

singular value decomposition before using a Support Vector Machine (SVM) classifier for 

performing unstained viable cell recognition in phase contrast microscopy (Skoczylas, 

Rakowski et al. 2011). A principal component analysis (PCA) was used to capture most of 
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the variance in a features space before feeding the information to a neural network (Qian, 

Peng et al. 2009; Xiang and Datian 2009). 

Some features are critical for classification as other features are less important, and non-

significant features might be removed for computational efficiency. Many methods are 

described in the literature: bottom-up approaches start with an empty feature set and 

include features incrementally in an optimal manner while top-down approaches include at 

first all features and remove the ones that provide redundant information (Schilling, 

Miroslaw et al. 2007). For example, for performing cervical cancer diagnosis from texture 

analysis in PCM images, optimal features were selected via a sequential forward floating 

selection (SFFS) method considering as an objective function the classification error rate, 

the Bhattacharyya distance and scatter matrices (Schilling, Miroslaw et al. 2007). 

2.4.5.3 Intensity features 

The simplest feature is the intensity level of a pixel (grey value for monochrome images). 

Intensity features (densitometric) rely on the absolute values of the intensity 

measurements in an image, and usually do not consider the spatial position of individual 

pixels (Rodenacker and Bengtsson 2003). These features are based on the histogram of 

pixel intensities, from which pixels can be classified easily using thresholding techniques. 

However, after a rough segmentation of the image, the local pixel intensities can be 

studied, as it is possible to obtain the histogram of pixel grey level values for the whole 

image or subsets of the image such as the background or the zone inside an object 

(Rodenacker and Bengtsson 2003).  

 

In pattern recognition, when dealing with a series of images having the same size in terms 

of pixels, each pixel location can be considered as a feature having as a value its grey 

level intensity. When using the Karhunen-Loève expansion (or better known as principal 

component analysis or PCA) for pattern recognition (applied on an image dataset), each 

pixel in each image (size m x n) is considered as a single occurrence in a m*n feature 

space. This method is commonly used in human facial recognition. For an image dataset 

of K images, it is possible to obtain a data matrix of K rows by m*n columns. Each pixel 

intensity is corrected for the mean value of the whole image dataset (Sirovich and Kirby 

1987), referred to as “mean image”. It is possible to capture most of the information with 

several components (Turk and Pentland 1991). The first step is apply PCA analysis on a 

training dataset and keep only the components capturing most of the variance (“C” 
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components).  The dot products of each image with each training score image 

(“eigenfaces” or “eigencells”) can be used as features, giving a total of “C” features for 

each image (Turk 1991). These features can be assigned to a number of classes. A 

common method to classify an image is to compute the Euclidian distance between the “C” 

features of a new image and the typical “C” features of each class, and to assign the 

image to the group having the shortest distance. Another method to classify a new image 

is to compute and minimize the Euclidian distances between the raw image (from which 

the mean image is subtracted) and the projections of the raw image using each set of 

eigenvectors associated to each class. Several applications are reported in the literature. 

For example, fluorescence images of lymphocytes were decomposed into smaller image 

patches, and these patches were classified using PCA generated features fed to a neural 

network as cells or non-cells patches (Nattkemper, Ritter et al. 2001). The PCA/neural 

network cell detection technique was combined with a features binding algorithm (a 

recurrent neural network) in order to identify cell contours (Nattkemper, Wersing et al. 

2002). Similar results were obtained using independent component analysis (ICA) 

techniques (Nattkemper, Twellmann et al. 2003). A variant of the PCA method to generate 

features is the Fisher linear discriminant (FLD) analysis of image patches (Long, Cleveland 

et al. 2005), which was used to identify unstained cells in brightfield images. Analyzing 

image patches in a training dataset with the FLD method has the advantage of maximizing 

the ratio of between-class variance to within-class variance, as opposed to PCA which 

maximizes both the between-class and within-class variances captured (Long, Cleveland 

et al. 2005). The FLD method combined with a neural network classifier was found to be 

more robust relative to size, illumination, focus and noise than the PCA method (Long, 

Cleveland et al. 2005). In another application, the FLD method was also used to classify 

pixels as background, living cell or necrotic cell (Malpica, Santos et al. 2003). 

2.4.5.4 Textural features 

Image texture can be defined as “the spatial variation of pixel intensities (grey values)”, 

and can be perceived at different scales or levels of resolution (Tuceryan and Jain 1999). 

Another author defines textures as “complex visual patterns composed of entities that 

have specific brightness, color, slope, size and scale, giving rise to perceived brightness, 

uniformity, coarseness, smoothness and granularity in an image” (Caponetti, Castellano et 

al. 2009). Texture analysis can be used for a variety of tasks such as image recognition, 

classification, segmentation, synthesis or compression, and the literature reports several 

applications such as product inspection, medical image analysis, documents processing 
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and remote sensing (Tuceryan and Jain 1999). Psychophysical research showed that 

humans and primates perform a frequency analysis of images in their visual cortex, 

analyzing textured images by decomposing them into their frequency and orientation 

components (Tuceryan and Jain 1999). This is why we distinguish textures intuitively 

without having to think about it. 

For industrial and research applications, since the intensity variations in an image which 

characterize a texture are due mainly to underlying physical variations in a material/scene, 

texture analysis can be used to model physical variations that are difficult to detect 

(Tuceryan and Jain 1999). The extraction of textural features can be performed on the 

whole image or can involve the quantification of the local density variability inside an object 

of interest after segmentation (Tuceryan and Jain 1999). 

Textural analysis methods can be classified into four categories: statistical methods, 

geometrical methods, model-based methods and signal processing methods (Tuceryan 

and Jain 1999; Liu 2004). 

2.4.5.4.1 Statistical methods 

Statistical methods describe the texture of a region based on the spatial distribution of grey 

level values by generating features based on statistical moments (Tuceryan and Jain 

1999; Liu 2004). The most popular method is the grey level co-occurrence matrix (GLCM), 

in which a matrix is produced to count the number of grey value pairs associated with a 

certain displacement vector (Tuceryan and Jain 1999). For each displacement vector, a 

square matrix having a size equivalent to the number of grey values (L) is computed, as 

illustrated in Figure 2-33: 

 

Figure 2-33 : GLCM technique 
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In Figure 2-33, the raw GLCM Matrix is computed by looking at pairs of grey level values 

that are linked by a displacement vector. Each pixel grey level value in the image is 

associated (as a pair) to the pixel grey level value that is 0 pixel down and 1 pixel to the 

right (displacement vector [0,1], corresponding to a distance of 1 pixel in the 0 degree 

direction). The raw GLCM Matrix is then built by computing the number of occurrences for 

each possible grey level value pair. It is possible to compute raw GLCM Matrices for 

several displacement vectors (different distances and different angles).  From the raw 

GLCM Matrix, a Probability GLCM matrix can be computed by dividing each count by the 

total number of counts (Figure 2-33). For each Probability GLCM matrix (for different 

displacement vectors), several scalar features can be calculated such as the maximum 

probability, correlation, contrast, uniformity (energy), homogeneity and entropy (Haralick, 

Haralick et al. 1973). 

 

If the texture is homogenous (no directionality), as it is usually the case for chromatin 

distribution inside cells nuclei, the number of displacement vectors used can be limited to 

orientations of 0 and 90 degrees (Rodenacker and Bengtsson 2003). However, if 

significant directionality is expected, several orientations should be studied through 

different displacement vectors, and the maximum, minimum and range values for each raw 

GLCM Matrix generated should be used to express the directional inhomogeneity of the 

texture (Rodenacker and Bengtsson 2003). 

Several applications using GLCM features for analyzing biological samples are described 

in the literature. For example, texture analysis using GLCM features was used to classify 

Pap Smear cells nuclei as normal or abnormal in stained images (Walker, Jackway et al. 

1994). Also, to classify cells as healthy, apoptotic and necrotic in dark field micrographs 

from an in situ microscope, textural features (GLCM and other features) were used on 

image patches (roughly the same size than the cells), the classification being performed by 

a SVM classifier (Burgemeister, Nattkemper et al. 2010). 

2.4.5.4.2 Geometrical methods 

Geometrical methods characterize a texture as being composed of textural elements or 

primitives having a defined geometry (Tuceryan and Jain 1999). Once textural elements in 

an image are identified, it is possible to either compute statistical properties from the 

identified textural elements or to extract a placement rule that defines a particular texture 
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(Tuceryan and Jain 1999). Several methods rely on Voronoi polygons, which are 

constructed by tessellation from texture tokens (points of interest in an image) (Tuceryan 

and Jain 1999). 

2.4.5.4.3 Model-based methods 

Model-based methods rely on the construction of an image model that can be used to 

describe or synthetize a texture, as model parameters capture the perceived texture 

quality (Tuceryan and Jain 1999). The most popular methods are autoregressive models, 

Markov Random Fields (MRF) and fractal models (Tuceryan and Jain 1999; Liu 2004). 

2.4.5.4.4 Signal processing methods 

Signal processing methods based on transforms convert an image into a new domain 

(change in coordinate system) to analyze spatial frequencies generated by the variation of 

pixels intensities (Tuceryan and Jain 1999; Liu 2004). These transforms usually rely on 

spatial or frequency filters. Some specialized transforms are also reported in the literature 

and can be focused specifically on biological applications. For example, the Mayall/Young 

Chromatin feature transform is a special transform taking the global shape of the object 

(chromatin distribution in cells nuclei) into account to generate textural features such as 

heterogeneity, clumpness, etc. (Rodenacker and Bengtsson 2003). Another interesting 

transform mostly used to analyze the texture of powders (isotropic) is the Angle Measure 

Technique (AMT), in which an image is unfolded into a 1D vector and in which the mean 

angle and the mean difference is computed between consecutive points over several 

scales (Andrle 1994; Mortensen and Esbensen 2005). 

Spatial filters that are edge detectors are appropriate to differentiate fine textures from 

coarse textures, since fine textures will have a higher density of edges per unit area 

(Tuceryan and Jain 1999) or a higher local rate of change in pixel values. For example, 

gradient filters generate features that quantify the velocity of change in grey scale values. 

Laplacian filters correspond to the sum of partial local derivatives, and the corresponding 

features matrix delivers a certain description of changes in pixels neighborhoods 

(Rodenacker and Bengtsson 2003). Amongst gradient/edge detector filters, it is also 

possible to consider non-linear filters such as the standard deviation filter and the range 

filter and also advanced edge detectors such as the Canny and the Sobel filters (Gonzalez 

and Woods 2008). 
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Frequency filters rely on the spectral analysis of an image to generate textural features. A 

first approach to generate textural features is to divide the Fourier Transform of an image 

(FFT, frequency domain) into rings (frequency content) and wedges (orientation content) 

(Tuceryan and Jain 1999), as shown in Figure 2-34. 

 

Figure 2-34 : Frequency content (scale) and orientation content information in the 

FFT of an image 

To generate features, the FFT transform of an image (frequency domain) is divided into 

regions, and the total energy in each region is representative of the scale/orientation of the 

textural information (Tuceryan and Jain 1999). The energy computed in each shaded band 

(e.g. green, yellow and blue bands in Figure 2-34) is a textural feature related to the 

coarseness/fineness (scale) information and the energy computed in each wedge (red 

arrows from the center of the FFT) is a textural feature related to directionality information 

(Tuceryan and Jain 1999). 

The wavelet transform is preferred to the Fourier transform since it looks at both the 

frequency and spatial information within an image (Liu 2004; Gonzalez and Woods 2008). 

Since wavelets are of particular interest for this thesis, they will be detailed further in a 

dedicated section. 
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2.4.5.5 Shape-based (morphometric) features 

Shape-based or morphometric features express the overall size and shape of an object (or 

a cell) in an image (Rodenacker and Bengtsson 2003). Several features rely on a 

segmentation of the cells to be performed first (segmentation shape-based features) as 

other methods rely on a relative fit of an object/cell template in the image (fit shape-based 

features). 

2.4.5.5.1 Segmentation shape-based features 

Segmentation shape-based features are computed after a segmentation step is 

completed, in which each object Oi and each border Ci is identified via a segmentation 

map, as illustrated in Figure 2-26 (Rodenacker and Bengtsson 2003). A straightforward 

way to estimate the size of an object in an image is to find the minimum and maximum x 

and y coordinates associated with the object mask, thus defining a bounding box 

representative of the height, width and area of the object (Rodenacker and Bengtsson 

2003). The ratio of the area of the actual object to the bounding box area provides a 

simple shape factor feature (Rodenacker and Bengtsson 2003). Once a formal 

segmentation of the cells is achieved, it is possible to compute geometrical features such 

as cell area, cell perimeter, cell orientation or cell eccentricity (Kachouie, Fieguth et al. 

2010). Geometric moments can also be computed, but they can be sensitive to the overall 

cell size and orientation (Rodenacker and Bengtsson 2003). In Matlab®, it is possible to 

compute several segmentation shape-based features such as the area, the centroid 

coordinates, the major axis length, the minor axis length, the orientation, the equivalent 

diameter and the perimeter using the bwlabeln and regionprops functions, as illustrated in 

Figure 2-35. 
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Figure 2-35 : Shape-based features generated from a segmentation map 

Many segmentation shape-based features are used in the literature as a segmentation 

post-processing step to refine segmentation results (e.g. remove or add pixel groups in the 

segmentation map according to their size/area) or to characterize different culture/process 

conditions (e.g. cells grow bigger in condition 1 than in condition 2). For example, 

geometrical/shape-based features were used to distinguish yeast cells depending of their 

status in their cell cycle (Yu, Elbuken et al. 2011). Also, House et al. (2009) used a cut size 

to remove clutters (groups of pixels that are too small) after a rough segmentation. Shape 

and textural features  (among them Fourier descriptors) were used to detect cells in an 

image, approximating the cellular cytoplasms using a Voronoi diagram (Skoczylas, 

Rakowski et al. 2011). In order to classify differentiated and non-differentiated neural stem 

cells, Fourier descriptors were used to characterize their shape after single cell 

segmentation (Xiang and Datian 2009). Also, to locate the center of mass of artificial 

phospholipid vesicules in PCM images, Usenik et al. (2011) used a system of two 

equations in polar coordinates assuming that the vesicules were round. Finally, to classify 

fibroblast cells according to their morphology (spread, polarized, oriented) in PCM images, 

a set of 18 segmentation shape-based and 21 appearance-based features were used 

(Theriault, Walker et al. 2012). The segmentation shape-based features were calculated 

from a segmentation map generated by a multi-scale approach in which the magnitude of 
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the gradient and the Laplacian were computed at each scale (Theriault, Walker et al. 

2012). 

2.4.5.5.2 Fit shape-based features 

Fit shape-based features rely on methods that try to fit known patterns (cells having a 

certain shape for example) in the image after edges have been highlighted by an edge 

detection method or by matching a region profile by convolution (probability map 

generated with maxima corresponding to cells location). This may be referred to as a priori 

knowledge of the cells shape (Caponetti, Castellano et al. 2009). 

For cell localization, it is possible to convolve the image with a typical template of a cell 

(used as a filter) in order to generate a probability map that can be thresholded to locate 

cells (Kachouie, Fieguth et al. 2007; Gonzalez and Woods 2008; Kachouie, Fieguth et al. 

2008; Kachouie, Fieguth et al. 2010). In a similar fashion, ring filters of different diameters 

can be used to detect round cells (e.g. hematopoietic stem cells) in PCM images 

(Sungeun, Bise et al. 2010). The method consists of convolving the image with ring filters 

of different radii and to threshold the output (fitted with a quadratic surface to remove 

noise) to identify local maxima (pixels with the highest probability of being a cell candidate) 

(Sungeun, Bise et al. 2010). In each case, the probability/correlation map can be 

considered as a matrix of features that needs to be processed by a classifier (usually 

thresholding) to identify cells. This technique works very well to locate round cells centers 

(in this case myoblasts not adhered yet, which are round), as shown in Figure 2-36: 

 

Figure 2-36 : Round cells localized by template convolution 
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Another method is to obtain a probability map for the localization of the cells by computing 

the probability that each pixel belongs to a round or elliptic object of a specific radius or 

geometry (Kachouie, Lee et al. 2005; Kachouie, Fieguth et al. 2007). This probability map 

can be thresholded to localize the cells and get shape information (Kachouie, Lee et al. 

2005; Nezamoddin, Paul et al. 2006). Before fitting circles or ellipses, it is usually 

necessary to highlight key points in the image through the use of a transform such as an 

edge detector (Kachouie, Fieguth et al. 2010) or the use of the Hough transform 

(Demirkaya, Asyali et al. 2009). The Hough transform is a powerful technique which can 

be used to isolate features of a particular shape in an image (usually pixels that are related 

to object boundaries). This technique can be used to detect regular curves such as lines, 

circles or ellipses (Caponetti, Castellano et al. 2009). The main advantage of the Hough 

transform is that it is tolerant of gaps in curve descriptions and is relatively unaffected by 

image noise (Caponetti, Castellano et al. 2009). For instance, the Hough transform was 

used to highlight the cytoplasm boundary pixels of oocyte cells after computing the 

gradient image (Caponetti, Castellano et al. 2009). The Hough transform was used also to 

detect round cells in in situ microscopy (for cellular suspensions) (Burgemeister, 

Nattkemper et al. 2010). To quantify the size distribution of different species of microalgae 

(round cells) exposed to several culture media, a 2D Gaussian elliptical pattern was fitted 

by regression on each cell imaged by a microscope (10X), and the fit parameters served 

as shape features (McConico, Horton et al. 2012). Finally, circles in an image can be 

detected using an algorithm that highlights sharp transitions (by using the Hough transform 

or another edge detector) and measures the degree of fit between the resulting edge map 

and circles within a definite range of radiuses (Demirkaya, Asyali et al. 2009).  The 

probability map is generated by computing all the pixels belonging to circles of specified 

radii centered at each edge pixel (Demirkaya, Asyali et al. 2009). Circles related to cells 

can be identified by thresholding (the highest probabilities being associated to the center 

of the cells). 

2.4.6 Wavelet transforms 

Wavelets constitute a multiresolution analysis approach in which a scaling function is used 

to create a series of approximations of a 1D signal or a 2D signal (an image), each 

differing in resolution (over several scales). Wavelets are used to capture the difference of 

information between adjacent approximations (Gonzalez and Woods 2008). Wavelet 

coefficients capture subband information that corresponds to specific frequency 
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bandwidths. A good review of the different wavelet transforms available is presented by 

Starck, Elad et al. (2004) and the concepts are well illustrated by Gonzalez and Woods 

(2008). 

2.4.6.1 1D wavelet transform 

For a 1D discrete function f(x) described by M data points, a wavelet expansion can be 

computed using the discrete wavelet transform (DWT) (Gonzalez and Woods 2008): 

f(x) =
1

√M
∑ A(j0, k)φj0,k(x)

k

+
1

√M
∑ ∑ W(j, k)ψj,k(x)

k

∞

j=j0

 

 (2-29) 

In which j0 is the original scale, j is the scale number, 𝜑(𝑥) is the scaling function (low pass 

filter), and 𝜓(𝑥) is the wavelet function (high pass filter). In the wavelet expansion, A(j,k) 

are approximation coefficients and W(j,k) are detail/wavelet coefficients computed by 

convolution between the filters and the original signal f(x) (Gonzalez and Woods 2008): 

A(j0, k) =
1

√M
∑ f(x)φj0,k(x)

x
 (2-30) 

W(j, k) =
1

√M
∑ f(x)ψj,k(x)

x
 (2-31) 

The scaling and wavelet functions must be scalable to scale j, as illustrated in the following 

equations for dyadic scaling (Gonzalez and Woods 2008): 

φj,k(x) = 2j/2φ(2jx − k) (2-32) 

ψj,k(x) = 2j/2ψ(2jx − k) (2-33) 

The scaling and wavelet functions are linked via recursive equations, assuming that the 

wavelets constitute an orthonormal basis for the DWT expansion (Gonzalez and Woods 

2008): 

φ(x) = ∑ hφ(n)√2
n

φ(2x − n) (2-34) 

ψ(x) = ∑ hψ(n)√2
n

φ(2x − n) (2-35) 
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hψ(n) = (−1)nhφ(1 − n) (2-36) 

Where ℎ𝜑 is called the scaling vector and ℎ𝜓 is called the wavelet vector. The wavelet 

vector and the scaling vector can be used directly in a multistage structure to compute the 

wavelet coefficients by convolution in an efficient manner (fast wavelet transform, or FWT), 

as illustrated in the Mallat’s herringbone algorithm (Mallat 1989; Gonzalez and Woods 

2008), which became the standard DWT method for signal decomposition/expansion and 

synthesis.  

 

Figure 2-37 : FWT approach to compute the DWT for signal decomposition and 

synthesis (adapted from Gonzalez and Woods (2008)) 

The DWT concept can be extended to the case of continuous functions using the 

continuous wavelet transform (CWT). Practically, for a sampled signal, the CWT involves a 

convolution point-by-point between the signal and the wavelet filter for all scales, thus 

producing wavelet planes (W) having the same number of wavelet coefficients than the 

number of points in the original signal without any upsampling or downsampling. The 

continuous wavelet transform is defined by the point-by-point convolution of the signal with 

the wavelet (Gonzalez and Woods 2008): 

W(s, τ) = ∫ f(x)
∞

−∞
ψs,τ(x)dx (2-37) 

ψs,τ(x) =
1

√s
ψ (

x−τ

s
) (2-38) 
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In which s and τ are the scale and translation parameters. For a finite signal, the 

translation parameter will vary so the wavelet is convolved over the full length of the signal 

(point-by-point). An example of the wavelet decomposition of a signal (f(x)=cos(x/(4π))) is 

shown in Figure 2-38 using the DWT and the CWT (using the Wavelet Toolbox® in 

Matlab®). The Daubechies 1 (Db 1) wavelet was used to perform a DWT over 5 scales 

and a CWT over 64 scales. 

 

 

Figure 2-38 : Sinusoidal 1D signal (A) submitted to a DWT (B) or a CWT(C) 

decomposition. Detail coefficients for both decompositions are shown using a color 

map: strong positive values are in white and strong negative values are in black. 

Figure 2-38 shows that the CWT has a better resolution in terms of spatial position/scale 

than the DWT, even though it is more complex to compute. In fact, the advantage of the 

CWT over the DWT is that it has a constant resolution over all scales (even at high 

scales), since it avoids dyadic subsampling. Also, it is possible to note that the number of 

detail coefficients stays the same for all scales with the CWT (same as the  number of 
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points in the original signal). In comparison, the number of detail coefficients decreases 

with the DWT as the scale increases (due to dyadic subsampling). 

2.4.6.2 2D - DWT 

The DWT transform can be extended to a 2D signal (image) using the same principles 

(2D-DWT). The main difference being that in the 2D case, one may now consider 

extracting orientation information in addition to spectral information. For an image of MxN 

pixels the expansion can be expressed up to scale j using the following equation 

(Gonzalez and Woods 2008): 

f(x, y) =
1

√MN
∑ ∑ A(j0, m, n)φj0,m,n(x, y)

nm

+
1

√MN
∑ ∑ ∑ ∑ Wi(j, m, n)ψi

j,m,n
(x, y)

nm

∞

j=j0i=H,V,D

 

(2-39) 

To take into account the orientation of the signal, 3 directions are used (Horizontal(H), 

Vertical(V) and Diagonal(H)), with the 2D scaling and wavelet functions obtained by the 

product of their 1D counterparts (Gonzalez and Woods 2008): 

φ(x, y) = φ(x)φ(y) (2-40) 

ψH(x, y) = ψ(x)φ(y) (2-41) 

ψV(x, y) = φ(x)ψ(y) (2-42) 

ψD(x, y) = ψ(x)ψ(y) (2-43) 

In the 2D-DWT, A(j,m,n) are approximation coefficients and W(j,m,n) are detail/wavelet 

coefficients computed by convolution in the spatial domain between the filters and the 

original image f(x,y) (Gonzalez and Woods 2008): 

A(j0, m, n) =
1

√MN
∑ ∑ f(x, y)φj0,m,n(x, y)

N−1

y=0

M−1

x=0

 

 (2-44) 

Wi(j, m, n) =
1

√MN
∑ ∑ f(x, y)ψi

j,m,n
(x, y)

N−1

y=0

      i = {H, V, D}

M−1

x=0
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 (2-45) 

The scaling and wavelet functions must again be scalable to scale j, as illustrated in the 

following equations (Gonzalez and Woods 2008): 

φj,m,n(x, y) = 2j/2φ(2jx − m, 2jy − n) (2-46) 

ψi
j,m,n

(x, y) = 2j/2ψi(2jx − m, 2jy − n)        i = {H, V, D} (2-47) 

Since the scaling and wavelet functions are basically the same as for the 1D-DWT and 

since they also form an orthonormal basis, the same scaling vector ℎ𝜑(𝑛) and wavelet 

vector ℎ𝜓(𝑛) can be used for the 2D-FWT in a multistage structure (considering this time 

the orientation of the signal), relying on the strategy proposed by Mallat (1989). The 

FWT/DWT for 1D and 2D signals was first introduced by Mallat (1989), for which the 

computation of the wavelet representation is accomplished with a pyramidal algorithm 

based on convolutions with quadrature mirror filters. The DWT is in fact a series of high 

and low pass filtering operations, between which a subsampling of a factor of 2 is applied 

on the approximation image before going to the next level (Caponetti, Castellano et al. 

2009). The DWT is optimal for image compression (the downsampling reduces the size of 

the wavelet coefficient matrices to be saved), but not optimal for filtering, deconvolution, 

detection or pattern recognition (Starck, Elad et al. 2004). For 2D images, this method is 

illustrated in Figure 2-39 for signal decomposition and synthesis. 
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Figure 2-39 : FWT approach to compute the DWT for 2D signal decomposition and 

synthesis (adapted from Gonzalez and Woods (2008)) 

Using the Wavelet Toolbox® in Matlab®, a typical cell image was analyzed to generate a 

series of wavelet planes (W), as illustrated in Figure 2-40. 
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Figure 2-40 : 2D-DWT applied to a typical cell image 

As shown in Figure 2-40, the 2D-DWT generates wavelet detail subimages (W, equivalent 

to wavelet planes for the CWT) that are of different sizes because of the downsampling 

operation between scales. Since the different wavelet planes from the DWT are not 

congruent, this makes it difficult to localize the textural information over several scales 

(Bharati, Liu et al. 2004). While many wavelet applications in image processing use 

Mallat’s orthogonal wavelet transform (DWT) (Mallat 1989), this transform is not always 

optimal for pattern recognition because it is not shift-invariant (due to decimation) and 

because image subbands (captured by each wavelet plane) are uncorrelated across 

scales (Olivo 1996; Olivo-Marin 2002). To avoid the drawbacks associated to the DWT, it 

is possible to use instead the undecimated wavelet transform (UWT), which is more 

convenient for pattern recognition since it is translation invariant and since the wavelet 

coefficients in each wavelet plane (W) are correlated and redundant (same number of 

pixels than in the original image). The UWT is very simple to implement for signal 

decomposition and synthesis (Olivo 1996). 
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2.4.6.3 2D – UWT 

To compute approximation and detail images from the UWT, it is possible to use the à 

trous algorithm (Starck and Bijaoui 1994; Olivo 1996) associated with the stationnary 

wavelet transform (SWT), in which the scaling and wavelet vectors are scaled-up by a 

factor of 2 at each scale. The SWT also allows extracting orientation features (vertical, 

horizontal and diagonal wavelet coefficients). However, this approach is still limited in 

scale/spatial resolution because of the filters upsampling steps between each scale. To 

avoid this problem and to perform the convolution at the single pixel level (point by point), 

the approximation images can be computed directly in the frequency domain (UWT-CWT), 

using the FFT transform of the scaling function. The Fourier transform of the low pass filter 

associated with the Gaussian wavelet (scaling function) is computed using the codes 

available from the YAWTb website (Jacques, Coron et al. 2007). This filter is based on the 

following equation for each scale s and for standard deviation σ (Jacques, Coron et al. 

2007): 

 

ΦGaussian(u, v, σ, s) = e−σ2((su)2+(sv)2) 2⁄     (2-48) 

Note that u and v are expressed in rads/pixel. The approximation coefficients are 

computed by multiplying point-by-point the Fourier transform of the image (F(u,v)) with the 

Fourier transform of the scaling functions (equivalent to a convolution in the Euclidean 

space (Gonzalez and Woods 2008)), and by transforming the result back into the 

Euclidean domain (FFT-1, standing for the inverse Fourier transform). It is thus possible to 

compute the Gaussian approximation image after convolution with a low pass filter 

(AGaussian): 

 

AGaussian(x, y, σ, s) = FFT−1[F(u, v).∗ ΦGaussian(u, v, σ, s)] (2-49) 

Each Gaussian wavelet plane can be computed by taking the difference between two 

consecutive approximations (Olivo 1996), thus capturing the information located in a 

precise frequency bandwith. The WGaussian can thus be seen as a Difference-of-Gaussian 

(DoG) wavelet plane: 

WGaussian(x, y, σ, s) = AGaussian(x, y, σ, s) − AGaussian(x, y, σ, s + 1) (2-50) 

Signal synthesis can be performed by summing all the Gaussian wavelet planes (up to 

smax) and combining the result with the residual approximation at smax (Olivo 1996): 
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f(x, y) = AGaussian(x, y, σ, smax) + ∑ WGaussian(x, y, σ, s)

smax

s=1

    

 (2-51) 

Alternatively, one can choose the two-dimensional Gabor scaling function which consists 

of a sinusoidal wave of a certain frequency and orientation modulated by a Gaussian 

envelope (Tuceryan and Jain 1999). The Fourier transform of the Gabor wavelet (scaling 

function) is also computed based on codes available from the YAWTb website (Jacques, 

Coron et al. 2007). The Gabor wavelet is mathematically expressed by the following 

equations for each scale s and angle θ and for σ, k0 and ε (Jacques, Coron et al. 2007): 

 

ψGabor(u, v, σ, ε, k0, s, θ) = e−σ2((ur−k0)2+(εvr)2) 2⁄  (2-52) 

ur = s ∗ (u ∗ cos(θ) − v ∗ sin(θ)) (2-53) 

vr = s ∗ (u ∗ sin(θ) + v ∗ cos(θ)) (2-54) 

As σ (width of the Gaussian envelope) influences the sharpness of the wavelet, k0 (offset 

from the zero frequency) impacts the frequency within the wavelet and ε determines the 

spread of the wavelet in the spatial domain. Figure 2-41 shows the impact of these 

parameters on a typical Gabor wavelet. 

 

Figure 2-41 : Impact of σ, ε and k0 on the shape of a typical Gabor wavelet  

(s = 50, θ = 0) 
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The Gabor wavelet is a bandbass filter located in a specific area of the Fourier domain. 

Wavelet planes obtained by applying the Gabor wavelet are computed as follows 

(Jacques, Coron et al. 2007), capturing the information in the Fourier domain at a specific 

angle for a specific bandwith: 

WGabor(u, v, σ, ε, k0, s, θ) = FFT−1[F(u, v).∗ ψGabor(u, v, σ, ε, k0, s, θ)] (2-55) 

The UWT-CWT decomposition based on the Gabor wavelet can be used to generate a 

series of wavelet planes having the same size than the original image (i.e. spatially 

congruent images), capturing textural details over several scales and for different 

orientations (from specific regions in the FFT transform of the image).  

The UWT-CWT decomposition is illustrated in Figure 2-42 for the Gaussian wavelet 

(σ=0.5) and in Figure 2-43 for the Gabor wavelet (σ=0.5, ε=5, k0=1, θ=π/4) using a typical 

cellular image. It is possible to see that the Gaussian wavelet can be used to detect and 

assess the size of round objects that are isotropic. In comparison, the Gabor wavelet can 

be used to detect and assess the size of elliptical and anisotropic objects, capturing also 

orientation information. Since adherent cells (such as myoblasts) are quite anisotropic, this 

explains why the Gabor wavelet was preferred for this PhD project. 
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Figure 2-42 : UWT-CWT decomposition using the Gaussian wavelet on a typical cell 

image 
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Figure 2-43 : UWT-CWT decomposition using the Gabor wavelet on a typical cell 

image 



108 
 

Since the Gaussian and the Gabor wavelet planes are computed from a point-by-point 

convolution in the frequency domain, these UWT-CWT transforms have the potential of 

providing better spatial/frequency resolution compared to the 2D-DWT, while providing the 

opportunity to look at the signal orientation more precisely (θ can be adjusted as wanted). 

The UWT-CWT wavelet approach is linked to another multiscale analysis method which is 

called the scale-invariant feature transform (SIFT) (Lowe 1999; Lowe 2004), for which the 

image is convolved with Gaussian kernels of different scales and standard deviations σ. 

The differences between consecutive Gaussian-blurred images are computed as 

Differences-of-Gaussians (DoG) (Jiang, Crookes et al. 2010). Key points are identified as 

local extrema in each DoG image, and since they are cell specific, they can be used for 

cell tracking (Jiang, Crookes et al. 2010). The SIFT features were used to track different 

cell lines in DIC microscopy images (Jiang, Crookes et al. 2010). SIFT features were also 

used to detect mitosis in PCM images (Liu, Li et al. 2011). In another approach called the 

flat texture transform, the difference between the image and a median filtered version of 

itself is used to detect pixel groups, the size of the filter being an important parameter 

(Rodenacker and Bengtsson 2003). However, the UWT-CWT has the advantage 

(compared to the SIFT and to the flat texture transform) of being fast (convolution 

computed in the Fourier domain) while looking at the direction of the signal (with the Gabor 

wavelet) over several scales. Finally, if the images are highly anisotropic and if orientation 

is important, other transforms such as ridgelets, curvelets, bandlets and contourlets 

transforms (other variations of the wavelet transform) could be used, involving the analysis 

of approximation images generated by the UWT and the DWT (Starck, Candes et al. 2002; 

Starck, Elad et al. 2004). Ridgelets and curvelets were developed to compensate the 

weakness of separable wavelets to represent lines and curves in 2D signals (Starck, Elad 

et al. 2004). 

2.4.6.4 Gaussian wavelet cutoff frequency (F0) 

For a low pass filter expressed in the frequency domain, the point of transition between the 

high frequencies that are cut and the low frequencies that are kept is called the cutoff 

frequency (F0) (Gonzalez and Woods 2008). The Gaussian low pass filter can be 

expressed as a function of F0 as follows (Gonzalez and Woods 2008): 

ΦGaussian(u, v, D0) = e−(u2+v2) 2F0
2⁄  (2-56) 
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When comparing this expression to the Gaussian wavelet scaling function (equation 

(2-48)), it is possible to deduce that: 

−
σ2s2

2
= −

1

2F0
2 (2-57) 

The cutoff frequency (F0) can then be expressed by the following equation (in rads/pixel): 

F0 = ±
1

σs
 (2-58) 

The cutoff frequency (F0) can also be expressed in cycles/pixel as following: 

F0 = ±
1

2πσs
 (2-59) 

The signal period associated to the cutoff frequency (P0, in pixels) can be calculated by 

inverting the precedent equation: 

P0 = 2πσs (2-60) 

This relation establishes a link between the scale s, the standard deviation σ of the 

Gaussian wavelet used and the size of the details captured in pixels. For example, for a 

Gaussian wavelet with σ = 0.5, the periods associated to the signal captured at each scale 

is given in Table 2-6. 
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Table 2-6 : Gaussian wavelet cutoff frequencies and periods (for σ = 0.5) 

 

Resolution limits in the spatial and in the frequency domains are determined by the 

Heisenberg uncertainty inequality (Tuceryan and Jain 1999), where u and v are expressed 

in rads/pixel: 

∆x∆u ≥
1

4π
 (2-61) 

∆y∆v ≥
1

4π
 (2-62) 

These inequalities have as a consequence that the frequency resolutions increase (Δu and 

Δv decrease) as the wavelet scale increases while spatial resolutions decrease (Δx and Δy 

increase). The relationship between frequency resolution, space resolution and wavelet 

scale is illustrated in Figure 2-44. 

Scale s F0 (cycles/pixel) P0 (pixels)

0 Infinity 0

1 0,32 3,14

2 0,16 6,28

3 0,11 9,42

4 0,08 12,57

5 0,06 15,71

6 0,05 18,85

7 0,05 21,99

8 0,04 25,13

9 0,04 28,27

10 0,03 31,42

11 0,03 34,56

12 0,03 37,70

13 0,02 40,84

14 0,02 43,98

15 0,02 47,12

… … …
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Figure 2-44 : Relationship between frequency resolution, space resolution and 

wavelet scale 

Figure 2-44 also shows that the spatial width of the wavelet window increases as its 

frequency width decreases as the wavelet gets wider at higher scales (Tuceryan and Jain 

1999). 

2.4.6.5 Use of wavelets in the literature 

The number of articles in the literature reporting the use of wavelets for analyzing 

microscopic images is very limited. A few examples of the use of wavelets in biological 

applications (mainly for textural features) are provided in this section. For example, 

wavelet texture analysis was used to assess the quality of oocytes cells for assisted 

insemination, which is related to the granularity and the texture of their cytoplasm 

(Caponetti, Castellano et al. 2009): the classification was performed using fuzzy c-means 

clustering (Caponetti, Castellano et al. 2009). Textural features were fed to a SVM 

classifier using a wavelet kernel to classify regions as cell edge, cell interior and 

background in order to segment V79 cells (Skoczylas, Rakowski et al. 2011). Textural 

analysis (co-occurrence matrix, Tamura, wavelets, neighborhood difference matrix and 

GLRLM features) was used in the diagnosis of diffuse gliomas from colored microscopic 

images (Jun, Cooper et al. 2010) by reducing the features space using a 3 components 

linear discriminant analysis or LDA (Jun, Cooper et al. 2010). Gabor filters were also used 
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to segment neuromeres by looking at their texture (Wu, Schulte et al. 2010). The UWT 

was used to detect and track endocytosed quantum dots in fluorescence images taken in 

time-lapse confocal microscopy (Genovesio, Liedl et al. 2006). Finally, in signal processing 

applications, wavelets were used to denoise and segment Hoeschst-stained cell clusters in 

epifluorescence images (Padfield, Rittscher et al. 2008; Padfield, Rittscher et al. 2011) and 

were used to help finding appropriate thresholds to segment the edge of marrow cells 

(Hou, Ma et al. 2007). From these very few examples, it is possible to conclude that the full 

potential of wavelets for analyzing microscopic images might not be exploited yet. 

2.4.7 Classifiers 

In biological applications, once image features are computed (regardless of the method 

used to extract them), they are typically submitted to a pattern recognition algorithm 

(classification or modelling) in order to perform segmentation (e.g. identify cells) or to 

differentiate in an automated manner different culture conditions. A pattern recognition 

approach involves assigning with minimal human intervention measured feature values to 

their respective pattern classes, which represent sets of typical occurrences that share 

common properties (Gonzalez and Woods 2008). For example, in this thesis (Chapter 6), 

shape-based features (cellular morphology) were used to differentiate cells growing in 

culture medium A from cells growing in culture medium B. There are mainly two types of 

classifiers available to perform pattern recognition: unsupervised classifiers and 

supervised classifiers. A review of both types of classifiers and pattern recognition 

methods was presented by Jain, Duin et al. (2000). Most classification methods rely on a 

separation performed in the features space, as illustrated in Figure 2-45. A features space 

can be seen as a set of axes defining an n-dimensional Euclidean space, and each feature 

value can be seen as a coordinate on each axis (one coordinate per feature). Here only 

three dimensions are shown, since it is difficult to illustrate more than three dimensions. 
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Figure 2-45 : Features space seen as an n-dimensional Euclidean space 

Of particular interest for this thesis, multivariate data analysis techniques (principal 

component analysis, partial least squares) will be detailed in Section 2.5, since they are 

used in pattern recognition to process features from continuous 2D wavelets (using 

multivariate image analysis or MIA) for classification and modelling purposes. 

2.4.8 Parameters calibration 

Most image processing algorithms used for cell segmentation and tracking rely on 

parameters specified by the user or automatically adjusted through a training process to 

perform their task. These parameters can be a threshold value, the size of a filter, a 

standard deviation used in a probability distribution for a stochastic model, etc.  These 

parameters can remain constant for all cases (if the algorithm is robust for all cases), they 

can be set by trial-and-error by the user, they can be automatically adjusted through a 

recursive algorithm (unsupervised) or they can be adjusted through a calibration/training 

process (supervised). Even though the calibration of a segmentation model is a critical 

step, parameter estimation is under-reported in the literature (Al-Muhairi, Fleury et al. 

2011). To assess the performance of segmentation algorithms, a literature review was 
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proposed by Zhang (1996) in which evaluation methods are presented as analytical, based 

on the goodness of fit or based on empirical discrepancy. Analytical methods study 

segmentation algorithms by considering their principles, requirements, utilities and 

complexity, without the need of any implementation or test on real images (Zhang 1996). 

Goodness of fit methods evaluate the performance of segmentation algorithms based on 

the quality of the segmented images (goodness based on intra-region uniformity, on inter-

region contrast or on region shape) (Zhang 1996). Empirical methods measure  the 

discrepancy between the segmented image (by the algorithm) and a reference (ground 

truth) image, and the discrepancy can be based on the number of mis-segmented pixels, 

on the position of the mis-segmented pixels or on the number of objects detected (Zhang 

1996). 

 

In this PhD project, since PCM microscopic images can vary in terms of quality (uneven 

illumination, bright halo surrounding the cells, cells touching, etc.), we opted for an 

empirical approach to evaluate and tune segmentation algorithms (see Chapter 4). To train 

a segmentation or a tracking algorithm through an empirical calibration process (to adjust 

its parameters), it is required to have a good training dataset (ground truth images or 

sequences) and to use an objective function to assess the performance of the algorithm 

relative to parameter values. 

2.4.8.1 Training dataset 

Calibration usually requires a set of calibration images or time-lapse sequences (referred 

to as “ground truth”). For segmentation algorithms, a ground truth dataset can be 

generated manually (by human observers) or automatically (synthetic data). Using 

manually segmented ground truth images is a common way of benchmarking and tuning 

segmentation algorithms, but can be fastidious and the results may vary between 

observers who perform the segmentation task.  Some benchmark ground truth images are 

freely available on the internet (Quanli 2010). Several authors use manual ground truth 

images to tune segmentation algorithms. For example, ground truth images (“learning 

images”) were used to train a classifier before analyzing a whole PCM image dataset 

(Skoczylas, Rakowski et al. 2011). If generating manual ground truth images is difficult 

even for an experimented human observer (like in epifluorescent images with a low signal-

to-noise ratio compared to confocal microscopy images), an edit-based validation 

approach can be used (Padfield, Rittscher et al. 2008). When testing a segmentation 
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model for brightfield or PCM images, one can use fluorescent stained images as ground 

truth (Selinummi, Ruusuvuori et al. 2009). 

When using more than one human observer/user to segment or classify cells, some 

variability in the ground truth results should be expected. For example, when classifying 

cells imaged in PCM according to their morphology, Theriault, Walker et al. (2012) asked a 

first observer to look at the cells, and found 82.8% spread cells, 60.5% polarized cells and 

31.9% oriented cells. A second observer found 84.0% spread cells, 63.9% polarized cells 

and 17.0% oriented cells, meaning that even though the two observers labeled the same 

838 cells, they completely agreed on their morphology on less than 60% of them 

(Theriault, Walker et al. 2012). 

To be more efficient and to avoid inter-observer variability, several authors use synthetic 

ground truth images by incorporating objects (cells) that are similar to the real objects to 

segment. Usenik, Vrtovec et al. (2011) generated an  artificial ground truth image (usually 

sinusoidal functions for cells), and tested their algorithm on it, looking at the influence of 

noise on the results. Synthetic ground truth images of neuritis were used to test the 

performance of an image analysis algorithm (Wu, Schulte et al. 2010). Synthetic ground 

truth images were also used to test a segmentation and denoising algorithm used to 

segment bright spots for immunochemistry assays (Olivo-Marin 2002), and to test a new 

watershed-based segmentation algorithm (Cheng and Rajapakse 2009). 

To characterize the efficiency and accuracy of a segmentation algorithm in PCM, synthetic 

ground truth images of different signal-to-noise ratios (SNR) and using different cell 

shapes were generated (Ambuhl, Brepsant et al. 2012). They were generated by 

simulating the optics of PCM (Yin, Li et al. 2010) using the parameters provided by the 

microscope manufacturer and applying an image formation model to the segmentation 

maps of different imaged cells serving as ground truth objects (Ambuhl, Brepsant et al. 

2012). A total of five different shapes were used, incorporating the degree of polarization 

of the cells (Ambuhl, Brepsant et al. 2012). 

2.4.8.2 Performance metrics 

A theoretical overview of the different metrics available for assessing the performance of 

segmentation algorithms and classifiers (i.e. binary decision problems) was proposed by 

Hand et al. (2012). The literature relative to this subject is very diverse, and the metrics 

used are application or problem specific (Hand 2012). Often there seems to be little 

awareness that the same classification problems arise in other branches of science and 
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technology, having as a consequence that the same performance measures are 

duplicated under different names (Hand 2012). 

2.4.8.2.1 Confusion matrix metrics for binary decision problems 

In a binary decision problem, a classifier labels occurences as either positive or negative, 

and this decision can be represented in a structure called confusion matrix or contingency 

table (Davis and Goadrich 2006). In the confusion matrix, true positives (TP) are 

occurences correctly labeled as positives, false positives (FP) are occurences incorrectly 

labeled as positives, true negatives (TN) are occurences correctly labeled as negative and 

false negative (FN) are occurences incorrectly labeled as negative (Davis and Goadrich 

2006). For a segmentation algorithm trying to distinguish cellular regions from background 

regions, a typical confusion matrix is provided in Figure 2-46. In this example, a ground 

truth image segmentation map (considered as the true segmentation map) is compared to 

the segmentation algorithm segmentation map to calculate the number of TP, FP, TN and 

FN (in pixels). 

 

 

Figure 2-46 : Typical confusion matrix for a segmentation algorithm used to 

differentiate cellular regions from background regions 
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Once the numbers of TP, FP, FN and TN are computed, one can compute several ratios of 

interest providing an idea of how well an algorithm is performing. Several ratios can be 

used to quantify the segmentation performance: sensitivity (Se), recall (R), positive 

predictive value (PPV), precision (P), negative predictive value (NPV), true positive rate 

(TPR), false positive rate (FPR), specificity (Sp) and classification accuracy (ACC). The 

following equations show how to compute these ratios (Davis and Goadrich 2006; 

Burgemeister, Nattkemper et al. 2010): 

Se = R =  
TP

TP+FN
 (2-63) 

PPV = P =  
TP

TP+FP
 (2-64) 

NPV =  
TN

FN+TN
 (2-65) 

TPR =  
TP

TP+FN
 (2-66) 

FPR =  
FP

FP+TN
 (2-67) 

Sp =  
TN

FP+TN
 (2-68) 

ACC =  
TP+TN

TP+FN+TN+FP
 (2-69) 

From a matrix perspective, considering the binary segmentation map obtained by manual 

segmentation (M) and the binary segmentation map obtained by automatic segmentation 

(A), recall (R) and precision (P) are defined as follows (He, Wang et al. 2007): 

 

R =
∑ ∑(A.∗M)

∑ ∑(M)
 (2-70) 

P =
∑ ∑(A.∗M)

∑ ∑(A)
 (2-71) 

In which “.*” involves a point-by-point multiplication between two matrices. Since several of 

these ratios (such as R and P, Sp and Se, etc.) evolve in opposite directions, it is required 

to use a weighted objective function (classification accuracy criteria) that can reach a 

compromise between them (Davis and Goadrich 2006). For example, the Se and the Sp 

ratios of an algorithm which performs nuclear detection in 4D Nomarski DIC microscopy 

evolve in opposite directions and depend on the parameters used (namely the window size 
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of the entropy filter and the entropy threshold): the higher the Se, the lower the Sp 

(Hamahashi, Onami et al. 2005). The adjustment of the segmentation algorithm 

parameters can thus be seen as an optimization problem. 

2.4.8.2.2 Classification accuracy criteria for binary decision problems 

Since several ratios described earlier evolve in opposite directions (increasing one will 

decrease the other), some compromise has to be reached so that both classes (TP and 

TN) are taken into account (Hand 2012). Evaluating the performance of an algorithm can 

be an issue if one of the classes is very small compared to the other (“unbalanced classes” 

(Hand 2012)). To tackle this problem, it is possible to combine the Se and the PPV or the 

R and P and to compute their harmonic mean, called the F-measure or FM (Hand 2012): 

FM = 2(Se−1 + PPV−1) =
2∗Se∗PPV

Se+PPV
 (2-72) 

FM = 2(R−1 + P−1) =
2∗R∗P

R+P
 (2-73) 

The F-measure function can sometimes be averaged relative to reverse classification in 

order to compute the mean F-measure (Fs) (Hand 2012): 

 

FS =
Se∗PPV

Se+PPV
+

Sp∗NPV

Sp+NPV
 (2-74) 

Some methods use an objective function such as a Berkeley F-function (F) for boundary 

pixels (Al-Muhairi, Fleury et al. 2011), which is a weighted function between P and R.  This 

function (to be maximized) is expressed by: 

 

F =
P∗R

α∗R+(1−α)∗P
 (2-75) 

Most of the time an α value of 0.5 is used (Selinummi, Ruusuvuori et al. 2009). However 

the F-measure or F-function does not have a straightforward probability interpretation 

(Hand 2012). 

2.4.8.2.3 Classification accuracy curves for binary decision problems 

Metrics described so far are computed from classification results obtained for a specific set 

of parameters for a specific classifier or segmentation algorithm. To compare algorithms, it 

is good pratice to test them on ground truth data obtained in different experimental 

conditions  to see how the different ratios evolve. Receiver Operator Characteristic (ROC) 
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and Precision-Recall (PR) curves are typically generated to evaluate the performance of 

one or several machine learning algorithms on a given dataset (Davis and Goadrich 2006). 

The relationship between PR and ROC curves is studied in Davis and Goadrich (2006). 

 

ROC curves are generated by varying one parameter at a time for each algorithm (usually 

a classifier threshold) over a specified range or distribution (Hand 2012), and by looking at 

the classification performance for each parameter value. The ROC curve (usually Se 

against 1-Sp) shows how the number of correctly classified positive occurences varies with 

the number of incorrectly classified negative occurences (Davis and Goadrich 2006). A 

typical ROC curve comparing two algorithms is shown in Figure 2-47: 

 

Figure 2-47 : Example of ROC curves for comparing two algorithms for 

classification or segmentation 

Each point on each curve represents a classification performance achieved for a specific 

parameter value. Basically, the closer the curve is from the point of perfect classification, 

the better the algorithm is. Often the area under the curve (AUC, named the c-statistic in 

medicine) is used as a simple metric to compare algorithms performing binary decisions 
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(Hand 2012), and is simply the area under the ROC curve. The latter can be computed 

using trapezoidal areas created between the curve points (Hand 2012). 

 

Other metrics (more problem-specific) have also been proposed. For example, for several 

segmentation tasks, the delimitation of the boundary of the objects/cells/tissues is critical, 

and distance-based metrics can be used to measure the distance between the 

segmentation map boundary generated by the algorithm and the ground truth 

segmentation map boundary (Fenster and Chiu 2005). 

2.4.8.2.4 Performance metrics for complex problems 

When analyzing images or time-lapse sequences of images, more complex algorithms can 

be used, performing decisions or classifications that are not necessarily binary. Also, 

complex models can be built by tuning an algorithm that estimates a set of variables of 

interest (Y) from a set of predictors (X). For more complex models, other strategies must 

be used to assess their performance and to tune them, and the literature on 

model/algorithm selection is quite large. To compare algorithms and models (sets of 

parameters), the mean square error (MSE) on predicted variables (Y) or the Akaike 

Information Criterion (AIC) can be used (Akaike 1974; Tabatabai, Bursac et al. 2011). 

To assess the robustness and performance, the dataset can be split to be analyzed into 

two groups: a training dataset (used to tune the parameters of the algorithm) and a 

validation dataset (to see if the algorithm offers a good prediction performance). Several 

multivariate and model identification methods available in the literature can be used to 

assess the performance of an algorithm with a specific set of parameter values, such as 

cross-validation, jackknifing and bootstraping, involving different sampling or resampling 

strategies (Duchesne and MacGregor 2001). To evaluate the performance of classifiers 

used for segmentation, cross-validation (Jun, Cooper et al. 2010) and jackknifing (Malpica, 

Santos et al. 2003) can be used. For example, to train classifiers to segment V79 cells in 

PCM, a dataset was split into two subsets: a training dataset (25%) and a validation 

dataset (75%)(Skoczylas, Rakowski et al. 2011; Skoczylas, Rakowski et al. 2011). Cross-

validation was also used to determine segmentation or feature extraction parameters 

(Seungil, Ker et al. 2011) in PCM. Tenfold cross-validation was used to evaluate the 

Adaboost classifier performance to classify cells as polarized/non-polarized, spread/non-

spread and oriented/non-oriented in PCM microscopy, computing ROC curves (TPR 

versus FPR) (Theriault, Walker et al. 2012). 
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Other methods relying on a set of synthetic ground truth images have been proposed. For 

example, when segmenting fuzzy objects, a design of experiment (DOE) methodology was 

used to test two algorithms on several synthetic ground truth images having different 

signal-to-noise ratios and target to background features (image characteristics). The goal 

was to predict by multiple linear regression (MLR) the accuracy of segmentation relative to 

image characteristics for each algorithm (Zhou, Zhang et al. 1995). 

2.4.9 Commercial products/softwares for image processing 

2.4.9.1 Introduction 

Advanced platforms were developed through the years to address specific issues and 

screening problems in biotechnology. A brief review of the different high throughput 

screening (HTS) platforms using microscopy is given by Rimon and Schuldiner (2011). 

Automated imaging equipment is available today, but software support is limited as most 

applications in the literature are implemented in manufacturers softwares or programmed 

in environments such as Matlab, LabView, IDL, Visual Basic and others (Berlage 2005). 

Commercial softwares were developed mainly for the pharmaceutical screening market by 

companies such as Cellomics, TTP LabTech, Evotec, Molecular Devices and GE 

Healthcare (Carpenter, Jones et al. 2006). The development of these products was aimed 

at studying mammalian cells and cellular features such as protein translocation, 

micronucleus formation, neurite outgrowth and cell counts. The bundling of commercial 

software with imaging hardware makes it difficult to test several algorithms for a new 

project, and the proprietary nature of the codes makes it difficult for researchers to modify 

them for a new application (Carpenter, Jones et al. 2006). 

A critical step in each HTS project is image processing and data analysis. A brief review of 

the different software packages for image acquisition, image processing, image database 

management and machine learning was provided by Eliceiri et al. (2012). For a long time, 

the only flexible open-source biological image analysis software package was ImageJ/NIH 

(Carpenter, Jones et al. 2006). However, although ImageJ was very successful in several 

laboratories, it is directed towards the analysis of individual images instead of performing 

HTS work (Carpenter, Jones et al. 2006). As a consequence, many groups developed 

their own scripts, macros or plugins in order to perform automated cell image analysis in 

commercial softwares or freewares (MetaMorph, ImageProPlus, Matlab, Java, etc.) to 

identify, measure and track cells in time-lapse image sequences (Carpenter, Jones et al. 



122 
 

2006). The downside is that these custom programs are not modular, and combining 

several steps and changing settings require to interact directly with the source code 

(Carpenter, Jones et al. 2006), which is difficult for researchers not knowledgeable in 

those specific programming languages. Moreover, efforts spent by the laboratories to 

create these custom scripts are often lost after the initial experiments are completed, since 

each script is customized for a particular cell type, assay or image set (Carpenter, Jones et 

al. 2006). Also, testing multiple published algorithms for a new cell type or assay can be 

difficult, since programming each method can be impractical. Another main challenge is 

handling all the data from image processing following HTS experiments, and commercial 

image database management softwares such as SIMS (by BioImagene) or IQbase (by 

Media Cybernetics) are available (Berlage 2007). 

Most image processing softwares or products try to achieve single-cell segmentation, but 

just a few can track cells from frame to frame. Automated cell tracking methods focus on 

associating cells across frames and struggle to provide proper information on the actual 

shape of the cells as they deform during their locomotion (Sacan, Ferhatosmanoglu et al. 

2008). Most of the methods are developed by each research group in isolation, addressing 

a specific problem, but these scripts are not part of an integrated software environment or 

are closed source, thus limiting their applicability to new problems (Sacan, 

Ferhatosmanoglu et al. 2008). Few articles compare different cell tracking algorithms or 

softwares. One interesting paper was from Hand, Sun et al. (2009), in which five (5) cell 

tracking softwares were tested: Retrac (manual tracking), CellTrack (freeware), MTrack2 

(ImageJ, freeware), Imaris and Volocity. Their paper showed that fluorescence microscopy 

instead of phase contrast microscopy improved the tracking efficiency of each software 

tested (Hand, Sun et al. 2009). A comparison between open source and commercial cell 

tracking algorithms is provided: commercial softwares tend to include more features 

(advanced image-processing techniques and 3D visualization) and technical support than 

their open-source counterparts (Hand, Sun et al. 2009). A wide-range of open-source 

softwares is available, ranging from basic numerical analysis of data about cells already 

segmented (e.g. Cell Motility) to more complex softwares (e.g. CellTracker) performing cell 

segmentation and tracking (Hand, Sun et al. 2009). 

Because of the huge variety of products, scripts and commercial software packages 

described in the literature (open-source or commercial, hardware and/or software 
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platforms, etc.), a brief list of the products/softwares available for performing HTS via 

microscopy is provided in the next section. 

2.4.9.2 Products/softwares available 

A lot of different products/softwares are available commercially or are offered freely by 

several authors. These products/softwares can integrate several steps of cellular live-cell 

imaging and high-throughput screening, such as microscopy optics/hardware, image 

acquisition and image processing (steps shown in Figure 2-48). The different products or 

softwares found in the literature during this project (not an exhaustive list) are given in 

Appendix B. The extent of this list shows how much variety can be found in the literature. 

 

Figure 2-48 : Live-cell imaging/HTS steps for which several products/softwares offer 

a solution 

Some products/softwares listed are described in more details, depending on the 

information found in the literature: 

 

 Time Lapse Analyzer (TLA) is a customable Matlab-based software which can 

perform cell segmentation and tracking on fluorescence, brighfield, PCM and DIC 

microscopy images (Huth, Buchholz et al. 2011). In TLA, cell tracking is performed 

by cell centroid detection, data association and state estimation via a Kalman Filter. 

In DIC images, cell centroids are detected by deconvolution and local thresholding. 

In PCM images, edge-based cell detection and conditional erosion can be used 
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since there is a high contrast between the cell borders and the background. In 

brightfield images, denoising and image enhancement techniques (such as the 

Weiner filter) are used since there is a very low contrast between the cells and the 

background; 

 

 CellProfiler® is a free open-source image analysis software that can address a 

variety of biological questions from a quantitative perspective, such as cell counts, 

size distributions, per-cell protein levels, cell/organelle shape, subcellular patterns 

of DNA and protein staining (Carpenter, Jones et al. 2006). It uses a script editor 

which combines functions in pipelines, and function parameters can be set in 

dedicated dialogue boxes (Huth, Buchholz et al. 2011). CellProfiler® provides an 

excellent support for cell classification and batch processing of large image files, 

but has limited support for time-lapse and three dimensional image stack analysis 

(Carpenter, Jones et al. 2006; Huth, Buchholz et al. 2011); 

 

 CellTrack® is a cross-platform software package that incorporates a novel edge-

based method for sensitive segmentation of cell boundaries which can achieve 

refined tracking results even under large cellular displacements and deformations 

(Sacan, Ferhatosmanoglu et al. 2008); 

 

 Metamorph® is an acquisition and image processing software that incorporates 

classical techniques such as correlation matching, thresholding and morphological 

operations to perform segmentation (Cheng and Rajapakse 2009). The methods 

programmed have a limited use for images gathered in cell biology research due to 

overgeneralization (Cheng and Rajapakse 2009); 

 

 New platforms using unconventional microscopy are more and more used. For 

example, the Holomonitor® uses holography to record 3D information about an 

object via interfering wave fronts from a laser (Mõlder, Sebesta et al. 2008). Using 

a conventional microscope, it is also possible to generate a phase map by taking a 

set of 3 brightfield images at adjacent focuses (around the optimal focal plane) and 

to solve the transport of intensity equation using published algorithms (Curl, Harris 

et al. 2004). To identify and track the position of embryo nuclei, it is possible to use 
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4D Normarski DIC microscopy via the SIMI BioCell® or the 3D-DIAS® platforms 

(Hamahashi, Onami et al. 2005). 

 

Many software packages (such as ImageJ) provide basic functions (thresholding, 

morphological operations, etc.) and slightly more advanced programs (for image 

registration, background correction, etc.) that are generic and easily applicable to 

fluorescence image processing. However these packages generally do not provide the 

advanced programming capability required to develop from scratch a complete image 

processing algorithm tailored for a specific HTS application (generating a significant 

number of images and data) and for more complex cases involving for instance processing 

phase constrast microscopy images acquired under different conditions (high/low 

magnification, high/low confluence, uneven background, etc.). This explains why Matlab® 

(via the Image Processing Toolbox®) was preferred for this PhD project, in order to 

provide a maximum of programming flexibility to develop robust image processing 

solutions that will be able to analyze PCM images acquired under different conditions. 

2.5 Multivariate data analysis 
When analyzing multiple HTS experiments, multivariate analysis techniques are required 

because of the large datasets generated. Modern multivariate statistical methods (e.g. 

Principal Component Analysis, Partial Least Squares regression) provide powerful tools for 

analyzing  the large sets of features and identifying combinations of features that allow 

samples to be discriminated and classified. However statistical results can be strongly 

influenced by the number of features used, since it can be easy to come up with 

overoptimistic classification results if hundreds of features are used for only a few dozen 

biomedical measurements (Rodenacker and Bengtsson 2003). This is the main reason 

why classification results and discriminant features need to be verified on an independent 

dataset, preferably by dividing the whole dataset into a calibration set and a validation set. 

If there are not enough biological measurements available to create two independent sets, 

the leave one out classification method (cross-validation) or the jackknifing approach can 

be used (Rodenacker and Bengtsson 2003). 

2.5.1 Matrix of features 

Image processing and analysis techniques typically yield a vector of features for each 

image. An overview of the different features available from image processing was 

presented in section 2.4.5. Additional features that are more relevant to HTS and cell 



126 
 

culture are the degree of confluence or the cell-covered surface (used in Chapter 4), cell 

counts and distributions of cellular morphological features (used in Chapter 6). When 

analyzing sets of images, it is possible to collect these features vectors into a X matrix. In 

the X matrix, each of the n rows correspond to an image and each of the m columns correspond to 

a single variable (feature value).The data matrix X can be seen as an ensemble of n points in a m-

dimensional space. This m-space is difficult to visualize when there is more than 3 variables; 

however mathematically this space is similar to a two or three dimensional space (illustrated in 

Figure 2-45), and the same geometrical concepts for points, lines, planes, distances and angles can 

be applied (Wold, Esbensen et al. 1987). Since many features are correlated together, multivariate 

techniques are necessary. 

2.5.2 Multivariate techniques 

2.5.2.1 Data pre-treatment 

The most common preprocessing step for multivariate analysis techniques is auto-scaling, 

in which each measured value is mean-centered by subtracting the mean value from each 

variable value, and is scaled to unit variance by dividing each mean-centered variable by 

its standard deviation. This method ensures that each variable has the same weight and 

the same prior importance in the analysis (in the absence of a priori knowledge about the 

relative importance of the variables). 

When dealing with spectra and hyperspectral imaging, further processing can be 

performed to get rid of the noise and smooth the measured spectra (depending of the 

signal-to-noise ratio). Savitzky-Golay filters (Golay and Savitzky 1964) are commonly used 

to increase the signal-to-noise ratio of spectra while minimizing signal distortion. Several 

authors use spectra filtering as a pre-processing step, such as the second derivative 

(Gosselin 2010) or the fourth derivative (Polerecky, Bissett et al. 2009) to identify spectral 

peaks of interest. 

2.5.2.2 Principal Component Analysis (PCA) 

When the number of variables in X (i.e. columns) is large and when these are strongly 

correlated, Principal Component Analysis (PCA) can used to project the data points onto a 

lower dimensional space (i.e. latent variable ) capturing most of the variance in the dataset 

X.  PCA is also known under other names: singular value decomposition (SVD) in 

numerical analysis, Karhunen-Loève expansion in electrical engineering, Hotelling 

transformation in image analysis, correspondence analysis and factor analysis (FA) in 

some scientific fields (Wold, Esbensen et al. 1987). 
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PCA provides an approximation of a data matrix X in terms of the outer product of two 

matrices (T and PT), capturing essential data patterns in X. The matrix T provides an 

image of the dominant objects patterns and PT shows the variables patterns (Wold, 

Esbensen et al. 1987). The projection of X down to an A-dimensional subspace is 

performed by projecting the data points onto the projection matrix (PT), giving the objects 

new coordinates in this space (T) . The columns in T are called the score vectors and the 

rows in PT are called the loading vectors. The loadings vectors provide the direction 

coefficients for the principal components (PC) hyperplane. Both the loadings and the 

scores vectors are orthogonal. The deviations between the projections and the original 

coordinates are called residuals (Wold, Esbensen et al. 1987). In the m space, PCA can 

be seen as a projection of n data points onto a lower A dimensional space. Figure 2-49 

shows a projection of data point xi onto p1 (ti,1). 

 

Figure 2-49 : One component PCA model capturing the variation in a 3 dimensions 

features space in which a data point xi is projected onto p1 (ti,1) (adapted from Wold, 

Esbensen et al. (1987)) 

In matrix notation, the X matrix is decomposed into principal components according to the 

following equation (Geladi and Grahn 1996): 

𝐗 = 𝐓𝐏T + 𝐄 (2-76) 



128 
 

In which E is a residuals matrix. The relationship between these matrices is illustrated in 

Figure 2-50. 

 

Figure 2-50 : Size of the different matrices involved in PCA (adapted from Wold, 

Esbensen et al. (1987)) 

From the first component, each component added is assigned loadings to capture most of 

the remaining variance in X while being orthogonal to the previous one. In PCA, the score 

and loading vectors corresponding to the largest eigenvalues explain the most variance in 

the X matrix and are written in order of descending eigenvalues (Wold, Esbensen et al. 

1987). Plotting the columns of T against each other shows the configuration of the objects 

(patterns) in X. The last principal components often capture noise and are neglected 

(Geladi and Grahn 1996). 

The PCA technique can be used for data simplification, data reduction, data modeling, 

outliers detection, variable selection, classification, prediction and unmixing (Wold, 

Esbensen et al. 1987). PCA decomposition is particularly useful for spectral analysis (e.g. 

hyperspectral image analysis), since there is a strong correlation between intensities 

measured at adjacent wavelengths (Geladi and Grahn 1996). Using PCA, an 

hyperspectral image can be decomposed into a summation of score images that can be 

analyzed to detect textural patterns. 

One of the main algorithms to compute PCA is the Nonlinear Iterative Partial Least 

Squares (NIPALS) algorithm which computes the principal components sequentially 

(Geladi and Kowalski 1986). The NIPALS algorithm is well described in the literature 
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(Wold, Esbensen et al. 1987). This algorithm computes t1 and p1 from the X matrix and 

subtracts the outer product of these two matrices from X to compute a first residual matrix 

E1. The first residual matrix E1 is used to compute t2 and p2, and these steps are repeated 

until the last principal component is computed (X is deflated after the computation of each 

principal component). The conventional way to determine the number of components is by 

cross-validation (Wold 1978), in which latent components are added as long as they 

improve model predictions (see section 2.5.2.5). The model predictive ability can be 

evaluated using the Q2 coefficient (defined in equation (2-88)), and components can be 

added as long as Q2 increases. Several other criteria are also available in the literature. 

Another common approach is the use of a scree plot, in which one plots the value of each 

successive eigenvalue in decreasing order (Jackson 1993). The larger the eigenvalue, the 

more variation is captured in the X matrix. The smaller eigenvalues tend to align 

themselves along a straight line, and the point where the first few eigenvalues depart from 

the line highlights the difference between important latent components and trivial 

components (Jackson 1993). 

2.5.2.3 Partial Least Squares/Projection to Latent Structures (PLS) 

Partial Least Squares projection to latent structures (PLS) is a regression method that 

relates two data matrices, X and Y, by a linear multivariate model, and goes beyond 

traditional regression since it can also model the latent structures of X and Y (Wold, 

Sjostrom et al. 2001). PLS tackles collinearity problems as PCA does. However PLS 

derives its usefulness from its ability to analyze data with many noisy, collinear and even 

incomplete X and Y variables, something that can hardly be done by traditional Multiple 

Linear Regression (MLR). PLS provides a model of X in terms of a bilinear projection, 

assuming that there may be parts of X that are not related to Y (usually these parts include 

noise and/or other unrelated patterns) (Wold, Sjostrom et al. 2001). This makes PLS 

models more tolerant to noise than MLR models, which is a huge advantage when 

correlating for example measured spectra (e.g. near-infrared spectra) to specific samples 

characteristics (e.g. chemical composition). 

 

While PCA  maximizes the variance captured in X, PLS maximizes the covariance 

between X and Y. A PLS model consists of outer relations (latent components for X and Y 

blocks individually) with an inner relation linking both blocks (Geladi and Kowalski 1986). 

The outer relation for X, the outer relation for Y and the relation for computing T scores 
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from X are provided in equations (2-77) to (2-79)  (Wold, Geladi et al. 1987), assuming that 

X scores are good predictors of Y : 

𝐗 = 𝐓𝐏T + 𝐄  (2-77) 

𝐘 = 𝐔𝐐T + 𝐅 (2-78) 

𝐓 = 𝐗𝐖∗ = 𝐗𝐖(𝐏T𝐖)
−1

  (2-79) 

In which T are the X scores, P are the X loadings, U are the Y scores, Q are the Y 

loadings and E and F are residuals matrices. W is a matrix of weights that provides the 

combination of X that are the most predictive of Y, and are used to calculate the scores T 

for each component while ensuring an orthogonal latent space for both X and Y.  To 

compute the T scores, a transformed weight matrix (W*) is used (modified X loadings) 

(Wold, Sjostrom et al. 2001). The W matrix provides weights that combine the X variables 

(first component) or the residuals of the X variables (for subsequent components) to 

compute the T scores (Umetrics 2005). The W* matrix provides the weights to compute 

the T scores directly from the original X matrix for all components. 

 

The inner relation can be seen in a graph of the Y block scores, U, against the X block 

scores, T, for each component (Geladi and Kowalski 1986). The simplest inner relation 

model is a linear one (Geladi and Kowalski 1986). The inner relation linking both the X and 

Y blocks is expressed by the following equation (Wold, Geladi et al. 1987): 

𝐔 = 𝐓𝐁 + 𝐇 (2-80) 

In which B is a diagonal matrix relating X and Y scores, and H is a residuals matrix. The B 

matrix incorporates the slopes between the U and T scores. Assuming that the X scores 

are good predictors of Y, it is possible to consider that U = T and that the B matrix is the 

identity matrix (I). As a consequence, both X and Y spaces are linked through a unique 

score space T. The matrices involved in a PLS model with A principal components is 

illustrated in Figure 2-51. 
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Figure 2-51 : Size of the different matrices involved in PLS (adapted from Wold, 

Geladi et al. (1987) and from Wold, Sjostrom et al. (2001)) 

To export the PLS model (as done in Chapter 6 for computing morphological features 

without the PLS toolbox) and to predict the Y matrix variables from features in the X 

matrix, the following equations are used: 

𝐘 = 𝐗𝛃̂ + 𝐅 (2-81) 

𝛃̂ = 𝐖(𝐏T𝐖)
−1

𝐐T = 𝐖∗𝐐T (2-82) 

In which 𝛃̂ is a matrix providing linear coefficients of regression. 

Standard algorithms to compute PLS are the NIPALS iterative algorithm (Wold, Sjostrom 

et al. 2001) and the SIMPLS algorithm (Dejong 1993). The number of components to be 

used (A) is a very important parameter, as it is possible to calculate as many PLS 

components as the rank of the X block or the Y block (Amax = min(rank(X,Y)). However not 

all of them are normally used, as some of the components associated with smaller 

eigenvalues will only capture noise (Geladi and Kowalski 1986). It is thus common to leave 

out a significant number of components because they can carry collinearity problems. 
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However nonlinear models require extra components to describe nonlinearities (Geladi 

and Kowalski 1986). 

To interpret PLS models, plotting w’s or w*’s against q’s for one principal component 

against another can help to understand the latent space model structure (Wold, Sjostrom 

et al. 2001). This plot is termed the loadings bi-plot. It shows how the X variables combine 

to form the scores ti, with the most important for the ith component falling far from the origin 

on the ith axis (Wold, Sjostrom et al. 2001). In a similar manner, Y variables well modeled 

by the ith component have large qi loadings and fall far from the origin on the ith axis. X and 

Y variables correlated together will fall near each other in the same region of the loadings 

bi-plot.  

A summary of the importance of an X variable to model both Y and X is provided by its VIP 

(variable importance for the projection) (Wold, Sjostrom et al. 2001). The equation to 

compute the VIP score associated to the kth variable in the X matrix for A components is 

provided in the following equation (Eriksson, Kettaneh-Wold et al. 2001; Gosselin, 

Rodrigue et al. 2010): 

VIPk = √K ∑ [(𝐪a
2𝐭a

T𝐭a)(wak
2 ‖𝐰a‖2⁄ )]𝐴

a=1 ∑ (𝐪a
2𝐭a

T𝐭a)𝐴
a=1⁄  (2-83) 

In which wak is the weight for the kth variable for the ath component and ta, wa and qa are 

the ath column vectors of the T, W and Q matrices. Since the average of VIP scores is 

equal to 1, the X-variables with a VIP larger than 1 are the most relevant for explaining Y 

variables (Umetrics 2005). 

A common problem in multivariate analysis is dealing with missing values, and most 

techniques relying on the construction of a latent space (namely PCA and PLS) can 

provide an estimate of the missing values without influencing too much the end result. For 

example, the NIPALS algorithm can automatically account for missing values by iteratively 

substituting the missing values with predictions made by the PLS model, thus replacing 

missing values with estimates that have zero residuals and no influence on the scores and 

the loadings determination process (Wold, Sjostrom et al. 2001). Holes in a X data matrix 

can also be filled using PCA (Wold, Esbensen et al. 1987). 

To detect objects or occurrences that are outliers, X-residuals (in the E matrix) can be 

used. The standard deviation of the X-residuals for each row in the residuals matrix E can 
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be used, since it is proportional to the distance between the data point (occurrence) and 

the model plane in the X-space (Wold, Sjostrom et al. 2001), and is often termed DModX 

(distance to the model in the X-space). A DModX larger than around 2.5 times the overall 

standard deviation of the X-residuals (corresponding to a F-value of 6.25) often indicates 

that the object or occurrence is an outlier (Wold, Sjostrom et al. 2001). 

The goodness of fit of the PLS model is given by R2 and Q2 (cross-validated R2) for each Y 

variable (Wold, Sjostrom et al. 2001). The R2 provides an idea of how well the model 

explains the data in the training set as Q2 provides an idea of how well the model predicts 

new observations in the validation set. If R2 and Q2 are acceptable, the model is 

interpretable, and it is possible to fine tune it by deleting unimportant X variables 

associated to small regression coefficients and low VIP values (Wold, Sjostrom et al. 

2001). 

2.5.2.4 Multivariate Image Analysis (MIA) 

Multivariate image analysis (MIA) essentially consists of applying PCA to a multivariate 

image, and using the various PCA plots to explore the information contained in the image. 

Prior to applying PCA, the multivariate image (i.e. a three-way array of data or cube) need 

to be reorganised into a matrix where the light intensities at different wavelengths 

corresponding to each pixels are stored row-wise in the X matrix. This so-called image 

unfolding operation is illustrated in Figure 2-52 using a RGB color image (Houses RGB 

image, Kingdom and Olmos). The data cube associated with this RGB image can be 

splitted along one of the spatial axis into k=512 slices (Xi). In order to perform this 

computation efficiently on several images, a kernel algorithm is used (Geladi and Grahn 

1996). 
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Figure 2-52 : Houses RGB image (Kingdom and Olmos) and corresponding RGB 

cube. It is possible to analyze the RGB cube slice by slice (Xi). 

For a cube made of k slices Xi, the kernel matrix Z  (variance-covariance matrix) is 

computed as follows: 

𝐙 = ∑ 𝐗i
Tk

i=1 𝐗i (2-84) 

To compute the loadings, SVD is applied on  the Z matrix (which has dimensions λ by λ). 

The loadings will indicate the relative contributions of each wavelength to each 

component. The loadings of each principal component of the Houses RGB image are 

shown in Figure 2-53. The first component (p1) captures most of the variance (92.4%) as 

the components p2 and p3 capture respectively 6.1% and 1.5% of the variance in the data 

cube. 
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Figure 2-53 : p1, p2 and p3 loadings from MIA performed on the Houses RGB image 

(Kingdom and Olmos). 

From the loadings, score images can be computed (T = XP) for each image in the dataset 

and each component to show how the information captured by each component is located 

spatially. T1, T2 and T3 score images for the Houses RGB image are provided in Figure 

2-54. Note that the score images were rescaled between 0 and 255 to enhance the 

contrast. 

 

Figure 2-54 : T1, T2 and T3 score images from MIA performed on the Houses RGB 

image (Kingdom and Olmos). 

The first component (T1 computed from p1) captures variations in light intensities across 

the image (all 3 loadings in p1 have the same sign) and represent a grey level version of 

the image. The second component (T2 computed from p2) shows the contrast between the 
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red and the blue channels associated with the houses in the image. The third component 

(T3 computed from p3) shows the contrast between the green channel and the other 

channels. Usually the last component captures noise (as in this case it explains only 1.5% 

of the variance in the RGB image). 

Score density histograms are used to see how pixels cluster together in the scores space 

as they are associated to similar spectral/color patterns. Usually the scores for the ath 

component are rescaled using the minimum and maximum score values (ta,min and ta,max), 

and the range of  rescaled scores is divided into bins using a rectangular grid. For the ath 

latent component, the scores (Ta) are rescaled between 0-255 (min-max scaling), rounded 

and binned to create a new score matrix (Ta,new) which assigns a bin # (1 to 256) to each 

score, as shown in the following equation: 

𝐓a,new(bin #) = 1 + round[((𝐓a − ta,min) (ta,max − ta,min)⁄ ) ∗ 255]  (2-85) 

Once bins are assigned to each score for each latent component, it is then possible to 

create a 2D density histogram (256 bins by 256 bins) by counting the number of scores 

that fall into each 2D bin (for two specific components), using bin numbers as coordinates. 

A colormap is then applied to highlight areas which have a higher scores density (usually a 

brighter color). The T1/T2, T1/T3 and T2/T3 score density histograms for the Houses RGB 

image are provided in Figure 2-55. Note that the origin of the score density histograms (bin 

1,1) is located in the top-left corner. 

 

Figure 2-55 : T1/T2, T1/T3 and T2/T3 score density histograms from MIA performed on 

the Houses RGB image (Kingdom and Olmos). 
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To explore the image information, one can select groups of pixels (clusters) within the 

score density histogram and overlay the selected pixels on the original image. This 

operation is called the masking procedure. The masks  segment pixels in the score space 

that have similar spectral characteristics (here colors). The traditional way to extract 

features from MIA is to use masks in the scores space and to count the number of pixels 

under each mask or to track the pixels back into the original image for segmentation 

(Duchesne, Liu et al. 2012). There are several masking methods available: trial-and-error, 

method using Y data to create parallel or curved mask bins (Yu and MacGregor 2003) or 

methods relying on automatic supervised classifiers such as SVM (Liu, Bharati et al. 

2005). The number of masks to use can be determined by trial-and-error or by an 

automated procedure combing unsupervised and supervised classifiers to extract the 

number of classes in an iterative manner (Noordam, van den Broek et al. 2005). To 

explore the T1/T2 score density histogram associated with the Houses RGB image, a trial-

and-error method is used to manually draw several masks to explore the scores space. 

The results for several masks are shown in Figure 2-56. 

 

Figure 2-56 : T1/T2 masking results (selected regions in cyan) from MIA performed 

on the Houses RGB image (Kingdom and Olmos). 
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In Figure 2-56, since scores tend to distribute along T1 according to the light intensities 

across the image, it is very hard to select pixels clusters relative to their color information. 

However, along T2, it is possible to select three groups of pixels, associated with the green 

house (Figure 2-56A), the yellow house (Figure 2-56B) and the red house (Figure 2-56C). 

When looking at the p2 (see Figure 2-53), the red channel has a high positive loading, 

explaining why pixels associated to the red and yellow houses end-up in the lower portion 

of the score density histogram (high T2 scores for the red and yellow houses pixels). Since 

the yellow houses pixels have a higher light intensity than the the red houses pixels, they 

end-up slightly lower in the score density histogram (stronger T2 scores). Since the green 

house pixels have strong blue channel intensities and since the blue channel loading in p2 

(see Figure 2-53) is strongly negative, these pixels will have low T2 scores and will end-up 

in the upper portion of the score density histogram. 

 

The kernel algorithm used can also handle several images at the same time (see Chapter 

5). Each data cube can be splitted into slices and the PCA can be computed by performing 

a SVD on the variance-covariance matrix Z. The Z matrix is thus computed as follows for 

m images, for Xi slices belonging to image j: 

 

𝐙 = ∑ ∑ 𝐗i,j
Tk

i=1 𝐗i,j
m
j=1  (2-86) 

Several MIA custom Matlab® scripts were developed for this PhD project. A good GUI 

already available was developed in Matlab® by the McMaster Advanced Control 

Consortium (MACCMIA, Dunn (2010)). The Houses RGB image was submitted to 

MACCMIA to validate the Matlab® scripts developed for this project. Both approaches 

provided the same results for the Houses RGB image. However it is important to note that 

the MACCMIA GUI can only handle one image at a time, as our Matlab® MIA custom 

scripts can handle a whole dataset having multiple images. 

2.5.2.5 Performance of multivariate models 

When analyzing chemical data to build a model between independent variables (X) and 

dependent variables (Y), two steps are required: calibration and validation (Geladi and 

Kowalski 1986). Usually the data matrix is split into two subsets: a training set (calibration) 

and a test set (validation). Model parameters are adjusted using the training set in order to 

minimize for each Y variable the sum of the square differences between the predicted 

dependent variables (𝐲̂) and the actual values of the dependent variables (y), termed SSE. 
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Once the model parameters are fitted, the test set is used to assess the model predictive 

performance on new data points that were not used for calibration. Calculating the degree 

of fit for both the calibration and validation sets (R2
cal and R2

val) is a good method to make 

sure that a model has a good performance in prediction. It also makes sure that overfitting 

(using too many parameters) is avoided, which would be detrimental to the performance of 

the multivariate models. Overfitting can usually be detected when a high R2
cal is obtained 

for the calibration set while a low R2
val is obtained for the validation set. In that sense a 

model can be considered as robust if the model parameters do not change substantially 

when new calibration samples are added from the total population (Geladi and Kowalski 

1986). 

When dealing with numerous and correlated X-variables and a limited number of data 

points, there is a substantial risk of overfitting (Wold, Sjostrom et al. 2001), i.e. building a 

well fitted model with little predictive power. A test needs to be performed to assess the 

predictive capacity of each PCA or PLS component so just the right number of latent 

components is used (Wold, Sjostrom et al. 2001). Cross-validation (CV) is a practical and 

reliable method to assess the predictive significance of each latent component. In CV parts 

of the data is kept out of the model calibration process: the kept out data is then predicted 

by the calibrated model, and the predicted values are compared to the actual values 

(Wold, Esbensen et al. 1987). The squared differences between the predicted (𝐲̂)  and the 

actual (y) values are summed and used to compute the prediction sum of squares 

(PRESS) or the root mean square error of cross-validation (RMSECV). PRESS can be 

seen as a metric representing the lack of prediction accuracy (Geladi and Kowalski 1986). 

The root mean square error of cross-validation can be defined as (Gosselin 2010): 

 

RMSECV = √
∑ (yî−yi)2n

i=1

n
= √∑ (fcv,i)

2n
i=1

n
= √

PRESS

n
 (2-87) 

It is possible to define R2 and Q2 for each Y variable with the following equations (Wold, 

Sjostrom et al. 2001): 

Q2 = 1 − PRESS/SST   (2-88) 

R2 = 1 − SSE/SST (2-89) 
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In which SST represents the total variance of each Y variable (having n points), which is 

computed for each n x 1 variable vector y as follows: 

SST = (𝐲 − 𝐲̅)T(𝐲 − 𝐲̅)   (2-90) 

In which 𝐲̅ is a n x 1 vector with all values equal to the mean of y: 

y̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
   (2-91) 

PRESS or RMSECV is calculated for each number of components (for up to 10 or 15 

components), and the PLS model having the lowest PRESS is used (Wold, Sjostrom et al. 

2001), avoiding the use of too many components (avoiding overfitting). The evolution of 

PRESS against the number of components (A) can be represented graphically (see Figure 

2-57). 

 

Figure 2-57 : PRESS as a function of the number of components A (adapted from 

Geladi and Kowalski (1986)) 

Other methods are exploited in the literature to look at the prediction capacity of 

multivariate models such as bootstraping and jackknifing (Duchesne and MacGregor 

2001). Jackknifing can estimate standard errors and confidence intervals directly from the 

data (Wold, Sjostrom et al. 2001). Bootstrapping uses the residuals to simulate a large 

number of data sets similar to the original data to study the distribution of model 

parameters (Wold, Geladi et al. 1987). 
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Chapter 3. Materials and Methods 

3.1 Cell culture 

Myoblasts from a primary cell line were cultivated over several passages in a medium 

containing serum (MB-I + 15% FBS) and in a serum-free medium (LOBSFM, Parent 

(2009)). Cells were grown in 6 wells multiwell plates for imaging as well as in 25 cm2 T-

flasks to expand them through passages at 5% CO2 and at 37.5 0C (in a controlled 

incubator). When performing live-cell imaging experiments, myoblasts were kept inside the 

microscope in an environment containing 5% CO2 and at a temperature of 37.5 0C. The 

growth medium was changed every 2-3 days. The protocols used to cultivate myoblasts 

were inspired by Parent (2009) and are given in Appendix C. The culture media used were 

a serum-supplemented medium (SSM, described in Table C-1) and a serum-free medium 

called LOBSFM (SFM, composition provided in Table C-2). 

3.2 Microscopy 

The microscope enclosure shown in Figure 3-1 was used for this PhD project. Phase 

contrast and hyperspectral images were captured by an IX-81 Olympus microscope 

equipped with a moving stage. The IX-81 inverted microscope is automated with the 

Metamorph® software (Molecular DevicesTM) through the microscope’s controller. A 

Qimaging® monochrome camera (model RETIGA 2000R) attached to the side port of the 

microscope (Figure 3-1) was used for brighfield, phase contrast and epifluorescence 

microscopy. The fitting of the microscope side port can also be used to attach one of the 

three hyperspectral cameras (UV, VIS and NIR) already available from a previous project 

(Gosselin 2010). 
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Figure 3-1 : Qimaging® monochrome camera attached to the side port of the IX81 

OlympusTM microscope 

The automated stage and the controller were purchased from ASITM and can move in the x 

and y directions with great accuracy. The ASITM stage is controlled with the MS-2000 

controller, with a resolution for both axis of 22 nm (rotary encoder step for a standard lead 

screw pitch of 6.35 mm). It can move the stage by multiples of the mimimum speed (0.17 

μm/s). The microscope is equipped with two lighting systems: a halogen light source 

located at the top, used for brightfield and phase contrast microscopy, and a UV light 

source located at the back (Ploem illumination) for epifluorescence microscopy. The 

condenser of the microscope is also automated, allowing to choose filters and rings for 

brightfield and phase contrast microscopy. For epifluorescence microscopy, a carrousel 

with different excitation and emission dichroic filters is incorporated into the body of the 

microscope and can be controlled as well. The objectives are mounted on an automated 

turret. The focal plane adjustment (by moving up and down the objectives) is performed 

via Metamorph® for focus adjustment and for imaging multiple focal planes (for suspended 

cells). The enclosure was custom made in the Chemical Engineering Department 

(Université Laval) in a previous project (Leysi-Derilou 2011). This enclosure is made of 

plastic with metal screws so it can be dismantled if needed. 
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Figure 3-2 :  IX81 OlympusTM microscope with enclosure 

Several objectives can be mounted on the microscope, but the space available between 

the objectives turret and the automated stage frame is limited. Brightfield and phase 

contrast (with a ring incorporated) objectives providing a magnification of 10X, 20X and 

40X are available. The resolution of the microscopic images that can be achieved with the 

objectives available was roughly assessed by taking images of a hemacytometer (in 

PCM). The hemacytometer images are shown in Figure 3-3. Note that the images are 

slightly slanted because the hemacytometer was fixed manually with tape on a multiwell 

plate holder placed on the microscope automated stage. 

 

Figure 3-3 :  IX81 OlympusTM microscope resolution in PCM from hemacytometer 

images. 
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Experimental resolutions (measured using an hemacytometer) are provided in Table 3-1. 

Table 3-1 : Experimental resolutions for each microscope objective 

 

 

For temperature control (Figure 3-4), an air heater and a fan (Air Therm ATX®, World 

Precision InstrumentsTM) are used to heat and flow the air through the enclosure and 

maintain a constant temperature via a PID controller (the temperature is measured via a 

temperature probe installed in the CO2 secondary enclosure). A CO2 controller (Figure 3-4) 

mixes air and pure CO2 from bottles in specific proportions to obtain the proper 

concentration. The air/CO2 mix is sparged in water in an Erlenmeyer (to saturate the gas 

with water) before being sent to the CO2 enclosure (Figure 3-5). This was done to make 

sure that the cells will grow in a proper atmosphere (with the appropriate CO2 

concentration) while minimizing culture medium evaporation (since the mix is saturated 

with water). 

 

Figure 3-4 :  CO2 and temperature control of the experimental set-up 

Objectives N.A. Measured resolution 

with hemacytometer  

(μm/pixel) 

10X 0.25 0.74 

20X 0.45 0.37 

40X 0.6 0.18 
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Figure 3-5 :  CO2 enclosure with ports for CO2/air mix (secondary enclosure). This 

enclosure can be fitted on the automated stage. 

3.3 Image acquisition 

Images were acquired using Metamorph® from Olympus® (using the autofocus utility for 

each image). Every 3 hours, 121 images were captured in each well of 6 wells multiwell 

plates (using a grid of 11 images by 11 images, 0.4 mm apart). The number of fields of 

view was set empirically as to maximize as much as possible the area imaged in each well 

while maximizing the imaging frequency of each well (at least one acquisition every 3 

hours). A total of 1,213,872 PCM images were used for data analysis in 40 experiments 

(240 wells), at a magnification of 20X. Images that were not of good quality (foggy, out of 

focus, etc.) were removed from the dataset. The complete list of experiments performed 

(with the experimental conditions) is provided in Appendix D.  

Journals (.jnl) were built to acquire images at a given sampling time in several wells of a 

multiwell plate. The journals used lists of points (one list per well in a .STG file) generated 

by a Matlab® algorithm. The Metamorph® image acquisition procedure is provided in 

Appendix E. Using lists of points loaded by the MDA (Multiple Dimension Acquisition) 

function was deemed more efficient than using the Screen Acquisition function since it 

provided more flexibility for acquisition patterns. 
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3.4 Image processing and data analysis 

Image processing and data analysis for this project were performed using Matlab® custom 

scripts, taking advantage of the Image Processing Toolbox®. The scripts created for this 

project were in part inspired from codes available from the Yawtb toolbox (Jacques, Coron 

et al. 2007), from the Medical Imaging Processing Toolbox® (Demirkaya, Asyali et al. 

2009) and from CellProfiler® codes. Matlab® code lines provided by these sources were 

modified and changed significantly to meet the project requirements. Ground truth data 

was generated by manual segmentation of the individual cells using the Matlab® roiploy 

function. Cell features were then calculated from the segmented cells (e.g. minor and 

major axes, roundness and orientation) using the bwlabeln and the regionprops functions. 

The Matlab® script used to perform these operations 

(Metamorph_IMAGE_CALIBRATION_v0r2.m) is available in Appendix F.  

For multivariate data analysis, SIMCA-P® and the PLS Toolbox® were used. To analyze 

the large dataset required for Chapter 6, resources from Calcul-Québec (COLOSSE) were 

used. 

Matlab® scripts that were written for Chapter 4, Chapter 5 and Chapter 6 are provided in 

Appendix F.  
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Chapter 4. Selection and tuning of a fast and simple phase 

contrast microscopy image segmentation algorithm for 

measuring myoblasts growth kinetics in an automated fashion 

Microscopy and Microanalysis journal, 19, 855–866, April 19 2013 
doi:10.1017/S143192761300161X, reproduced with permission 

 
Pierre-Marc Juneaua, Alain Garniera, Carl Duchesnea* 

aDepartment of Chemical Engineering, Pavillon Adrien-Pouliot, 1065  ave. de la Médecine, Université 

Laval, Québec (Québec), Canada, G1V 0A6 

*Fax: +1 418-656-5993; Tel: +1 418-656-5184; E-mail: Carl.Duchesne@gch.ulaval.ca 
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4.1 Résumé 

L’acquisition et le traitement des images de microscopie en contraste de phase dans le 

cadre d’applications d’imagerie en temps réel de cellules vivantes et de criblage à haut 

débit demeurent encore un défi puisque la méthodologie et les algorithmes utilisés doivent 

être rapides, simples à utiliser et à régler tout en étant le moins intrusifs possibles. Dans 

cet article, nous avons développé un algorithme simple et rapide pour calculer la surface 

recouverte par les cellules (degré de confluence) dans les images de microscopie en 

contraste de phase. Cet algorithme de segmentation est basé sur un filtre de plage de 

valeurs dont les paramètres sont : la taille de la plage , le seuil sur cette plage et le seuil 

de taille minimale des objets. Ces paramètres ont été ajustés de façon à maximiser la 

fonction F-measure sur un ensemble de 200 images de calibration segmentées à la main, 

et sa performance a été comparée à d'autres algorithmes proposés dans la littérature. Un 

ensemble comportant 1 million d’images provenant de 37 cultures de myoblastes cultivés 

dans des conditions différentes a été traité afin d’obtenir la surface recouverte par les 

cellules en fonction du temps. Les données ont été utilisées pour ajuster des modèles de 

croissance exponentiels et logistiques, et l'analyse a montré une relation linéaire entre les 

paramètres cinétiques et le nombre de passages tout en soulignant l'effet de la qualité du 

milieu de culture sur la cinétique de croissance des cellules. Cet algorithme peut être 

utilisé pour la surveillance en temps réel des cultures cellulaires et pour des expériences 

de criblage à haut débit après un réglage adéquat. 
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4.2 Abstract 
Acquiring and processing phase contrast microscopy images in wide-field long-term live 

cell imaging and high throughput screening applications is still a challenge since the 

methodology and algorithms used must be fast, simple to use and to tune and as little 

intrusive as possible. In this paper, we developed a simple and fast algorithm to compute 

the cell-covered surface (degree of confluence) in phase contrast microscopy images. This 

segmentation algorithm is based on a range filter of a specified size, a minimum range 

threshold and a minimum object size threshold. These parameters were adjusted in order 

to maximize the F-measure function on a calibration set of 200 hand-segmented images, 

and its performance was compared to other algorithms proposed in the literature. A set of 

1 million images from 37 myoblast cell cultures under different conditions were processed 

to obtain their cell-covered surface against time. The data was used to fit exponential and 

logistic models, and the analysis showed a linear relationship between the kinetic 

parameters and passage number and highlighted the effect of culture medium quality on 

cells growth kinetics. This algorithm could be used for real-time monitoring of cell cultures 

and for high throughput screening experiments upon adequate tuning. 
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4.3 Introduction 
Wide-field, long-term live cell imaging (WFLT-LCI) is a very powerful technique which is 

rapidly spreading to study physiological and biological processes related to cell cultures 

such as cell state (morphology, quiescence), behavior (movement, growth, differentiation, 

death, interactions) and history using different imaging techniques (Goldman and Spector 

2005; Rimon and Schuldiner 2011). In typical WFLT-LCI experiments, computer controlled 

incubator-stage positioning systems enable long time-series sequences of cell images in a 

number of wells to be acquired and analyzed using image processing techniques (Kenong, 

Gauthier et al. 1995; Moogk, Stewart et al. 2010; Leysi-Derilou, Duchesne et al. 2012). 

This enabling technology is now mature and can be key to important findings in a number 

of research fields such as wound healing, embryo development, immune system studies, 

cancer research, tissue engineering, stem cell research and drug discovery (Paduano, 

Sepe et al. 2010). WFTL-LCI is now frequently used in high throughput screening 

experiments, where large numbers of small cell samples are tested in parallel with minimal 

manual intervention (Freshney 2010), and for which a single experiment can generate 

hundreds of thousands of images with varying image quality (Kang, Miller et al. 2006). In 

order for WFLT-LCI to be successful for high throughput screening applications, it must 

meet at least three performance criteria: 1) the image acquisition must be fast and 

processing should require short computation times, 2) the image analysis algorithm must 

be robust and tuned properly so it is not affected by the large experimental variability 

inherent to cell culture and 3) as few chemical additives as possible should be used in 

order to avoid introducing artifacts in the biological experiments (Rimon and Schuldiner 

2011). 

Fluorescent dyes or markers are commonly used for live cell imaging (Rimon and 

Schuldiner 2011), which allow highlighting specific phenomena and facilitate tremendously 

image processing. Cells in an epifluorescence microscopy (EFM) image are easily 

segmented by using a simple intensity level threshold followed sometimes (to refine even 

more the results obtained) by the use of the conventional watershed algorithm on pixel 

intensities, gradients, shapes or a combination of all of those (Padfield, Rittscher et al. 

2011). However, EFM live cell imaging experiments are usually of short duration, mainly 

due to the toxicity of the dyes and exposure to UV light (Frigault, Lacoste et al. 2009). It 

can therefore be advantageous to avoid adding these molecules to the culture and only 

use the microscope optics, such as in phase contrast microscopy (PCM) to enhance the 

image quality. Several authors have tackled the challenge of processing PCM images for 
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segmenting individual cells (Bradhurst, Boles et al. 2008; Debeir, Adanja et al. 2008; Liu, 

Li et al. 2011; Rapoport, Becker et al. 2011), which poses challenges for image processing 

such as uneven illumination and contrast enhancement (Rimon and Schuldiner 2011). 

Even though PCM images have the advantage of showing internal details (cell nucleus 

and granules) of cells in monolayers (Cox 2007), it can be difficult to identify individual cell 

borders accurately because of the bright and sometimes uneven halo surrounding them 

and to distinguish individual cells in a cluster because of blurry cell-cell interfaces (at high 

degree of confluence), broken borders and poor intensity contrast between the 

background and cellular regions (Bradbury and Wan 2010). More general difficulties 

inherent to WFTL-LCI such as uneven illumination (see Figure 4-3A), condensation on the 

plate cover, focus and positioning drift can also complicate the image processing step. 

Most image analysis software packages for WFTL-LCI platforms have been developed for 

processing primarily EFM images, and there is still a need for a fast and robust method 

that would be able to cope with the problems associated to PCM-WFTL-LCI image 

processing in high throughput screening experiments. 

Methods for segmenting objects in images can be classified roughly into three categories: 

features classification, edge detection and region detection. When applied to PCM images, 

most of these methods require high computation times for performing single-cell 

segmentation, and have several disadvantages: features classification techniques such as 

intensity thresholding (Ridler and Calvard 1978; Otsu 1979; Kapur, Sahoo et al. 1985; 

Kittler and Illingworth 1986; Chowdhury and Little 1995) can be vulnerable to uneven 

illumination and noise (Adams and Bischof 1994), edge detection methods such as active 

contours (Kass, Witkin et al. 1988) and level set methods (Sethian and Adalsteinsson 

1997) can struggle to reach the real contours of the cells when applied to PCM images 

(Orikawa and Tanaka 2010) and region detection methods such as the watershed 

transform (Vincent and Soille 1991) have a tendency to result into over-segmentation 

(Gonzalez and Woods 2008). Since the methods mentioned above for PCM-WFTL-LCI 

can be difficult to tune and to use while ensuring that the image analysis is robust, a 

solution is a compromise on the segmentation precision by discriminating cellular regions 

from background regions. This approach allows computing the degree of confluence (the 

portion of the surface covered by the cells) with sufficient accuracy to capture the speed of 

recolonization of an empty area (scratch wound approach, Debeir et al. (2008)) using 

PCM-WFTL-LCI images while testing different conditions. From a cell culture control 

perspective, the degree of confluence can be sufficient to estimate cell counts (Mõlder, 
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Sebesta et al. 2008; Topman, Sharabani-Yosef et al. 2011) or to determine the optimal 

subculture time (Ker, Weiss et al. 2011). Analyzing the degree of confluence against time 

allows the estimation of the cell population growth rate (He, Wang et al. 2007; Russell, 

Metaxas et al. 2007), assuming that the cell volume is proportional to the cell projected 

surface area and that they grow in monolayers in vitro, which is the mode of culture 

common to most normal adherent cells, with the exception of hematopoietic cells 

(Freshney 2010). 

This paper presents an image processing method that is fast, simple and robust when 

properly tuned for segmenting cellular regions in PCM images, thus meeting all three 

performance criteria for using PCM-WFTL-LCI in high throughput screening applications. 

Experiments were performed on a primary cell line of human myoblasts over several 

passages using either a serum-supplemented (SSM) or a serum-free (SFM) culture 

medium, generating more than 1 million images over several months. The proposed 

algorithm was robust enough to process a large quantity of PCM images subject to uneven 

illumination conditions and different degrees of confluence. The three parameters of the 

image processing algorithm (range filter size, minimum range threshold value and 

minimum object size threshold value) were adjusted to optimize the accuracy of the 

segmentation using a set of manually-segmented images, and the performance of the 

algorithm was compared to other methods proposed in the literature. Kinetic models were 

fitted on the average cell-covered surface curves and statistical analysis showed that the 

kinetic parameters were close to values given in the literature and that they were linearly 

correlated with passage number (Npassage), showing the sensitivity and usefulness of the 

proposed method. 

4.4 Materials and methods 

4.4.1 Proposed segmentation algorithm 

In order to segment cellular regions from background regions, the method proposed in this 

article consists of convoluting the image with a range filter to highlight regions of high 

signal amplitude and variance. During the convolution operation (Figure 4-1), the raw 

image (I) of size m×n is scanned with a square range filter window (RFW) of size RFS 

pixels×RFS pixels, generating a Range Map (RM) by computing the difference between 

the maximum and minimum values captured by the RFW for each of its individual positions 

in the raw image.  
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Figure 4-1: Generation of the Range Map (RM) with a range filter window (RFW) of 

size RFS (range filter size) 

In PCM, regions occupied by cells usually have a signal of higher variance than 

background regions (Kenong, Gauthier et al. 1995) because of the microscope optics (Yin, 

Li et al. 2010), as can be seen in Figure 4-2A and B, where pixel intensity is plotted 

against position for a pixel line selected in a raw image. It is possible to locate cell-

occupied regions in the image by looking at its RM (exemplified for the pixel line, Figure 

4-2C). In order to highlight cellular regions, an intensity threshold is applied to the Range 

Map (RM) using a minimum range threshold value (MRT) to identify cellular and 

background regions, and generate a cellular region binary mask (CRBM) (equation 4-1): 

CRBM(i, j) =
   1   if  RM(i, j) => MRT

0   if  RM(i, j) < MRT
 (4-1) 
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Figure 4-2: The segmentation method illustrated for a specific line of pixels in a 

phase-contrast microscopy image. A: Raw image and a selected line of pixels 

(black). B: Raw pixel values of a selected line. C: Range Map (RM) generated by a 

range filter. D: Cellular region binary mask (CRBM) calculated from RM. E: Image 

with cellular regions (white) highlighted. 
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The CRBM for the pixel line selected in the raw image is shown in Figure 4-2D, where the 

pixels associated with the cells are given a value of 1 while the background pixels are 

given value of 0 (white and black respectively). The selected pixels are shown in Figure 

4-2E. The default imfill function in Matlab® is used on the CRBM matrix in order to fill the 

holes inside the pixel groups. To make sure that small artifacts in the image (e.g. cellular 

debris creating textured clusters of a few hundred pixels in size) are not falsely classified 

as cellular regions, pixel groups that are too small to be cells are removed. Each 

connected pixel group (P(k)) is highlighted (Npixel_groups identified) and characterized using 

the default bwlabeln and regionprops functions in Matlab®. All the connected pixel groups, 

each of size (size P(k)), are compared to a minimum object size threshold (MOST, 

measured in pixels) and only those of size larger or equal to MOST are retained, forming 

the filtered cellular region binary mask (CRBMF) (equation 4-2): 

for k=1 to Npixel_groups 

𝐶𝑅𝐵𝑀𝐹(𝑖, 𝑗) =
   1   ∀𝐶𝑅𝐵𝑀(𝑖, 𝑗) ∈ 𝑃(𝑘)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑖𝑧𝑒(𝑃(𝑘)) => 𝑀𝑂𝑆𝑇

0   ∀𝐶𝑅𝐵𝑀(𝑖, 𝑗) ∈ 𝑃(𝑘)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑖𝑧𝑒(𝑃(𝑘)) < 𝑀𝑂𝑆𝑇
 (4-2) 

end 

The cell-covered surface (S) is defined as the ratio of the number of pixels associated with 

cellular regions relative to the total number of pixels in an image (equation 4-3): 

S =
∑ ∑  n

j=1 CRBMF(i,j)m
i=1   

     mn
 (4-3) 

The proposed segmentation algorithm has therefore 3 parameters: the range filter size 

(RFS), which must be an odd number, the minimum range threshold value (MRT) and the 

minimum object size threshold (MOST). The output of this algorithm is the cell-covered 

surface (degree of confluence) also described by several authors (Athelogou, Eblenkamp 

et al. 2010; Ker, Weiss et al. 2011). The advantage of the proposed method is its simplicity 

(fast computation) and its ease of implementation and tuning, while providing a good 

accuracy in terms of precision and recall. The segmentation algorithms used in this article 

for imaging adherent cells are not able to distinguish viable from non-viable cells when 

computing the cell-covered surfaces. However, this has little effect on the results since 

dead cells usually detach from the plate surface and are not imaged.  
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4.4.2 Tuning of segmentation algorithms 

The tuning (calibration) of a segmentation algorithm is a critical step in order to estimate 

optimal parameter values that will yield the best performance in different imaging 

conditions (i.e. robustness) and allow for a fair comparison of segmentation algorithms. 

However, the tuning of segmentation algorithms is seldom discussed in the literature (Al-

Muhairi, Fleury et al. 2011). It usually requires a set of images segmented by human 

observers and referred to as “ground truth”. Most classification performance metrics rely 

on the computation of true positives (TP), false positives (FP), true negatives (TN) and 

false negatives (FN). Recall (R) is the ratio of TP over the sum of TP and FN, while 

precision (P) is the ratio of TP over the sum of FP and TP (Nattkemper, Twellmann et al. 

2003; Dewan, Ahmad et al. 2011). Binary masks obtained by manual segmentation (M) 

and automatic segmentation (A) from images of size m by n are used to define R and P 

(He, Wang et al. 2007): 

R =
∑ ∑  n

j=1 (A.∗M)m
i=1   

     ∑ ∑ (M)n
j=1

m
i=1

  (4-4) 

P =
∑ ∑  n

j=1 (A.∗M)m
i=1   

     ∑ ∑ (A)n
j=1

m
i=1

 (4-5) 

where the symbol ".*" denotes an element-by-element multiplication between two matrices 

of the same size. R and P are usually evolving in opposite directions, and it is required to 

use a weighted objective function to reach a compromise between both. The F-measure 

function (denoted by F) can be used for this purpose (Al-Muhairi, Fleury et al. 2011):  

F =
P∙R

α∙R+(1−α)∙P
  (4-6) 

Where α is a weight parameter. Furthermore, we have also defined a second objective 

function that evaluates the relative error on the cell-covered area estimated (AEE): 

  AEE =
abs(∑ ∑ (M)n

j=1
m
i=1 −∑ ∑ (A)n

j=1
m
i=1 )

∑ ∑ (M)n
j=1

m
i=1

 (4-7) 

The above metrics will be used for tuning and comparing the various segmentation 

algorithms tested in this work. 
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4.4.3 Kinetic growth models 

The data associated to the cell-covered surface (S) as a function of time can be used to fit 

empirical growth models such as exponential or second order polynomial models (He, 

Wang et al. 2007; Ker, Weiss et al. 2011). Unbounded models consider that a cell 

population can grow without any limitations and bounded models consider that the cell 

population can’t grow over a limited carrying capacity because of substrate or space 

limitation (Tabatabai, Williams et al. 2005). The most popular unbounded model is the 

exponential growth, which is expressed by a first order kinetic differential equation at low 

cell densities (Shuler and Kargi 1992): 

dS

dt
= μS (4-8) 

where µ is the constant specific growth rate. Among all models describing a bounded 

sigmoidal growth curve, one of the simplest is the logistic model (Vogels, Zoeckler et al. 

1975). This model requires a maximum carrying capacity (Smax) and an initial cell-covered 

surface (S0) to be solved, and is expressed by a non-linear differential equation (Shuler 

and Kargi 1992), where Cmax is a growth constant (equation 4-9): 

dS

dt
= CmaxS (1 −

S

Smax
) (4-9) 

4.4.4 Experimental set-up 

Myoblasts from a primary cell line (kindly provided by Dr. J.P. Tremblay, CRCHUL) were 

cultivated over 9 passages in SSM (MCDB 120 + 15% FBS) and in SFM (Parent 2009) in 

6-well plates. Both media used MCDB120, which is an optimized nutrient medium for 

human muscle stem cells (Ham and Blau 1988). Target inoculation density was in the 

range of 5,000-20,000 cells/mL, with a working volume of 2 mL/well. Growth medium was 

changed every 2-3 days. Phase contrast images were captured with an IX-81 microscope 

(OlympusTM) equipped with an automated stage and a Qimaging® monochrome camera at 

20X. An incubator was mounted on the microscope stage to maintain the culture plate at 

5% CO2 and 37.5 ºC. The experimental set-up was controlled using Metamorph® 

(OlympusTM), and the focus was adjusted for each frame using the autofocus utility. Every 

3 hours, 121 images per well were captured, following an 11 x 11 fields of view grid, 0.4 

mm apart. A total of 1,058,145 images were acquired over 37 experiments. 



 157 

4.5 Results 

4.5.1 Selecting the objective function 

A calibration set of 200 ground truth images selected to span the whole range of degrees 

of confluence and conditions (roughly one image per experiment per well, at different 

conditions, time points and confluence) was used to optimize the segmentation model 

parameters. These images were manually segmented by drawing the cell contours using 

the roipoly function in Matlab® to create segmentation binary masks.  

 

Figure 4-3: Examples of ground truth images used. A: Raw images. B: Result of the 

optimized segmentation algorithm. White is true positive, grey is false positive/false 

negative, and black is true negative. 

Figure 4-3A shows a few examples of ground truth images (representative of the whole 

dataset in terms of variety) and Figure 4-3B shows the results of the segmentation 

algorithm applied to those images after optimization. To maximize the F function (for each 

value of α) or to minimize the AEE, a grid search was conducted by varying the RFS from 

1 to 35 (by increments of 2), the MRT from 0 to 100 (by increments of 5) and the MOST 

from 0 to 10,000 (by increments of 1,000). When α=0, F=R and maximizing F tends to 

select the whole image in order to optimize recall. When α=1, F=P and maximizing F tends 

to reject a lot of pixels in order to keep only pixels that are the most certainly associated to 

cells (to optimize precision). For intermediate values of α, maximizing the F function tends 

to reach a compromise between R and P, giving more or less importance to each variable 

depending of the value of α. For each set of parameters, the average R, P, F and AEE 

were computed for the 200 images. Different values of α (from 0 to 1) were set to assess 

how the compromise (reflected in the F function) affected the segmentation performance. 
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Figure 4-4 illustrates the performance of the segmentation algorithm on a particular ground 

truth image and Table 4-1 shows the results obtained for different optimization criteria 

(approximate confidence intervals were calculated from the standard deviation observed in 

all the ground truth images). The results showed that P is positively correlated to MRT and 

that R is positively correlated to RFS and MOST. In fact, increasing MRT means that more 

pixels are rejected (being more selective means a higher P) and increasing RFS and 

MOST tends to classify more pixels as belonging to cellular regions (higher R). 

 

Table 4-1 illustrates that maximizing the F function for α=0.5 provides a good compromise 

between R (87.7%) and P (77.4%) while having a good performance for the AEE (26.3%). 

For α=0.5, the optimal parameter values are: RFS=3, MRT=10 and MOST=3000. 

Maximizing F is preferred over minimizing AEE since the absolute surface error doesn’t 

take into account the spatial performance of the algorithm, which is supposed to decrease 

both FP and FN. 

 

Figure 4-4: Example of the segmentation algorithm performance for different 
optimization criteria: (A) original image; (B)-(E) maximization of the F function for 

(B): α=0, (C): α=0.5, (D): α=0.7 and (E): α=1; (F) minimizing the area estimated error 
(AEE). White pixels represent true positive, grey pixels represent false positive/false 

negative, and black pixels represent true negative. 
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Table 4-1: Segmentation parameters obtained by optimization 

Criteria of 

optimization 

α RFS MRT MOST Average R Average P Average 

F 

Averag

e AEE 

 

 

 

Maximizing 

F 

0 35 0 0 1.000 ± 

0.002 

0.212 ± 

0.221 

1.000 9.039 

0.1 9 20 2000 0.965 ± 

0.087 

0.630 ± 

0.172 

0.916 0.983 

0.2 11 25 3000 0.949 ± 

0.102 

0.668 ± 

0.141 

0.875 0.645 

0.3 7 20 3000 0.923 ± 

0.121 

0.723 ± 

0.122 

0.852 0.415 

0.4 3 10 3000 0.877 ± 

0.148 

0.774 ± 

0.099 

0.833 0.263 

0.5 3 10 3000 0.877 ± 

0.148 

0.774 ± 

0.099 

0.822 0.263 

0.6 3 10 4000 0.868 ± 

0.153 

0.779 ± 

0.096 

0.812 0.251 

0.7 5 20 3000 0.820 ± 

0.180 

0.804 ± 

0.070 

0.809 0.207 

0.8 5 20 3000 0.820 ± 

0.180 

0.804 ± 

0.070 

0.807 0.207 

0.9 7 30 3000 0.780 ± 

0.191 

0.812 ± 

0.067 

0.809 0.202 

1 7 100 0 0.187 ± 

0.131 

0.870 ± 

0.120 

0.870 0.788 

Minimizing 

AEE 

- 9 40 1000 0.768 ± 

0.184 

0.791 ± 

0.078 

- 0.199 

 

4.5.2 Comparative performance of the segmentation algorithms 

To confirm the choice of the proposed algorithm over other methods found in the literature 

(for this particular application), several algorithms were tuned on the same ground truth 

images dataset by grid search while maximizing F for α=0.5. Table 4-2 describes the 

parameters and the grid search boundaries and steps used to tune each algorithm studied 

and Table 4-3 shows the optimum parameters and performance results for each algorithm. 

The proposed method (1) was first compared to some of its variants using a standard 
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deviation filter (2) or an entropy filter (3) of size FS followed by thresholding (MT) and by 

filtering out pixel groups smaller than MOST. Method 4 is based on the algorithm proposed 

by Topman et al. (Topman, Sharabani-Yosef et al. 2011) using the intersection of 

thresholded standard deviation maps (with two windows of different sizes, bW and sW, 

thresholded using MT) followed by morphological operations. In method 5, as part of a 

more advanced algorithm for detecting cells nuclei and performing cell tracking, the 

approach proposed by Dewan et al. (Dewan, Ahmad et al. 2011) uses a top-hat filter on 

the inverted image with a circular non flat structuring element of radius r and height h, 

followed by Otsu’s thresholding method. In method 6, the approach proposed by Huth et 

al. (Huth, Buchholz et al. 2010) for coarse cell region segmentation is the multiplication of 

the output of an entropy filter with the output of a median filter (sizes EFS and MFS 

respectively) followed by Otsu’s thresholding (Otsu 1979) and completed by filtering out 

pixel groups smaller than a certain number of pixels (MOST). Method 7 is an adapted 

version of the algorithm for rough cell-covered area segmentation proposed by Bradhurst 

et al. (Bradhurst, Boles et al. 2008), in which the image is filtered with a standard deviation 

filter of size FS, thresholded using the minimum error thresholding technique (Kittler and 

Illingworth 1986) and cleaned by filtering pixel groups smaller than MOST and holes 

smaller than MHST. Finally, in method 8, for detecting the cell-covered area in each 

image, a soft morphological gradient filter of size FS (subtracting the 20% percentile grey 

level value from the 80% percentile grey level value captured by the filter) followed by a 

threshold of value MT was proposed by Debeir et al. (Debeir, Megalizzi et al. 2008).  
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Table 4-2: Algorithms parameters and grid search settings 

Algorithms Parameters Low limit Step High limit 

1- Range filter A) FS 1 2 35 

B) MT 0 5 100 

C) MOST 0 1000 10000 

2- Standard deviation 
filter 

A) FS 1 2 35 

 B) MT 0 2 40 

 C) MOST 0 1000 10000 

3 - Entropy filter A) FS 1 2 15 

B) MT 0 1 20 

C) MOST 0 1000 10000 

4 - Topman’s 
algorithm 

A) bW 1 2 35 

B) sW 1 2 35 

C) MT 0 0.01 0.30 

5 – Dewan’s approach A) r 1 2 75 

B) h 1 2 55 

6 – Huth’s approach A) EFS 1 2 35 

B) MFS 1 2 55 

C) MOST 0 500 10000 

7 – Bradhurst’s 
approach 

A) FS 1 2 35 

B) MOST 0 500 10000 

C) MHST 0 500 15000 

8 – Debeir’s approach A) FS 1 2 35 

B) MT 1 2 150 
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Table 4-3: Performance comparison between algorithms on ground truth images 

Algorithms Parameters Performance criteria 

A B C R P F AEE ACT (s) 
1- Range filter 3 10 3000 0.88 ± 0.15 0.77 ± 0.10 0.81 ± 0.11 0.26 ± 0.32 0.31 ± 0.16 

2- Standard 
deviation filter 

7 6 3000 0.87 ± 0.16 0.77 ± 0.09 0.80 ± 0.11 0.24 ± 0.19 0.67 ± 0.06 

3- Entropy filter 7 4 4000 0.86 ± 0.15 0.76 ± 0.10 0.79 ± 0.11 0.27 ± 0.32 2.89 ± 0.36 

4- Topman’s 
algorithm 

2

9 
1 0.05 0.86 ± 0.13 0.72 ± 0.10 0.78 ± 0.10 0.26 ± 0.22 0.27 ± 0.04 

5 – Dewan’s 
approach 

6

7 
53 - 0.51 ± 0.08 0.78 ± 0.11 0.61 ± 0.08 0.35 ± 0.13 3.28 ± 0.08 

6 – Huth’s 
approach 

2

5 
53 8000 0.85 ± 0.08 0.69 ± 0.10 0.75 ± 0.07 0.29 ± 0.16 14.21 ± 1.64 

7 – Bradhurst’s 
approach 

7 
350

0 
10000 0.89 ± 0.20 0.77 ± 0.08 0.80 ± 0.17 0.30 ± 0.21 0.48 ± 0.02 

8 – Debeir’s 
approach 

2

7 
19 - 0.86 ± 0.12 0.68 ± 0.12 0.75 ± 0.10 0.36 ± 0.34 0.67 ± 0.05 

 

These algorithms were tested and compared on the ground truth image dataset while 

using the optimum parameters for each. It is interesting to see that most of the proposed 

algorithms provided have a similar performance when properly tuned. However, the results 

showed that the range filter algorithm provides a slightly better performance in terms of R 

and P than the other algorithms while having a competitive average computing time per 

image (ACT), thus justifying its selection. From a robustness perspective, method 6 

provides a slightly better performance in comparison with the other algorithms by providing 

a smaller standard deviation on the average objective function F, but at the expense of a 

lower recognition performance (lower F) and a much higher computation time (ACT). Note 

that for all the proposed methods, no background correction or pre-processing was used. 

These tests were performed on an Intel® Core™ i7-2630QM CPU @ 2.00 GHz computer 

with 4Go of RAM. 

The wide variety of segmentation algorithms, imaging problems, and applications available 

in the literature confirm that image processing and analysis is problem dependent and that 

no single method will work best for all PCM-WFTL-LCI applications. Therefore, from a 

practical perspective, several alternative segmentation algorithms should be compared on 

a set of ground truth images representing the range of conditions expected in practice. A 
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very important point to ensure a fair comparison between the algorithms is to tune their 

parameters based on the same objective function based on segmentation accuracy, 

robustness, computing time or other relevant performance metrics. Then, the most suitable 

algorithm can be selected for the particular application. 

4.6 Discussion 

4.6.1 Application 1: cell-covered surface (S) growth curves 

The cell-covered surface (S) was calculated for each of the 1.05 million images with the 

optimized range filter segmentation algorithm (looking at each individual well in the 37 

experiments, for a total of 222 growth curves).  

 
Figure 4-5: A: Typical images of the evolution of a culture (from low to high cell-

covered area); B: Evolution of S against time for each position in the acquisition 

grid, and average cell-covered surface (white dots) as a function of time; C: 

Standard deviation of S against culture time; Distribution of the individual cell-

covered surfaces at (D): 0h, (E): 58h, and (F): 162h. 
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Figure 4-5A shows how the degree of confluence increases through time for images from 

the same sequence, and Figure 4-5B shows the evolution of the cell-covered surface 

against time for each position in a well (121 frames per acquisition) for one experiment. 

The lower bound is associated with the minimum cell-covered surface for each acquisition 

and the upper bound corresponds to the maximum value. The average cell-covered 

surface (S̅t) and the standard deviation (σ(St)) at each acquisition time is computed from 

individual cell-covered surfaces (S(f,t)): 

S̅t =
∑ S(f,t)121

f=1

121
 (4-10) 

σ(St) = √
∑ (S(f,t)−S̅t)2121

f=1

121
 (4-11) 

Figure 4-5B shows that the average cell-covered surface (for the whole acquisition grid, at 

each point in time, illustrated by white dots) can provide an overall measure of the degree 

of confluence in each well. Figure 4-5C shows the spatial variance σ(St) of the cell-covered 

surfaces for each acquisition through time. Figure 4-5D/E/F shows that at the beginning of 

a cell culture, the distribution of S follows a Poisson distribution as the cells spread 

randomly over the surface (normally associated with hemacytometer counts (Nielsen, 

Smyth et al. 1991)) and transitions slowly to a uniform distribution (Walck 1996) as the 

culture goes on and cells occupy the entire field of view. For each well, the curve of the 

average cell-covered surface (𝑆𝑡̅) as a function of time was fitted with the exponential 

model, varying the number of points from 5 to 50, and keeping the number of points 

maximizing the model coefficient of regression, R2. The logistic model was fitted on the 

entire curves. The differential equations were solved using the 4th order Runge-Kutta 

method (Kreyszig 2000) and the models were fitted using non-linear regression with 

Matlab®. 
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Figure 4-6: Fitting of the kinetic models on the average cell-covered surface. Effect 

of passage number on growth kinetics of cells grown in serum-supplemented 

medium (SSM) for different kinetic models (A) Exponential; (B) Logistic. 

Comparison between SSM and serum-free medium (SFM) at Npassage=6 for different 

kinetic models (C) Exponential; (D) Logistic. Effect of FBS quality on cells growth 

kinetics for different kinetic models (E) Exponential; (F) Logistic. 

Figure 4-6A/B shows the impact of the number of passages (NPassage) on the cell-covered 

surface curves for cells grown in SSM. For NPassage = 5, a μ of 0.87 day-1 and a Cmax of 1.39 

day-1 were calculated. For NPassage = 13, a μ of 0.45 day-1 and a Cmax of 0.94 day-1 were 

computed, showing a slower growth in comparison to lower passage cells. For NPassage = 

17, a μ of 0.05 day-1 and a Cmax of 0.06 day-1 were calculated, showing practically no 

growth at high passage. According to Parent (2009), myoblasts in either SSM or SFM have 

similar growth kinetics, and it is interesting to compare the average cell-covered surface 

curves for both media for the same passage. Figure 4-6C/D shows two typical cell-covered 
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surface curves for both the SSM and SFM at NPassage = 6. Fitting the average cell-covered 

surface with the models, we computed a μ of 0.87 day-1 and a Cmax of 1.39 day-1 for the 

SSM and a μ of 0.78 day-1 and a Cmax of 1.52 day-1 for the SFM, which are not significantly 

different. Analyzing the cell-covered surface curves can help troubleshooting cell culture 

problems for process and quality control purposes. For example, Figure 4-6E/F shows the 

cell-covered surface growth curves for low passage myoblasts grown in SSM with expired 

and normal FBS. Fitting the average cell-covered surface with the models, we computed a 

μ of 0.87 day-1 and a Cmax of 1.39 day-1 for the normal FBS compared to a μ of 0.25 day-1 

and a Cmax of 0.55 day-1 for the expired FBS. 

Finally, note that Mõlder et al. (2008) and Topman et al. (2011) have shown that a linear 

relationship exists between the cell-covered surface (S) and cell count. We also confirm 

that a similar trend exists (R2=0.80) for the cellular system studied in this work (results not 

shown). 

4.6.2 Application 2: Correlation between kinetic parameters and 

culture conditions (passage number) 

For each well for all the 37 experiments, the average cell-covered surface was fitted with 

the exponential and logistic models and kinetic parameters were compiled. Since image 

quality, experimental noise and initial values for the non-linear regressions can affect the 

goodness of fit, only the parameters meeting specific quality criteria were considered 

before studying their relationship with Npassage. For the exponential and the logistic models, 

only the kinetic parameters statistically significant up to a confidence interval of 95% 

(under a Student-t test) and associated with a model that had a R2 higher than 95% were 

considered. For the exponential model, in addition to those two conditions, only the kinetic 

parameters calculated with an initial cell-covered surface (S0) lower than 50% were kept, in 

order to ensure that surface availability wouldn’t impact the analysis.  
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Figure 4-7: Kinetic parameters for each model as a function of NPassage meeting all 

criteria. (A) μ for the exponential model; (B) Cmax for the logistic model. 

Figure 4-7 shows the relationship between the kinetic parameters considered (meeting all 

criteria) and Npassage. To characterize the impact of passage number (NPassage) on each 

kinetic parameter (K(NPassage)), a linear relationship was assumed: 

K(NPassage) = aNPassage + b (4-12)  

Table 4-4 provides the linear relationship parameters between NPassage (passages 5 to 18) 

and the kinetic parameters. The intervals over the a and b parameters were calculated 

using a Student-t test with a confidence interval of 95%. The kinetic parameters obtained 

are consistent with the fact that as the myoblasts multiply through passages (NPassage 

increasing), their growth rate decreases until it reaches zero (no growth) around the 18th 

passage. For the exponential model, at low passages, the specific growth rates (μ) 

obtained are within the range of values provided in the literature via manual cell counts 

(0.57 to 0.78 day-1, Boudreault et al.(2001)) and by automatic image processing (0.64 day-1 

for healthy cells and 0.37 day-1 for starving cells, He et al.(2007)), meaning that the 

exponential model parameters obtained are close to independent observed values. From a 

fresh biopsy, a cell cycle time as low as 0.67 days (μ of 1.03 day-1) was reported (Deasy, 

Jankowski et al. 2003), a value close to the b parameter of 0.96 day-1 that would be 

achieved at Npassage=0. In addition, the exponential model can show adequately the impact 

of Npassage on cells kinetics with a linear correlation having a R2 of 51.0%. The logistic 

model seems to be more robust, since the Cmax parameter correlates even better with 

NPassage for both media (R2 of 66.1%). 
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Table 4-4: Linear relationship parameters between kinetic parameters and passage 

number (for NPassage 5 to 18) 

Models Parameters a b R2 

Exponential µ (day-1) -0.0407 ± 0.0066 0.958 ± 0.074 0.5098 

Logistic Cmax (day-1) -0.1041 ± 0.0134 2.151 ± 0.151 0.6614 

 

4.7 Conclusion 

In order to use PCM-WFTL-LCI for high throughput screening applications, the image 

acquisition and processing methods must meet three criteria: they must be fast, tuned 

properly so it is robust to image variations and non-intrusive. This paper presents a simple 

method that can be used to process PCM images for this purpose. A simple, efficient and 

easily tuned segmentation algorithm based on a range filter was successfully used and 

optimized to segment cellular regions from background with a slightly higher accuracy 

compared to other algorithms reported in the literature. The segmentation algorithm was 

used on the whole PCM images database (1,058,145 images acquired over 37 

experiments, generating 222 growth curves) to compute the average cell-covered surface 

against time for each well, and the exponential and logistic models were fitted on the data. 

The two models showed clearly a linear relationship between NPassage (age of the cells) and 

the kinetic parameters, thus illustrating the great potential of the approach. 

The proposed method can be used for online cell-culture monitoring to determine the 

moment at which cells are confluent when producing cells for tissue engineering purposes 

(e.g. skin grafts) and also to determine when to harvest cells for cellular therapy 

applications (e.g. healthy myoblasts for transplantation in dystrophic patients). For tissue 

engineering applications, the proposed method has the advantage of being non-intrusive, 

which is essential in order to be able to transplant the healthy cells to patients (without the 

use of harmful additives such as fluorescent dyes). In HT screening experiments, the main 

advantage is to be able to assess the growth kinetics of adherent cells without having to 

sacrifice cultures (by trypsinization) and without using dyes that could bias cellular 

behavior. For example, the proposed method can be used to assess the growth kinetics of 

myoblasts while screening different serum-replacement growth factors. 
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Chapter 5. The Undecimated Wavelet Transform - Multivariate 
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MIA) 

Index terms: Undecimated Wavelet Transform, Gabor, Multivariate image analysis, 

Texture analysis, Principal component analysis, Segmentation 

5.1 Résumé 

Combiner l’information associée à la couleur (spectrale) et à la texture conduit souvent à 

une amélioration des performances des capteurs d'imagerie développés pour différentes 

applications, comme la surveillance des procédés et la prédiction des variables de 

production ou de qualité du produit. Une nouvelle méthode basée sur la transformée en 

ondelettes non décimée et l’analyse multivariée des images (UWT-MIA) est proposée 

dans cet article pour l'extraction simultanée de l'information spatiale et spectrale. Les 

principaux avantages de cette approche sont: 1) elle utilise des ondelettes continues qui 

ont une résolution constante sur toutes les échelles par rapport aux ondelettes discrètes, 

et sont mieux adaptées pour extraire des caractéristiques de distribution de taille, 2) les 

images de détails et d’approximation des ondelettes ont la même taille et sont 

spatialement congruentes. Ceci permet l'empilement des sous-images obtenues à toutes 

les échelles, orientations et pour toutes les longueurs d'onde pour les images multi- et 

hyperspectrales. Ainsi, chaque sous-image est considérée comme un canal séparé dans 

une nouvelle image multivariée à partir de laquelle un seul modèle MIA peut être construit. 

La performance de la méthode UWT-MIA est illustrée à l'aide d’images synthétiques et 

naturelles. Il est démontré que les variations de couleur, de taille et d'orientation des objets 

d'intérêt peuvent être suivies efficacement dans le même modèle MIA. La méthode 

proposée peut également être intégrée dans le cadre des méthodes d’analyse d'image 

multivariée multirésolution (MR-MIA) proposées dans la littérature. 
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5.2 Abstract 
Combining color (spectral) and textural information often leads to improved performance of 

image-based sensors developed for different applications, such as process monitoring and 

prediction of process or product quality variables.  A new method based on the 

Undecimated Wavelet Transform and Multivariate Image Analysis (UWT-MIA) is proposed 

in this paper for simultaneous extraction of spatial and spectral information. The key 

advantages of this approach are: 1) it uses continuous wavelets which have a constant 

resolution over all scales compared to discrete wavelets, and are better suited for 

extracting size distribution features, 2) the wavelet detail and approximation sub-images 

have the same size and are spatially congruent which allows stacking the sub-images 

obtained at all scales and orientations (and wavelengths for multi- and hyperspectral 

images) as a separate channel in a new multivariate image from which a single MIA model 

can be built. The performance of UWT-MIA is illustrated using both synthetic and natural 

images. It is shown that variations in color, size and orientation of objects of interest can 

be tracked efficiently within the same MIA model. The method can also be cast within the 

multiresolutional multivariate image analysis (MR-MIA) framework proposed in the 

literature. 
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5.3 Introduction 
In the last decade, several machine vision approaches based on spectral and/or textural 

analysis have been developed for process and product quality monitoring and control, 

many relying on Multivariate Image Analysis (MIA) and Multivariate Image Regression 

(MIR) (Prats-Montalban, de Juan et al. 2011; Duchesne, Liu et al. 2012). An important 

advantage of MIA-based methods is that image segmentation is performed within the 

multivariate feature space (i.e. masks in the score space) (Geladi and Grahn 1996) rather 

than directly in the image space as with traditional machine vision techniques (Gonzalez 

and Woods 2008). Hence, in a monitoring context, the same masks are used to segment 

new incoming images as long as the MIA model remains valid. Drawing of new boundaries 

(masks) is performed only when deemed necessary because e.g. the model requires 

updating. Traditional image segmentation techniques calculate new boundaries for every 

new incoming image. Color/spectral segmentation using MIA/MIR was used to develop 

very efficient image-based sensors for the process industry (Duchesne, Liu et al. 2012).  

More recently, MIA was considered for texture analysis (Lied, Geladi et al. 2000; Bharati, 

Liu et al. 2004), but ways to reintroduce spatial information in MIA were investigated since 

image pixels lose their spatial identity during the unfolding operation. The basic idea that 

was put forward in the literature consists of computing several filtered versions of the same 

grey level image, stacking them as different channels of a multivariate image, and then 

applying standard MIA. The main difference between the approaches proposed in the 

literature is the method used to filter the images.  

Texture filters traditionally used in the image processing field (Gonzalez and Woods 2008) 

were among the first to be proposed for reintroducing spatial information in MIA. These 

filters are typically expressed as some linear combinations of pixel intensities (e.g. 

discretized derivative filters) or consist of local statistics (e.g. median filter) computed using 

intensities of neighboring pixels.  Lied et al. (2000) proposed the multivariate image texture 

analysis method (MIX) in which a series of textural image derivatives generated by 

different filters (median, Laplace, compound) are stacked as additional spectral variables 

prior to performing MIA. The image shifting and stacking approach introduced by Bharati et 

al. (2004) creates a multivariate image by shifting a grey level image by one or more pixels 

in 8 directions and stacking the shifted images after appropriate cropping. MIA is then 

applied on the new multivariate image. In the latter method, the PCA loadings of each 

neighboring pixel define a set of spatial filters (i.e. one per PCA component) completely 

determined by the data itself. Prats-Montalbán and Ferrer (2007) extended the use of the 
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shifting and stacking approach to color-texture (spatial-spectral) analysis by applying  it on 

each color channel separately and augmenting the texture matrix. The computation cost 

associated to the shifting and stacking method was also reduced by using the Fast Fourier 

Transform and the convolution theorem (improved MIA or iMIA) to look at pixel correlations 

in larger neighborhoods (Facco, Masiero et al. 2011). 

Transform-based filtering techniques were also proposed to create multiple filtered 

versions of a grey level image in the spectral or spatial-spectral domains (i.e. filtering is 

based on the image frequency content). Geladi (1992) used the 2D Fast Fourier Transform 

(FFT) to provide a common basis for the analysis of a series of images of different sizes. 

The stack was formed by the magnitude images at each frequency (i.e. so-called the 

magnitude spectrum).  The method was applied to compare textural patterns within two 

series of images (wood chips and botanical residues). More recently, Liu and MacGregor 

(2007) proposed the Multiresolutional Multivariate Image Analysis (MR-MIA) framework for 

spatial-spectral image analysis based on the 2D Wavelet Texture Analysis (WTA). Two 

methods were proposed. MR-MIA I simultaneously extracts spatial-spectral information by 

applying WTA to each spectral channel first and then by stacking the detail sub-images 

(wavelet planes) of each spectral channel separately for each scale (s =1,2,…S), 

producing sub-images for each orientation that are congruent for a given scale (can be 

stacked). MR-MIA II extracts spatial-spectral information separately by applying WTA to 

the score images computed using MIA as the first step. The choice of using either MR-MIA 

I or II depends upon whether the spatial-spectral information is interacting (e.g. as in 

hyperspectral images) or not. 

Even though the proposed methods provide solutions for reintroducing spatial information 

in MIA, they also have some limitations. For instance, the methods using derivative filters, 

including the shifting and stacking approach, were found less powerful and flexible than 

transform-based methods, which are able to selectively remove noise and low frequency 

variations (e.g. caused by uneven lighting conditions) (Bharati, Liu et al. 2004).  In the 

case of the MIX method, filter selection is not straightforward and requires some trial-and-

error to determine the optimal set of filters to use for a given application. Applying MIA to a 

stack of magnitude images obtained using the 2D FFT allows discriminating images 

having different frequency content but the spatial location of the features of interest is lost 

because the FFT itself has a good frequency resolution but a low spatial resolution . MR-

MIA methods solve this issue by using wavelets, which have both a good frequency and 
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spatial resolution (Gonzalez and Woods 2008) (compared to the FFT). However, the MR-

MIA methods rely on the discrete wavelet transform (DWT (Mallat 1989)), which, in 

general, yield wavelet planes (i.e. wavelet sub-images) that are not congruent across 

different scales due to dyadic image sub-sampling. Therefore, in the MR-MIA I method, 

applying DWT as the first step yields as many new multivariate images as the number of 

scales (S) which are then analyzed separately using MIA. As discussed in Liu and 

MacGregor (2007), it is optimal to analyze these new multivariate images separately 

because DWT uses an orthogonal wavelet basis, meaning that the information contained 

in each one of the new multivariate images is independent from the others. The 

orthogonality of the wavelet planes at different scales proved very useful for applications 

such as image compression (Starck, Elad et al. 2004). However, in some image analysis 

applications, it may be interesting/necessary to combine the features extracted at different 

scales and orientations in a single model, for instance to track variations in the size 

distribution of certain objects of interest in a time series of images (set of images). In that 

case, the MR-MIA approach would require collecting the features extracted at different 

scales in a row vector for each image of the set followed by building a PCA model for 

comparing the images between them. These additional modelling efforts may be avoided 

by using the Undecimated Wavelet Transform (UWT) instead of the DWT, since the UWT 

provides spatially congruent wavelet planes. Hence, the UWT would allow combining the 

information extracted at different scales and orientations for different color channels or 

wavelengths (i.e. if applied to a multivariate image) using a single MIA model. 

This paper presents the Undecimated Wavelet Transform Multivariate Image Analysis 

(UWT-MIA), a new transform-based method for spatial-spectral analysis of multivariate 

images, but also applicable to grey level images. The advantages of UWT-MIA over the 

discrete wavelet texture analysis (DWT) used in MR-MIA are two-fold: 1) UWT-MIA uses 

the continuous Gabor wavelet transform (CWT) for higher frequency and spatial 

resolutions (yields a constant resolution over all scales, which is an advantage for 

estimating size distributions as shown in Liu and Macgregor (2008)) and 2) the wavelet 

planes (matrices of wavelet coefficients) are of the same size and spatially congruent. 

Hence, both textural and spectral patterns could be segmented at the pixel level in the 

score space of a single MIA model. The main objective of the paper is to demonstrate the 

latter. The proposed method can also be seen as an extension of MR-MIA methods, 

combining the information extracted at different scales, orientations and wavelengths for 

each pixel of the image in a single stack on which MIA is performed. Even if the UWT-MIA 
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methodology presented in this article is suitable for simultaneous extraction of spatial and 

spectral information (i.e.as MR-MIA I), it could also be implemented within a MR-MIA II 

framework (separate extraction of spectral and textural features). 

5.4 Materials and methods 

Three sets of images shown in Figure 5-1 were used to illustrate how the UWT-MIA 

method performs textural and spectral segmentation under different scenarios. 

 

 

          

Figure 5-1 : Images used to illustrate the UWT-MIA approach. A) Set 1: one synthetic 

textured RGB image; B) Set 2: six synthetic RGB images with colored circular 

objects; C) Set 3: six phase contrast microscopy images of myoblasts. 
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In Set 1, a synthetic textured RGB image was generated from a source image freely 

available on the web (Kingdom and Olmos). Different textural regions were created by 

rotating the source image in several directions (mainly differing by their orientation). These 

regions also have different colors (spectral content). 

Set 2 consists of six synthetic RGB images within which circular objects of 3 different sizes 

(small, medium, and large) and 3 colors (pure red, green, and blue) were randomly 

distributed in the image. Three series of two images were generated with objects of 

different sizes.  

In Set 3, six typical greyscale images of myoblasts grown in a serum-supplemented (SSM) 

and a serum-free (SFM) medium were selected to perform a UWT-MIA analysis (at low 

and high degree of plate coverage by cells, or confluence). Myoblasts from a primary cell 

line (kindly provided by Dr. J.P. Tremblay, CRCHUL, Quebec City, QC, Canada) were 

cultivated in SSM (MCDB120 + 15% FBS) or in SFM (Parent 2009) in 6-well plates. Both 

media used a basal mixture, MCDB120, which is an optimized nutrient medium for human 

muscle cells (Ham and Blau 1988). Target inoculation density was in the range of 5,000-

20,000 cells/mL, using a working volume of 2 mL/well. Growth medium was changed every 

2-3 days. Phase contrast microscopy (PCM) images were captured with an IX-81 

microscope (OlympusTM) equipped with an automated stage and a Qimaging® 

monochrome camera at 20X. An incubator was mounted on the microscope stage to 

maintain the culture plate at 5% CO2 and 37.5 ºC. The experimental set-up was controlled 

using Metamorph® (Molecular DevicesTM), and the focus was adjusted for each image 

using the autofocus utility. Images 3.1, 3.3 and 3.5 correspond to myoblasts grown in 

SFM, and images 3.2, 3.4 and 3.6 to myoblasts grown in SSM. 

Each dataset was created (or selected) to illustrate the features of the UWT-MIA approach 

for different situations. Textural patterns in Set 1 are identical (same signal frequency 

content), but their orientation and their colors are different. In Set 2, both the size and the 

color of the circular objects vary. Finally, the third set includes variations in both the 

frequency content and orientation (i.e. cell size, shape and orientation), but there is only 

one single channel (grey level images). 
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5.5 The Undecimated Wavelet Transform – Multivariate Image 

Analysis (UWT-MIA) 

The UWT-MIA method involves several steps to be performed on each raw image (Figure 

5-2): 

1. Calculate the Wavelet planes (WP)  for each scale, orientation and wavelength; 

2. Stack the Wavelet planes as a different channel of a multivariate image called the 

Wavelet Planes Cube (WPC); 

3. Apply MIA on the WPC; 

4. Obtain the score density histogram; 

5. Segment the features of interest in the score space via masking. 

 

Figure 5-2 : Steps associated with the UWT-MIA method 

This method can be extended to be applied on sets of images (e.g. time series) by using a 

kernel algorithm (Geladi and Grahn 1996). It involves computing the sum of the variance-

covariance matrix of each unfolded WPC (one per image) followed by singular-value 

decomposition (SVD) to yield a common set of MIA loadings for all the images of the set. 

5.5.1 Gabor wavelet planes generation 

The Undecimated Wavelet Transform (UWT) analysis can be performed using two types of 

wavelets: the stationary wavelet transform (SWT) or the continuous wavelet transform 
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(CWT). The SWT computes wavelet planes in the image space with the à trous algorithm, 

which requires an upsampling of the wavelet filter by a factor of 2 at each scale (Starck, 

Elad et al. 2004). Alternatively, the CWT computes the wavelet planes in the Fourier 

domain (Jacques, Coron et al. 2007), and has a higher resolution (from a scale and 

orientation perspective) than the SWT. It was shown by Liu and MacGregor (2008) that the 

CWT results in a better resolution for estimating objects sizes since it has a constant 

resolution over all scales, as opposed to the DWT and SWT which produce wavelet planes 

that have fine resolution at low scales and coarse resolution at high scales due to dyadic 

sampling. To optimize both scale and orientation resolution, the Gabor filter (a CWT) was 

selected which shape also matches fairly well the signals of the images shown in Figure 

5-1. 

The two-dimensional Gabor filter is a frequency and orientation selective filter which 

consists of a sinusoidal plane wave modulated by a Gaussian envelope (Tuceryan and 

Jain 1999). Due to the robustness of their features against local distortions caused by 

variations of illumination, Gabor filters have been successfully applied for unsupervised 

texture segmentation in multi-channel filtering (Jain and Farrokhnia 1991), in face 

recognition (Shen and Bai 2006) and in mineral flotation process monitoring (Liu, Gui et al. 

2013). Gabor filters/wavelets seem to be the optimal basis to extract local features for 

pattern recognition, since the shape of the Gabor wavelet is similar to the receptive fields 

of simple cells in the primary visual cortex (Shen and Bai 2006). Gabor wavelets are 

optimal for measuring local spatial frequencies, and they yield distortion tolerant features 

for other pattern recognition tasks such as handwritten numeral and fingerprint recognition 

(Shen and Bai 2006). The Gabor wavelets also exhibit desirable characteristics of spatial 

frequency, spatial locality and orientation selectivity (Shen and Bai 2006). Although the 

Gabor function is an admissible wavelet, it does not result in an orthogonal decomposition, 

meaning that the Gabor wavelet transform is redundant, generating correlated wavelet 

planes (Jain and Farrokhnia 1991). 

Intuitively, a wavelet transform can be conceptualized as a band-pass filtering operation on 

the input image (Jain and Farrokhnia 1991). The Gabor filter is a band-pass oriented filter 

situated in the Fourier domain and delocalized from the zero frequency, thus generating a 

sinusoidal wavelet. The filter associated with the Gabor wavelet (ψGabor) can be computed 

directly in the Fourier domain (without going through the spatial domain) for different 

scales s and angles θ using the Yawtb approach (Jacques, Coron et al. 2007). The Gabor 
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wavelet filter is described by equations 5-1 to 5-3, where u and v are the horizontal and 

vertical frequencies in the image expressed in rads/pixel: 

ψGabor(u, v, σ, ε, k0, s, θ) = exp(−σ2((ur − k0)2 + (εvr)2) 2⁄ ) (5-1)  

ur = s ∗ (u ∗ cos(θ) − v ∗ sin(θ)) (5-2) 

vr = s ∗ (u ∗ sin(θ) + v ∗ cos(θ)) (5-3)  

Parameters s and θ correspond to the scale and orientation of the wavelet, respectively. 

The width of the Gaussian envelope in the Fourier domain σ controls the sharpness of the 

wavelet. The lower the value of σ the sharper the wavelet is (useful for edge detection, for 

example). The length of the wavelet in the spatial domain is adjusted through parameter ε. 

It modulates the trade-off between the spatial and frequency resolutions. Increasing ε 

leads to a longer wavelet which improves the frequency resolution at the expense of a 

lower spatial resolution (i.e. reduced spatial localization ability) and vice-versa. The offset 

parameter k0 also changes the wavelet shape and the frequency content by introducing an 

offset from the zero frequency. Increasing k0 leads to a more complex wavelet shape (i.e. 

richer frequency content). These parameters need to be selected in such a way to best 

match the wavelet shape to that of the signal. Unfortunately, there are no explicit and well 

defined guidelines for doing this. These parameters can be roughly tuned by trial-and-error 

or grid search until satisfactory results are obtained. Several examples of Gabor wavelet 

filters in the spatial domain are provided by Shen et al. (2006). Note that for angles θ = 0 

and 4π/4 the Gabor wavelet is oriented vertically (capturing vertical patterns) and for 

angles θ = 2π/4 and 6π/4 the Gabor wavelet is oriented horizontally (capturing horizontal 

patterns), as illustrated in Figure 5-3. 
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Figure 5-3 : The 1D and 2D shape of the Gabor wavelet for a given set of parameters 

and orientation angles (θ = 0, π/4 and 2π/4). White pixels are associated with 

positive filter weights and black pixels to negative filter weights. 

The convolution between the Gabor filter and the raw image is performed directly in the 

Fourier domain in order to be computationally more efficient than in the spatial domain 

(Shen and Bai 2006). The result of the convolution is translated back into the spatial 

domain (Gonzalez and Woods 2008). The pixel-by-pixel convolution does not involve 

downsampling or upsampling. Thus, the Gabor wavelet is a continuous wavelet transform. 

Also, since all the wavelet planes have the same size as that of the original image, it is 

considered an undecimated wavelet transform (UWT). The convolution operation to 

generate each wavelet plane (WP) from a raw grey scale image I(x,y) is given by equation 

5-4. Point-by-point multiplication of the complex conjugate of the wavelet filter in the 

Fourier domain (ψGabor) and the Fourier transform of the raw image (FFT(I(x,y))) is 
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performed first, followed by calculating the inverse Fourier transform of the convolution 

(keeping only the real part) (Jacques, Coron et al. 2007). 

 

WPGabor(x, y, σ, ε, k0, s, θ) = real(IFFT[FFT(I(x, y)).∗ conj(ψGabor(u, v, σ, ε, k0, s, θ))]) (5-4)  

If the image to be analyzed is multivariate (e.g. RGB or multi-spectral images), the 

convolution is performed independently on the grey scale image corresponding to each 

wavelength as in the MR-MIA I approach (Liu and MacGregor 2007). However all the 

wavelet planes from all the wavelengths can be stacked together into a single array prior 

to performing MIA, as illustrated in the next section. 

5.5.2 UWT-MIA 

Since the wavelet planes have the same size, it is possible to stack the sub-images 

obtained for each of the I scales (s = s1, s2 …sI), J angles (θ = θ1, θ2 …θJ) and K 

wavelengths (λ = λ1, λ2 …λK) as a separate channel in a new multivariate image, as 

illustrated in Figure 5-4. This multivariate image is referred to as the Wavelet Planes Cube 

(WPC) in the rest of the paper. 
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Figure 5-4 : Generation and stacking of the wavelet planes (WP) obtained for each 

wavelength (λ), angle (θ), and scale (s) into a cube (WPC) 

Multivariate Image Analysis (MIA) can be applied for spatial-spectral analysis of the WPC 

in the very same way as for a typical multivariate image (Geladi and Grahn 1996; Lied, 

Geladi et al. 2000). That is, the 3-way array is unfolded into a matrix X of dimensions 

(N*M)(I*J*K) where the columns correspond to wavelet plane coefficients at each scale, 

angle and wavelength for each pixel (rows), as shown in Figure 5-2. Principal Component 

Analysis (PCA) or Singular Value Decomposition (SVD) is then applied to the unfolded 

matrix X. The score scatter plots based on a selected number of principal components (A) 

are shown as density histograms on which a masking/overlay procedure is applied for 

exploring the image information (Geladi and Grahn 1996). When MIA needs to be applied 

to a set of images, a common latent variable space can be obtained using the kernel 

algorithm published in Geladi and Grahn (1996), where SVD is applied to the sum of the 
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variance-covariance matrix of each image. Pixel groups belonging to similar textural and 

spectral profiles will cluster together in a region of the T1/T2 score space (or other pairs of 

components), and can be segmented by using an appropriate mask. The masks can be 

determined manually by trial-and-error (traditional approach), or by an automatic 

supervised classification method such as SVM (Liu, Bharati et al. 2005). When the 

objective is to use the image information for predicting process or response variables of 

interest Y (i.e. multivariate image regression problems), this second set of data can be 

used to identify more specific masks using only the most relevant information for predicting 

Y. The number of masks (i.e. pixel groups) to use can also be determined by trial-and-

error or by an automated procedure combing unsupervised and supervised classifiers to 

extract the number of classes in an iterative manner (Noordam, van den Broek et al. 

2005). All of these approaches can be used to extract information from the features space 

(i.e. score density histograms) obtained by UWT-MIA. In this work a trial-and-error method 

is used to manually draw several masks to explore the score space and see what type of 

information is related to the main pixel clusters. However any method developed for MIA 

masking would be applicable. 

All image processing operations were performed in Matlab® (Image Processing Toolbox®) 

using custom scripts. To compute the continuous Gabor wavelet planes, Matlab® scripts 

from the Yawtb group (Jacques, Coron et al. 2007) were adapted for this application. Note 

that the scores values were scaled between 0-255 (min-max scaling), rounded and binned 

to construct the score density histograms (256 x 256 bins). The origin of the score density 

histograms (bin associated with the minimum score values) was set to be at the top left 

corner of the plots. This needs to be taken into consideration when interpreting the 

clustering patterns within the score spaces. 

5.6 Results and Discussion 

The UWT-MIA was performed on each set of images using the Gabor wavelet parameters 

listed in Table 5-1. The parameters were set by trial-and-error to provide meaningful 

textural information in order to segment important patterns within images. Note that in all 

three case studies, it was decided to apply no centering or scaling to the unfolded matrix X 

prior to performing PCA because auto-scaling led to a very similar interpretation. However, 

it is always recommended to verify the impact of scaling as part of the image analysis 

process. The following sections summarize and discuss the results obtained for each 

dataset. 
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Table 5-1 : Gabor wavelet parameters used for each image set 

Gabor wavelet parameters Set 1 Set 2 Set 3 

Number of wavelengths (K) 3 3 1 

s 

Min 1 1 1 

Max 40 40 50 

Interval 1 1 1 

Number of scales (I) 40 40 50 

θ 

Min 0 0 0 

Max 7π/4 7π/4 7π/4 

Interval π/4 π/4 π/4 

Number of angles (J) 8 8 8 

σ - 0.5 0.5 0.5 

ε - 5 1 1 

k0 - 5 5 5 

Total number of WPs 960 960 400 

 

5.6.1 Textural and spectral segmentation of a RGB image (Set 1) 

The results obtained after applying UWT-MIA to the synthetic textured RGB image 

(115219203) in Set 1 are shown in Figure 5-5. The wavelet decomposition was applied 

to each wavelength of the RGB image (K = 3, λ =Red, Green, Blue) using a total of 40 

scales (s = 1, 2, …,40) and 8 angles ( θ = 0, π/4, …,7π/4), which yields a 3-way array 

(WPC) of dimensions 11521920960. Although additional PCA components capture 

useful information, the first two were found sufficient for the purpose of illustrating how 

UWT-MIA extracts the color and orientation of the textural patterns (the frequency content 

of these patterns is similar across the image). The percentage of variance explained by the 

first two components was 84.6% and 4.7%, respectively. 



186 
 

 

Figure 5-5 : T1/T2 Score density histogram and P1/P2 loadings for Set 1 image 

The loading plot shown in Figure 5-5 reveals that the first component captures variations in 

light intensities associated with the three RGB color channels since all loadings have the 

same sign. Considering that the loading values are all negative, it is expected that the 

yellow, green, and blue pixels should be distributed from left to right along the T1 axis since 

yellow is the brighter color, blue is the darker color and green has intermediate intensity 

values. Thus, the first score image is just a grey level version of the RGB image, which is a 

typical result obtained with MIA (Duchesne, Liu et al. 2012).  On the other hand, the 

second component is clearly related to the orientation of the textural patterns in the image. 

The loading values are positive for horizontal patterns (θ = 2π/4 and 6π/4), negative for 

vertical patterns (θ = 0 and 4π/4), and near zero for diagonal patterns. Note that the 

relationship between the angles and the orientation of the patterns is counter-intuitive. 

However, this is in agreement with the spatial orientation of the Gabor wavelet as 

discussed in Section 5.5.1 and illustrated in Figure 5-3. It is also important to mention that 

additional PCA components capture useful information, but were not shown in the article 

for sake of conciseness. For instance, the fourth component captures the contrast 

between the red and blue channels. Combining T1 and T4 allows segmenting the yellow, 

green and blue textural patterns independently.  
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Figure 5-6 : Investigation of the pixel clusters in T1/T2 score density histogram. A) 

Raw image showing colored stripes and edges. Localization of pixels belonging to 

B) colored stripes and edge pixels and C) vertical, horizontal and diagonal patterns. 

D) Clustering of blue/green and yellow pixels. 

To investigate the information contained in the image, different regions of interest are 

explored in the T1/T2 score space, as shown in Figure 5-6. Pixels distribute along the T1 

axis according to the color of the textural region they belong to, but also depending upon 

whether they lie on colored stripes or edges (darker lines between colored stripes, see 

Figure 5-6A). Darker edge pixels have lower WP coefficients and, because of the negative 

T1 loadings, they fall in the right hand side of the score density histogram. The brighter 

colored stripes pixels have higher WP coefficients and fall in the opposite side of the score 

plot. This is consistent with the  information captured by T1, acknowledging that lighter blue 

stripes pixels might overlap slightly with darker yellow edge pixels in terms of grey level 

intensities. However, these ambiguities can be resolved by using T1 and T4 simultaneously 

in the segmentation process (not shown).  Along the second component (i.e. T2 direction), 

the pixels cluster according to the orientation of the textural region they are associated 
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with. First, it is important to mention that, in general, edge pixels yield negative WP 

coefficients while these are positive for colored stripes pixels. This is due to the fact that 

the Gabor filter has positive weights at its center (white pixels) and negative weights at its 

borders (black pixels) as shown in Figure 5-3. When the Gabor filter passes over a colored 

stripe, its positive weights are convoluted with strong grey level values therefore resulting 

in positive wavelet coefficients. The opposite situation occurs when the filter passes over 

edge pixels: the negative weights which are now over the adjacent colored stripes (strong 

grey level values) yield negative wavelet coefficients. Hence, the colored stripe signals are 

positively correlated with the Gabor wavelet whereas the edge signals are negatively 

correlated. Examples of WPs for Set 1 are provided in Figure 5-7. Considering this and the 

signs of the p2 loadings (Figure 5-5), pixels associated with horizontal colored stripes fall in 

the bottom-left corner of the score density histogram (high T2 scores values) and vertical 

colored stripes fall in the upper-left corner (low T2 scores values). For edge pixels having 

negative WP coefficients, the clustering pattern is exactly the opposite (Figure 5-6C). 

Since pixels belonging to diagonal patterns are associated with a mixture of horizontal and 

vertical signals, the diagonal information can be found in the middle range of T2. Finally, 

since yellow pixels have higher grey level values associated to the red wavelength (in the 

RGB color space), it is possible to find groups of yellow pixels always to the left of their 

green/blue counterparts (Figure 5-6D) along the T1 axis. 

 

Figure 5-7 : Pseudo-color images of WPs for Set 1 for λ = Red, s = 10 and for A) θ = 

0, B) θ = π/4, C) θ = 2π/4, D) θ = 3π/4. In the color map, red/yellow colors correspond 

to positive wavelet coefficients and blue/green colors to negative wavelet 

coefficients. 
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Figure 5-8 :  Masking of groups of pixels in the T1/T2 score space (in cyan), and 

overlay of the selected pixels in the raw image (in red) for Set 1. Masks are used to 

select A) diagonal, B) horizontal, C) vertical, D) yellow, and E) blue/green pixel 

regions. 



190 
 

The UWT-MIA masking procedure is illustrated in Figure 5-8. Various masks have been 

drawn to segment groups of pixels belonging to diagonal (A), vertical (B) and horizontal 

(C) texture regions independently of their color (spectral content). The last two masks were 

selected in such a way to segment groups of pixels associated with the yellow (D) and 

green/blue (E) regions, independently of the orientation of the textural patterns. This 

shows the ability of UWT-MIA to perform spectral-texture segmentation of multispectral 

images using a single MIA model. 

5.6.2 Textural and spectral segmentation in multiple RGB images (Set 

2) 

Set 2 consists of 6 RGB images of dimensions (120016003), two images for each object 

size (randomly spatially distributed in the image). Again, two types of variations are 

present in the images: the objects have different colors and sizes. The latter changes the 

frequency content within the images, which should be captured by the wavelet scales. 

Since the objects are perfectly circular, the UWT-MIA approach should not detect any 

preferential orientation. That is the loading values for the various angles at a given scale 

and wavelength should be similar. The UWT-MIA algorithm was applied to each image 

separately using 40 scales and 8 angles as in the previous case study (Set 1). After 

unfolding the six (12001600980) WPCs (one per image), the kernel algorithm (Geladi 

and Grahn 1996) was used to build a single MIA model (i.e. a common latent space for all 

images). The first two components explain about the same amount of variance in the 

image (19.6% and 18.8%, respectively). The loading plots and the T1/T2 global score 

density histogram are shown in Figure 5-9. 
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Figure 5-9 : T1/T2 Score density histogram and P1/P2 loadings for Set 2 images 

The signs of the loading values within each of the first two components clearly indicate that 

they capture the color of the objects. The first component explains the red color (contrast 

between the red and the other colors) and the second models the difference between the 

blue and the green colors. For both components, the periodic trend in the loadings 

indicates that from a textural perspective there is no preferential orientation because the 

loading values for a given color and scale are the same for all angles. However, this 

periodic trend also shows that loading values are smaller at lower scales (associated with 

higher frequencies or smaller objects) and larger at higher scales (lower frequencies or 

larger objects). It is therefore expected that the variability within each score vector is 

associated with the size of the objects. 

The T1/T2 score density histogram also shown in Figure 5-9 has four main regions of 

interest: red pixels fall in the region of low T1 values, blue pixels fall in the upper right (high 

T1 and low T2 values) region, and green pixels cluster the lower right region (high T1 and 

T2). Finally, background pixels (black color) fall in the center right region of the score plot. 

The variability within each region is not related with color variations (pure red, blue and 

green were used) but rather with the size of the objects (associated with the frequency 

content). The further we are from the center right of the plot (background pixels region), 

the smaller the objects captured are. This is mainly due to the fact that pixels belonging to 

smaller objects generate consistently higher positive WP coefficients at all scales 

compared to larger objects as a result of the convolution with the Gabor wavelet. Larger 
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objects are captured completely and only by wavelets at higher scales, as opposed to 

smaller objects which trigger a filter response at both low and high scales (as the Gabor 

wavelet will detect these small objects as an edge detector). Thus there is a cumulative 

effect discriminating smaller from larger objects. 

 

Figure 5-10 : Masking of groups of pixels in the T1/T2 score space (in cyan), and 

overlay of the selected pixels in the raw image (in cyan) for Set 2. Selected pixels 

correspond to A) background region, B) red objects, C) blue objects, D) small red 

objects, and E) large red objects. 
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The masking procedure for Set 2 images is shown in Figure 5-10. Since the loadings of 

the first principal component are negative for the red color, red pixels cluster in the left 

hand side of the score density histogram (low T1 scores), with smaller objects being at the 

extreme left since they have higher positive WP coefficients at all scales. The same 

explanation holds for the second component. Green pixels fall in the bottom-right corner 

since they are associated with positive p2 loadings (high T2 scores), whereas blue pixels 

are located in the upper-right section because of the negative p2 loadings (low T2 scores). 

Since they have higher positive WP coefficients compared to bigger objects, small blue 

objects fall in the top right and small green objects in the bottom right. The masks shown in 

Figure 5-10 select pixels associated with the black background (A) and pixels belonging to 

red (B) and blue (C) objects, respectively. Figures (D) and (E) illustrate that the red pixels 

projecting further away from the center of the score plot belong to progressively smaller 

objects. 

5.6.3 Texture segmentation in multiple cellular images (Set 3) 

The set of 6 grey level images of myoblasts (Set 3) was processed similarly as for Set 2, 

except that 50 scales were used instead of 40 (same number of angles). This yielded 

(12001600400) dimensional 3-way arrays (I=50, J=8, K=1). Again, a similar approach 

was used to build a single MIA model on this set of images, which contained three sources 

of variation: changes in light intensity, size and orientation of the cells (objects). The T1/T2 

score density histogram for all 6 images as well as the corresponding loadings plots are 

shown in Figure 5-11. Both components explain 78.1% and 6.5% of the variance, 

respectively. 



194 
 

 

Figure 5-11 : T1/T2 Score density histogram and P1/P2 loadings for Set 3 images 

The loadings of the first component capture variations in light intensities (grey levels) 

across the images (loading values are all negative) in addition to smaller variations that 

depend on scale. The latter are replicated for the different angles.  The second component 

combines variations in both the scale and orientation of the textural patterns (objects) 

within the images.  The loadings are positive for horizontal patterns (θ = 2π/4 and 6π/4) 

and negative for vertical patterns (θ = 0 and 4π/4). Again, diagonal patterns correspond to 

near zero loading values. 

 

Figure 5-12 : Investigation of the pixel clusters in T1/T2 score density histogram. A) 

raw image showing the cells cytoplasm and contour pixels. Localization of pixels 

belonging to B) cell contour and cytoplasm, C) vertical, horizontal, diagonal and 

background pixels. 

As can be seen in Figure 5-12A, the cell contour appears brighter than the cytoplasm due 

to the “halo” effect in phase contrast microscopy (Otaki 2000), and this has an impact on 
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the grey level values of the pixels and also on the WP coefficients. As a result of the 

convolution with a Gabor wavelet, pixels located within the bright contours of the cells 

have positive WP coefficients as opposed to pixels associated with the cells cytoplasm 

which have negative WP coefficients. As discussed for Set 1, the sign of the WP 

coefficients indicate whether the correlation of the image signals with the wavelet is 

positive or negative. Since the first component has negative loadings, pixels associated to 

the cells cytoplasm project in the right-hand side of the score density histogram (high T1 

scores) and pixels associated with the contours fall in the left-hand side (Figure 5-12B). 

Since the loadings capturing vertical patterns in the second component are negative, 

vertical contour pixels cluster in the top-left corner of the score density histogram (low T2 

scores) whereas pixels belonging to vertically oriented cytoplasm are found in the bottom-

right corner (high T2 scores, Figure 5-12C). For horizontal patterns the relationship is 

opposite because they are associated with positive loadings: horizontal contour pixels 

cluster in the bottom-left corner (high T2 scores) and the horizontally oriented cytoplasm 

pixels fall in the top-right corner (low T2 scores). Since background regions typically 

contain low frequency information, corresponding pixels fall in the middle of the score 

density histogram. Finally, pixels belonging to diagonal patterns are associated with a 

combination of horizontal and vertical signals. Thus, diagonally oriented objects are found 

in the middle range of T2. To better understand the impact of cell density and orientation 

on the clustering pattern of the pixels in the score space, a set of three individual images 

were projected on the global PCA model and the results are shown in Figure 5-13. As cell 

confluence increases, a greater number of pixels move from the middle of the T1/T2 score 

density histogram (e.g. image 3.1 in Figure 5-13) and outward (e.g. images 3.3 and 3.5 in 

Figure 5-13). As confluence increases and myoblasts grow, they become more elongated 

and oriented, and pixels tend to cluster in the top-left and bottom-right corners of the T1/T2 

score density histogram for vertical cells (e.g. image 3.3 in Figure 5-13) and in the bottom-

left and top-right corners for horizontal cells (e.g. image 3.5 in Figure 5-13). In this 

particular case, knowing the exact orientation of the myoblast is not so much important as 

detecting their global tendency to become preferentially oriented because this is an 

indication of the unset of cell fusion to form myotubes, and eventually muscle tissue (i.e. 

orientation is related with cell functionality). However, current studies on the anti-

inflammatory response of certain types of cells under flow conditions involve measuring 

how they orient themselves with respect to flow direction. It is also easy to imagine that the 
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specific orientation of certain types of defects on the surface of a product might be useful 

information for quality control and defect diagnosis. 

 

Figure 5-13 : T1/T2 individual score density histograms for three images of Set 3. A) 

Raw images, B) corresponding individual score density histograms. The effect of 

the degree of confluence (number of cells) and the cells orientation on the T1/T2 

score density histogram are shown. 
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Figure 5-14 : Masking of groups of pixels in the T1/T2 score space (in cyan), and 

overlay of the selected pixels in the raw image (in red) for Set 3. Selected pixels 

correspond to A) background regions, B) vertical cells, C) horizontal cells, D) 

cellular contours, and E) cells cytoplasm. 

The information contained in the cellular images is explored in Figure 5-14 using a 

masking/overlay procedure. The masks were selected in order to extract features related 

with level of confluence and cellular orientations. The mask drawn in the center of the 

score density histogram corresponds to background pixels (A), which have a medium grey 

level value and belong to low frequency regions within the image (compared to cellular 
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regions). The second and third rows of images show masks capturing pixels belonging to 

cells that are oriented vertically (B) or horizontally (C). The cells contours and cytoplasm 

masks are shown in row (D) and (E), respectively. Clearly, the light intensity-texture 

segmentation provided by the UWT-MIA approach could be used to track the level of 

confluence (number of cells) as well as the cell size and their orientation as a function of 

time during cell culture experiments. All of these features are physically meaningful for cell 

culture engineers. 

In the field of phase contrast microscopy, the UWT-MIA approach could be used to 

monitor cellular morphology and orientation in high throughput screening and process 

control applications. Cells respond to environmental signals that regulate their behaviors 

(cell differentiation, division, migration or fusion), and scientists and engineers study 

changes in their morphology to understand the influence of those signals (Theriault, 

Walker et al. 2012). Since myoblasts at high confluence tend to become oriented just 

before undergoing fusion and differentiation into myotubes or myofibers (Freshney 2000), 

textural segmentation and quantification provided by the UWT-MIA approach could be 

used to monitor and control cell cultures in real time to detect for example the onset of 

fusion. Furthermore, it could be used to detect a loss of cell viability associated to a drastic 

change in the cellular regions texture. 

5.7 Conclusions 

A new multivariate imaging technique based on the Undecimated Wavelet Transform and 

Multivariate Image Analysis (UWT-MIA) was investigated in this paper for simultaneous 

extraction of spatial and spectral information. It uses a state-of-the-art continuous wavelet 

transform for multi-resolution texture analysis and segmentation of grey-level and multi- 

and hyperspectral images. Continuous wavelets have a constant resolution over all scales 

that provide a better frequency resolution for extracting size distribution features, as shown 

by Liu and Macgregor (2008). Another important advantage of the approach is that the 

undecimated wavelet transform yields detail and approximation sub-images which have 

the same size and are spatially congruent. Hence, the sub-images obtained at all scales 

and orientations and for each wavelength of the image can be stacked as a separate 

channel in a new multivariate image. Multivariate Image Analysis (MIA) can then be 

applied on this new image for simultaneous extraction of spectral/color and textural 

information in a single modelling step. 
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The performance of UWT-MIA was demonstrated on three sets of images. The first set 

consists of a RGB image where a textural pattern was replicated within the image but was 

given different colors and orientations. In the second set, objects of different colors and 

sizes where randomly distributed within the images. Grey-level images collected during 

live cell culture experiments were used as the third set where cell number, size, shape and 

orientation change as a function of culture time. In all of these cases,  the UWT-MIA 

approach was shown to be successful at distinguishing groups of pixels belonging to 

regions of different colors and texture (e.g. associated with objects of different sizes, 

shapes, and orientations) within a single MIA model. 

The UWT-MIA is therefore a very flexible and versatile technique for tackling a wide variety 

of textural and spectral segmentation problems. In general, continuous wavelets require 

tuning a greater number of parameters compared to discrete wavelets (e.g. σ, ε and k0 for 

the Gabor wavelet), but they provide greater flexibility. The extraction of specific textural 

features for a given application can be tailored by appropriate selection of the wavelet 

function and its tuning parameters. In addition, all the Multivariate Image Analysis and 

Multivariate Image Regression (MIA/MIR) tools developed in the chemometrics literature 

(Prats-Montalban, de Juan et al. 2011; Duchesne, Liu et al. 2012) can be applied for 

segmentation in the latent variable space (i.e. score space) of the UWT-MIA model.  

Finally, the method can also be cast within the multiresolutional multivariate image 

analysis (MR-MIA) framework proposed by Liu and MacGregor (2007). In particular, the 

unique model provided by UWT-MIA could serve as a sound basis for selecting which of 

MR-MIA I or II approach is best suited for the problem of interest. Indeed, if the loading 

values obtained by applying UWT-MIA in a MR-MIA I fashion are similar for all 

wavelengths of a multi- or hyperspectral image, this would suggest that MIA should be 

used first to compress the image spectral information and then followed by applying UWT 

on the score images to capture spatial information (i.e. use MR-MIA II instead). 
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6.1 Résumé 
La morphologie cellulaire constitue un marqueur macroscopique important de la 

physiologie cellulaire, et la caractérisation de la forme des cellules constitue un moyen de 

sonder l'état d’une culture in vitro. À cet effet, la microscopie en contraste de phase (PCM) 

est un outil précieux car elle peut permettre de longues périodes d'observation en 

générant très peu d’artefacts de culture. Deux approches générales sont couramment 

utilisées pour analyser les images: la segmentation d’objets individuels et leur 

caractérisation par reconnaissance de patrons. La segmentation de cellules individuelles 

est difficile à réaliser dans les images de cellules adhérentes acquises en PCM puisque 

leur contour est souvent irrégulier et flou, et ce phénomène s’aggrave lorsque la culture 

est confluente et que les cellules se regroupent. Alternativement, les approches de 

reconnaissance de patrons telles que la transformée par ondelettes non-décimées 

combinée à l’analyse d'image multivariée (UWT-MIA), peuvent générer des 

caractéristiques texturales liées à la morphologie cellulaire. Un ensemble de données 

incorporant 200 images de calibration a été utilisé afin de calibrer des modèles de 

régression PLS afin d’estimer les distributions des caractéristiques morphologiques des 

cellules (axe majeur, axe mineur, orientation et rondeur) pour chaque image. Les modèles 

PLS construits ont ensuite été appliqués sur l’ensemble de la base de données 

incorporant 631,136 images de cultures de myoblastes acquises dans des conditions 

différentes. Une analyse statistique multivariée sur les données a montré que les cellules 

cultivées dans un milieu sans sérum étaient plus petites et plus allongées que les cellules 

cultivées dans un milieu supplémenté de sérum. Cette technique robuste peut donc être 
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utilisée sur de grands ensembles d’images de cellules vivantes (acquises en PCM) afin 

d’évaluer la morphologie et la cinétique de croissance cellulaire par rapport aux conditions 

de culture, ce qui pourrait être bénéfique pour le criblage à haut débit et les applications 

de contrôle automatisé de cultures cellulaires. 

6.2 Abstract 

Cell morphology is an important macroscopic indicator of cellular physiology, and 

increasing emphasis is put on cellular shape characterization as a mean of probing in vitro 

culture state. Phase contrast microscopy (PCM) is a valuable tool for observing live cells 

morphology over long periods of time with minimal culture artifact. Two general 

approaches are commonly used to analyze images: individual object segmentation and 

characterization by pattern recognition. Single-cell segmentation is difficult to achieve in 

PCM images of adherent cells since cell contour is often irregular and blurry, worsening 

when the culture reaches confluence and cells bundle together. Alternatively, pattern 

recognition approaches such as the undecimated wavelet transform multivariate image 

analysis (UWT-MIA), allows extracting textural features from PCM images that are 

correlated with cellular morphology. A Partial Least Squares (PLS) regression model built 

using textural features from a set of 200 ground truth images was shown to predict cellular 

morphological feature distributions (major axis, minor axis, orientation and roundness) 

accurately for each image. The PLS models were then applied  on a large dataset of 

631,136 images of myoblast cultures acquired under different conditions, and multivariate 

statistical analysis showed that the cells grown in a serum-free medium were smaller and 

more elongated than cells grown in a serum-supplemented medium. This robust technique 

can therefore be used on large datasets of PCM live-cell imaging pictures to assess 

cellular morphology and growth kinetics in relation to culture conditions, which could be 

beneficial for high-throughput screening and automated cell culture control applications. 

 
  



 203 

6.3 Introduction 
Changes in cellular morphology are known to be a macroscopic manifestation of different 

intracellular molecular processes such as the actin-polymerization pressure at the cell 

edge, myosin-dependent contraction of the actin network, the adhesion to an extracellular 

matrix and membrane tension (Ambuhl, Brepsant et al. 2012). Thus cell morphology can 

provide insights into the cellular state. Cellular morphology is one of the fundamental 

criteria used to visually classify cells into histologic types, since there is a strong 

relationship between the shape of the cell and its functional integrity in several specialized 

cells (Olson, Larson et al. 1980). Cellular morphology has been linked to growth control in 

normal cells, and several observations suggest that the shape of adherent cells changes 

during viral and oncogenic transformations (Olson, Larson et al. 1980). Cells respond to 

environmental signals that regulate their behaviors (cell differentiation, division and 

migration), and scientists as well as engineers study changes in their morphology to 

understand the influence of those signals (Theriault, Walker et al. 2012). 

Cell morphological analysis can be performed using two different types of image analysis 

approaches: single-cell segmentation and pattern/texture recognition (Sommer and Gerlich 

2013). The single-cell segmentation approach aims at detecting cellular regions or edges 

by applying a series of mathematical operations based on pixel intensity values. It can be 

easily implemented to analyze epifluorescence microscopy (EM) images having a good 

contrast between the cells and the background. Several methods are available for cell 

segmentation and differ essentially by the algorithms used in order to obtain a 

segmentation map. Once the cells are segmented, geometrical features (e.g. cell 

equivalent diameter, roundness, etc.) can be computed for each cell within the image. 

Alternatively, pattern recognition approaches (segmentation-free) are applied in cases in 

which segmentation of the cells is difficult to achieve because of high cell densities (cells 

are touching) or when dealing with complex cellular structures (Sommer and Gerlich 2013; 

Weber, Fernandez-Cachon et al. 2013). Single-cell segmentation in phase contrast 

microscopy (PCM) images remains a challenge because of the uneven illumination of the 

samples (Rimon and Schuldiner 2011), the bright halo and uneven contour surrounding 

the cells, the blurry cell-cell interfaces at high degrees of confluence and the low contrast 

between the background and cellular regions (Bradbury and Wan 2010; Juneau, Garnier 

et al. 2013). The incentive of using PCM over EM is that this technique is non-intrusive and 

less detrimental to the cells, since it does not require fluorescent dyes and exposure to UV 

light. This can be particularly useful for long-term cell culture analysis, for which 
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introduction of artifacts must be minimized. Since cells are difficult to segment in PCM, 

using pattern recognition approaches can be advantageous because of their ability to 

monitor cells from initial seeding to terminal high confluence, enhancing the scalability of 

this approach for high-throughput screening experiments (Weber, Fernandez-Cachon et 

al. 2013). 

Pattern recognition approaches are aimed at classifying pixels or images based on the 

arrangements of descriptors or features (Gonzalez and Woods 2008). Image features can 

be seen as quantitative values extracted by image processing algorithms providing 

representative discriminative information (from a textural, spectral or morphological 

perspective) at the pixel, image region or whole image levels. Identifying the most useful 

features for a given pattern recognition problem is not straightforward, as feature selection 

is application dependent (Rodenacker and Bengtsson 2003). Textural features are of 

particular interest because they consider both the spatial distribution of the grey values 

and the overall grey values (Rodenacker and Bengtsson 2003). Several pattern 

recognition applications for PCM images of biological samples, relying on textural or 

related features, are reported in the literature. For example, grey level co-occurrence 

matrix (GLCM) and histogram related features were used to classify pixels related to either 

background, living or necrotic cells in epithelial cell cultures (Malpica, Santos et al. 2003); 

local binary patterns, Haralick statistics and threshold adjacency statistics features were 

used to distinguish (via a support vector machine classifier or SVM) human 

cardiomyocytes induced pluripotent stem cells from human embryonic stem cells (Paci, 

Nanni et al. 2011); Fourier descriptors were used to characterize differentiated and non-

differentiated neural stem cells (Xiang and Datian 2009); Laplacian differential operator 

features were used to detect stem cells blobs by filtering the image with a series of 

Gaussian filters (Laplacian-of-Gaussian or LOG) (Huiming, Xiaobo et al. 2009), and 

shape-based and appearance-based features were used to classify fibroblasts 

morphological state via an Adaboost algorithm (Theriault, Walker et al. 2012). Most articles 

used textural and other features to distinguish cellular type, but few tried to find robust 

image features to study the impact of environmental conditions on cellular morphology.  

Textural analysis methods available for pattern recognition belong to four categories: 

statistical methods (e.g. GLCM), geometrical methods (e.g. Voronoi tessellation), model 

based methods (e.g. random field models and fractals) and signal processing methods 

(e.g. wavelets) (Tuceryan and Jain 1999). Signal processing methods relying on wavelet 
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transforms are preferred to the Fourier transform since they consider both signal 

frequencies and spatial information in an image (Liu 2004). Althought most industrial 

applications use the discrete wavelet transform (DWT) (Tessier 2006; Gosselin 2010), the 

continuous undecimated wavelet transform (UWT) is increasingly used because it provides 

better spatial and frequency resolution (Liu and MacGregor 2008; Liu, Gui et al. 2011). 

The use of wavelets to analyze microscopic cellular images is still scarcely reported in the 

literature, as they are mostly used in EM for image denoising (Olivo-Marin 2002), for 

segmenting bright spots associated to cells (Padfield, Rittscher et al. 2011) or for 

generating textural features related to cellular state (e.g. expression of Htt-Q15/ Htt-Q138 

in neurites) and to cell morphology (Wu, Schulte et al. 2010). Several PCM applications 

using wavelet texture analysis are available in the literature for example to assess the 

quality of oocytes cells for assisted insemination (Caponetti, Castellano et al. 2009) or to 

track suspended cells via Haar-like features (Chao-Hui, Sankaran et al. 2012). However, in 

most cases, PCM applications using wavelet features focus on round and isotropic cells 

and are not adapted for characterizing highly anisotropic adherent cells. There is still a 

need to develop a robust pattern recognition approach based on wavelet transform 

features that would be able to relate culture conditions to cellular morphology and cellular 

types observed in PCM. 

In this work, we propose a novel PCM image analysis method based on the extraction of 

robust textural features computed using the undecimated wavelet transform multivariate 

image analysis (UWT-MIA) approach (Juneau, Garnier et al. 2015). The features extracted 

by UWT-MIA were found to be correlated with cellular morphological descriptors (major 

axis, minor axis, roundness and orientation distributions) computed from PCM images 

without performing cell segmentation. As an application example, these are used to 

distinguish the morphology of human myoblasts proliferated either in a serum-

supplemented medium (SSM) or a serum-free medium (SFM). The proposed approach 

can be useful for online adherent cell culture control and also for high-throughput 

screening experiments relying on label-free microscopic methods. 

6.4 Materials and methods 

Human myoblasts from a primary cell line (kindly provided by Dr. J.P. Tremblay, CRCHUL) 

were cultivated over several passages in SSM (MCDB120 + 15% FBS) and in SFM 

(Parent 2009) in 6-well plates. Both media used MCDB120 as a base medium, which is an 

optimized nutrient medium for human muscle stem cells (Ham and Blau 1988). Inoculation 
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density was between 5,000 to 20,000 cells/mL, with a working volume of 2 mL/well. 

Growth medium was changed every 2-3 days. PCM images were captured with an IX-81 

microscope (OlympusTM) equipped with an automated stage and a Qimaging® 

monochrome camera at 20X. The resolution of the images is 0.36 μm/pixel. An incubator 

was mounted on the microscope stage to maintain the culture plate at 5% CO2 and 37.5 

ºC. The experimental set-up was controlled using the Metamorph® software (Molecular 

DevicesTM), and the focus was adjusted for each frame using the autofocus utility. Every 3 

hours, 121 images per well were captured (one acquisition) according to an 11 x 11 

rectangular grid, 0.4 mm apart. A total of 631,136 images were acquired over 23 

experiments (138 wells), from seeding to confluence. Image quality was assessed 

manually for each acquisition (overall quality for each acquisition of 121 images). 

Image analysis using the UWT-MIA approach was implemented within the Matlab® 

environment. The Image Processing Toolbox® was also used to develop the custom 

scripts.  Multivariate data analysis was performed using either the PLS Toolbox® 

(Matlab®) or SIMCA-P® (UmetricsTM). A set of 200 ground truth images in which individual 

cells were segmented manually in a previous study (Juneau, Garnier et al. 2013) was used 

as a calibration dataset. 

6.5 Image processing and data analysis 
Several steps are required to estimate cellular morphological features for a whole 

database (illustrated in Figure 6-1): 

1. Performing UWT-MIA on the calibration dataset; 

2. Calibrating PLS models and mask parameters to estimate cellular morphological 

features; 

3. Computing cellular morphological features for the whole database. 
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Figure 6-1 : Major steps involved in the proposed pattern recognition approach to 

estimate and analyze cellular morphological features. Using wavelet planes cubes 

(WPCs), it is possible to generate score density histograms (SDHs) by performing a 

principal component analysis (PCA) and to compute morphological features via 

Partial Least Squares (PLS) models. 

In Step 1, the images in the calibration dataset (200 images) are submitted to the UWT-

MIA: wavelet planes cubes (WPCs) are computed (one per image), the wavelet 

coefficients are unfolded and a principal component analysis (PCA) is performed. T1/T2 

score density histograms (SDHs) are computed for each image of the calibration dataset. 

In Step 2, the calibration segmentation maps (associated to the 200 calibration images) 

generated manually are used to compute measured cellular morphological features 

(serving as a Y matrix). The SDHs from Step 1 are used to compute pixel counts under 

defined masks (designed using specific parameters) in order to compute UWT-MIA 

textural features (serving as an X matrix). With both the X and Y matrices, optimal PLS 

regression models are identified (along optimal mask parameters) via grid search in order 

to estimate cellular morphological features. 

In Step 3, each image in the complete database is processed, and for each a WPC is 

computed. WPCs are projected into the latent space defined in Step 1 using the loadings 

matrix P to compute SDHs. Using the PLS models regression coefficients and mask 
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parameters determined from Step 2, estimates of the cellular morphological features are 

computed for each image in the database. The data generated is used to correlate 

morphological traits to culture conditions or cell types by means of multivariate analysis. 

6.5.1 UWT-MIA performed on the calibration dataset 

The UWT-MIA (Juneau, Garnier et al. 2015) mainly consists of computing a Gabor wavelet 

plane transformation at different scales and orientations on the image set, followed by 

performing a Principal Component Analysis (PCA) (Wold, Esbensen et al. 1987) on the 

stack of wavelet planes. This allows capturing textural and spectral information from each 

image at the pixel level. Pixels associated with similar textural patterns within the images 

will cluster together in the PCA scores space where the different textural regions should be 

discriminated. The way to apply MIA on several WPCs is to use a kernel algorithm (Geladi 

and Grahn 1996), which involves computing the variance-covariance matrix for all the 

WPCs followed by a singular-value decomposition (SVD) to estimate a common PCA 

latent variable space based on all the images of the set. 

The UWT-MIA was performed on the 200 calibration images for which PCA loadings and 

the global T1/T2 score density histogram are presented in Figure 6-2 and Figure 6-3, 

respectively. The first component (related to pixels intensities) explains 92.2% of the 

variance in the WPCs as the second component (related to the texture inside the images) 

explains 2.0% of the variance. Each WPC incorporates 400 Gabor wavelet planes that 

were constructed using scales s =1 to 50 (by increments of 1) and angles θ = 0 to 7π/4 

radians (by increments of π/4) using the following Gabor wavelet parameters: σ = 0.5, ε = 

1 and k0 = 5. These parameters were adjusted by trial-and-error using a few images to 

roughly match the shape of a myoblast cell imaged in PCM. This approach was adopted 

because there are no formal guidelines in the literature to select the type of wavelet that 

would be appropriate for a given image processing problem. To generate the score density 

histogram T1/T2, the scores were rescaled between 0 and 255. 
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Figure 6-2 : Loadings for PCA performed on the WPCs of the 200 calibration images. 

The blue and red lines correspond to the first and second components, 

respectively. 

 

Figure 6-3 : A) T1/T2 score density histogram of the global PCA model built from the 

200 calibration images. The color scale (from black to white) indicates the density of 

pixels having a certain combination of T1/T2 values. Pixels associated with B) 

background regions C) cell of different sizes, and D) orientations. 
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Figure 6-2 provides the loadings (and the relative importance) associated to each wavelet 

plane in a given latent component: the loadings associated to a specific orientation θ are 

enclosed within vertical lines. Between two vertical lines it is possible to see the relative 

influence of scale in the textural information captured (for a constant orientation θ). As 

shown in Figure 6-2, the variance captured by the first component is related with changes 

in grey level intensities across the image since it has uniform negative loadings (all 

channels have the same sign) and no relationship with scale or orientation. The second 

component captures textural information related with the size and the orientation of the 

cells in the images because the loadings are positive for vertical patterns (θ=0 and 4π/4) 

and negative for horizontal patterns (θ=2π/4 and 6π/4), and also vary as a function of 

scale. Figure 6-3 shows the raw T1/T2 global score density histogram (A) as well as masks 

identifying the regions where image pixels are associated with background (B), cells of 

different sizes (C), and orientations (D). Note that pixels associated to large cells (low 

frequency signal) usually end-up around the background pixels region (very low frequency 

signal). The traditional way of extracting features using MIA is to mask a region in the 

features space (score density histogram), then count the number of pixels falling under the 

mask, and finally overlay these pixels in the original image to interpret the information 

captured by MIA (Duchesne, Liu et al. 2012). The masks can be determined manually by 

trial-and-error or can be determined by an automated supervised method (Liu, Bharati et 

al. 2005). In this work UWT-MIA features were calculated by using a series of masks 

segmenting the regions within the score density histogram T1/T2 related with the 

orientation and the size distribution of the cellular population. 

The main output of the UWT-MIA are the individual T1/T2 score density histograms (SDH, 

one per image), which can be used to provide textural features via the masking procedure. 

The SDHs contain information about groups of pixels belonging to certain textural regions 

associated to cells of different shapes, sizes and orientations. Figure 6-4 provides several 

images with their associated SDH for low (A) or high (B) cell confluence, for round cells (C) 

and for elongated cells oriented vertically (D) or horizontally (E). Examples of 

masking/overlays in the T1/T2 global score density histogram are provided in Figure 6-5 for 

background pixels (A), for big or round cells (B) and for small or elongated cells (C). 
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Figure 6-4 : Images and their SDH for low (A) or high (B) cell confluence, for round 

cells (C) and for elongated cells oriented vertically (D) or horizontally (E). 
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Figure 6-5 : Illustration of the masking procedure in the T1/T2 score density 

histograms. Three different masks are applied (cyan color) on pixel regions 

associated with the background region (A), round or large cells (B) and small or 

elongated cells (C). The identified pixels are then overlaid onto three PCM images. 
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6.5.2 Extraction of relevant image features for cellular morphological 

characterization 

The calibration dataset (200 hand-segmented ground truth images)(Juneau, Garnier et al. 

2013) was processed by UWT-MIA and was used to calibrate Partial Least Squares (PLS) 

(Wold, Sjostrom et al. 2001) models in order to predict cellular morphological features 

such as the distribution of major and minor axes, the cell roundness and orientation. The 

roundness of a cell is defined as the ratio of its minor axis over its major axis length. A 

circular cell has a roundness value around 1 whereas a very elongated cell has a value 

tending towards zero. 

The cell major axis, minor axis, roundness and orientation distributions are generated by 

computing the number of cells falling in specific classes from the manual segmentation 

map generated by the experimenter (Y variables). The matrix of predictors (X) used for 

building the PLS models consists of the UWT-MIA features obtained by counting the 

number of pixels falling under different masks (areas of the individual score density 

histogram T1/T2), extracting information about each cellular feature of interest. The masks 

are shown in Figure 6-6. To capture the features related with cell sizes (cell major axis, 

minor axis and roundness distributions), a series of concentric elliptical masks around the 

background pixels region (manually drawn) is used. The major axis length of these masks 

is parameterized by an and its minor axis by r*an. The width of the annular region formed 

by two concentric masks is Δa (Figure 6-6A). To generate features for the cell orientation 

distributions, the score density histograms are divided into a series of triangular masks. 

The size of these mask is parameterized by angle ΔΩ. Note that the background mask 

used for estimating the cells orientation distribution (Figure 6-6B) is larger than the 

manually drawn background mask used for the other cell size distributions (Figure 6-6A) in 

order to focus on high frequency information related with cellular orientation. 
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Figure 6-6 : Parameters associated with the series of masks used for estimating A) 

cell size related distributions and B) cell orientation distribution. 

The 200 ground truth calibration images were divided into two groups (2/3 calibration, 1/3 

validation) in a random fashion in order to have two representative groups (from a degree 

of confluence perspective). The masks parameters and the number of PLS components 

(Ncomp) were determined by grid search to maximize the predictive power of the model in 

calibration and validation (R2
CAL and R2

VAL) for the total number of cells as well as the 

number of cells in each individual morphological feature class. Table 6-1 provides the 

distribution specifications for Y variables (cellular morphological features), the optimal 

mask parameters for X variables (to generate UWT-MIA features) and the statistics 

quantifying the performance of the PLS models. Note that the PLS analysis was performed 

on each Y matrix associated to each morphological features distribution as a whole (PLS-2 

method). The PLS models provided a good predictive performance for most of the cellular 

feature distributions (R2
CAL and R2

VAL values above 90% for most morphological features). 

Note that the 200 ground truth calibration images include a variety of cell shapes, 

orientations and densities that were grown in two different culture media (SSM and SFM). 
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 Table 6-1 : Optimal mask parameters and PLS models performance for each cellular 

morphological features distribution estimated using UWT-MIA features. 

 

Examples of the performance of PLS models to estimate cellular morphological features 

distributions are provided in Figure 6-7 using two such PCM images (from the calibration 

set). Small differences can be seen between the ground truth data and the PLS predictions 

for individual morphological features, but the overall distributions are well represented. 

There is a total of 39 morphological features computed for each image from PLS models 

(i.e. bins of the discrete distributions of major and minor axes, roundness and 

orientations). 

The PLS models built using ground truth calibration images were then applied  on the 

entire image dataset to assess the effect of culture medium on myoblast morphology. Also, 

for each image, the cell-covered surface ratio (CCSR) was computed (Juneau, Garnier et 

Duchesne (2013)), defined as the ratio of the number of pixels belonging  to cells over the 

total number of pixels in the image (measure of confluence). An additional multivariate 

analysis was then performed on the estimated morphological features distributions to 

highlight the main relationship between myoblast morphology and culture medium (as an 

application example). 

Major axis distribution Minor axis distribution Roundness distribution Orientation distribution

Distribution Specifications (for Y)

Number of classes 22 10 4 3

Smallest class 50 - 60 pixels 10 - 20 pixels 0 - 0.25 0
o

Largest class 260 - 270 pixels 100 - 110 pixels 0.75 - 1.00 90
o

Classes resolution 10 pixels 10 pixels 0.25 45o

Optimal Mask Parameters (for X)

amin  (pixels) 62,59 62,59 62,59 126,59

amax  (pixels) 256 256 256 -

Ωmin  (rads) - - - 0

Ωmax (rads) - - - 29π/16

r 0,35 0,15 0,3 0,15

Δa (pixels) 1 1 1 -

ΔΩ (rads) - - - 3π/16

PLS Models Performance

Ncomp 11 7 7 9

R
2

CAL total number of cells 0,954 0,897 0,940 0,938

R2
VAL total number of cells 0,901 0,922 0,939 0,939

Max R
2

CAL individual classes 0,934 0,887 0,947 0,960

Min R2
CAL individual classes 0,725 0,436 0,673 0,868

Avg R2
CAL individual classes 0,837 0,737 0,834 0,915

Max R2
VAL individual classes 0,821 0,899 0,943 0,945

Min R2
VAL individual classes 0,364 0,211 0,682 0,770

Avg R2
VAL individual classes 0,613 0,579 0,777 0,834
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Figure 6-7 : Performance of PLS models for estimating cellular morphological 
features distributions illustrated on two calibration images. Black bars are manual 
cell counts (ground truth data) and hatched  bars are cell counts estimated by the 

PLS models. 
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6.5.3 Estimation of cellular morphological features for the entire PCM 

image database 

The PLS models were then applied to the whole PCM images dataset (631,136 pictures) 

and morphological cellular features were computed for each image. The PLS predictions 

results were used to assess the evolution of the morphological features through culture 

time and to discriminate cells grown in SSM from those in SFM. 

6.5.3.1 Evolution of morphological cellular features through culture time 

The CCSRs and the morphological features were computed for each image in each of the 

138 wells.  For each well, it is thus possible to plot the evolution of these features through 

culture time, from seeding to confluence. To illustrate this concept, results from two typical 

wells are shown in Figure 6-8, one well for myoblasts grown in SSM and another well for 

myoblasts grown in SFM (both at low passage). For each acquisition time, the average 

CCSR over 121 images is computed (11x11 grid). Also, an average cell count 

(cells/image) was obtained by summing the estimated cell counts (from the PLS models) in 

the individual bins for the minor axis distribution (see Figure 6-8). Note that a similar 

computation to have estimated cell counts can be performed also on either the major axis, 

the roundness or the orientation distributions. The evolution of the average cell counts and 

the average CCSR for both wells are shown in Figure 6-8. As can be seen, there is a good 

correlation between the average CCSR curves and the average cell counts, both media 

supporting similar growth kinetics (confirming the results presented in Juneau, Garnier and 

Duchesne (2013)). 
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Figure 6-8 : Average CCSR and average cell count curves (sum of individual minor 

axis bins) for a typical SSM and SFM well. 

Using morphological features distributions, the average minor and major axis lengths, the 

average cellular orientation and the average cellular roundness for each acquisition (over 

121 images) were computed. For the same two typical wells, these metrics are shown in 

Figure 6-9. 
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Figure 6-9 : Average major axis (A), minor axis (B), orientation (C) and roundness 

(D) curves for a typical SSM and SFM well. SSM curves are in red and SFM curves 

are in blue. 

As can be seen in Figure 6-9, cells grown in SFM are longer (higher average major axis), 

thinner (lower minor axis) and less round (lower average roundness) than when they are 

grown in SSM. Furthermore, the average cell orientation changes for both wells through 

time, as cells bundle together (as CCSR increases). 

The fetal bovine serum (FBS) lot used in SSM can also influence growth kinetics and 

cellular morphology. Figure 6-10 shows that with FBS lot #2 (FBS2), myoblasts growth is 

much slower (lower CCSR and cell count) and produce smaller cells in terms of major axis 

and minor axis (on average) than with FBS lot #1 (FBS1). 
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Figure 6-10 : Average CCSR and average cell count curves (sum of individual minor 

axis bins) (A), major axis (B) and minor axis (C) for two SSM wells with FBS1 (red) 

and FBS2 (blue). 

6.5.3.2 Multivariate analysis to assess the effect of culture medium on cellular 

morphology 

The major axis, minor axis, roundness and orientation distributions for each image of the 

database were computed using the PLS models, generating 39 morphological features. 

For each image, an estimate of the CCSR was also computed. Morphological features and 
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the CCSR for each acquisition (121 images x 40 features) were averaged and used in 

further analyses. After bad quality images were removed by the experimenter (i.e. mainly 

because of wrong focus), a total of 5,085 data points (corresponding to a total of 615,285 

PCM images) were analyzed. 

A new PCA model was built within SIMCA-P® on all the data points to capture most of the 

variance in the cellular morphological features space. Using 7 components selected 

automatically by cross-validation, as much as 99.7% of the variance was captured. 

Components 1 and 2 alone captured 86.9% and 9.6% of the variance, respectively. The 

two T1/T2 scores scatter plots in Figure 6-11 shows the information captured by each 

component using color maps. 

 

Figure 6-11 : : T1/T2 scores scatter plots of the PCA model built on the 

morphological features extracted on the entire PCM image dataset.  A) Points are 

colored according to CCSR, from low (blue) to high (red) values. B) Points colored 

according to the culture medium used, red (SSM) and blue (SFM). 
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The first principal component (T1 scores) clearly captures information related with CCSR 

(increase of confluence through time), as low ratios (blue) clearly appear on the left of the 

graph and high ratios (red) on the right (Figure 6-11A). In Figure 6-11B, at low CCSRs (at 

low degrees of confluence, at the beginning of the cell cultures), there is not a significant 

difference between cells grown in SSM (red) and cells grown in SFM. However, as the 

CCSR increases (from left to right), two clusters emerge and are distinguished by the 

culture medium used (top right is SSM in red and bottom right is SFM in blue). 

 

Figure 6-12 : Loadings of the first (black) and second (red) PCA components. Maj 

corresponds to the major axes (in pixels), Min corresponds to the minor axes (in 

pixels) and Round corresponds to roundness. 

Figure 6-12 shows the loadings associated to the first two PCA components. It can be 

seen that all the morphological feature variables have similar loadings for the first 

component (black), which is expected since the number of cells detected in each cellular 

features bin is roughly proportional to the CCSR (and the degree of confluence). However, 

for the second component, variables associated to the minor axis and roundness 

distributions seem to be the most critical to distinguish cells grown in SSM from cells 

grown in SFM. In Figure 6-11B, blue points associated to negative scores (SFM cells) are 

mostly influenced by variables with negative weights (in Figure 6-12) as red points (SSM 

cells) associated to positive scores are influenced by variables with positive weights. 

These results show that cells grown in SSM are rounder (roundness variables from 0.5 to 

1 have strong positive weights) and are larger than average (minor axis variables from 60 

to 110 pixels have strong positive weights). In comparison, cells grown in SFM are more 

elongated (strong negative weights for roundness variable 0-0.25 and for major axis length 
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variable 260-270 pixels) and are finer (strong negative weights for minor axis variables 

from 10 to 60 pixels). 

The main conclusions drawn from the PCA analysis are as follows. Cells grown in SFM 

are thinner relative to their minor axis length, with the most important contributors in the 10 

to 60 pixels range (4 to 22 μm) compared to cells grown in SSM, with important 

contributors in the 60 to 110 pixels range (22 to 40 μm). SFM cells are also more 

elongated on average, with more cells that have a 260 to 270 pixels length (95 to 99 μm) 

and a roundness below 0.25. This is in agreement with experimental observations, in 

which cells grown in SFM are finer, a little smaller and more elongated than cells grown in 

SSM. Typical images are shown in Figure 6-13 (scale bar provided). 

 

Figure 6-13 : Typical images of myoblasts grown in SSM and SFM at low and high 

CCSR (at confluence). 
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6.6 Discussion 
Culture conditions may have an influence on cellular state, differentiation and morphology, 

and image processing techniques relating the effect of culture medium composition to 

morphological features can provide useful insights. For instance, the effect of serum and 

insulin concentrations on the differentiation of mesenchymal stem cells and lipid 

accumulation in adipocytes was assessed using morphological features relying on image 

processing (Or-Tzadikario, Sopher et al. 2010). In the case of myogenic cells, myoblasts 

proliferate and migrate in a random fashion on a substrate and align themselves as they 

reach confluence and differentiate to form myotubes (Freshney 2000). The culture medium 

used can affect myogenic cellular state and thus the morphology and subsequent 

differentiation. For example, when inducing cellular fusion, freshly isolated muscle 

precursor cells (MPCs) that were expanded and differentiated in the presence of rh-Wnt3A 

formed larger myotubes (with a greater average size) than untreated MPCs (Agley, 

Velloso et al. 2012). The impact of the culture medium used in the current work was 

already assessed qualitatively: myoblasts grown in SFM (LOBSFM) contained more 

granules, formed more vacuoles and were more elongated (more delicate) than myoblasts 

grown in SSM, showing a certain impact of the culture media on cell state. However it was 

shown quantitatively that the SFM was providing similar cellular growth kinetics than SSM 

(Parent 2009; Juneau, Garnier et al. 2013), while maintaining cellular phenotype. For both 

SFM and SSM, this qualitative assessment was confirmed in a quantitative manner by 

applying multivariate statistical methods on cellular features generated from image 

processing. The possibility to monitor the evolution of morphological cellular features 

distribution through time using PLS models was demonstrated. The time series provided in 

Figure 6-8, Figure 6-9 and Figure 6-10 show that these could be used as potential soft 

sensors for cell culture monitoring and control. 

As an application example, the PCA analysis showed that at the beginning of the cell 

culture (CCSRs below 26%, blue points in Figure 6-11A), the cells grown in both culture 

media have similar morphologies. This can be explained by the fact that just before being 

seeded, the cells are trypsinized and suspended (become spherical), and it takes some 

time before they recover their functional shape relative to the culture conditions used once 

they adhere to a new substrate. The PCA analysis reveals the possibility to distinguish two 

cellular populations (SFM versus SSM) as soon as cells reach a CCSR over 25-26% 

(green points in Figure 6-11A). It is expected that changes in a single culture media or 

culture conditions through time could be detected in a similar fashion. On average, cells 



 225 

need 55 ± 10 hours (at passage 5 or 6) to reach a CCSR of 25% so the effect of culture 

medium on the morphology of both populations becomes visible. The PCA loadings plot 

interpretation confirmed in a quantitative manner that cells grown in SFM are more 

elongated and smaller (roundness distribution leaning towards lower values, minor axis 

distribution leaning towards lower values). The method developed in the current work 

together with culture experiments suggest that it may be possible to track the impact of 

changes in culture media  on cellular morphology using PCM images. Assuming that 

morphological changes can be linked to the cell functionality, the proposed approach may 

be used for cell culture monitoring in a non-intrusive manner. Once calibrated, the PLS 

models built can be used on a significant quantity of data. Multivariate analysis performed 

on the morphological features can be used to distinguish cell populations grown in different 

culture conditions (if culture conditions have an impact on cellular shape or growth 

kinetics). 

Since UWT-MIA features rely on pattern recognition, it avoids issues associated to single-

cell segmentation methods. The accurate segmentation and measurement of 

morphological characteristics of adherent cells with non-uniform shapes (such as cells of 

the myogenic lineage) is difficult (Agley, Velloso et al. 2012). Myoblasts usually generate 

pseudopods, which are transient protrusions of the cellular membrane used for locomotion 

and phagocytosis which are important to detect correctly via image processing when 

performing mobility and morphological studies based on single-cell segmentation (Zimmer, 

Labruyere et al. 2002). Because pseudopods are usually partly or entirely localized outside 

of the focal plane, they appear at a much lower contrast than most of the cell membrane in 

PCM, and thus tend to be treated by snakes (edge detection method for segmentation) as 

occlusions and are ignored (Zimmer, Labruyere et al. 2002). The UWT-MIA method offers 

an alternative solution to this problem since it uses a pattern recognition approach relying 

on wavelets and textural analysis. 

Signal processing approaches are appropriate tools for cell detection in  PCM images 

because cell-associated pixels are related to higher frequency signals in comparison to 

background pixels (Zhaozheng and Kanade 2011). Other multiscale transform-based 

texture analysis methods are also proposed in the literature to generate features that can 

be fed to a classifier for pattern recognition purposes. For instance, in the Scale Invariant 

Feature Transform (SIFT), a Difference-of-Gaussians (DoG) approach is used in which 

images are convolved with Gaussian isotropic filters of varying standard deviations (σ) 
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over several scales, and for which difference images between two consecutive Gaussian-

blurred images (differing by their σ) are computed in order to highlight key features (Lowe 

1999; Lowe 2004; Jiang, Crookes et al. 2010). Key points (features) are identified by 

finding local minima or maxima in the difference images (Lowe 2004). SIFT features have 

the advantage of being robust to object orientation, scale, illumination and don’t require 

pre-segmentation (Lowe 1999). SIFT features were used to detect mitosis of stem cells in 

PCM, since they are invariant to image scale and rotation, robust to illumination 

fluctuations, noise, partial occlusion, and minor changes in viewpoint (An-An, Kang et al. 

2012). However, SIFT features relying on Gaussian filters are isotropic, meaning that they 

can struggle to characterize highly anisotropic adherent cells like myoblasts. The UWT-

MIA method has the advantage over the SIFT method of being a multiscale transform-

based texture analysis approach that can process at the same time information relative to 

the scale and the orientation of the cells (since it uses the Gabor continuous wavelet), 

producing interesting features to characterize anisotropic and irregular adherent cells such 

as myoblasts that tend to agglomerate at high confluence. Finally, cellular morphological 

features computed with the UWT-MIA (proposed method) are meaningful and have a 

physical sense (e.g. axis size in pixels or μm, orientation in degrees, roundness ratio), 

which makes data interpretation and analysis easier compared to raw SIFT features. 

6.7 Conclusion 

The UWT-MIA method is a pattern recognition image processing technique that can 

generate textural features that are related with cellular morphology. Using a set of 200 

ground truth calibration images, PLS models were calibrated in order to estimate cellular 

morphological features distributions (major and minor axes, orientation and roundness 

distributions) from UWT-MIA textural features. The PLS models were then applied on a 

large set of PCM images time series (631,136 images acquired in 138 wells) to track the 

evolution of cellular morphological features throught time. A PCA model was also used to 

discrimate the morphology of myoblasts grown in two different media (serum 

supplemented or SSM, and serum free or SFM). It was found that cells grown in SFM were 

statistically smaller and more elongated than in SSM, which was detected by the proposed 

imaging technique. 

The experimental results showed that the proposed method can be used on large datasets 

of PCM live-cell images captured under different conditions to assess cellular morphology 

and growth kinetics as a function of culture conditions and cell type. This technique could 
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thus be used for high-throughput screening applications (e.g. for the development of new 

culture media) and for cell culture monitoring and control in a non-invasive manner. 
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Chapter 7. Conclusion and recommendations 

7.1 Research problem 
The development of new serum-free media for growing human cells is a key area of cell 

therapy research. Traditionnally fetal bovine serum has been used successfully as a key 

supplement to cultivate animal cells in vitro, since it contains proteins that promote cell 

proliferation and adhesion to substrates (Freshney 2010). Fetal bovine serum (FBS) is an 

animal blood extract which is a complex mixture of proteins and inorganic compounds that 

is not chemically defined. As a consequence, using FBS to produce human cells for 

cellular therapy involves issues, as its animal origin makes it prone to contamination (e.g. 

prions) and its composition can vary from batch to batch. These issues explain why 

developing serum-free media is important for human cell therapies.  

 

However developping a new serum-free medium is difficult, as removing FBS from a given 

basal medium can select a sublineage not typical of a whole cell population, it can 

decrease or stop cellular growth and support fewer passages for finite cell lines (Freshney 

2010). To improve the basal medium and get a performance similar to the FBS-

supplemented medium, a tedious optimization process is often necessary to screen and 

test different supplements. To develop new culture media capable of expanding human 

cells without FBS, high throughput screening (HTS) is often performed to test a huge 

variety of molecules combinations (growth factors, cytokines, etc.) at different 

concentrations using design of experiment (DOE) methods in order to assess the impact of 

culture conditions on both cellular growth and cellular morphology. Because of the huge 

quantity of data and images that can be generated by each HTS experiment, multivariate 

data analysis techniques are required along robust and fast image processing algorithms. 

 

From an image processing perspective, fluorescence microscopy used in microscopy-

based HTS is easier to implement for single-cell segmentation since it provides images 

with a higher signal to noise ratio compared to brightfield or phase contrast microscopy 

(Ali, Gooding et al. 2007). Segmenting cells stained with a fluorophore can be achieved 

rapidly with high accuracy by conventional image processing techniques such as 

thresholding and the watershed transform. However, fluorescence microscopy used for 

HTS has several drawbacks, such as adding antibodies, dyes or fluorophore probes into a 

cell culture, which is an intrusive process that can affect cellular biology due to the 
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cytotoxicity of both the additives and the UV light. Also, because of the residual labeling 

molecules,  the cells produced afterwards cannot be transplanted into patients. As a 

consequence, there is still a need to develop non-intrusive HTS methods relying on 

microscopy. 

 

Phase-contrast microscopy (PCM) is a well-established tool to image living cells in 

biomaterials engineering research (Theriault, Walker et al. 2012), and has the advantage 

of being non-invasive to study cells that are sensitive to phototoxicity (Xiong, Chia et al. 

2011). However segmenting individual cells in PCM images is difficult and prone to 

computational errors, because of the bright and uneven halo surrounding them, blurry cell-

cell interfaces (at a high degree of confluence), broken borders and poor intensity contrast 

between the background and cellular regions (Bradbury and Wan 2010). Several methods 

were proposed to achieve single-cell segmentation in PCM (e.g. level sets, nested 

kernels), but these methods are difficult to use widely for HTS because of their complexity, 

high computation times and their sensitivity to image quality (e.g. uneven background). 

Also, several methods developed for round cells (such as convolution template matching) 

do not work well for highly anisotropic adherent cells. Therefore, the aim of this PhD 

project was to develop robust and reliable image processing algorithms for PCM-based 

high-throughput screening applications (non-intrusive method). 

 

As seen in the literature review (Chapter 2), several methods are available for analyzing 

microscopic images and choosing one or the other depends upon image quality, the 

microscopy technique used and even the type of cells used (adherent versus suspended 

cells). In HTS applications, critical information relies on cellular counts and cellular 

morphology, and image processing algorithms are required to analyze the large quantities 

of data generated. There are basically two approaches to detect cells and characterize 

their morphology: single-cell segmentation (using for instance edge or region detection) or 

pattern recognition relying on image features.  In a single-cell segmentation approach, a 

segmentation map needs to be generated by performing a classification (via a classifier, 

an edge detection or a region detection method) using the raw image or local spatial 

features. Once a segmentation map is generated, it is possible to locate precisely each 

cell, to compute a cell count and to compute morphological features. A second approach is 

the pattern recognition approach, in which cell counts and cell morphological features are 

inferred directly from the raw image or from features via a classifier or using regression 
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and/or multivariate methods (e.g. PLS). The main difference is that pattern recognition 

approaches do not require a segmentation map, thus reducing the influence of noise on 

the results while being more computation efficient (compared to level sets for example). 

However the disadvantage of pattern recognition approaches is that accurate cell 

localization is not always possible, and thus cell tracking is usually not possible. 

Since single-cell segmentation is difficult to achieve when imaging adherent cells in PCM-

related high throughput screening applications,  pattern recognition approaches were used 

in this PhD project to assess the cell-covered surface, cellular count and cellular 

morphology of myoblasts relative to the culture medium used. The main goal of this PhD 

project was to be able to assess cellular growth kinetics and cellular morphology relative to 

culture conditions in PCM-based high throughput screening experiments. The main 

problems to solve were to develop image processing stategies that are robust and fast so 

they can be used on a large scale, as an important quantity of images are generated by 

each HTS experiment. 

7.2 Contributions 

The first issue to tackle was to assess the growth kinetics of adherent cells in PCM images 

in a quick and robust manner (Chapter 4). To avoid single-cell segmentation, the evolution 

of the cell-covered surface through time was used to quantify cellular growth, as the 

surface covered by the cells (the degree of confluence) is roughly proportional to the 

number of cells. The growth kinetics of adherent cells in phase contrast microscopy was 

characterized in Chapter 4 using the cell-covered surface estimated using image features 

computed by the proposed range filter algorithm (based on the local range of values in the 

images). Since areas covered by cells have a texture incorporating higher local 

frequencies than background regions, a range filter properly tuned (combined with a size 

filter) was capable of detecting cell-covered areas in each image (using this distinctive 

pattern signature). Analyzing the evolution of the cell-covered surface through time, we 

showed that myoblasts grown in SSM and myoblasts grown in SFM have similar growth 

kinetics, and we established a statistical link between the growth kinetics parameters and 

the cells passage number. The cell-covered surface approach was already used in the 

literature, but we generalized it in Chapter 4 to take into account the adjustment of the 

parameters of different algorithms proposed by several authors to estimate the cell-

covered surface (commonly referred to as the degree of confluence). Even if there is a 

growing number of reports about image processing algorithms for PCM images, it is 
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difficult to compare them directly because each algorithm is designed for a specific 

problem, providing a solution for a specific imaging modality, microorganism or cell type, 

and tuned on a particular benchmark dataset. The main contribution of Chapter 4 relies on 

the development of a method based on a pattern recognition metric (the F-measure 

function) to tune the parameters of each algorithm available in order to compare them 

(using a set of 200 ground truth images). Several algorithms provided in the literature were 

tested along the proposed range filter method to compute the cell-covered surface of 200 

ground truth images, and most of the proposed algorithms provided roughly a similar 

performance when properly tuned with the F-measure function. However, the results 

showed that the range filter algorithm provided a slightly better performance in terms of R 

and P than the other algorithms while having a competitive average computing time per 

image (ACT), thus justifying its selection. 

 

The second research challenge was to extract local pixel level textural patterns within 

PCM images that are relevant to cellular morphology (Chapter 5), and to quantify the cells 

orientations and sizes. Classical multivariate image analysis (MIA) methods can group 

pixels in RGB or multispectral images together according to their respective spectral 

patterns (e.g. color) via principal component analysis (PCA). However, PCM images 

acquired by conventional microscopes are often monochrome (grey scale image, as it is 

the case in this project), and there is no spectral information available. Also, conventional 

MIA methods cannot be used to analyze textural information within images without losing 

spatial information due to the PCA unfolding operation. To analyze local textural patterns 

in image datasets from a multivariate perspective, two approaches were developed: 

shifting and stacking (Bharati, Liu et al. 2004) and MR-MIA methods (Liu and MacGregor 

2007). Shifting and stacking can be prone to noise because it uses raw pixel values and is 

computationally intensive since it may require a lot of shifted version of the image to 

capture with enough resolution all objects scales and orientations. Since MR-MIA methods 

use the decimated wavelet transform (DWT), this approach requires to build several 

multivariate models (PCAs) to explore each scale because of the lack of congruency 

between detail coefficients matrices. As a consequence, there was a need to develop a 

new method that could address these limitations. In Chapter 5, a new MIA method relying 

on the undecimated wavelet transform (UWT-MIA) was proposed. The continuous Gabor 

wavelet transform was used, providing an optimal resolution to analyze the texture within 

PCM images from a scale and orientation perspective, while considering spectral 
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information if needed. The main contribution of Chapter 5 consists of the use of a 

continuous undecimated wavelet transform coupled to conventional MIA analysis 

techniques (e.g. score density histograms) to detect both spectral and textural patterns 

within image datasets at the pixel level. Stacking congruent wavelet planes from the 

undecimated wavelet transform represents an improvement compared to the MR-MIA 

methods, as a single cube of data is generated to analyze all objects scales and 

orientations at the same time in a single PCA model. This provides the capacity to 

summarize for instance the information related to adherent cells orientations and sizes in a 

single score density histogram. As shown in Chapter 5, the UWT-MIA method could be 

used beyond PCM-related applications. For instance, it was used to analyze different sets 

of RGB images to highlight both color and textual patterns. As a result, the UWT-MIA 

method represents a significant contribution to the field of multivariate image analysis in 

general. 

 

The third contribution of this thesis was to establish a relationship between the local 

textural patterns extracted within PCM images using the new UWT-MIA and cellular 

morphological features (Chapter 6). The main challenge was to find a way to establish a 

statistical link between pixel counts in score density histograms and cellular morphological 

features. Pixel counts under defined masks in the T1/T2 score density histograms 

generated by the UWT-MIA method were used (X matrix). A set of 200 ground truth 

images was used to generate distributions of morphological features (major and minor 

axes, orientation and roundness) that were stored in a response matrix Y. PLS models 

were built to predict morphological features distributions from pixel counts under masks in 

T1/T2, maximizing both R2
CAL and R2

VAL by grid search while adjusting the mask parameters 

and the number of PLS components. The main contribution of Chapter 6 was to develop a 

method relying on the UWT-MIA to compute morphological features on a large dataset of 

PCM images to relate the shape of the cells to culture conditions. In Chapter 6, the new 

method developed (UWT-MIA) was used to analyze the image database (around 1 million 

PCM images of myoblasts). The morphological features computed (major and minor axes, 

roundness and orientation distributions) were used to highlight the influence of the culture 

medium on the morphology of myoblasts. A PCA analysis showed that cells grown in SFM 

were smaller and more elongated than cells grown in SSM, and these results were found 

consistent with qualitative observations. The pattern recognition method proposed in 

Chapter 6, which is both computationally efficient and precise, can be used to process 
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PCM images in HTS and cell culture control applications (since it does not require single-

cell segmentation). The next step would be to use these image processing techniques to 

establish a direct link between cellular morphology and cellular type and functionality 

(related for instance to the expression of surface markers, as described in Section 2.2.3). 

This problem that was not addressed directly in this PhD project.  

 

One of the main advantages of using multivariate techniques (e.g. PCA, PLS) to analyze 

morphological features computed from the UWT-MIA method is their interpretability 

compared to other classifiers such as neural networks and Markov Random Fields. It is 

easy to interpret the importance of the variables in the model by looking at the VIPs or at 

the loadings plot (see Figure 6-12). Also, the morphological features estimated from the 

UWT-MIA features have a physical meaning (e.g. average major axis in μm, mean 

orientation in degrees, etc.), which makes data easier to interpret by experimental cell 

biologists. 

7.3 Perspectives 

Image processing methods developed for this PhD project (in Chapter 4, Chapter 5 and 

Chapter 6) were able to highlight patterns in large image datasets, making it possible to 

assess the impact of culture conditions on cellular growth kinetics and morphologies in an 

automated fashion. These methods could be used on other cellular phenotypes in high-

throughput screening and cell culture control applications. Among cell culture control 

applications, tissue engineering and cell therapy could benefit from these image 

processing techniques, providing useful information in terms of cell quality (related to 

textural analysis and cell morphology) and cell quantity (assessment of cell counts) while 

being non-intrusive (relying on PCM). Among cell therapy research fields that could benefit 

from these image processing methods, it is possible to consider the production of 

keratinocytes for skin grafts, the culture of healthy myoblasts to treat dystrophic patients 

and the expansion of endothelial cells to repair vascular tissues. 

From a cell production perspective, the image processing techniques developed in this 

PhD project can be used for online cell culture control when the cells are grown on flat 

surfaces (e.g. multiwell plates, Petri dishes or T-flasks) and are imaged in PCM. However 

the possibility of developing a microscopy set-up to acquire PCM images of cells growing 

on the surface of rolling bottles should be investigated in future projects, as they constitute 

a mean of producing larger quantities of cells. Another way of producing larger quantities 
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of cells is to grow them on suspended microbeads, but acquiring PCM images in that case 

would be difficult or even impossible. 

Even though the image processing methods developed in this PhD project open the door 

to new applications, there are still several issues and problems that should be addressed 

in future work. For instance, actual computation times required to calculate morphological 

features via the UWT-MIA method (as in Chapter 6) are around 30 seconds/image, and 

processing 121 images (one well scanned with a grid of 11x11) could take up to 1 hour on 

a standard computer. This limitation is not related to the method itself, but more to memory 

limitations and to the important number of wavelet planes generated (400 per image) that 

need to be stacked and analyzed. There was no tentative to decrease the number of 

wavelet planes during this PhD project as the main focus was on the development of the 

method and not on minimizing computation time. Since the main bottlenecks are the 

number of wavelet planes used, the number of masks used and also memory limitations, 

future work could focus on computational efficiency. Because of memory limitations 

(RAM), it is not possible to load a complete wavelet planes cube (WPC) having a 

significant number of wavelet planes: it must be loaded into Matlab® in several steps, one 

fraction at a time, increasing computation times significantly. One improvement that should 

be investigated is the use of variable selection methods to only compute wavelet planes 

that are the most critical to predict morphological features. To increase computation 

speed, the algorithms could be implemented in C++. Parallelization could also be 

considered, as it was used to speed-up the computations required to generate results in 

Chapter 6. For instance, the super computer Colosse has several nodes (8 processors 

each) that can be used for processing large batches of images (up to 40 images at the 

same time, by experience). Even with these memory limitations, the proposed method (in 

its current state, without wavelet planes selection) can still be used for HTS applications, 

since large batches of images can be processed offline (after the experiment is done, 

accepting a lag in the results) or even online, accepting a processing time of 30 

seconds/image. Also, for the purpose of this project a grid of 11x11 images was acquired 

for each time acquisition, but sub-sampling could be considered to decrease the overall 

computation times while providing morphological features estimates that are still 

representative of the whole cell population. 

From a tuning perspective, additionnal topics such as inter-observer variability and the 

choice of the optimization method could be addressed in future work. In Chapter 4 and in 
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Chapter 6, only one ground truth dataset of 200 images (built by one observer) was used, 

and it would be interesting to assess the inter-observer variability by asking other scientists 

to perform a segmentation on the same set of PCM pictures. To adjust the parameters 

associated with the proposed image processing algorithms, grid search was used to 

choose the optimal settings over a specified range of values. Other machine learning 

methods (such as evolutionary algorithms) could be tested to see if they could provide an 

optimal set of parameters in a more flexible manner. To explore in more details the scores 

space generated by the UWT-MIA and to build masks that would be even more precise (in 

more than 2 dimensions for instance), machine learning (such as SVM, as described in Liu 

et al. (2005)) could be useful. 

Future projects could also explore the potential of combining conventional segmentation 

methods and the new UWT-MIA method (described in Chapter 5). For instance, the UWT-

MIA approach could be used to produce background and object markers that could be fed 

to a watershed transform algorithm (see Section 2.4.4.2.4) in order to perform single-cell 

segmentation if the later is desired. With the actual experimental set-up, stacks of 

brightfield and PCM images at different focal planes around the specimen could be 

acquired in order to do quantitative phase microscopy. PCA and PLS methods could be 

used on these cubes of PCM or brightfield images to extract valuable information, and 

classify pixels between background and cellular regions. In future projects, fluorophores 

could be used in order to combine the information related to the presence or absence of 

markers (by processing images acquired in epifluorescence) with the information related to 

cell morphology (by processing PCM images). Both information could be colocalized and 

could be used to establish a statistical link between cellular phenotype and cell 

morphology. 
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Appendix A. Hyperspectral microscopy 

A.1 Introduction 

In previous chapters, cell culture experiments involved conventional PCM images acquired 

using a monochrome camera (Qimaging® camera). However measuring and analyzing the 

full transmission or emission spectra of the cells growing in a culture medium for each 

pixel could provide useful chemical information (using NIR spectra for instance) about the 

cellular samples. Even though hyperspectral microscopy was not the main focus of this 

PhD project, preliminary tests were performed to assess its potential from a technical 

perspective for cell characterization. The results are summarized in this chapter so it could 

provide useful insights for future projects. 

A.2 Methodology 

A.2.1 Hyperspectral cameras specifications 

Three hyperspectral cameras (spectrometer attached to a camera CCD) were available for 

this study: a ultraviolet (UV), a visible (VIS) and the near-infrared (NIR) hyperspectral 

camera (shown in Figure A-1). These cameras can be fitted on the IX81 microscope lateral 

port. The cameras specifications are provided in Table A-1. 

 

Figure A-1 :  UV, VIS and NIR hyperspectral cameras available on the bench (can be 

fitted on the IX81 microscope lateral port) 
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Table A-1 : Hyperspectral cameras specifications 

Hyperspectra

l camera 

name 

Camera 

Model 

Spectro 

Model 

Nominal 

wavelengths  

(nm) 

Drivers 

Compatibility 

UV Hamamatsu® 

C8800-01C 

ImSpector® 

UV4E 

200 – 400 Not tested 

VIS Hamamatsu® 

C8484-05G 

 

ImSpector® 

V10E 

400 - 1000 Compatible with 

Metamorph®, driver 

(Wasabi®) not 

compatible with 

Qimaging® camera 

drivers (cannot be used 

at the same time) 

NIR Xenics® 

XEVA-USB 

ImSpector® 

N17E 

900 - 1700 Drivers not compatible 

with Metamorph® 

 

The spectrometers associated to the hyperspectral cameras disperse wavelengths along 

the vertical axis of the CCD, and pixels in this direction correspond to light at a certain 

wavelength. This is the main reason why calibration is required, to associate a pixel 

position along the vertical axis to a wavelength intensity. A radiometric calibration  was 

performed using a mercury lamp having intensity peaks at known wavelengths to 

associate each pixel in each slice image (pixel number) along the vertical axis to a given 

wavelength. The calibration results for the VIS and NIR hyperspectral cameras are 

provided in Figure A-2. From the linear regressions performed, it is possible to see that the 

VIS camera has a spectral resolution (Δλ) of 0.61 nm per pixel and the NIR camera has a 

spectral resolution of 2.9 nm per pixel in the λ axis. 
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Figure A-2 :  VIS and NIR camera calibration 

Both the VIS and NIR hyperspectral cameras were used and tested in this project. When 

the VIS hyperspectral camera was installed on the microscope computer, it was necessary 

to install the Hamamatsu® camera drivers (Wasabi®) which reinitialized the USB ports, 

meaning that the Qimaging® camera did not work anymore on the microscope computer. 

When switching back to the Qimaging® camera, it was necessary to reinstall the 

Qimaging® camera drivers to reinitialize the USB ports, meaning that the VIS 

hyperspectral camera did not work anymore on the microscope computer. Even though 

the Qimaging® and the Hamamatsu® camera drivers are not compatible, both the 

Qimaging® and the VIS hyperspectral cameras can be controlled using Metamorph® for 

image acquisition (however not at the same time).  

Since Xenics® cameras cannot be controlled by Metamorph®, when using the NIR 

hyperspectral camera, the microscope and the stage were controlled by Metamorph® (on 

the microscope computer) while images were acquired in streaming by LabView® on the 

bench computer. A mapping algorithm was developed in Matlab® (see Appendix G. for 

HYPERSPECTRAL_MIA_v0r3.m) to relate each dummy frame saved by Metamorph® to 

the corresponding frame acquired by LabView®. 

A.2.2 Control of automated stage and hyperspectral cameras 

A push broom set-up was used to acquire whole hyperspectral cubes (slices in y and  

dimensions acquired at fixed x intervals, as illustrated in Figure 2-19), and the main 

challenge was to control at the same time the automated stage, the hyperspectral camera 

acquisition and the different functions of the microscope (light source shutter, filter cubes 

for epifluorescence, etc.). Journals were programmed in Metamorph® to acquire 

hyperspectral cubes in a similar fashion as described before (while controlling the stage 
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and the microscope), but with specific lists of points that were generated with a Matlab® 

script (POINTS_GENERATOR_METAMORPH_v0r1.m) provided in Appendix G. To 

generate lists of points for hyperspectral microscopy, Δx and Δy were estimated using the 

method described in Section A.2.3. 

A.2.3 Estimation of spatial resolutions Δx and Δy 

The spatial resolution can be defined as the size of the pixels (in μm) in the x and y 

directions. The spatial resolution achievable is influenced by the microscope optics and by 

the cameras CCD and optical path. An estimation of the spatial resolutions Δx and Δy of 

the images acquired by the spectral cameras was obtained by imaging a hemacytometer, 

and by adjusting Δx by trial-and-error until the grid inside the hemacytometer appeared 

square. After each trial, a T1 score image was computed (see T1_generation.m,  

Appendix G. ) from the hypercube to assess whether the results were acceptable. An 

example of a brightfield hyperspectral T1 score image of a hemacytometer imaged at 10X 

is provided in Figure A-3. Note that since this adjustement was performed by trial-and-

error, the hemacytometer lines are not perfectly square, meaning that the Δx estimation 

might be slightly biased (this adjustment was a long process). 

   

Figure A-3 :  Brightfield hyperspectral T1 score image of a hemacytometer at 10X, 

with Δx = 1 μm between slices 

Estimations of Δx and Δy for the VIS hyperspectral camera are provided in Table A-2: 
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Table A-2 : Estimated Δx and Δy for VIS hyperspectral microscopy 

Magnification Δx (μm) Δy (μm) 

10X 1.0 0.61 

20X 0.4 0.31 

40X 0.2 0.15 

  

A.2.4 Light sources 

Two halogen light sources (similar casing) can be fixed onto the microscope: the one that 

was originally provided with the IX81 microscope (“Microscope light source”, model U-

LH100-3, Olympus®) and the one installed on the hyperspectral bench behind the 

microscope (“Bench light source”, model U-LH100-3, Olympus®, used by Gosselin 

(2010)). The Microscope light source was tested by the COPL (Centre d’optique, 

photonique et laser, Université Laval), and the analysis showed that wavelengths higher 

than 750 nm were blocked by a filter integrated in the light source (see Figure A-4). It can 

be hypothesized that the purpose of this filter is to prevent cell cultures from overheating 

when exposed to near-infrared light. However the Bench light source does not have this 

filter, as can be seen in Figure A-5. 
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Figure A-4 :  Transmittance as a function of light wavelength (in nm) for the 

Microscope light source tested by the COPL. Wavelengths higher than 750 nm are 

blocked. 

 

Figure A-5 :  λ and y slices images acquired through the IX81 Microscope with A-

Microscope light source (imaging a hemacytometer); B-Bench light source. The 

bench light source does not block wavelengths at 750 nm. 
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Since the bench light source does not have a filter, it was used for hyperspectral 

microscopy experiments. However there are still several issues to solve in future work, 

since it is possible to see in Figure A-5B that there is a wavelength deadband (around λ 

=700 nm) that remains black and since there are several black dots that are localized both 

spatially and spectrally. In both cases, the light is most likely filtered somewhere in the 

microscope optical patch. 

A.3 Experiments description 

A series of experiments was performed at the end of 2012 and at beginning of 2013 (in 6 

well multiwell plates with a magnification of 20X) to see the potential of hyperspectral 

microscopy for cell characterization. A total of 5 experiments were conducted and are 

detailed in Table A-3. The experiment started on November 8th 2012 was performed over 

several days (from seeding to confluence) in live-cell imaging as the other experiments 

were only performed once the cells achieved confluence (one acquisition for each well at 

the end of the cell culture). The goal was to see how the cells could be segmented and 

characterized by performing MIA on the measured hyperspectral cubes and also to verify if  

myoblasts grown in SSM and  SFM could be distinguished based on spectral data. 

Table A-3 : Series of experiments realized in hyperspectral microscopy 

 

Experiment Name
Cell culture 

start date
Cells Medium

Cell initial 

concentration 

(c/mL)

Hyperspectral 

cameras used
Description

Experiment_November_08_2012 2012-11-07 BB13MP8

Well 1: SSM+cells

Well 2: SSM

Well 3: SFM+cells 

Well 4: SFM

40000 VIS

Imaging wells over several days 

for hyperspectral live-cell imaging 

(PCM-VIS)

Experiment_January_05_2013 2012-12-30 BB13MP4

Well 1: SSM+cells

Well 2: SSM+cells

Well 3: SSM

Well 4: SFM+cells

Well 5: SFM+cells

Well 6: SFM

11250 VIS
Imaging once in PCM-VIS and 

EM-VIS

Experiment_January_06_2013 2013-01-03 BB13MP5

Well 1: SFM+cells

Well 2: SFM+cells

Well 3: SFM

Well 4: SSM+cells

Well 5: SSM+cells

Well 6: SSM 

155156 VIS and NIR
Imaging once in PCM-VIS, EM-

VIS and PCM-NIR

Experiment_January_11_2013 2013-01-06 BB13MP6

Well 1: SSM+cells

Well 2: SSM+cells

Well 3: SSM

Well 4: SFM+cells

Well 5: SFM+cells

Well 6: SFM

25782 VIS and NIR
Imaging once in PCM-VIS, EM-

VIS and PCM-NIR

Experiment_January_16_2013 2013-01-10 BB13MP7

Well 1: SFM+cells

Well 2: SFM+cells

Well 3: SFM

Well 4: SSM+cells

Well 5: SSM+cells

Well 6: SSM 

10938 VIS and NIR
Imaging once in PCM-VIS, EM-

VIS and PCM-NIR
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Adjusting the focus for each well was a challenge when acquiring hyperspectral cubes. 

The focus was adjusted manually for each well (see Section E.6), but without using the 

autofocus utility. A Δx of 0.35 m was used for the slices, and the cubes consist of 1001 

contiguous slices forming hypercubes of roughly 350 m in length (in x) and of 413 m in 

width (in y). Note that the spatial resolution of the NIR camera is most likely different from 

the resolution of the VIS camera. However since it was difficult to assess it was assumed 

to be roughly the same (as these were preliminary tests). Hypercubes generated from the 

VIS camera have a length of 1001 pixels (x axis), a width of 1344 pixels (y axis) and a 

height of 1024 pixels (λ axis). Hypercubes generated from the NIR camera have a length 

of 1001 pixels (x axis), a width of 320 pixels (y axis) and a height of 256 pixels (λ axis). 

A.4 Phase contrast hyperspectral microscopy with VIS camera (PCM-

VIS) 

For each experiment (January 5th, 6th, 11th and 16th 2013), PCM-VIS hyperspectral 

microscopy cubes captured for each well were analyzed by performing a PCA on all 

available hyperspectral image (i.e. a single PCA model built  using the kernel MIA 

algorithm). All the experiments analyzed gave similar results, so only those of the January 

6th 2013 experiment are presented. The loadings, the score images and the score density 

histograms for this particular experiment are shown in Figure A-6, Figure A-7, Figure A-8, 

Figure A-9 and Figure A-10. To verify if  culture time has an influence on the results, a 

second PCA model was built on the PCM-VIS hyperspectral microscopy cubes for the 

experiment of November 8th 2012 only (for each well and for each time acquisition). The 

PCA analysis provided a similar latent space, and typical T1 score results are provided in 

Figure A-11. 
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Figure A-6 : p1 and p2 loadings from PCA performed on PCM-VIS hyperspectral 

cubes for experiment January 6th 2013 

 

Figure A-7 : T1/T2 global score density histogram from PCA performed on PCM-VIS 

hyperspectral cubes for experiment January 6th 2013 
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Figure A-8 : T1 score images from PCA performed on PCM-VIS hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-9 : T2 score images from PCA performed on PCM-VIS hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-10 : T1/T2 individual score density histograms from PCA performed on 

PCM-VIS hyperspectral cubes for experiment January 6th 2013 

 

Figure A-11 : T1 score images from PCA performed on PCM-VIS hyperspectral cubes 

for experiment November 8th 2012 
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In Figure A-6, it is possible to see a discrepancy zone in the loadings around 700 nm, 

which is due to the λ deadband (see Figure A-5). The loadings follow the bell shape of the 

spectrum associated to the bench light source. Looking at the T1/T2 score density 

histograms (Figure A-7 and Figure A-10), it appears that most of the wavelengths are 

strongly correlated with each other (almost a straight line). The main variation is due to 

light intensity variations related to PCM. 

A.5 Epifluorescence hyperspectral microscopy with VIS camera (EM-

VIS) 

For each experiment (January 5th, 6th, 11th and 16th 2013), epifluorescence hyperspectral 

microscopy cubes associated to each well were analyzed through an overall PCA (one 

PCA per experiment, using a kernel MIA algorithm). The goal was to measure the 

autofluorescence of the cells. All the experiments analyzed gave similar results, so only 

the results associated to the experiment of January 6th 2013 are presented. The loadings, 

the score images and the score density histograms for the analysis of the experiment ran 

on January 6th 2013 are shown in Figure A-12, Figure A-13, Figure A-14, Figure A-15 and 

Figure A-16. 

 

Figure A-12 : p1 and p2 loadings from PCA performed on EM-VIS hyperspectral 

cubes for experiment January 6th 2013 
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Figure A-13 : T1/T2 global score density histogram from PCA performed on EM-VIS 

hyperspectral cubes for experiment January 6th 2013 
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Figure A-14 : T1 score images from PCA performed on EM-VIS hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-15 : T2 score images from PCA performed on EM-VIS hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-16 : T1/T2 individual score density histograms from PCA performed on EM-

VIS hyperspectral cubes for experiment January 6th 2013 

The first component captures 99.4% of the variance as the second component captures 

0.2% of the variance. The loadings of the first and second components (p1 and p2 in 

Figure A-12) capture the typical profile of the autofluorescence spectrum of the myoblasts, 

with a peak intensity at 515 nm. This spectrum profile is most probably the result of the 

convolution of different emission spectra related to several biological molecules inside the 

cells (see Monici (2005)). It is however very hard to deconvolve them. 

Cellular pixels emit light whereas background pixels are associated with low light 

intensities. High intensity values for wavelengths having strong negative loadings  

(associated to cells in the first latent component) induce negative T1 scores, explaining 

why the cells in the T1 score images presented in Figure A-14 appear black on a white 

background. However positive loadings for the autofluorescence spectrum captured in the 
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second component induce high T2 scores, thus explaining why cellular pixels end-up more 

in the middle or the bottom-left corner in the T1/T2 score density histograms. Background 

pixels end-up in the top-right corner, as shown in Figure A-16. 

With this technique, it appears that it is possible to segment easily in each image 

background pixels from cellular pixels. Unfortunately from an autofluorescence perspective 

myoblasts grown in SSM or SFM seem to have similar autofluorescence spectra. The 

main difference between the cells seems to be again their morphology (cells grown in SFM 

seem to be more elongated than cells grown in SSM). There are cells that emit more 

fluorescence than others, but that does not seem to be related to the culture medium itself. 

Further tests could be performed in the future to see if the degree of autofluorescence is 

related to cellular health or status (as suggested in the literature). 

In conclusion, the autofluorescence hyperspectral microscopy technique would not 

necessarily help differentiating cells relative to the culture medium used. Autofluorescence 

generates a very weak signal compared to the signal generated by a fluorophore, and the 

experimental set-up might not be optimal to measure it with enough resolution inside the 

cells. However, this technique could be useful when using fluorophores (instead of relying 

on autofluorescence) that have emission spectra that are close. It would then be possible 

to measure the whole visible spectra in epifluorescence microscopy and to deconvolve the 

different spectra generated by several fluorophores. 

A.6 Phase contrast hyperspectral microscopy with NIR camera (PCM-

NIR) 

For each experiment (January 6th, 11th and 16th 2013), PCM-NIR hyperspectral microscopy 

cubes associated with each well were analyzed through an overall PCA (one PCA per 

experiment, using a kernel MIA algorithm). Each slice image was divided by an average 

background (black) image (pre-processing step) in order to perform a correction for bad 

pixels. All the experiments analyzed gave similar results, so only the results associated to 

the experiment of January 6th 2013 are presented. The loadings, the score images and the 

score density histograms for the analysis of the experiment ran on January 6th 2013 are 

shown in Figure A-17, Figure A-18, Figure A-19, Figure A-20, Figure A-21, Figure A-22, 

Figure A-23 and Figure A-24. 
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Figure A-17 : p1, p2 and p3 loadings from PCA performed on PCM-NIR hyperspectral 

cubes for experiment January 6th 2013 

 

Figure A-18 : T1/T2 global score density histogram from PCA performed on PCM-NIR 

hyperspectral cubes for experiment January 6th 2013 
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Figure A-19 :T2/T3 global score density histogram from PCA performed on PCM-NIR 

hyperspectral cubes for experiment January 6th 2013 
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Figure A-20 : T1 score images from PCA performed on PCM-NIR hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-21 : T2 score images from PCA performed on PCM-NIR hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-22 : T3 score images from PCA performed on PCM-NIR hyperspectral cubes 

for experiment January 6th 2013 
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Figure A-23 : T1/T2 individual score density histograms from PCA performed on 

PCM-NIR hyperspectral cubes for experiment January 6th 2013 
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Figure A-24 : T2/T3 individual score density histograms from PCA performed on 

PCM-NIR hyperspectral cubes for experiment January 6th 2013 

From a preliminary analysis of the loadings (Figure A-17), cellular membrane/border 

information would influence the 1110 to 1200 nm NIR spectrum (mainly captured in the 

second component) as cellular cytoplasm would influence the 1200 to 1420 nm NIR 

spectrum. The third component seems to distinguish between the cells cytoplasm and the 

cells membrane, however it is difficult to segment both cellular regions independently in 

the score density histograms. Masks and their corresponding overlays to segment 

background pixels and cellular pixels are presented in Figure A-25 and in Figure A-26 

respectively.  
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Figure A-25 : T2/T3 masking and overlays to segment background pixels (PCM-NIR 

hyperspectral cubes for experiment January 6th 2013) 

 

Figure A-26 : T2/T3 masking and overlays to segment cellular pixels (PCM-NIR 

hyperspectral cubes for experiment January 6th 2013) 
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There is not a lot of contrast between the cells cytoplasm and the background, and a sharp 

segmentation is difficult to achieve. This could be due to the fact that plastic multiwell 

plates were used during the tests (several chemical compounds in plastics can absorb 

light in the NIR range). 

The first component is related with variations in light intensity transmitted through the 

sample in the NIR spectrum because all the loadings in this dimension have the same 

sign. In the NIR range, as the interior of the cells absorb light (medium T1 scores), cellular 

membranes that diffract light (bright halo around the cells in PCM) are associated with 

pixels with high intensities, explaining why cellular contours appear dark in the T1 score 

images (low T1 scores). One of the main difficulties was occasional NIR camera CCD 

problems, explaining why there are white vertical stripes in the T1 score images (appearing 

as a line at the extreme right of the T1/T2 score density histograms). 

In conclusion, the PCM-NIR hyperspectral microscopy technique could help to segment 

cellular pixels from background pixels. There are several individual cells that seem to be 

brighter in score images (could be again an indication of cellular metabolism). The use of 

the NIR spectrum to assess the cellular metabolism could be explored in future work using 

for example specific fluorophores along epifluorescence microscopy. Despite the fact that 

there is no spectral global tendency to distinguish cells grown in SSM from cells grown in 

SFM, the information provided by the NIR spectrum could prove to be useful in future cell 

culture projects (maybe if the optical set-up is improved). 

A.7 Conclusion 

Whether using PCM-VIS, EM-VIS or PCM-NIR, there was no significant spectral difference 

detected between myoblasts grown in SSM and myoblasts grown in SFM. However in 

each case it was possible to see by eye the same difference in morphology (associated to 

textural information) in the score images: cells grown in SFM are more elongated and cells 

grown in SSM are rounder. These results explain partially why it was necessary to use the 

UWT-MIA method to distinguish the cells grown in the two culture media in a non-

destructive manner (as described in Chapter 6). 

Since all the tests performed so far were done using plastic 6 wells multiwell plates, there 

is a chance that the plastic could interfere with the measured spectra. Additional tests 

could be performed using glass petri dishes to see if a significant difference between cells 

grown in SSM and SFM could be detected. 
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Appendix B. Commercial products/software for microscopy, image acquisition and image 

processing 

Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

3D-DIAS David R. Soll               X X 
Holographic 
method       X X 

Holographic 
method 

(Heid, Voss et al. 
2002; 
Hamahashi, 
Onami et al. 
2005) 

Acumen hci  TTP LabTech X CM       X                       

Adobe Photoshop® Adobe       X                         

(Miura 2005; 
Agley, Velloso et 
al. 2012) 

BD Pathway 435 

Beckton, 
Dickinson and 
Company X BF,CM X X                         

(Rimon and 
Schuldiner 2011) 

BD Pathway 855 

Beckton, 
Dickinson and 
Company X BF,CM X X                         

(Rimon and 
Schuldiner 2011) 

Beckman Coulter IC 100 
Beckman 
Coulter X BF X                           

(Rimon and 
Schuldiner 2011) 

BioImageXD 

Universities of 
Jyväskylä and 
Turku in 
Finland, Max 
Planck Institute 
CBG in 
Dresden, 
Germany X     X X           X           

(Eliceiri, Berthold 
et al. 2012) 

Biostation-CT Nikon X BF,PCM,EFM X     X     X     X     X     

Braincells Gabor Ivanesy         X         Manual X         Manual 
(Hand, Sun et al. 
2009) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

Cedex XS System Roche   BF X X   X     X               

(Brinkmann, 
Lutkemeyer et al. 
2002) 

Celigo® Brooks X BF,PCM,EFM X     X     X                 

Cell Observer  
or Cell Observer HS Zeiss X BF,CM X X                         

(Rimon and 
Schuldiner 2011) 

Cell Tracker 

Bioanalytical 
Sciences 
Group, 
University of 
Manchester         X         

Thresholding, 
Level Sets, 
Active 
Contours. X         

Edge 
Detection; 
Active 
Contours. 

(Hand, Sun et al. 
2009) 

CellCognition 

Gerlich 
laboratory at 
ETH Zurich X         X       

Local adaptive 
thresholding, 
watershed, 
split-and-
merge.   X       

SVM, 
Hidden 
Markov 
modelling. 

(Held, Schmitz et 
al. 2010) 

CellM / CellR (Cell^ series) 
Olympus 
Europe   Not specified X X   X           X         

(Rapoport, 
Becker et al. 
2011) 

CellMonitorTM 
Fraunhofer 
IPM   BF,PCM,EFM X     X     X 

Pattern 
recognition               

Cellomics ArrayScan VTI 
Thermo 
Scientific X BF X X                         

(Rimon and 
Schuldiner 2011) 

CellProfiler® 
BROAD 
Institute X     X   X     X 

Several 
methods   X     X 

Overlap, 
Distance, 
Feature 
Matching. 

(Carpenter, 
Jones et al. 2006; 
Selinummi, 
Ruusuvuori et al. 
2009; Quanli 
2010) 

CellScreen® 
Innovatis AG, 
Germany   BF,PCM,EFM X                           

(Brinkmann, 
Lutkemeyer et al. 
2002) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

CellTrack 

Database 
Research 
Group, The 
Ohio State 
University         X         

Thresholding, 
Edge 
Detection. X         

Feature 
Matching; 
Mean-
shifts; 
Optical 
Flow; Active 
Contours. 

(Sacan, 
Ferhatosmanoglu 
et al. 2008; 
Hand, Sun et al. 
2009) 

CellViCAM  
S. 
Burgemeister             X     

Supervised 
machine 
learning             

(Burgemeister, 
Nattkemper et 
al. 2010) 

CyteSeer® Vala Sciences X         X                       

Fiji         X                         
(Eliceiri, Berthold 
et al. 2012) 

HCS A Leica X BF,CM X X                         
(Rimon and 
Schuldiner 2011) 

HoloMonitor® 

Phase 
Holographic 
Imaging (PHI)   PCM,HL X         X X 

Holographic, 
watershed.       X X Holographic 

(Mõlder, Sebesta 
et al. 2008) 

Icy® 

Quantitative 
Image Analysis 
Unit at Institut 
Pasteur       X   X X   X Several plugins   X X   X 

Several 
plugins   

ImageJ®         X   X     X               
(Polzer, Haasters 
et al. 2010) 

MTrack2 (plugin) 
Wayne 
Rasband           X       

Thresholding, 
Edge 
Detection, 
Watersheds   X       

Feature 
Matching 

(Hand, Sun et al. 
2009) 

NIHimage 

National 
Institutes of 
Health (NIH)       X   X     X               (Miura 2005) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

MosaicSuite: 
ParticleTracker 2D and 3D 

MOSAIC 
Group, ETH 
Zurich       X               X     X 

Several 
methods   

ImageMagick® 
ImageMagick 
Studio LLC       X                         

(Satulovsky, Lui 
et al. 2008) 

Image-Pro Plus® 
Media 
Cybernetics     X X X           X             

ImageStreamX Amnis X BF X X                         
(Rimon and 
Schuldiner 2011) 

ImageXpress MICRO 
Molecular 
Devices X BF X                           

(Rimon and 
Schuldiner 2011) 

ImageXpress Ultra 
Molecular 
Devices X CM X X                         

(Rimon and 
Schuldiner 2011) 

Imaris 5.5 Bitplane           X       

Thresholding, 
Spot 
Detection.   X       

Feature 
Matching. 

(Hand, Sun et al. 
2009) 

IN Cell Analyzer 1000 GE Healthcare X BF,DIC,EFM X X                         

(Padfield, 
Rittscher et al. 
2008; Padfield, 
Rittscher et al. 
2011) 

IN Cell Analyzer 2000 GE Healthcare X BF X X                         
(Rimon and 
Schuldiner 2011) 

IN Cell Analyzer 3000 GE Healthcare X CM X X                         
(Rimon and 
Schuldiner 2011) 

IncuCyte® 
ESSEN 
BioScience X BF,PCM,EFM X     X     X                 

Insight Toolkit (ITK) 

US National 
Library of 
Medicine of 
the National 
Institutes of 
Health       X   X     X Filters             

(Satulovsky, Lui 
et al. 2008) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

JuliTM / JuliTM Br NanoEnTek   BF,EFM       X     X                 

Large Scale Digital Cell 
Analysis System (LSDCAS) 

Holden 
Comprehensive 
Cancer Center 
at the 
University of 
Iowa   PCM,EFM X     X     X 

Semi-
automatic 
method 
(manual)             

(Davis, Kosmacek 
et al. 2007) 

MotoCell 

Concita 
Cantarella et 
al.         X         Manual X         Manual 

(Cantarella, Sepe 
et al. 2009; 
Paduano, Sepe et 
al. 2010) 

LabView®                                     

CELLView S. Gerardi   BF,PCM,EFM X                           

(Gerardi, 
Galeazzi et al. 
2005; Skoczylas, 
Rakowski et al. 
2011) 

Matlab®                                     

CAFE MiCells 

David W. 
Andrews, Mac 
Biophotonics 
Facility, 
McMaster 
University X         X       

Statistics, 
Neural 
network and 
bioinformatics 
toolboxes for 
classification.               

CellTracer® Quanli Wang           X     X 
Thresholding, 
Watershed   X     X Proximity (Quanli 2010) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

ZFIQ 
NeuronIQ 
NeuriteIQ 
DCellIQ 
GCellIQ 
AxonTracker 
AFINITI 

Center for 
Bioengineering 
and 
Informatics,  
The Methodist 
Hospital 
System           X       

Local adaptive 
thresholding, 
seeded 
watershed, 
fragment 
merging.   X       

Feature 
Matching 
via 
Neighboring 
Graphs; 
Gradient 
Flow 
Tracking 
method. 

(Liu, Nie et al. 
2008; Sigoillot, 
Huckins et al. 
2011) 

Image Processing 
Toolbox® 

The 
MathWorks 
Inc.       X                         

(Huth, Buchholz 
et al. 2010; Or-
Tzadikario, 
Sopher et al. 
2010; Al-Shanti, 
Faulkner et al. 
2011; Rapoport, 
Becker et al. 
2011; Topman, 
Sharabani-Yosef 
et al. 2011) 

MOSAIC Group codes 

MOSAIC 
Group, ETH 
Zurich           X     X 

Deconvolution, 
snakes.   X     X 

Feature 
point 
tracking.   

Time Lapse Analyzer® 

Johannes Huth, 
Johann M. 
Kraus, Hans A. 
Kestler X         X     X 

Deconvolution, 
local 
thresholding, 
morphological 
operations.   X     X 

Cell 
centroid 
detection, 
data 
association 
and state 
estimation 
via a 
Kalman 
filter. 

(Huth, Buchholz 
et al. 2011) 

Tri-track 
Pascal 
Vallotton                       X X   X 

Graph-
based 
tracking 

(Vallotton and 
Olivier 2013) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

Metamorph® 
Molecular 
Devices     X X                         

(Genovesio, Liedl 
et al. 2006; 
Ambuhl, 
Brepsant et al. 
2012; Chao-Hui, 
Sankaran et al. 
2012; Theriault, 
Walker et al. 
2012) 

Opera PerkinElmer X CM,MPM X X   X       
Features 
extraction             

(Rimon and 
Schuldiner 2011) 

Operetta PerkinElmer X BF,CM X X                         
(Rimon and 
Schuldiner 2011) 

QPM system 
Pi Photonics, 
Inc.   HL X         X   

Holographic 
method               

Retrac 
Molecular 
Motors Group         X         Manual X         Manual 

(Hand, Sun et al. 
2009) 

ScanImage 

HHMI janelia 
farm research 
campus     X                             

ScanR Olympus X BF X X                         
(Rimon and 
Schuldiner 2011) 

SigmaScan® Pro 
Systat 
Software, Inc.       X                         

(Or-Tzadikario, 
Sopher et al. 
2010) 

Simi BioCell Simi   DIC,HL           X X 
Holographic 
method       X X 

Holographic 
method 

(Hamahashi, 
Onami et al. 
2005) 

TTT (Timm's Tracking Tool) 
Timm 
Schroeder X         X     X 

Thresolding, 
features 
,matching, 
semi-
automatic.   X     X 

Semi-
automatic 
tracking 

(Eilken, 
Nishikawa et al. 
2009; Rieger, 
Hoppe et al. 
2009) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

Vaa3D Hanchuan Peng       X X                       
(Eliceiri, Berthold 
et al. 2012) 

Visual Basic (C/C++)         X   X     X 

Region-
growing, 
confidence-
connected 
filter, level-set 
shape-
detection filter   X     X 

Region-
growing, 
confidence-
connected 
filter, level-
set shape-
detection 
filter 

(Satulovsky, Lui 
et al. 2008) 

OpenCV OpenCV       X X           X           
(Eliceiri, Berthold 
et al. 2012) 

OpenMPI library 

Open MPI 
Development 
Team, Indiana 
University.       X   X     X Wavelets, SVM             

(Skoczylas, 
Rakowski et al. 
2011) 

Particle Tracking 

MOSAIC 
Group, ETH 
Zurich                       X       

Feature 
point 
tracking.   

ScaLAPACK library 

Univ. of 
Tennessee; 
Univ. of 
California, 
Berkeley; Univ. 
of Colorado 
Denver; and 
NAG Ltd.       X   X     X Wavelets, SVM             

(Skoczylas, 
Rakowski et al. 
2011) 

Visualization Toolkit (VTK) 

Will Schroeder, 
Ken Martin, 
and Bill 
Lorensen       X                         

(Eliceiri, Berthold 
et al. 2012) 
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Product Name 
Company / 
Author HTS 

Microscopy Optics 
for Image 
Acquisition 

IA 

Image Processing References 

        

MPS 

Cells Segmentation Cells Tracking   

          US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used US 

EFM 
CM 
MPM DF HL 

BF 
PCM 
DIC 

Method  
used   

Volocity 4 Improvision           X       

Thresholding, 
Edge 
Detection, 
Watersheds   X       

Feature 
Matching 

(Hand, Sun et al. 
2009) 

WiScan 
IDEA-
biomedicals X BF X X                         

(Rimon and 
Schuldiner 2011) 

μManager Vale Lab     X                             

 

BF: Brightfield 

CM: Confocal Microscopy 

DF: Darkfield 

DIC: Differential Interference Contrast 

EFM: Epifluorescence Microscopy 

HL: Holography 

HTS: High-Throughput Screening 

IA: Image Acquisition 

MPM: Multiphotons Microscopy 

MPS: Multipurpose Software 

PCM: Phase Contrast Microscopy 

US: Unspecified 
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Appendix C. Protocols used for the culture of human myoblasts 

Most of the laboratory protocols used for the culture of human myoblasts were inspired 

and adapted from the protocols established by a former graduate student (Mr. Victor 

Alain Parent), which were used for the LOBSFM medium project (Parent 2009). 

C.1 Frozen cells thawing and seeding 

 Pull out a human myoblasts vial from the liquid nitrogen tank (myoblasts from Dr. 

Tremblay’s lab, BB13M P3, P4 or P5); 

 Heat the vial slowly by storing it in a warm incubator at 37 0C for about 5 minutes 

(until a small portion of the ice melted); 

 Under a laminar flow hood, slowly add culture medium at 37 0C in the vial and 

mix smoothly using a pipette until there is no ice left; 

 Dilute in 3-4 mL of culture medium and perform a centrifugation at 1500 RPM for 

5 minutes; 

 Remove the supernatant (to remove the DMSO) and resuspend the cells in fresh 

culture medium (3-4 mL) to create a mother solution; 

 Perform a hemacytometer count on the mother solution; 

 Seed a T-flask (25 cm2) full of fresh culture medium (5 mL) with the mother 

solution (0.5 mL, targeting between 2,000 to 50,000 cells/mL): this T-flask is used 

to expand cells for the next passage; 

o Before putting the T-flask in the incubator, agitate it well to have a uniform 

distribution of the cells using a cross pattern while keeping it on a steady 

horizontal surface (up-down, left-right), avoiding circular patterns to 

prevent cells from accumulating at the center; 

o Unscrew slightly the T-flask cap to favor gas diffusion; 

 Dilute the mother solution in a 15 mL plastic tube to reach an appropriate cell 

density (usually 0.5 mL of mother solution for 11.5 mL of fresh medium) to create 

a daughter solution; 

 Agitate the plastic tube vigorously to make sure that the cells are well spread into 

the liquid volume (use a shaker); 

 Fill each well of a 6-wells multiwell plate with 2 mL of daughter solution; 

o Agitate the multiwell plate to obtain a uniform distribution of the cells 

using a cross pattern while keeping it on a steady horizontal surface (up-
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down, left-right), avoiding circular patterns to prevent cells from 

accumulating at the center of each well; 

 The 6-wells multiwell plate is used for live-cell imaging; 

 When the cells in the T-flask reach 80% confluence, trypsinize the culture to 

harvest the cells (passaging); 

 Keep the cultures at 37.5 0C and at 5% CO2: the culture medium should be 

changed under a laminar flow hood every 48-72 hours. 

C.2 Cell culture trypsinization and passaging 

 Under a laminar flow hood, open the T-flask (25 cm2) and remove the old culture 

medium; 

 Wash the cells with a PBS solution (around 5 mL) to remove as much proteins as 

possible; 

 Remove the spent PBS solution; 

 Add around 1 mL of trypsin (TrypsinLE); 

 Leave at ambient temperature for 5-10 minutes until the cells detach (usually it is 

longer for SSM than for SFM); 

o Strike vigorously the T-flask on a flat surface to help the cells to detach 

(be careful not to brake the T-flask); 

o Meanwhile, fill a plastic tube with 4 mL of fresh SSM or with 3 mL of SFM 

and 1 mL of a solution of trypsin inhibitor (soy bean proteins): this will 

inhibit the trypsin used; 

 Once the cells are detached, remove the solution from the T-flask and pipette it 

into the plastic tube to inhibit the trypsin; 

 Agitate the plastic tube (use a shaker); 

 Perform a centrifugation at 1500 RPM for 5 minutes; 

 Remove the supernatant and resuspend the cells in fresh culture medium (3-4 

mL) to create a mother solution; 

 Perform a hemacytometer count on the mother solution; 

 Seed a T-flask (25 cm2) full of fresh culture medium (5 mL) with the mother 

solution (0.5 mL, targeting between 2,000 to 50,000 cells/mL): this T-flask will 

expand cells for the next passage; 

o Before putting the T-flask in the incubator, agitate it well to have a uniform 

distribution of the cells using a cross pattern while keeping it on a steady 
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horizontal surface (up-down, left-right), avoiding circular patterns to 

prevent cells from accumulating at the center; 

o Unscrew the T-flask cap slightly to favor gas diffusion; 

 Dilute the mother solution in a 15 mL plastic tube to reach an appropriate cell 

density (usually 0.5 mL of mother solution for 11.5 mL of fresh medium) to create 

a daughter solution; 

 Agitate the plastic tube vigorously to make sure that the cells are well spread into 

the liquid volume (use a shaker); 

 Fill each well of a 6-wells multiwell plate with 2 mL of daughter solution; 

o Agitate the well plate to have a uniform distribution of the cells using a 

cross pattern while keeping it on a steady horizontal surface (up-down, 

left-right), avoiding circular patterns to prevent cells from accumulating at 

the center of each well; 

 The 6-wells multiwell plate is used for live-cell imaging; 

 When the cells in the T-flask reach 80% confluence, trypsinize the culture to 

harvest the cells (passaging); 

 Keep the cultures at 37.5 0C and at 5% CO2: the culture medium should be 

changed under a laminar flow hood every 48-72 hours. 

C.3 Cells freezing protocol 

 Trypsinize the cells from a T-flask (as described previously) to produce in a 

plastic tube a mother solution having a cellular density of 1-3 x 106 cells/mL (in 

SSM medium); 

 Add DMSO to obtain a concentration of 10% DMSO (cellular suspension); 

 Mix well (using a shaker) and put on ice; 

 Fill small 1.8 mL cryogenic vials with 1 mL of the cellular suspension (SSM + 

10% DMSO); 

 Place the vials in a Styrofoam box full of ice and leave overnight in a -80 0C 

freezer (the temperature inside the vials will decrease of 1 0C per minute for 12-

15 hours); 

 Store the vials in liquid nitrogen. 
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C.4 Hemacytometer cell count 

 Recover a sample from a cellular mother solution; 

 In an Eppendorf, mix a specified volume of the sample with erythrosine B 

depending of the cell concentration in the mother solution (start with 100 μL of 

mother solution and 100 μL of erythrosine B); 

o Dilution with erythrosine B (1 mg/mL) should be done in order to have at 

least a mean cell count of 15 cells per hemacytometer section; 

o Mix well with a pipette; 

 Use a pipette to send 10 μL of the mix in each hemacytometer chamber; 

 Place the hemacytometer under a microscope and count colored cells (dead 

cells) and white/transparent cells (living cells); 

o Cell counts should be performed in the first two minutes following the 

dilution, since erythrosine B will start penetrating living cells as well after 

this delay; 

 Count the number of living cells in each hemacytometer quadrant and sum them 

(total number of cells counted); 

 Divide the total number of cells counted by the number of hemacytometer 

quadrants and multiply by the erythrosine B dilution factor and by the appropriate 

hemacytometer chamber factor (here 10,000); 

 The computation is summarized by the following equation: 

𝐶𝑒𝑙𝑙𝑠

𝑚𝐿
= (

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠
) ∗ (𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑠𝑖𝑛𝑒 𝐵 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛) ∗ (10,000) (C-1) 
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C.5 Preparation of serum-supplemented medium (SSM) 

Table C-1 provides a list of the different ingredients required to prepare 200 mL of a 

serum-supplemented medium (SSM) (with the required quantities): 

Table C-1 : Serum-supplemented medium (SSM) ingredients 

 

Steps: 

 Sterilize a 500 mL glass bottle and required pipette tips; 

 Under a laminar flow hood, fill the glass bottle with the required amount of MB-I; 

 Weigh the required amount of BSA in a hexagonal weigh plastic dish; 

 Under the laminar flow hood, add with the pipette gun (attached to a disposable 

pipette) the FBS, the dexametazone and the ITS;  

 Mix by pushing/pulling a couple of times using the pipette gun to dissolve the 

BSA; 

 Add with a pipette (and the appropriate pipette tip) the bFGF to the liquid; 

 With a 20 mL syringe, filter the content of the plastic dish above the glass bottle 

with a 0.45 μm disposable filter (sterile filtration). NOTE: depending on the FBS 

lot used, it may be required to use two or three disposable filters; 

 Close the glass bottle and mix well; 

 Store the culture medium at 4 0C. 

 

  

Compounds

Concentration 

in culture 

medium Units

Aliquot 

concentration 

(μg/mL)

Liquid volume 

per aliquot (μL)

Quantities 

required Units

MB-I 85% % - - 170 mL

FBS 15% % - - 30 mL

Dexametazone 0,39 ug/mL 20 1000 4 Aliquots

ITS 1 X - - 2 mL

bFGF 10 ng/mL 80 25 1 Aliquot

BSA 0,5 mg/mL - - 100 mg
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C.6 Preparation of serum-free medium (SFM) 

Table C-2 provides a list of the different ingredients required to prepare 200 mL of a 

serum-free medium (SFM) (with the required quantities): 

Table C-2 : Serum-free medium (SFM) ingredients 

 

Steps: 

 Sterilize a 500 mL glass bottle and required pipette tips; 

o The night before, coat the glass bottle with Sigmacote® and leave it to dry 

overnight (since it is a serum-free medium, this prevents cytokines from 

sticking to the glass); 

 Under a laminar flow hood, fill the glass bottle with the required amount of MB-I, 

F12 and RPMI; 

 Weigh the required amounts of BSA and of fetuin in a hexagonal weigh plastic 

dish; 

 Under the laminar flow hood, add with the pipette gun (attached to a disposable 

pipette) the dexametazone, the B27, the ITS, the lipids mix and the glutamin;  

 Mix by pushing/pulling a couple of times using the pipette gun to dissolve the 

solids; 

Compounds

Concentration 

in culture 

medium Units

Aliquot 

concentration 

(μg/mL)

Liquid volume 

per aliquot (μL)

Quantities 

required Units

MB-I 33% % - - 66,7 mL

F12 33% % - - 66,7 mL

RPMI 33% % - - 66,7 mL

ITS 1 X 100 - 2 mL

Chemically 

Defined Lipid 

Concentrate 1 X 100 - 2 mL

B27-VitA 1 X 50 1000 4 Aliquots

FGF 2 10 ng/mL 80 25 1 Aliquot

FGF 4 10 ng/mL 80 25 1 Aliquot

IGF-1 10 ng/mL 50 100 0,4 Aliquot

EGF 10 ng/mL 80 25 1 Aliquot

IL-1alpha 5 ng/mL 25 40 1 Aliquot

IL-1beta 5 ng/mL 25 40 1 Aliquot

Dexametazone 0,39 ug/mL 20 1000 4 Aliquots

BSA 0,5 mg/mL - - 100 mg

Fetuin 0,5 mg/mL - - 100 mg

Glutamin 4 mM 200 - 4 mL

Fibronectin 5 ug/mL 1000 - 1 mL
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 Centrifuge at 10,000 RPM for 1 minute the growth factors aliquots; 

 Add with a pipette (and the appropriate pipette tip) the growth factors to the 

liquid: FGF-2, FGF-4, IGF-1, EGF, IL-1alpha and IL-1beta; 

 Mix by rotating slightly the plastic dish on the flat surface under the laminar flow 

hood; 

 With a 20 mL syringe, filter the content of the plastic dish above the glass bottle 

with a 0.45 μm disposable filter (sterile filtration); 

 With a pipette, add directly the fibronectin into the glass bottle; 

 Close the glass bottle and mix well; 

 Store the culture medium at 4 0C. 
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C.7 Compounds for cell culture 

Table C-3 provides a list of the compounds that were used for cell culture and their 

supplier: 

Table C-3 : List of compounds used for cell culture and their suppliers 

 

 Growth factors were aliquoted to the required concentration using ultrapure 

water; 

 The newly purchased dexamethazone powder (inside a brown glass bottle) was 

dissolved with 1 mL absolute ethanol in the bottle (anhydrous) and 49 mL F12 

medium before being aliquoted in 50 aliquots of 1 mL (aliquot concentration of 20 

μg/mL); 

 The trypsin-inhibitor powder was dissolved in 10 mL PBS before being filtered at 

0.45 μm in a plastic tube and stored at 4 0C. 

  

Compound Supplier Product ID Quantity Concentration

MB-I

MCDB120 from Dr. Jacques 

Tremblay's Lab (CRCHUL) - 1000 mL -

F12 Life Technologies/Gibco 11765-054 500 mL -

RPMI Life Technologies/Gibco 21870-076 500 mL -

FBS HyClone / Thermo Fisher SH3039603 500 mL -

ITS Life Technologies/Gibco 41400-045 10 mL 100X

Chemically Defined 

Lipid Concentrate Life Technologies/Gibco 11905-031 100 mL -

B27-VitA Life Technologies/Gibco 12587-010 10 mL 50X

FGF 2 Feldan Bio 1D-07-017b 50 μg -

FGF 4 Feldan Bio 1D-07-001b 25 μg -

IGF-1 Feldan Bio 1D-16-002b 100 μg -

EGF Feldan Bio 1D-06-005b 500 μg -

IL-1alpha Feldan Bio 1D-11-004b 10 μg -

IL-1beta Feldan Bio 1D-11-042b 10 μg -

Dexametazone Sigma-Aldrich D8893-1MG 1 mg -

BSA Sigma-Aldrich A1933-25G 25 g -

Fetuin Sigma-Aldrich F2379-1G 1 g -

Glutamin Life Technologies/Gibco 25030-081 100 mL 200 mM

Fibronectin Millipore  FC010-10MG 10 X 1 mL 1 mg/mL
Trypsin inhibitor 

from Glycine max 

(soybean) Sigma-Aldrich T6522-25MG 25 mg -

Trypsin LE Life Technologies/Gibco 12604-021 500 mL 1X

PBS Life Technologies/Gibco 10010-023 500 mL 1X
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C.8 Composition of MCDB120 

The composition of the MCDB120 medium is provided in Table C-4 according to Ham 

and Blau (1988). 

Table C-4 : Composition of MCDB120 medium (Ham and Blau 1988) 

 

  

M/L mg/L M/L mg/L

Amino Acids Other Organic Components

L-Alanine 3.00E-5 2.67 Adenine 1.00E-6 0.1351

L-Arginine.HCl 1.00E-3 210.67 Choline Chloride 1.00E-4 13.96

L-Asparagine.H20 1.00E-4 15.01 D-Glucose 5.55E-3 1000.00

L-Aspartic Acid 1.00E-4 13.31 myo-Inositol 1.00E-4 18.016

L-Cysteine.HCI.H20 2.00E-4 35.13 Putrescine.2HCl 1.00E-9 0.0001611

L-Glutamic Acid 3.00E-5 4.41 Sodium Pyruvate 1.00E-3 110.04

L-Glutamine 1.00E-2 1461.50 Thymidine 1.00E-7 0.02422

Glycine 3.00E-5 2.25 Bulk Inorganic Salts

L-Histidine.HCl.H20 2.00E-4 41.93 CaCl2.2H20 1.60E-3 235.23

L-Isoleucine 5.00E-4 65.58 KCI 4.00E-3 298.20

L-Leucine 1.00E-3 131.17 MgSO4.7H20 1.00E-3 246.38

L-Lysine.HCI 1.00E-3 181.65 NaCl 1.10E-1 6430.0

L-Methionine 2.00E-4 29.84 Na2HPO4.7H2O 5.00E-4 134.04

L-Phenylalanine 2.00E-4 33.04 Trace Elements

L-Proline 1.00E-4 11.51 CuSO4.5H20 1.00E-8 0.002496

L-Serine 3.00E-4 31.53 FeSO4.7H20 3.00E-6 0.8340

L-Threonine 3.00E-4 35.73 H2SeO3 3.00E-8 0.00387

L-Tryptophan 2.00E-5 4.08 MnSO4.5H20 1.00E-9 0.000241

L-Tyrosine 1.00E-4 18.12 Na2SiO3.9H20 1.00E-5 2.842

L-Valine 1.00E-3 117.15 (NH4)6Mo7O24.4H20 3.00E-9 0.00371

Vitamins NH4VO3 5.00E-9 0.000585

d-Biotin 3.00E-8 0.00733 NiCl2.6H20 3.00E-10 0.0000713

Folinic Acid (Ca 

salt).5H20 1.00E-6 0.602 ZnSO4.7H20 3.00E-7 0.08625

DL-Alpha-Lipoic Acid 1.00E-8 0.002063

Buffers, Indicators 

and Miscellaneous

Niacinamide 5.00E-5 6.11 Phenol-Red (Na salt) 3.30E-6 1.242
D-Pantothenic Acid 

(Hemi-Ca salt) 1.00E-4 23.82 NaHCO3 1.40E-2 1176.0

Pyridoxine.HCl 1.00E-5 2.056

Riboflavin 1.00E-8 0.003764

Thiamin.HCI 1.00E-5 3.373

Vitamin B12 1.00E-8 0.01355
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Appendix D. List of PCM image datasets generated during the project 

Experiment Name Start Date Cells Medium 
Cell initial 
concentration (c/mL) 

Comments 

Experiment_January_25_2011 January 25, 2011 BB13MP7 (myoblasts) SFM 42500 
Done with fresh B27 vitamin (added 4mL 
instead of 2mL). Excellent results! 

Experiment_January_31_2011 January 31, 2011 BB13MP8 (myoblasts) SFM 43125 Same thing as previous experiment 

Experiment_February_07_2011 February 7, 2011 BB13MP9 (myoblasts) SFM 39375 With fresh Fibronectine 

Experiment_February_14_2011 February 14, 2011 BB13MP10 (myoblasts) SFM 26875 With fresh Fibronectine 

Experiment_April_08_2011 April 8, 2011 BB13MP5 (myoblasts, VP) 
SSM (1 to 3) and 
SFM (4 to 6) 

8750 
New cell batch. This time I used the FBS 
that was in aliquots from Victor. Cells 
seem apoptotic. 

Experiment_April_21_2011 April 21, 2011 BB13MP6 (myoblasts, VP) 
SSM (1 to 3) and 
SFM (4 to 6) 

1458 c/mL for SSM, 
47500 c/mL for SFM 

Filters plugged, and no CO2 was going 
to the multiwell plate on Day 5. Apoptotic 
cells. 

Experiment_April_26_2011 April 21, 2011 
BB13MP6 (myoblasts, VP) 
TÉMOIN 

SSM (1 to 3) and 
SFM (4 to 6) 

1458 c/mL for SSM, 
47500 c/mL for SFM 

Reference plate from previous 
experiment (April 21st 2011). The cells 
started to grow well when I switched to 
the old FBS from Victor. The cells were 
apoptotic before. 

Experiment_May_08_2011 April 28, 2011 BB13MP7 (myoblasts, VP) SFM only 75000 Only one image acquisition 

Experiment_May_14_2011 May 6, 2011 BB13MP8 (myoblasts, VP) SFM only 41250 Only one image acquisition 

Experiment_May_21_2011 May 13, 2011 BB13MP9 (myoblasts, VP) SFM only 39792 Only one image acquisition 

Experiment_May_22_2011 May 22, 2011 
BB13MP7 SSM et BB13MP10 
SFM (myoblasts, VP) 

SSM (1 to 3) and 
SFM (4 to 6) 

23542 for SSM and 
47917 for SFM 

Use of Victor FBS. Cells were fusing in 
SFM. 

Experiment_May_27_2011 May 26, 2011 
BB13MP8 SSM et BB13MP11 
SFM (myoblasts, VP) 

SSM (1 to 3) and 
SFM (4 to 6) 

51771 for SSM and 
26354 for SFM 

Use of Victor FBS. No CO2 at the end… 

Experiment_June_01_2011 May 26, 2011 
BB13MP8 SSM et BB13MP11 
SFM (myoblasts, VP) 
TÉMOIN 

SSM (1 to 3) and 
SFM (4 to 6) 

51771 for SSM and 
26354 for SFM 

Use of Victor FBS. Reference plate. 
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Experiment Name Start Date Cells Medium 
Cell initial 
concentration (c/mL) 

Comments 

Experiment_June_17_2011 June 17, 2011 
BB13MP11 SSM et 
BB13MP14 SFM (myoblasts, 
VP) 

SSM (1 to 3) and 
SFM (4 to 6) 

28646 for SSM and 
7292 for SFM 

Use of Corinne FBS (fresh FBS, new 
medium batch). 

Experiment_June_20_2011 June 17, 2011 
BB13MP11 SSM et 
BB13MP14 SFM (myoblasts, 
VP) TÉMOIN 

SSM (1 to 3) and 
SFM (4 to 6) 

28646 for SSM and 
7292 for SFM 

Use of Corinne FBS (fresh FBS, new 
medium batch). 

Experiment_June_25_2011 June 24, 2011 BB13MP12 SSM only 19896 
Use of Corinne FBS (fresh FBS, new 
medium batch). 

Experiment_July_21_2011 July 21, 2011 BB13MP16 SSM only 9688 
Use of Corinne FBS (fresh FBS, new 
medium batch). 

Experiment_August_03_2011 August 3, 2011 BB13MP17 (myoblasts, VP) SSM 4688   

Experiment_August_11_2011 August 10, 2011 
BB13MP18 (myoblasts, VP) 
in wells 1 to 3 and BB13MP5 
(from vials) in wells 4 to 6 

SSM 
1458 for BB13MP18 
and 10000 for 
BB13MP5 

  

Experiment_August_19_2011 August 16, 2011 BB13MP6 (myoblasts) SSM 30417   

Experiment_August_22_2011 August 21, 2011 BB13MP7 (myoblasts) SSM 12500   

Experiment_August_26_2011 August 26, 2011 BB13MP8 (myoblasts) SSM 24271   

Experiment_August_31_2011 August 31, 2011 BB13MP9 SSM only 18542   

Experiment_September_06_2011 
September 5, 
2011 

BB13MP10 SSM only 11667   

Experiment_September_11_2011 
September 11, 
2011 

BB13MP11 SSM only 14688   

Experiment_September_18_2011 
September 17, 
2011 

BB13MP12 SSM only 10000   

Experiment_September_24_2011 
September 23, 
2011 

BB13MP13 SSM only 10313   

Experiment_October_01_2011 
September 30, 
2011 

BB13MP14 SSM only 7813   

Experiment_October_08_2011 October 8, 2011 BB13MP15 SSM only 7500   

Experiment_October_17_2011 October 16, 2011 BB13MP16 SSM only 4479   

Experiment_November_04_2011 October 27, 2011 BB13MP17 SSM only 625   

Experiment_November_08_2011 November 8, 2011 BB13MP6 SFM only 14167   

Experiment_November_14_2011 
November 13, 
2011 

BB13MP7 SFM only 19271   

Experiment_November_18_2011 
November 17, 
2011 

BB13MP8 SFM only 18542   
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Experiment Name Start Date Cells Medium 
Cell initial 
concentration (c/mL) 

Comments 

Experiment_November_23_2011 
November 22, 
2011 

BB13MP9 SFM only 22188   

Experiment_November_28_2011 
November 27, 
2011 

BB13MP10 SFM only 21458   

Experiment_December_03_2011 December 2, 2011 BB13MP11 SFM only 11458   

Experiment_December_09_2011 December 8, 2011 BB13MP12 SFM only 5833   

Experiment_December_16_2011 
December 15, 
2011 

BB13MP13 SFM only 7083   

Experiment_December_23_2011 
December 22, 
2011 

BB13MP14 SFM only 7708   

Experiment_January_16_2012 January 16, 2012 BB13MP6 
SSM (1 to 3) and 
SFM (4 to 6) 

4792 

Differenciation experiment (wells 5 and 
6). Cells in SSM (wells 1,2,3) are in 
senescence (SSM prepared in 
november 2011) 

Experiment_January_27_2012 January 26, 2012 BB13MP5 
SSM (1 to 3) and 
SFM (4 to 6) 

17500 

Differenciation experiment (wells 5 and 
6). Cells in SSM (wells 1,2,3) are in 
senescence (SSM prepared in 
november 2011) 

Experiment_February_04_2012 February 3, 2012 BB13MP4 
SSM (1 to 3) and 
SFM (4 to 6) 

31250 

Differenciation experiment (wells 5 and 
6). Cells in SSM (wells 1,2,3) are in 
senescence (SSM prepared on February 
2nd 2012). Differenciation medium in 
wells 2 and 3 on Trial 8. 

Experiment_February_13_2012 February 13, 2012 BB13MP5 
SSM (1 to 3) and 
SFM (4 to 6) 

8750 
Since we have problems with SSM, I am 
using the old SSM medium batch from 
01/11/2011 (seems to work well) 

Experiment_February_26_2012 February 25, 2012 BB13MP8 
SSM (1 to 3) and 
SFM (4 to 6) 

14167 
Cells have a very low survivability… NO 
GROWTH 

Experiment_February_27_2012 February 27, 2012 BB13MP7 
SSM (1 to 3) and 
SFM (4 to 6) 

5000 
Use the SFM batch from 13/12/2011 and 
SSM medium from 01/11/2011 

Experiment_March_10_2012 March 10, 2012 BB13MP9 

SSM, with 
different 
concentrations of 
ITS 

11771   

Experiment_March_17_2012 March 16, 2012 BB13MP10 

SSM, with 
different 
concentrations of 
ITS 

7656 
Just before the trypsinization of the 
previous passage, the cells were starting 
to fuse 
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Experiment Name Start Date Cells Medium 
Cell initial 
concentration (c/mL) 

Comments 

Experiment_March_22_2012 March 21, 2012 BB13MP11 

SSM, with 
different 
concentrations of 
ITS 

6927   

Experiment_March_29_2012 March 29, 2012 BB13MP5 

SFM, with 
different 
concentrations of 
B27 

1667   

Experiment_April_20_2012 April 19, 2012 BB13MP9 

SFM, with 
different 
concentrations of 
B27 

3594 

CAUTION: I made the mother solution 
(for dilutions) with the FBS medium: this 
means that the cells grew in the last 
couple of days in SFM supplemented 
with some SSM… so this is why there is 
not a lot of difference between wells 

Experiment_April_24_2012 April 24, 2012 BB13MP10 

SFM, with 
different 
concentrations of 
B27 

4948   

Experiment_May_03_2012 May 3, 2012 BB13MP6 

SFM, with 
different 
concentrations of 
B27 

2813   

Experiment_May_09_2012 May 8, 2012 BB13MP7 

SFM, with 
different 
concentrations of 
B27 

14479   

Experiment_May_13_2012 May 12, 2012 BB13MP8 

SSM, with 
different 
concentrations of 
FBS 

8646   

Experiment_June_02_2012 June 1, 2012 BB13MP12 

SSM, with 
different 
concentrations of 
FBS 

2448   

Experiment_June_18_2012 June 18, 2012 BB13MP7 

SSM, with 
different 
concentrations of 
FBS 

10938   
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Experiment Name Start Date Cells Medium 
Cell initial 
concentration (c/mL) 

Comments 

Experiment_June_24_2012 June 23, 2012 BB13MP8 

SSM, with 
different 
concentrations of 
FBS 

10573   
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Appendix E. Metamorph® image acquisition procedure (IX81 

Olympus Microscope) 

To acquire images from the IX-81 OlympusTM microscope, a series of steps are required 

to ensure an optimal live-cell imaging set-up. The software used for image acquisition is 

Metamorph® (Molecular DevicesTM). The Metamorph® general interface is shown in 

Figure E-1. 

 

Figure E-1 : Metamorph® interface 

Image acquisition is performed using the MDA (Multiple Dimension Acquisition) function 

of Metamorph®, which allows acquiring images at different wavelengths using several 

imaging set-ups (e.g. illumination) for a given list of points (x, y and z (focus)) with 

coordinates relative to the center of the first multiwell plate well. The MDA window can 

be opened in the Apps menu, as shown in Figure E-2. 
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Figure E-2 : Apps menu to open MDA window 

E.1 Set cell culture environment 

Before bringing the cells to the microscope, ensure that the enclosure is heated (the fan 

and the heating element are working) and that CO2 is flowing out of the gas controller at 

an appropriate concentration (the controller is ON). 

E.2 Set the zero position (x=0, y=0) on the automated stage 

All imaging is performed by setting the zero position of the automated stage (x=0, y=0) 

at the center of the first well (top left well of multiwell plate). To adjust the zero, it is 

possible to use en empty multiwell plate with a cross (made with a pen) marking the 

center of the first well. Once this empty multiwell plate is properly placed on the 

automated stage, use the automated stage controller joystick while looking at the image 

through the binoculars to reach the center of the first well (marked by a cross). Once the 

center of the well is reached, press the ZERO button on the automated stage controller 

to set the zero position. 

E.3 Generate lists of points (if required) 

Metamorph® (using the MDA function) will acquire images at positions that are relative 

to the zero position (in mm), and this is why lists of points need to be generated. To 

generate lists of points for each well (.STG files), a Matlab® script can be used (see 

POINTS_GENERATOR_METAMORPH_v0r1.m in Section E.10). The distance between 

each well depends on which multiwell plate is used. Roughly, these distances are 40 

mm, 26 mm, 19.4 mm and 9 mm for 6 wells, 12 wells, 24 wells and 96 wells multiwell 

plates. The number of rows and the number of columns also depends on the multiwell 

plate used. The distance between each image in each well is a function of the 

magnification, and was set to ensure a certain overlap between images (around 30%). 
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For the X direction, these distances were 1.0 mm, 0.5 mm and 0.25 mm for 

magnifications of 10X, 20X and 40X respectively. For the Y direction, these distances 

were 0.8 mm, 0.4 mm and 0.2 mm for magnifications of 10X, 20X and 40X respectively. 

Note that the difference between the X and Y directions can be explained by the fact that 

the images are rectangular, and are larger in the X direction (horizontal) than in the Y 

direction (vertical). The X_HEIGHT and Y_HEIGHT parameters (in the Matlab® script) 

determine the grid to be used for imaging each well (these should be odd numbers). For 

example, a 3x3 grid would be performed by setting X_HEIGHT = Y_HEIGHT = 3. Note 

that each point is associated to a focus of zero (z=0), since the focus for each well is set 

manually (see Section E.6). 

E.4 Program a Metamorph acquisition journal (if required) 

Go to the Journal menu, and click on Edit Journal to edit a new journal (.JNL). For the 

acquisition of images, a series of functions needs to be programmed for each well (i), as 

illustrated in Figure E-3 and in Table E-1:  

 

 

Figure E-3 : How to program a Metamorph acquisition journal 
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Table E-1 : Functions needed for each well i 

Function Description 

MDA – Load Stage List Load the list of points associated to well i 

Move To An Absolute Position Move the focus relative to the focus of the 

previous well (see Section E.6) 

Reset Origin Reset the zero focus 

Multi Dimensional Acquisition Acquire the images for each point of the 

list of points loaded 

MDA – Save Stage List Save the focuses achieved by the 

Autofocus Utility (optional) 

 

E.5 Place the cell culture multiwell plate inside the microscope 

The multiwell plate is pushed inside the secondary enclosure (see Figure 3-5); the top of 

the secondary enclosure is closed and is placed onto the automated stage (see Figure 

3-2). The temperature probe and the CO2 tubing are connected onto the secondary 

enclosure. The microscope focus and condenser height are then adjusted manually (by 

looking at the cells inside the first well) to ensure an optimal image quality (see 

manufacturer manual for condenser adjustment). Once the focus is well adjusted in the 

first well, run the journal RESET FOCUS to set the z axis to zero (Figure E-4). Switch 

manually to the side port (camera). 
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Figure E-4 : RESET FOCUS journal 

E.6 Adjust manually the focus for each well 

Even though the Autofocus Utility in the MDA can fine tune the focus automatically, it 

should be roughly adjusted manually near its optimal value for each well to avoid a focus 

drift. Manual adjustments are made using the Device Control window while looking at the 

cells using the MDA (live acquisition button, circled in red), as can be seen in Figure E-5. 

It is possible to go from well center to well center by entering the Stage X and Stage Y 

coordinates for each well, and to adjust the focus (z) until it is optimal (note the optimal 

value for each well). A table can be constructed in Excel®, computing the difference 

between the focuses of two consecutive wells (example provided in Figure E-6), and 

differences are entered in the Move To An Absolute Position function for each well (see 

Section E.7). 

 

Figure E-5 : Device Control and MDA windows (live acquisition) to adjust manually 

the focus for each well 
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 Figure E-6 : Example of focuses differences computed between adjacent wells for 

a 6 wells multiwell plate 

E.7 Enter the proper values in the “Move To An Absolute Position” 

functions 

Starting from the second well, the Move To An Absolute Position functions (see Figure 

E-7) are set to the values of focuses differences obtained in Section E.6. 

 

 

 Figure E-7 : The Move to an Absolute Position value (starting from well #2) needs 

to be modified to incorporate the focuses differences obtained in Section E.6. 
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E.8 Set all the settings in the MDA window 

Before starting the acquisition, different options of the MDA window (Figure E-8) need to 

be set: 

 Saving: A meaningful base name should be used (e.g. cell phenotype, passage, 

etc.). End the name with “_1”: this number will be incremented for each well and 

each acquisition. Choose also the folder in which the images will be saved 

(usually an external hard disk). 

 Wavelengths: For each position in the points list, it is possible to capture several 

wavelengths (e.g. phase contrast + epifluorescence with different filter cubes). 

Also, the Autofocus Utility settings can be adjusted in this window. For this PhD 

project the Autofocus Utility was ran for each image acquired in phase contrast 

microscopy to optimize focus adjustment (for textural analysis). 

 

 Figure E-8 : MDA window with different options/settings 
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E.9 Launch the image acquisition 

To perform live cell imaging for several hours or days, it is possible to use a loop in a 

journal (MDA journal) to run the image acquisition journal at fixed intervals. For example 

(Figure E-9), the PMJ_MDA journal is set to run every three hours (image all points in all 

the wells) for 300 times. However, it is preferable to stop and restart the acquisition once 

a day because of memory limitations (Metamorph® could crash). Image acquisition can 

be started by running the MDA journal. An example of an image typical name structure is 

provided in Figure E-10. 

 

 Figure E-9 : MDA journal for image acquisition at fixed intervals 
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Figure E-10 : Examples of images acquired (typical name structure) 

 

E.10 Matlab® script to generate lists of points for MDA (Metamorph®) 

POINTS_GENERATOR_METAMORPH_v0r1.m 

___________________________________________________ 

%This m-file creates a text file to load points in Metamorph. The points 

%form a grid. There is one grid (one text file) per well. 

  

%The .STG files must be put in C:\MM\app\mmproc\DATA 

  

%Those files can be used with the MDA application in Metamorph (for 

%scanning multiwell plates). 

  

%IMPORTANT NOTE: The position (0,0) of the stage must be set at the center 

%of the first well (top left corner). 

  

  

%%Author: Pierre-Marc Juneau 

%%Date: August 2010 

  

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%INPUTS%% 

  

%Basename for the .STG files 

  

BASENAME='JPL_40X_LIST_Plaque_24puits_puit_'; 

  

%Intervals (in mm) between images (depending on focus): 

%10X: Delta_X=1.0, Delta_Y=0.8 
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%20X: Delta_X=0.5, Delta_Y=0.4 

%40X: Delta_X=0.25, Delta_Y=0.2 

  

Delta_X=0.25; 

Delta_Y=0.2; 

Corners=-2; %The Corners option could be used to "chop" some unwanted points at the 

corners 

  

%Distances between wells (depending on type of multiwell plate, in mm): 

%6 well plate: 40 

%12 well plate: 26 

%24 well plate: 19.4 

%96 well plate: 9.0 

  

Bias_X=19.4; 

Bias_Y=Bias_X; 

  

%Number of rows and columns in the multiwell plate: 

  

n_Rows=4; 

n_Colums=6; 

  

%Grid dimensions (depending on acquisition time wanted): 

%For example, for an 11x11 grid, we have X_HEIGHT=11 and Y_HEIGHT=11 

%Note that those must be odd numbers! 

  

X_HEIGHT=3; 

Y_HEIGHT=3; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Initialisation of the focus matrix 

Number_points=X_HEIGHT*Y_HEIGHT; 

z=zeros(Number_points,1); 

  

nX=floor(X_HEIGHT/2); 

nY=floor(Y_HEIGHT/2); 

  

HEIGHT_X=nX*Delta_X; 

HEIGHT_Y=nY*Delta_Y; 

  

Well_number=1; 

  

%For loop for printing the files 

  

for ii=1:n_Rows 

    for jj=1:n_Colums 
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BiasX=(jj-1)*Bias_X; 

BiasY=(ii-1)*Bias_Y; 

  

pos_y_high=HEIGHT_Y+BiasY; 

pos_y_low=-HEIGHT_Y+BiasY; 

pos_x_high=HEIGHT_X+BiasX; 

pos_x_low=-HEIGHT_X+BiasX; 

  

  

filename=[BASENAME num2str(Well_number) '.STG'] 

  

fid=fopen(filename,'wt'); 

  

fprintf(fid,'"Stage Memory List", Version 5.0\n'); 

fprintf(fid,'0, 0, 0, 0, 0, 0, 0, "mm", "mm"\n'); 

fprintf(fid,'0\n'); 

fprintf(fid,'%0.0f\n',Number_points); 

  

a=1; 

  

for i=pos_y_high:-Delta_Y:pos_y_low 

    for j=pos_x_low:Delta_X:pos_x_high 

         

        a 

        perm1=0; 

        perm2=0; 

         

        if i<(pos_y_high-Corners) && i>(pos_y_low+Corners) 

            perm1=1; 

        end 

        if j<(pos_x_high-Corners) && j>(pos_x_low+Corners) 

            perm2=1; 

        end 

        if perm1==1 || perm2==1;  

        fprintf(fid,'"%0.0f", %0.2f, %0.2f, %0.2f, 0, 0, FALSE, -9999, TRUE, TRUE, 

0\n',a,j,i,z(a)); 

         a=a+1; 

        end 

    end 

end 

fclose(fid); 

Well_number=Well_number+1; 

    end 

end 
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Appendix F. Matlab® scripts used for image and data processing 

 

Metamorph_IMAGE_CALIBRATION_v0r2.m 
%This m-file is for having a calibration image for segmentation (to generate a 

calibration segmentation map) 

  

%Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

  

  

I_M=imread('21.tif'); 

  

%I_M=imread('LOBSFM_Basse_densité2.tif'); 

%I_M=imread('LOBSFM_Medium_densité.tif'); 

%I_M=imread('LOBSFM_Haute_Densité.tif'); 

  

%I_M=imread('Serum_Basse_densité.tif'); 

%I_M=imread('Serum_Basse_densité2.tif'); 

%I_M=imread('Serum_Haute_densité.tif'); 

  

  

criteria=1; 

  

[a,b] = size(I_M); 

  

Mat=zeros(a,b); 

  

  

i=1; 

%Mat=cell2mat(struct2cell(load('21'))); 

%i=max(max(Mat))+1; 

  

while criteria==1 

     

    MAT_IMAGE=label2rgb(Mat,'jet',[.5 .5 .5]); 

    figure(1), 

    imshow(MAT_IMAGE) 

    hold on 

    h = imshow(I_M); 

    set(h, 'AlphaData', 0.9); 

     

    B = roipoly; 

     

     

     

    INPUT=input('Do you want to continue? 1-yes 0-no 2-Not satisfied: want to go back'); 

     

    if INPUT==0 

        criteria=0; 

        Mat(B==1)=i; 

        i=i+1; 

    end 

     

    if INPUT==1 

        Mat(B==1)=i; 

        i=i+1; 

    end 

    Savefile_name=['21']; 

save(Savefile_name,'Mat'); 

end 

  

 

Metamorph_TEST_CELL_CLUSTERS_AUTOMATED_COMPUTATION_

TIME_ALL_v2.m 
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%This function is used to calculate computing times required for each 

%method 

  

%Pierre-Marc Juneau, November 2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

clear 

clc 

%Choose method 

RANGE_FILTER=1; 

STANDARD_DEVIATION_FILTER=0; 

ENTROPY_FILTER=0; 

Topman=0; 

Dewan=0; 

Huth=0; 

Bradhurst=0; 

Debeir=0; 

  

FIGURES_OUTPUT=1; 

  

  

%% 

%Get the directory where the images are 

directory_name_image = uigetdir('','Choose the directory where the images are'); 

listing_image = dir([directory_name_image,'\','*.tif']); 

[Number_of_images,b]=size(listing_image); 

  

%Get the directory where the calibration matrix are 

directory_name_cal = uigetdir('','Choose the directory where the calibration matrices 

are'); 

listing_cal = dir(directory_name_cal); 

[Number_of_cal,b]=size(listing_cal); 

  

  

  

IMAGES_NAME_LIST={listing_image.name}'; 

  

DATA_GLOBAL=[]; 

  

DATA_FIXED_PARAMETERS=[]; 

  

  

alpha=0.5; 

  

  

Recall_AVERAGE=0; 

Precision_AVERAGE=0; 

Berkeley_AVERAGE=0; 

ERROR_SURFACE_AVERAGE=0; 

  

for m=1:Number_of_images 

    m 

    IMAGE_NAME=listing_image(m).name; 

    MATRIX_NAME=strrep(IMAGE_NAME,'.TIF', ''); 

     

    I_M=imread([directory_name_image,'\',IMAGE_NAME]); 

     

    Calibration=cell2mat(struct2cell(load([directory_name_cal,'\',MATRIX_NAME]))); 

     

    Calibration(Calibration>0)=1; 

     

    [a,b] = size(I_M); 

     

     

    if RANGE_FILTER==1 

        cut_cells_regions=3000; 

        filter_size=3; 

        Thresh=10; 
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        tic; 

        

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_RANGE_FILTER_v0r1(I_M,filter_size,Th

resh,cut_cells_regions); 

        TIME_COMPUTATION=toc; 

    end 

     

    if STANDARD_DEVIATION_FILTER==1 

        cut_cells_regions=3000; 

        filter_size=7; 

        Thresh=6; 

         

        tic; 

        

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_STDFILTER_v0r1(I_M,filter_size,Thres

h,cut_cells_regions); 

        TIME_COMPUTATION=toc; 

         

    end 

     

    if ENTROPY_FILTER==1 

        cut_cells_regions=4000; 

        filter_size=7; 

        Thresh=4; 

         

        tic; 

        

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_ENTROPYFILTER_v0r1(I_M,filter_size,T

hresh,cut_cells_regions); 

        TIME_COMPUTATION=toc; 

         

         

    end 

     

     

    if Topman==1 

        bigWindow=29; 

        smallWindow=1; 

        Thresh=0.05; 

        tic; 

        [confluency,outImage]=Topman_2011(I_M,bigWindow,smallWindow,Thresh); 

        I_bin_regions=~outImage; 

        TIME_COMPUTATION=toc; 

         

    end 

     

    if Dewan==1 

        r=67; 

        h=53; 

        tic; 

        I_bin_regions=Dewan_2011_v0r1(I_M,r,h); 

        TIME_COMPUTATION=toc; 

         

    end 

     

    if Huth==1 

        FS_entropy=25; 

        FS_median=53; 

        Thresh_particles=8000; 

        tic; 

        I_bin_regions=Huth_method_v0r1(I_M,FS_entropy,FS_median,Thresh_particles); 

        TIME_COMPUTATION=toc; 

         

    end 

     

     

    if Bradhurst==1 

        filter_size=7; 

        Thresh_particles=3500; 

        Thresh_holes=10000; 
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        tic; 

        

I_bin_regions=Bradhurst_modified_method_v0r1(I_M,filter_size,Thresh_particles,Thresh_hole

s); 

        TIME_COMPUTATION=toc; 

         

    end 

     

     if Debeir==1 

        filter_size=27; 

        Thresh=19; 

        tic; 

        [I_bin_regions]=Debeir_2008_v0r1(I_M,filter_size,Thresh); 

        TIME_COMPUTATION=toc; 

         

     end 

      

     if FIGURES_OUTPUT==1 

          

         IMAGE_TO_SAVE=label2rgb(I_M,'Gray'); 

          

         [r,s]=size(I_M); 

          

         for f=1:r 

             for g=1:s 

                 if I_bin_regions(f,g)>0 && Calibration(f,g)>0 

                     IMAGE_TO_SAVE(f,g,2)=255; 

                 end 

                 if I_bin_regions(f,g)>0 && Calibration(f,g)==0 

                     IMAGE_TO_SAVE(f,g,3)=255; 

                 end 

                 if I_bin_regions(f,g)==0 && Calibration(f,g)>0 

                     IMAGE_TO_SAVE(f,g,1)=255; 

                 end 

                 if I_bin_regions(f,g)==0 && Calibration(f,g)==0 

                 end 

             end 

         end 

          

         save_name=[MATRIX_NAME,'.jpg']; 

         imwrite(IMAGE_TO_SAVE,save_name,'jpg'); 

          

     end 

      

      

    %Recall and precision according to He 2007 

     

    A_U_M=sum(sum((double(I_bin_regions)).*(Calibration))); 

    M=sum(sum(Calibration)); 

    A=sum(sum((double(I_bin_regions)))); 

    Recall=A_U_M/M; 

    Precision=A_U_M/A; 

     

     

    %F-Berkeley according to Al-Muhairi 2011 

     

    F_BERKELEY=(Recall*Precision)/(alpha*Recall+(1-alpha)*Precision); 

     

    %Error relative to surface recovered 

     

    ALGORITHM_SURFACE=sum(sum(double(I_bin_regions))); 

    CALIBRATION_SURFACE=sum(sum(double(Calibration))); 

     

    ERROR_SURFACE=abs(CALIBRATION_SURFACE-ALGORITHM_SURFACE)/CALIBRATION_SURFACE*100; 

     

    %%%%%% 

     

    DATA_INTERN=[Recall,Precision,F_BERKELEY,ERROR_SURFACE,TIME_COMPUTATION]; 

     

    DATA_FIXED_PARAMETERS=[DATA_FIXED_PARAMETERS;DATA_INTERN]; 
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    Recall_AVERAGE=Recall_AVERAGE+Recall; 

    Precision_AVERAGE= Precision_AVERAGE+Precision; 

    Berkeley_AVERAGE=Berkeley_AVERAGE+F_BERKELEY; 

    ERROR_SURFACE_AVERAGE=ERROR_SURFACE_AVERAGE+ ERROR_SURFACE; 

     

     

end 

  

  

HEADLINE={'Image Number' 'Recall' 'Precision' 'F-Berkeley' 'Average Surface Error' 

'Computation time (s)'}; 

  

xlswrite('Computation_Performance_',HEADLINE,1,'A1'); 

  

xlswrite('Computation_Performance_',IMAGES_NAME_LIST,1,'A2'); 

  

xlswrite('Computation_Performance_',DATA_FIXED_PARAMETERS,1,'B2'); 
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Bradhurst_modified_method_v0r1.m 

%Method adapted from... 

  

%Christopher J. Bradhurst, Wageeh Boles, Yin Xiao, Segmentation of Bone Marrow Stromal 

Cells in Phase 

%Contrast Microscopy Images, IEEE 2008 

  

%Programmed by Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

%INPUTS: 

%'I_M' is the raw image 

  

%'display' in a local input for displaying graphics 

  

%OUTPUTS: 

%DATA_OUTPUT contains the background and cell clusters statistics  

  

%VARIABLES_NAMES contains the name of the variables 

  

%% 

function 

I_bin_out=Bradhurst_modified_method_v0r1(I_M,filter_size,Thresh_particles,Thresh_holes) 

  

%% 

%Segmenting cellular regions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%1-Filtering 

I_filtered = stdfilt(I_M,ones(filter_size,filter_size)); 

  

%2-Thresholding 

[imagBW,th]=kittlerMet((I_filtered)); 

  

  

%3-Particle filters 

REGIONS_LABELED_particles=bwlabeln(imagBW,4); 

REGIONS_PROPS_particles=regionprops(REGIONS_LABELED_particles,'Area'); 

I_bin_regions_particles=(ismember(REGIONS_LABELED_particles,find([REGIONS_PROPS_particles

.Area]>=Thresh_particles))); 

  

INVERTED_BW=~imagBW; 

  

REGIONS_LABELED_blackholes=bwlabeln(INVERTED_BW,4); 

REGIONS_PROPS_blackholes=regionprops(REGIONS_LABELED_blackholes,'Area'); 

I_bin_regions_blackholes=(ismember(REGIONS_LABELED_blackholes,find([REGIONS_PROPS_blackho

les.Area] < Thresh_holes))); 

  

I_bin_out=I_bin_regions_particles; 

  

I_bin_out(I_bin_regions_blackholes==1)=1; 
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Debeir_2008_v0r1.m 

 
%Programmed by Pierre-Marc Juneau, November 2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% 

function [I_bin_regions]=Debeir_2008_v0r1(I_M,filter_size,Thresh) 

  

%Filter for 20% percentile 

  

order_20=floor(filter_size^2*0.2); 

  

I_20=ordfilt2(I_M,order_20,ones(filter_size,filter_size),'symmetric'); 

  

  

%Filter for 80% percentile 

  

order_80=floor(filter_size^2*0.8); 

  

I_80=ordfilt2(I_M,order_80,ones(filter_size,filter_size),'symmetric'); 

  

  

%Morphological Gradient 

  

I_bin_regions=I_80-I_20; 

  

%Thresholding the morphological gradient 

  

I_bin_regions(Thresh>I_bin_regions)=0; 

I_bin_regions(I_bin_regions>0)=1; 
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Dewan_2011_v0r1.m 

 
%Programmed by Pierre-Marc Juneau, November 2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% 

function [I_bin_regions]=Dewan_2011_v0r1(I_M,r,h) 

  

  

se = strel('ball',r,h); 

  

I_inverted=double(imcomplement(I_M)); 

  

I_filtered=imtophat(I_inverted,se); 

  

  

[I_bin_regions,th]=otsu((I_filtered)); 

 

  



 325 

Huth_method_v0r1.m 

%Method adapted from... 

  

%Huth 2010 

  

%Programmed by Pierre-Marc Juneau, November 2012 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

%INPUTS: 

%'I_M' is the raw image 

  

%'display' in a local input for displaying graphics 

  

%OUTPUTS: 

%DATA_OUTPUT contains the background and cell clusters statistics  

  

%VARIABLES_NAMES contains the name of the variables 

  

%% 

function I_bin_out=Huth_method_v0r1(I_M,FS_entropy,FS_median,Thresh_particles) 

  

%% 

%Segmenting cellular regions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%1-Filtering 

I_filtered_entropy = entropyfilt(I_M,ones(FS_entropy,FS_entropy)); 

  

I_filtered_median = medfilt2(I_M,[FS_median FS_median]); 

  

%2-Multiplication and thresholding 

  

I_multiplied=double(I_filtered_entropy).*double(I_filtered_median); 

  

[imagBW,th]=otsu((I_multiplied)); 

  

  

%3-Particle filters 

REGIONS_LABELED_particles=bwlabeln(imagBW,4); 

REGIONS_PROPS_particles=regionprops(REGIONS_LABELED_particles,'Area'); 

I_bin_regions_particles=(ismember(REGIONS_LABELED_particles,find([REGIONS_PROPS_particles

.Area] >= Thresh_particles))); 

  

I_bin_out=I_bin_regions_particles; 
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Metamorph_CELL_CLUSTERS_SEGMENTATION_ENTROPYFILTER_

v0r1.m 

%This function aims at roughly segmenting the cellular regions (cell 

%clusters) from the background. This method is different but similar to the method of: 

  

%Christopher J. Bradhurst, Wageeh Boles, Yin Xiao, Segmentation of Bone Marrow Stromal 

Cells in Phase 

%Contrast Microscopy Images, IEEE 2008 

  

%Programmed by Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

%INPUTS: 

%'I_M' is the raw image 

  

%'display' in a local input for displaying graphics 

  

%OUTPUTS: 

%DATA_OUTPUT contains the background and cell clusters statistics  

  

%VARIABLES_NAMES contains the name of the variables 

  

%% 

%function 

[I_out1,I_bin_regions,AVERAGE_BACKGROUND,STD_BACKGROUND,DATA_OUTPUT,VARIABLES_NAMES]=Meta

morph_CELL_CLUSTERS_SEGMENTATION_v0r1(I_M) 

function 

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_ENTROPYFILTER_v0r1(I_M,filter_size,T

hresh,cut_cells_regions) 

  

%% 

%Segmenting cellular regions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

I_bin_regions = entropyfilt(I_M,ones(filter_size,filter_size)); 

RANGE_FILT_HIST=I_bin_regions; 

  

I_bin_regions(Thresh>I_bin_regions)=0; 

I_bin_regions(I_bin_regions>0)=1; 

  

I_bin_regions=imfill(I_bin_regions); 

  

%% 

%Filter pixel groups too small 

REGIONS_LABELED1=bwlabeln(I_bin_regions,4); 

REGIONS_PROPS1=regionprops(REGIONS_LABELED1,'Area'); 

I_bin_regions=uint8(ismember(REGIONS_LABELED1,find([REGIONS_PROPS1.Area] >= 

cut_cells_regions))); 
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Metamorph_CELL_CLUSTERS_SEGMENTATION_RANGE_FILTER_v

0r1.m 

%This function aims at roughly segmenting the cellular regions (cell 

%clusters) from the background. This method is different but similar to the method of: 

  

%Christopher J. Bradhurst, Wageeh Boles, Yin Xiao, Segmentation of Bone Marrow Stromal 

Cells in Phase 

%Contrast Microscopy Images, IEEE 2008 

  

%Programmed by Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% 

function 

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_RANGE_FILTER_v0r1(I_M,filter_size,Th

resh,cut_cells_regions) 

  

  

  

%% 

%Segmenting cellular regions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

I_bin_regions = rangefilt(I_M,ones(filter_size,filter_size)); 

  

%Thresholding 

  

I_bin_regions(Thresh>I_bin_regions)=0; 

I_bin_regions(I_bin_regions>0)=1; 

  

I_bin_regions=imfill(I_bin_regions); 

  

%% 

%Filter pixel groups too small 

REGIONS_LABELED1=bwlabeln(I_bin_regions,4); 

REGIONS_PROPS1=regionprops(REGIONS_LABELED1,'Area'); 

I_bin_regions=uint8(ismember(REGIONS_LABELED1,find([REGIONS_PROPS1.Area] >= 

cut_cells_regions))); 
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Metamorph_CELL_CLUSTERS_SEGMENTATION_STDFILTER_v0r1

.m 

%This function aims at roughly segmenting the cellular regions (cell 

%clusters) from the background. This method is different but similar to the method of: 

  

%Christopher J. Bradhurst, Wageeh Boles, Yin Xiao, Segmentation of Bone Marrow Stromal 

Cells in Phase 

%Contrast Microscopy Images, IEEE 2008 

  

%Programmed by Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

%INPUTS: 

%'I_M' is the raw image 

  

%'display' in a local input for displaying graphics 

  

%OUTPUTS: 

%DATA_OUTPUT contains the background and cell clusters statistics  

  

%VARIABLES_NAMES contains the name of the variables 

  

%% 

function 

[I_bin_regions]=Metamorph_CELL_CLUSTERS_SEGMENTATION_STDFILTER_v0r1(I_M,filter_size,Thres

h,cut_cells_regions) 

  

  

%% 

%Segmenting cellular regions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

I_bin_regions = stdfilt(I_M,ones(filter_size,filter_size)); 

  

I_bin_regions(Thresh>I_bin_regions)=0; 

I_bin_regions(I_bin_regions>0)=1; 

  

  

I_bin_regions=imfill(I_bin_regions); 

  

%% 

%Filter pixel groups too small 

REGIONS_LABELED1=bwlabeln(I_bin_regions,4); 

REGIONS_PROPS1=regionprops(REGIONS_LABELED1,'Area'); 

I_bin_regions=uint8(ismember(REGIONS_LABELED1,find([REGIONS_PROPS1.Area] >= 

cut_cells_regions))); 
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Topman_2011.m 

%Cell-covered surface for Topman's algorithm 

  

function [confluency,outImage]=Topman_2011(inImage,bigWindow,smallWindow,threshold) 

  

%Convert image to grayscale and 

% adjust the histogram 

if (size(inImage, 3) == 3) 

inImage = rgb2gray(inImage); 

end 

  

inImage = mat2gray(inImage); 

% Small window flow 

smallStd = stdfilt(inImage, ... 

ones([smallWindow smallWindow])); 

smallThresh = ~im2bw(smallStd, threshold); 

  

% Big window flow 

bigStd = stdfilt(inImage, ... 

ones([bigWindow bigWindow])); 

bigThresh = ~im2bw(bigStd, threshold); 

bigDilation = imdilate(bigThresh,ones([floor(bigWindow/2) floor(bigWindow/2)])); 

  

% Final flow 

intersectImage = bigDilation .* smallThresh; 

closeImage = imclose(intersectImage, ... 

ones([smallWindow smallWindow])); 

outImage = imopen(closeImage, ... 

ones([smallWindow smallWindow])); 

  

% Calculate confluency 

confluency = 100*(1-mean(outImage(:))); 

end 
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otsu.m 

function [imagBW,th] = otsu(imag)  

% OTSU binarizes a gray scale image 'imag' into a binary image, with the  

% noises removed.  

% Input:  

%   imag: the gray scale image, with black foreground(0), and white  

%   background(255).  

% Output:  

%   imagBW: the binary image of the gray scale image 'imag', with Otsu  

%   algorithm.  

  

% Reference:  

%   Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms.  

%   IEEE Transactions on Systems, Man, and Cybernetics. 1979.SMC-9(1):62-66  

  

resolution=256; 

%% 

  

  

  

imag = imag(:, :, 1); 

  

%scaling of image 

imag=uint8((imag-min(min(imag)))./(max(max(imag))-min(min(imag))).*255); 

  

  

%[a,b]=size(imag); 

  

%imag2=reshape(imag,a*b,1); 

  

%[counts, x] = hist(imag2,resolution); % counts are the histogram. x is the intensity 

level. 

%x=x'; 

%counts=counts'; 

[counts, x] = imhist(imag);  

GradeI = length(x);   % the resolusion of the intensity. i.e. 256 for uint8.  

varB = zeros(GradeI, 1);  % Between-class Variance of binarized image.  

  

prob = counts ./ sum(counts);  % Probability distribution  

meanT = 0;  % Total mean level of the picture  

for i = 0 : (GradeI-1)  

    meanT = meanT + i * prob(i+1);  

end  

varT = ((x-meanT).^2)' * prob;   

% Initialization  

w0 = prob(1);   % Probability of the first class  

miuK = 0;   % First-order cumulative moments of the histogram up to the kth level.  

varB(1) = 0;  

% Between-class variance calculation  

for i = 1 : (GradeI-1)  

    w0 = w0 + prob(i+1);  

    miuK = miuK + i * prob(i+1);  

    if (w0 == 0) || (w0 == 1)  

        varB(i+1) = 0;  

    else  

        varB(i+1) = (meanT * w0 - miuK) .^ 2 / (w0 * (1-w0));  

    end  

end  

  

maxvar = max(varB);  

em = maxvar / varT;  % Effective measure  

index = find(varB == maxvar);  

index = mean(index);  

th = (index-1)/(GradeI-1); 

imagBW = im2bw(imag, th);  

  

% thOTSU = graythresh(imag)  

% imagBWO = im2bw(imag, thOTSU);  
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kittlerMet.m 

function [imagBW,th] = kittlerMet(imag)  

% KITTLERMET binarizes a gray scale image 'imag' into a binary image  

% Input:  

%   imag: the gray scale image, with black foreground(0), and white  

%   background(255).  

% Output:  

%   imagBW: the binary image of the gray scale image 'imag', with kittler's  

%   minimum error thresholding algorithm.  

  

% Reference:  

%   J. Kittler and J. Illingworth. Minimum Error Thresholding. Pattern  

%   Recognition. 1986. 19(1):41-47  

  

MAXD = 100000;  

imag = imag(:,:,1); 

  

  

%scaling of image 

imag=uint8((imag-min(min(imag)))./(max(max(imag))-min(min(imag))).*255); 

  

  

  

  

[counts, x] = imhist(imag);  % counts are the histogram. x is the intensity level.  

GradeI = length(x);   % the resolusion of the intensity. i.e. 256 for uint8.  

J_t = zeros(GradeI, 1);  % criterion function  

prob = counts ./ sum(counts);  % Probability distribution  

meanT = x' * prob;  % Total mean level of the picture  

% Initialization  

w0 = prob(1);   % Probability of the first class  

miuK = 0;   % First-order cumulative moments of the histogram up to the kth level.  

J_t(1) = MAXD;   

n = GradeI-1;  

for i = 1 : n  

    w0 = w0 + prob(i+1);  

    miuK = miuK + i * prob(i+1);  % first-order cumulative moment  

    if (w0 == 0) || (w0 == 1)  

        J_t(i+1) = MAXD;    % T = i  

    else  

        miu1 = miuK / w0;  

        miu2 = (meanT-miuK) / (1-w0);  

        var1 = (((0 : i)'-miu1).^2)' * prob(1 : i+1);  

        var1 = var1 / w0;  % variance  

        var2 = (((i+1 : n)'-miu2).^2)' * prob(i+2 : n+1);  

        var2 = var2 / (1-w0);  

        if var1 > 0 && var2 > 0   % in case of var1=0 or var2 =0  

            J_t(i+1) = 1+w0 * log(var1)+(1-w0) * log(var2)-2*w0*log(w0)-2*(1-w0)*log(1-

w0);  

        else  

            J_t(i+1) = MAXD;  

        end  

    end  

end  

minJ = min(J_t);  

index = find(J_t == minJ);  

th = mean(index);  

th = (th-1)/n; 

imagBW = im2bw(imag, th);  

  

% figure, imshow(imagBW), title('kittler binary');  

 

 

 

 

 

 



332 
 

Metamorph_IMAGE_NAME_STRUCTURE_v0r5.m 

%This m-file aims at getting the names of all the images in an experiment 

%using the MDA application from Metamorph 

  

%Pierre-Marc Juneau, August 2011 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

clear 

MAX_ACQUISITION=1000; 

%Number_of_image_per_acquisition=121; 

  

% 

  

Experience_name=input('What is the experience name?:'); 

Number_of_image_per_acquisition=input('How many acquisition per well ?:'); 

Number_of_wells=input('How many wells in multiwell plate?:'); 

  

Passage=[]; 

Medium=[]; 

  

for jj=1:Number_of_wells 

     

    INTER_REPONSE=input(['What passage for well #' num2str(jj) '?:']); 

    INTER_REPONSE2=input(['What medium for well #' num2str(jj) '?:']); 

     

    Passage=[Passage;INTER_REPONSE]; 

    %Medium{1,jj}=INTER_REPONSE2; 

    Medium=[Medium cellstr(INTER_REPONSE2)]; 

     

     

end 

  

MEDIUM_OUT{1,1}=Medium; 

  

  

%Getting the folder where the pictures are 

directory_name = uigetdir('','Choose the directory where the image folders are'); 

  

listing = struct2cell(dir(directory_name))'; 

  

[Number_of_folders,b]=size(listing); 

  

  

 % 1=sort by name, 2=sort by date/time 

 listing = sortrows(listing, 1)'; 

  

  

%% 

%For the images in each folder 

  

Folder_TOTAL=[]; 

BASE_NAME1_TOTAL=[]; 

BASE_NAME2_TOTAL=[]; 

MIN_TOTAL=[]; 

MAX_TOTAL=[]; 

TIME_TOTAL=[]; 

DATA=[]; 

  

for i=1:Number_of_folders 

    display(listing(1,i)); 

    INPUT=input('Do you want to include this folder?:  1-Yes 0-No '); 

     

    if INPUT==1 

         

        FULL_FOLDER_NAME=[directory_name,'\',char(listing(1,i))]; 

  

        %Finding the minimum value 

         

        NAMES=[FULL_FOLDER_NAME,'\','*.nd']; 
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        listing2=dir(NAMES); 

        [g,h]=size(listing2); 

         

        ACQUISITION_NUMBER=[]; 

        for k=1:g 

            FILE_NAME=strrep(listing2(k).name, '.nd', ''); 

            ID_VECTOR=isstrprop(FILE_NAME, 'digit'); 

            [u,v]=size(ID_VECTOR); 

             

            if ID_VECTOR(v)==0 

                MIN_LOCAL=0; 

            else 

             

            criteria=1; 

            number=v; 

            while criteria==1 

                if ID_VECTOR(number)==1 

                    number=number-1; 

                else 

                    criteria=0; 

                    number=number+1; 

                end 

            end 

             

            MIN_LOCAL=str2num(FILE_NAME(number:v)); 

            end 

             

            ACQUISITION_NUMBER=[ACQUISITION_NUMBER MIN_LOCAL]; 

             

        end 

         

        MIN=min(ACQUISITION_NUMBER); 

         

        %Getting BASE_NAME_1 

         

        if MIN==0 

            TEMP=[FULL_FOLDER_NAME,'\','*','.nd']; 

            TEMP2=dir(TEMP); 

            BASE_NAME1=TEMP2.name; 

            string_to_remove=['.nd']; 

        else 

            TEMP=[FULL_FOLDER_NAME,'\','*',num2str(MIN),'.nd']; 

            TEMP2=dir(TEMP); 

            BASE_NAME1=TEMP2.name; 

            string_to_remove=[num2str(MIN),'.nd']; 

        end 

        BASE_NAME1=strrep(BASE_NAME1,string_to_remove, ''); 

         

         

         

         

         %Getting BASE_NAME_2 

         image_name=[FULL_FOLDER_NAME,'\',BASE_NAME1,num2str(MIN),'*',num2str(1),'.TIF']; 

         TEMP3=dir(image_name); 

         BASE_NAME2=TEMP3.name; 

         string_to_remove1_1=[BASE_NAME1,num2str(MIN),num2str(0),num2str(0)]; 

         string_to_remove1_2=[BASE_NAME1,num2str(MIN),num2str(0)]; 

         string_to_remove1_3=[BASE_NAME1,num2str(MIN)]; 

         string_to_remove2=[num2str(1),'.TIF']; 

         BASE_NAME2=strrep(BASE_NAME2,string_to_remove1_1, ''); 

         BASE_NAME2=strrep(BASE_NAME2,string_to_remove1_2, ''); 

         BASE_NAME2=strrep(BASE_NAME2,string_to_remove1_3, ''); 

         BASE_NAME2=strrep(BASE_NAME2,string_to_remove2, ''); 

         BASE_NAME2=strrep(BASE_NAME2,'_thumb', ''); 

         TIME=TEMP3.date; 

          

          

         %Checking the maximum 

         MAX=max(ACQUISITION_NUMBER); 
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image_name=[FULL_FOLDER_NAME,'\',BASE_NAME1,num2str(MAX),BASE_NAME2,num2str(Number_of_ima

ge_per_acquisition),'.TIF']; 

          

         A=exist(image_name,'file'); 

         if A==0 

             MAX=MAX-1; 

         else 

             MAX=MAX; 

         end 

          

         

         Folder_TOTAL=[Folder_TOTAL cellstr(FULL_FOLDER_NAME)]; 

         BASE_NAME1_TOTAL=[BASE_NAME1_TOTAL cellstr(BASE_NAME1)]; 

         BASE_NAME2_TOTAL=[BASE_NAME2_TOTAL cellstr(BASE_NAME2)]; 

         TIME_TOTAL=[TIME_TOTAL  cellstr(TIME)]; 

          

         MIN_TOTAL=[MIN_TOTAL;MIN]; 

         MAX_TOTAL=[MAX_TOTAL;MAX]; 

          

         

STRUCTURE=struct('EXPERIMENT_NAME',Experience_name,'FOLDER',FULL_FOLDER_NAME,'DATE',TIME,

'BASE_NAME1',BASE_NAME1,'BASE_NAME2',BASE_NAME2,'MIN',MIN,'MAX',MAX,'DATE_NUM',datenum(TI

ME),'Number_of_wells',Number_of_wells,'Number_of_acquisition_per_well',Number_of_image_pe

r_acquisition,'Passage',Passage,'Medium',MEDIUM_OUT); 

          

          

         DATA=[DATA STRUCTURE]; 

         

    end 

end 

  

DATA_OUT=struct2cell(DATA); 

DATA_OUT=DATA_OUT(:,:); 

DATA_OUT=sortrows(DATA_OUT',8); 

  

  

OUTPUT_NAME=[Experience_name,'_','DATA_STRUCTURE']; 

  

save(OUTPUT_NAME,'DATA_OUT'); 

  

%load('DATA_STRUCTURE.mat','DATA_OUT') 
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METAMORPH_IMAGE_PROCESSING_v0r11.m 

%M-file for processing images from Metamorph 

%PM Juneau, August 2010 

  

%v0r1: initial version 

%v0r2: complete analysis of a whole well 

%v0r3: modifications for 24 well plate analysis 

%v0r4: Establish a model image for the first image of the serie used to 

%calibrate segmentation model 

%v0r5: including parameter for number of wells 

%v0r6: incorporating a function for texture analysis 

%v0r7: calculating the confidence interval for the parameters for the image 

%segmentation function 

%v0r8: giving more options for path names 

%v0r9: incorporating a size distribution indicator 

%v0r10: saving processed images 

%v0r11: using datastructure for each experiment 

  

%%INPUT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all 

  

load('Experiment_April_08_2011_DATA_STRUCTURE'); 

  

filter_size=11; 

Thresh=60; 

cut_cells_regions=1000; 

  

print_image=0; %If 1, we print the image 

  

Total_number_of_scans=1000; 

Max_number_of_variables=200; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Getting data from datastructure 

  

NAME_OF_EXPERIMENT=DATA_OUT(1,1); 

NUMBER_OF_WELLS=cell2mat(DATA_OUT(1,9)); 

Images_per_well=cell2mat(DATA_OUT(1,10)); 

Folder=DATA_OUT(:,2)'; 

Max=cell2mat(DATA_OUT(:,7)'); 

Min=cell2mat(DATA_OUT(:,6)'); 

Base_name1=DATA_OUT(:,4)'; 

Base_name2=DATA_OUT(:,5)'; 

  

  

  

%% Image processing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

nnn=1; 

  

for h=1:NUMBER_OF_WELLS 

     

    Cumul_dates=[]; 

    VARIABLES=[]; 

    Data=zeros(Images_per_well,Total_number_of_scans,200); 

     

     

    for Image_number=1:Images_per_well 

        [a,b]=size(Folder); 

        ACQUISITION_NUMBER=1; 

         

        for i=1:b 

             

            begin=Min(i)+h-1; 

             

            index=begin; 

  



336 
 

            while index<=Max(i) 

                 

                if index==0 

                     

                    

image_name=[char(Folder(i)),'\',char(Base_name1(i)),'',char(Base_name2(i)),num2str(Image_

number),'.tif']; 

                else 

                    

image_name=[char(Folder(i)),'\',char(Base_name1(i)),num2str(index),char(Base_name2(i)),nu

m2str(Image_number),'.tif']; 

                end 

                 

                 

                IMAGE=imread(image_name); 

                 

                if Image_number==1 

                     

                    Carac=struct2cell(dir(image_name)); 

                     

                    Date_time=Carac(2); 

                     

                    Cumul_dates=[Cumul_dates Carac(2)]; 

                     

                end 

                 

                    VARIABLES=[]; 

                    %% 

                    %Segmentation of cell clusters    

                     

                    

[I_out1,I_bin_regions,AVERAGE_BACKGROUND,STD_BACKGROUND,DATA_OUTPUT,VARIABLES_NAMES]=Meta

morph_CELL_CLUSTERS_SEGMENTATION_v0r2(IMAGE,filter_size,Thresh,cut_cells_regions); 

                    [e,f]=size(DATA_OUTPUT); 

                    Data(Image_number,ACQUISITION_NUMBER,1:f)=DATA_OUTPUT; 

                    VARIABLES=[VARIABLES VARIABLES_NAMES]; 

                     

                     

                     

                    %% 

                    %Texture analysis of the segmented image 

                 

                     

                     

                    %% 

                    %Size analysis of the segmented image 

                

                     

                    %% 

                     

                    if print_image==1 

                         

                        IMAGE_TO_SAVE=label2rgb(uint8(IMAGE),gray(256)); 

                         

                        [r,s]=size(IMAGE); 

                         

                        for f=1:r 

                            for g=1:s 

                                if I_bin_regions(f,g)>0 

                                    IMAGE_TO_SAVE(f,g,1)=255; 

                                end 

                            end 

                        end 

                         

                        if index==0 

                             

                             

save_name=['Trial',num2str(i),'_',char(Base_name1(i)),'',char(Base_name2(i)),num2str(Imag

e_number),'_PROCESSED','.jpg']; 

                             

                        else 
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save_name=['Trial',num2str(i),'_',char(Base_name1(i)),num2str(index),char(Base_name2(i)),

num2str(Image_number),'_PROCESSED','.jpg']; 

                             

                        end 

  

                        imwrite(uint8(IMAGE_TO_SAVE),save_name,'jpg'); 

                        nnn=nnn+1 

  

                         

                    end 

                      

                    index=index+NUMBER_OF_WELLS; 

                    ACQUISITION_NUMBER=ACQUISITION_NUMBER+1; 

                     

                end 

                 

                 

            end 

             

        end 

         

        Savefile=[char(NAME_OF_EXPERIMENT),'_','Data_well_',num2str(h)]; 

        Savefile2=[char(NAME_OF_EXPERIMENT),'_','Time_well_',num2str(h)]; 

        Savefile3=[char(NAME_OF_EXPERIMENT),'_','VARIABLES']; 

         

        save(Savefile,'Data'); 

        save(Savefile2,'Cumul_dates'); 

        save(Savefile3,'VARIABLES'); 

         

    end 
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Metamorph_DATAVIEWER_v0r6.m 

%% Data 

% This function aims at analyzing the data from Metamorph Image processing 

% techniques 

  

  

%% 

%Kinetic models to fit... 

function Metamorph_DATAVIEWER_v0r6(NAME_DATA_STRUCTURE,VECTOR_INPUT) 

  

  

Monod_model_to_use=VECTOR_INPUT(1); 

Deasy_Jankowski_model_to_use=VECTOR_INPUT(2); 

Logistic_model_to_use=VECTOR_INPUT(3); 

Richards_model_to_use=VECTOR_INPUT(4); 

Gompertz_model_to_use=VECTOR_INPUT(5); 

Weibull_model_to_use=VECTOR_INPUT(6); 

H1_model_to_use=VECTOR_INPUT(7); 

H2_model_to_use=VECTOR_INPUT(8); 

H3_model_to_use=VECTOR_INPUT(9); 

Michaelis_Menten_model_to_use=VECTOR_INPUT(10); 

MIN_POINTS=VECTOR_INPUT(11); 

MAX_POINTS=VECTOR_INPUT(12); 

MAX_POINT=VECTOR_INPUT(13); 

  

  

  

load(NAME_DATA_STRUCTURE); 

Position_of_surface_in_data=3; 

  

  

NAME_OF_EXPERIMENT=char(DATA_OUT(1,1)); 

NUMBER_OF_WELLS=cell2mat(DATA_OUT(1,9)); 

PASSAGE=DATA_OUT(1,11); 

PASSAGE=PASSAGE{1,1}; 

MEDIUM=DATA_OUT(1,12); 

MEDIUM=MEDIUM{1,1}; 

Cell_concentration=DATA_OUT(1,13); 

Cell_concentration=Cell_concentration{1,1}; 

Cell_type=DATA_OUT(1,14); 

Cell_type=Cell_type{1,1}; 

NAME_IMAGE_QUALITY=[NAME_OF_EXPERIMENT,'_IMAGE_QUALITY.xlsx']; 

  

  

%Fit Monod model? =1 if yes 

  

%Monod_model_to_use=1; 

%MIN_POINTS=5; 

MIN_POINTS_Deasy_Jankowski=MIN_POINTS; 

%MAX_POINTS=50; 

MAX_POINTS_Deasy_Jankowski=MAX_POINTS; 

Enable_screening=0; 

Thresh_screening=0.03; 

  

  

%Fit Logistic model? =1 if yes 

  

%MAX_POINT=60; 

  

%Logistic_model_to_use=1; 

%Richards_model_to_use=1; 

%Gompertz_model_to_use=1; 

%Weibull_model_to_use=1; 

%Deasy_Jankowski_model_to_use=1; 

%H1_model_to_use=1; 

%H2_model_to_use=1; 

%H3_model_to_use=1; 

%Michaelis_Menten_model_to_use=1; 

  



 339 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

  

  

OUT=[]; 

MEDIUM_VECTOR=[]; 

CELL_TYPE_VECTOR=[]; 

IMAGE_QUALITY_VECTOR=[]; 

  

for ii=1:NUMBER_OF_WELLS 

  

  

DATA_NAME=[NAME_OF_EXPERIMENT,'_','Data_well_',num2str(ii)]; 

DATE_NAME=[NAME_OF_EXPERIMENT,'_','Time_well_',num2str(ii)]; 

VARIABLES_NAMES=[NAME_OF_EXPERIMENT,'_','VARIABLES']; 

  

Data=cell2mat(struct2cell(load(DATA_NAME))); 

Date=load(DATE_NAME); 

DATE_a=datenum(Date.Cumul_dates); 

[k,l]=size(DATE_a); 

[o,p,q]=size(Data); 

DATE_NUM=zeros(k,1); 

  

VARIABLES=load(VARIABLES_NAMES); 

  

  

for i=1:k 

    DATE_NUM(i,1)=(DATE_a(i,1)-DATE_a(1,1))*24; 

end 

  

%% 

%Get portion of surface data 

  

Portion_of_surface=mean(Data(:,1:k,Position_of_surface_in_data))'; 

  

%figure(1), 

%plot(DATE_NUM,Portion_of_surface); 

  

  

  

  

  

%% 

Monod_parameters=zeros(1,6); 

Time_opt=0; 

Y_opt=0; 

VARIABLES_MONOD={'Exponential Mhum(h-1)' 'Interval' 'Exponential X0' 'Interval' 'R2 

Exponential' 'Number points Exponential'}; 

if Monod_model_to_use==1 

     

    n_points=MIN_POINTS; 

     

    R2_opt=0; 

    p_est_opt=zeros(1,2); 

    INT_PARAM_opt=zeros(1,2); 

    N_points_opt=0; 

     

    if k>=MIN_POINTS; 

     

    while n_points<=MAX_POINTS && n_points<=k 

    Yexp=Portion_of_surface(1:n_points); 

     

    Time=round(DATE_NUM(1:n_points)); 

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 
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            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.05, 0.1]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    Time; 

    Yexp; 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@Monod_model,p_init,options); 

    Yest=Monod_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

     

    R2=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2))]; % intervalles de confiance 

individuels à 95% 

     

    %** Affiche les résultats à l'écran ***** 

    %disp(' Parameters:') 

    %disp([' Mhum (h-1) = ', num2str(p_est(1,1)), ' +/- ', num2str(INT_PARAM(1,1))]) 

    %disp([' X0 = ', num2str(p_est(1,2)), ' +/- ', num2str(INT_PARAM(2,1))]) 

     

    if R2>R2_opt 

        p_est_opt=p_est; 

        INT_PARAM_opt=INT_PARAM; 

        R2_opt=R2; 

        N_points_opt= n_points; 

        Time_opt=Time; 

        Y_opt=Yest; 

    end 

     

    figure(1), 

    plot(Time,Yexp,Time,Yest); 

     

     n_points=n_points+1; 

     

    end 

    end 

     

    Monod_parameters=[p_est_opt(1,1) INT_PARAM_opt(1,1) p_est_opt(1,2) INT_PARAM_opt(2,1) 

R2_opt N_points_opt]; 

     

    figure(2), 

    subplot(3,3,1),scatter(Time,Yexp); hold on 

    plot(Time_opt,Y_opt,'r'), title('Exponential Model'); 

    hold off 

     

    figure(11), 

    scatter(Time,Yexp); hold on 

    plot(Time_opt,Y_opt,'r'), title('Exponential 

Model'),xlabel('Time(h)'),ylabel('Surface Recovered (-)'),ylim([0 1]); 

    hold off 

     

    MHUM_EXPONENTIAL=p_est_opt(1,1); 

    MHUM_EXPONENTIAL_INTERVAL=INT_PARAM_opt(1,1); 
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    X_0_EXPONENTIAL=p_est_opt(1,2); 

    X_0_EXPONENTIAL_INTERVAL=INT_PARAM_opt(2,1); 

     

     

    save('MHUM_EXPONENTIAL','MHUM_EXPONENTIAL'); 

    save('X_0_EXPONENTIAL','X_0_EXPONENTIAL'); 

  

end 

  

  

%% 

Deasy_Jankowski_parameters=zeros(1,8); 

Time_opt=0; 

Y_opt=0; 

VARIABLES_Deasy_Jankowski={'Deasy_Jankowski Alpha' 'Interval' 'Deasy_Jankowski DT' 

'Interval' 'Deasy_Jankowski X_O' 'Interval' 'R2 Deasy_Jankowski' 'Number points 

Deasy_Jankowski'}; 

  

if Deasy_Jankowski_model_to_use==1 

     

    n_points=MIN_POINTS_Deasy_Jankowski; 

     

    R2_opt=0; 

    p_est_opt=zeros(1,2); 

    INT_PARAM_opt=zeros(1,2); 

    N_points_opt=0; 

     

    if k>=MIN_POINTS_Deasy_Jankowski; 

     

    while n_points<=MAX_POINTS_Deasy_Jankowski && n_points<=k 

     

    Yexp=Portion_of_surface(1:n_points); 

     

    Time=round(DATE_NUM(1:n_points)); 

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.1 24 0.05]; 

     

     

    %,'DerivStep',[1e-3 1e-1 1e-3] 

     

    %options = statset('MaxIter',10000,'FunValCheck','off'); 

    %[p_est,RESIDUAL,Jacobian] = 

nlinfit(Time,Yexp,@Deasy_Jankowski_model,p_init,options); 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %%%For fmincon 

    save('BUFFER_DEASY_YEXP','Yexp'); 

    save('BUFFER_DEASY_TIME','Time'); 

     

    options=optimset('MaxIter',500,'Algorithm','interior-point'); 

    p_est=fmincon(@Deasy_Jankowski_model_FMINCON,p_init,[],[],[],[],[0 0 0],[1 100 

1],[],options); 
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    Yest=Deasy_Jankowski_model(p_est,Time); 

     

    RESIDUAL=Yexp-Yest; 

     

    delta=1e-3; 

     

    Jacobian=[(Deasy_Jankowski_model((p_est+[delta 0 0]),Time)-

Deasy_Jankowski_model((p_est-[delta 0 

0]),Time))./(2*delta),(Deasy_Jankowski_model((p_est+[0 delta 0]),Time)-

Deasy_Jankowski_model((p_est-[0 delta 

0]),Time))./(2*delta),(Deasy_Jankowski_model((p_est+[0 0 delta]),Time)-

Deasy_Jankowski_model((p_est-[0 0 delta]),Time))./(2*delta)]; 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    Yest=Deasy_Jankowski_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

     

    R2_Deasy_Jankowski=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3))]; % intervalles de confiance individuels à 95% 

    

    %** Affiche les résultats à l'écran ***** 

    %disp(' Parameters:') 

    %disp([' Mhum (h-1) = ', num2str(p_est(1,1)), ' +/- ', num2str(INT_PARAM(1,1))]) 

    %disp([' X0 = ', num2str(p_est(1,2)), ' +/- ', num2str(INT_PARAM(2,1))]) 

     

    if R2_Deasy_Jankowski>R2_opt 

        p_est_opt=p_est; 

        INT_PARAM_opt=INT_PARAM; 

        R2_opt=R2_Deasy_Jankowski; 

        N_points_opt= n_points; 

        Time_opt=Time; 

        Y_opt=Yest; 

    end 

     

    figure(3), 

    plot(Time,Yexp,Time,Yest); 

     

     n_points=n_points+1; 

     

    end 

    end 

     

    Deasy_Jankowski_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) 

p_est(1,3) INT_PARAM(3,1) R2_Deasy_Jankowski N_points_opt]; 

     

    figure(2), 

    subplot(3,3,2),scatter(Time,Yexp); hold on 

    plot(Time_opt,Y_opt,'r'), title('Deasy and Jankowski 

Model'),xlabel('Time(h)'),ylabel('Surface Recovered (-)'); 

    hold off 

     

    figure(12), 

    scatter(Time,Yexp); hold on 

    plot(Time_opt,Y_opt,'r'), title('Sherley Model'),xlabel('Time(h)'),ylabel('Surface 

Recovered (-)'),ylim([0 1]); 

    hold off 

  

  

end 

  



 343 

  

%% 

Logistic_parameters=zeros(1,8); 

VARIABLES_Logistic={'Logistic Cmax(h-1)' 'Interval' 'Logistic Xmax' 'Interval' 'Logistic 

X0' 'Interval' 'R2 logistic' 'Number points logistic'}; 

  

if Logistic_model_to_use==1 

     

     Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.05, 0.95 0]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@Logistic_model,p_init,options); 

    Yest=Logistic_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_logistic=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3))]; % intervalles de confiance individuels à 95% 

     

    %** Affiche les résultats à l'écran ***** 

    %disp(' Parameters:') 

    %disp([' Cmax (h-1) = ', num2str(p_est(1,1)), ' +/- ', num2str(INT_PARAM(1,1))]) 

    %disp([' Xmax = ', num2str(p_est(1,2)), ' +/- ', num2str(INT_PARAM(2,1))]) 

    %disp([' X0 = ', num2str(p_est(1,3)), ' +/- ', num2str(INT_PARAM(3,1))]) 

     

    %figure(5), 

    %plot(Time,Yexp,Time,Yest); 

     

    Logistic_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1)  R2_logistic k]; 
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    figure(2), 

    subplot(3,3,3),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Logistic Model') 

    hold off 

     

    figure(13), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Logistic Model'),xlabel('Time(h)'),ylabel('Surface 

Recovered (-)'),ylim([0 1]); 

    hold off 

  

end 

  

%% 

Richards_parameters=zeros(1,10); 

VARIABLES_Richards={'Richards Beta' 'Interval' 'Richards Gamma' 'Interval' 'Richards M' 

'Interval' 'Richards X_O' 'Interval' 'R2 Richards' 'Number points Richards'}; 

  

if Richards_model_to_use==1 

     

      Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.1 0.01 0.5 0.1]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@Richards_model,p_init,options); 

    Yest=Richards_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_Richards=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-
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p)*sqrt(VAR_PARAM(3,3));tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(4,4))]; % 

intervalles de confiance individuels à 95% 

    

     

    %figure(6), 

    %plot(Time,Yexp,Time,Yest); 

     

    Richards_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) p_est(1,4) INT_PARAM(4,1)  R2_Richards k]; 

     

    figure(2), 

    subplot(3,3,4),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Richards Model') 

    hold off 

     

    figure(14), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Richards Model'),xlabel('Time(h)'),ylabel('Surface 

Recovered (-)'),ylim([0 1]); 

    hold off 

  

end 

  

%% 

Gompertz_parameters=zeros(1,8); 

VARIABLES_Gompertz={'Gompertz Beta' 'Interval' 'Gompertz M' 'Interval' 'Gompertz X_O' 

'Interval' 'R2 Gompertz' 'Number points Gompertz'}; 

  

if Gompertz_model_to_use==1 

     

    Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.1 0.5 0.1]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@Gompertz_model,p_init,options); 

    Yest=Gompertz_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 
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    R2_Gompertz=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3))]; % intervalles de confiance individuels à 95% 

    

     

    %figure(6), 

    %plot(Time,Yexp,Time,Yest); 

     

    Gompertz_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) R2_Gompertz k]; 

     

    figure(2), 

    subplot(3,3,5),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Gompertz Model') 

    hold off 

     

    figure(15), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Gompertz Model'),xlabel('Time(h)'),ylabel('Surface 

Recovered (-)'),ylim([0 1]); 

    hold off 

  

end 

  

%% 

Weibull_parameters=zeros(1,10); 

VARIABLES_Weibull={'Weibull Beta' 'Interval' 'Weibull Gamma' 'Interval' 'Weibull M' 

'Interval' 'Weibull X_O' 'Interval' 'R2 Weibull' 'Number points Weibull'}; 

  

if Weibull_model_to_use==1 

     

     Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[0.1 0.01 0.5 0.1]; 
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    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@Weibull_model,p_init,options); 

    Yest=Weibull_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_Weibull=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3));tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(4,4))]; % 

intervalles de confiance individuels à 95% 

    

     

    %figure(6), 

    %plot(Time,Yexp,Time,Yest); 

     

    Weibull_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) p_est(1,4) INT_PARAM(4,1)  R2_Weibull k]; 

     

    figure(2), 

    subplot(3,3,6),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Weibull Model') 

    hold off 

  

end 

  

%% 

H1_parameters=zeros(1,10); 

VARIABLES_H1={'H1 Beta' 'Interval' 'H1 Theta' 'Interval' 'H1 M' 'Interval' 'H1 X_O' 

'Interval' 'R2 H1' 'Number points H1'}; 

  

if H1_model_to_use==1 

     

      Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 
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    p_init=[0 0.01 0.5 0]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@H1_model,p_init,options); 

    Yest=H1_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_H1=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3));tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(4,4))]; % 

intervalles de confiance individuels à 95% 

    

     

    %figure(6), 

    %plot(Time,Yexp,Time,Yest); 

     

    H1_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) p_est(1,4) INT_PARAM(4,1)  R2_H1 k]; 

     

    figure(2), 

    subplot(3,3,7),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('H1 Model') 

    hold off 

     

    figure(16), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('H1 Model'),xlabel('Time(h)'),ylabel('Surface Recovered (-

)'),ylim([0 1]); 

    hold off 

  

end 

  

%% 

H2_parameters=zeros(1,12); 

VARIABLES_H2={'H2 Alpha' 'Interval' 'H2 Beta' 'Interval' 'H2 Gamma' 'Interval' 'H2 M' 

'Interval' 'H2 X_O' 'Interval' 'R2 H2' 'Number points H2'}; 

  

if H2_model_to_use==1 

     

     Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 
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        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[10 1e-7 3 0.9 0.05]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off','DerivStep',[1e-1 1e-8 1e-1 1e-

1 1e-1]); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@H2_model,p_init,options); 

    Yest=H2_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_H2=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(4,4));tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(5,5))]; % 

intervalles de confiance individuels à 95% 

    

     

    %figure(7), 

    %plot(Time,Yexp,Time,Yest); 

     

    H2_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) p_est(1,4) INT_PARAM(4,1) p_est(1,5) INT_PARAM(5,1) R2_H2 k]; 

     

    figure(2), 

    subplot(3,3,8),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('H2 Model') 

    hold off 

  

end 

  

%% 

H3_parameters=zeros(1,12); 

VARIABLES_H3={'H3 L' 'Interval' 'H3 Delta' 'Interval' 'H3 Gamma' 'Interval' 'H3 Theta' 

'Interval' 'H3 X_O' 'Interval' 'R2 H3' 'Number points H3'}; 

  

if H3_model_to_use==1 

     

      Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 

     

     

    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 
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            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[1.2 0.4 (0.00001) 0.01 0.1]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off','Robust','on','DerivStep',[1e-1 

1e-2 1e-15 1e-10 1e-1]); 

    [p_est,RESIDUAL,Jacobian] = nlinfit(Time,Yexp,@H3_model,p_init,options); 

    

%[p_est,fval,exitflag,output,lambda,grad,hessian]=fmincon(H3_model_to_minimize,p_init,-

1.*ones(1,5),zeros(1,5)); 

  %[1e-15 1e-15 1e-15 1e-15 1e-15] 

     

    Yest=H3_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_H3=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(3,3));tinv(((1-Test_level)/2)+Test_level,n-

p)*sqrt(VAR_PARAM(4,4));tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(5,5))]; % 

intervalles de confiance individuels à 95% 

    

     

    %figure(8), 

    %plot(Time,Yexp,Time,Yest); 

     

    H3_parameters=[p_est(1,1) INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) p_est(1,3) 

INT_PARAM(3,1) p_est(1,4) INT_PARAM(4,1) p_est(1,5) INT_PARAM(5,1) R2_H3 k]; 

     

    figure(2), 

    subplot(3,3,9),scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('H3 Model') 

    hold off 

  

end 

  

%% 

Michaelis_Menten_parameters=zeros(1,10); 

VARIABLES_Michaelis_Menten={'MM Mhum' 'Interval' 'MM X_M' 'Interval' 'MM Ks_Y_xs' 

'Interval' 'MM X_O' 'Interval' 'R2 MM' 'Number points MM'}; 

  

if Michaelis_Menten_model_to_use==1 && Monod_model_to_use==1 

     

      Time=round(DATE_NUM); 

     

    if k>MAX_POINT 

         

        Yexp=Portion_of_surface(1:MAX_POINT,1); 

         

        Time=Time(1:MAX_POINT,1); 

         

    else 

        Yexp=Portion_of_surface; 

         

    end 
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    if Enable_screening==1 

         

        Inter_time=[]; 

        Inter_yexp=[]; 

        [aa,bb]=size(Time); 

         

        for d=1:aa 

            if Yexp(d)>=Thresh_screening 

                Inter_time=[Inter_time;Time(d)]; 

                Inter_yexp=[Inter_yexp;Yexp(d)]; 

            end 

        end 

         

        Time=Inter_time; 

        Yexp=Inter_yexp; 

         

    end 

     

     

    p_init=[1 0.5]; 

     

    options = statset('MaxIter',10000,'FunValCheck','off'); 

    [p_est,RESIDUAL,Jacobian] = 

nlinfit(Time,Yexp,@Michaelis_Menten_model,p_init,options); 

    Yest=Michaelis_Menten_model(p_est,Time); 

     

    n=size(Time,1); 

    p=size(p_est,1); 

    MSE=sum(RESIDUAL.^2,1)/(n-p); 

    R2_Michaelis_Menten=1-sum(RESIDUAL.^2,1)/sum((Yexp-mean(Yexp)).^2); 

     

    VAR_PARAM=inv(Jacobian'*Jacobian)*MSE; % variance des estimés (approximation 

linéaire) 

    Test_level=0.95; 

    INT_PARAM=[tinv(((1-Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(1,1));tinv(((1-

Test_level)/2)+Test_level,n-p)*sqrt(VAR_PARAM(2,2))]; % intervalles de confiance 

individuels à 95% 

    

     

    %figure(6), 

    %plot(Time,Yexp,Time,Yest); 

     

    Michaelis_Menten_parameters=[MHUM_EXPONENTIAL MHUM_EXPONENTIAL_INTERVAL p_est(1,1) 

INT_PARAM(1,1) p_est(1,2) INT_PARAM(2,1) X_0_EXPONENTIAL X_0_EXPONENTIAL_INTERVAL 

R2_Michaelis_Menten k]; 

     

    figure(3), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Michaelis Menten Model') 

    hold off 

     

    figure(17), 

    scatter(Time,Yexp); hold on 

    plot(Time,Yest,'r'), title('Michaelis Menten 

Model'),xlabel('Time(h)'),ylabel('Surface Recovered (-)'),ylim([0 1]); 

    hold off 

  

end 

  

%% 

%Get the data out 

  

INTER=struct2cell(VARIABLES); 

  

HEADLINE=(['Experience ID' 'IMAGE QUALITY' 'Cells' 'Medium' 'Well' 'Passage' 'Cells 

Initial Concentration' 'Time' INTER{1,1} VARIABLES_MONOD VARIABLES_Deasy_Jankowski 

VARIABLES_Logistic VARIABLES_Richards VARIABLES_Gompertz VARIABLES_Weibull VARIABLES_H1 

VARIABLES_H2 VARIABLES_H3 VARIABLES_Michaelis_Menten]); 
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[a,b]=size(INTER{1,1}); 

  

DATA_OUTPUT=[]; 

  

[num,IMAGE_QUALITY_STRINGS,raw]=xlsread(NAME_IMAGE_QUALITY,num2str(ii)); 

  

IMAGE_QUALITY_VECTOR=[IMAGE_QUALITY_VECTOR;IMAGE_QUALITY_STRINGS]; 

  

Well_vector=ones(k,1).*ii; 

  

Passage_vector=ones(k,1).*PASSAGE(ii); 

  

Cells_conc_vector=ones(k,1).*Cell_concentration(ii); 

  

Monod_vector=ones(k,1)*Monod_parameters; 

  

Deasy_Jankowski_vector=ones(k,1)*Deasy_Jankowski_parameters; 

  

Logistic_vector=ones(k,1)*Logistic_parameters; 

  

Richards_vector=ones(k,1)*Richards_parameters; 

  

Gompertz_vector=ones(k,1)*Gompertz_parameters; 

  

Weibull_vector=ones(k,1)*Weibull_parameters; 

  

H1_vector=ones(k,1)*H1_parameters; 

  

H2_vector=ones(k,1)*H2_parameters; 

  

H3_vector=ones(k,1)*H3_parameters; 

  

Michaelis_Menten_vector=ones(k,1)*Michaelis_Menten_parameters; 

  

DATA_OUTPUT=[Well_vector Passage_vector Cells_conc_vector DATE_NUM]; 

  

  

for jj=1:k 

     

    MEDIUM_VECTOR=[MEDIUM_VECTOR;cellstr(MEDIUM(ii))]; 

    CELL_TYPE_VECTOR=[CELL_TYPE_VECTOR;cellstr(Cell_type(ii))]; 

     

end 

  

  

for j=1:b 

  

DATA_OUTPUT=[DATA_OUTPUT mean(Data(:,1:k,j))']; 

  

end 

  

DATA_OUTPUT=[DATA_OUTPUT Monod_vector Deasy_Jankowski_vector Logistic_vector 

Richards_vector Gompertz_vector Weibull_vector H1_vector H2_vector H3_vector 

Michaelis_Menten_vector]; 

  

  

OUT=[OUT;DATA_OUTPUT]; 

  

  

Name_Figure=[NAME_OF_EXPERIMENT,'_Well_',num2str(ii)]; 

  

Name_Figure2=[NAME_OF_EXPERIMENT,'_MICHAELIS_MENTEN','_Well_',num2str(ii)]; 

  

saveas(figure(2),Name_Figure,'jpg') 

  

saveas(figure(3),Name_Figure2,'jpg') 

  

  

end 
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filename=[NAME_OF_EXPERIMENT,'_','DATA']; 

xlswrite(filename,HEADLINE,1,'A1'); 

  

EXPERIMENT_ID=[]; 

  

[p,l]=size(OUT); 

  

for v=1:p 

     

    EXPERIMENT_ID=[EXPERIMENT_ID;cellstr(NAME_OF_EXPERIMENT)]; 

     

     

end 

  

xlswrite(filename,EXPERIMENT_ID,1,'A2'); 

  

xlswrite(filename,IMAGE_QUALITY_VECTOR,1,'B2'); 

  

xlswrite(filename,CELL_TYPE_VECTOR,1,'C2'); 

  

xlswrite(filename,MEDIUM_VECTOR,1,'D2'); 

  

xlswrite(filename,OUT,1,'E2'); 
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Monod_model.m 

function Yest = Monod_model(p_var,T) 

  

mhum=p_var(1,1); %paramètre mhumax 

Y_O=p_var(1,2); 

  

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

  

    k1=Y_1*mhum; 

  

    k2=(Y_1+0.5*h*k1)*mhum; 

  

    k3=(Y_1+0.5*h*k2)*mhum; 

  

    k4=(Y_1+h*k3)*mhum; 

  

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Logistic_model.m 

function Yest = Logistic_model(p_var,T) 

  

Cmax=p_var(1,1);  

Xmax=p_var(1,2); 

X_O=p_var(1,3); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

  

    k1=Y_1*Cmax*(1-Y_1/Xmax); 

  

    k2=(Y_1+0.5*h*k1)*Cmax*(1-(Y_1+0.5*h*k1)/Xmax); 

  

    k3=(Y_1+0.5*h*k2)*Cmax*(1-(Y_1+0.5*h*k2)/Xmax); 

  

    k4=(Y_1+h*k3)*Cmax*(1-(Y_1+h*k3)/Xmax); 

  

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Gompertz_model.m 

function Yest = Gompertz_model(p_var,T) 

 

Beta=p_var(1,1); 

M=p_var(1,2); 

X_O=p_var(1,3); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    ALPHA=log(M/Y_O); 

     

    Y(i+1)=M*exp(-ALPHA*exp(-M*Beta*t(i))); 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Richards_model.m 

function Yest = Richards_model(p_var,T) 

  

Beta=p_var(1,1);  

Gamma=p_var(1,2); 

M=p_var(1,3); 

X_O=p_var(1,4); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    ALPHA=(M/Y_O)^(1/Gamma)-1; 

     

    Y(i+1)=M/((1+ALPHA*exp(-M*Beta*t(i)))^Gamma); 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Weibull_model.m 

function Yest = Weibull_model(p_var,T) 

  

Beta=p_var(1,1); 

Gamma=p_var(1,2); 

M=p_var(1,3); 

X_O=p_var(1,4); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    ALPHA=M-Y_O; 

     

    Y(i+1)=M-ALPHA*exp(-Beta*t(i)*Gamma); 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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H1_model.m 

function Yest = H1_model(p_var,T) 

  

Beta=p_var(1,1); %paramètre mhumax 

Theta=p_var(1,2); 

M=p_var(1,3); 

X_O=p_var(1,4); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

  

    k1=Y_1/M*(M-Y_1)*(M*Beta+Theta/sqrt(1+t(i)^2)); 

     

    k2=(Y_1+0.5*h*k1)/M*(M-(Y_1+0.5*h*k1))*(M*Beta+Theta/sqrt(1+(t(i)+h/2)^2)); 

     

    k3=(Y_1+0.5*h*k2)/M*(M-(Y_1+0.5*h*k2))*(M*Beta+Theta/sqrt(1+(t(i)+h/2)^2)); 

  

    k4=(Y_1+h*k3)/M*(M-(Y_1+h*k3))*(M*Beta+Theta/sqrt(1+(t(i)+h)^2)); 

     

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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H2_model.m 

function Yest = H2_model(p_var,T) 

  

Alpha=p_var(1,1); %paramètre mhumax 

Beta=p_var(1,2); 

Gamma=p_var(1,3); 

M=p_var(1,4); 

X_O=p_var(1,5); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

  

    k1=Alpha*Beta*Gamma*(Y_1)^2*(t(i))^(Gamma-1)*tanh((M-(Y_1))/(Alpha*(Y_1))); 

     

    k2=Alpha*Beta*Gamma*(Y_1+0.5*h*k1)^2*(t(i)+h/2)^(Gamma-1)*tanh((M-

(Y_1+0.5*h*k1))/(Alpha*(Y_1+0.5*h*k1))); 

     

    k3=Alpha*Beta*Gamma*(Y_1+0.5*h*k2)^2*(t(i)+h/2)^(Gamma-1)*tanh((M-

(Y_1+0.5*h*k2))/(Alpha*(Y_1+0.5*h*k2))); 

     

    k4=Alpha*Beta*Gamma*(Y_1+h*k3)^2*(t(i)+h)^(Gamma-1)*tanh((M-

(Y_1+h*k3))/(Alpha*(Y_1+h*k3))); 

     

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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H3_model.m 

function Yest = H3_model(p_var,T) 

  

L=p_var(1,1); %paramètre mhumax 

Delta=p_var(1,2); 

Gamma=p_var(1,3); 

Theta=p_var(1,4); 

X_O=p_var(1,5); 

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

     

    %Delta=(L-(Y_1))*(Delta*Gamma*((t(i))^(Gamma-1))+Theta/sqrt(1+Theta^2*(t(i))^2)); 

  

    k1=(L-(Y_1))*(Delta*Gamma*(t(i))^(Gamma-1)+Theta/sqrt(1+Theta^2*(t(i))^2)); 

     

    k2=(L-(Y_1+0.5*h*k1))*(Delta*Gamma*(t(i)+h/2)^(Gamma-

1)+Theta/sqrt(1+Theta^2*(t(i)+h/2)^2)); 

     

    k3=(L-(Y_1+0.5*h*k2))*(Delta*Gamma*(t(i)+h/2)^(Gamma-

1)+Theta/sqrt(1+Theta^2*(t(i)+h/2)^2)); 

     

    k4=(L-(Y_1+h*k3))*(Delta*Gamma*(t(i)+h)^(Gamma-1)+Theta/sqrt(1+Theta^2*(t(i)+h)^2)); 

     

    if t(i)==0 

         

        %Delta=0; 

         

        k1=0; 

         

        k2=0; 

         

        k3=0; 

         

        k4=0; 

         

    end 

     

     

    %Y_2=Y(i)+Delta*h; 

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 
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for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Michaelis_Menten_model.m 

function Yest = Michaelis_Menten_model(p_var,T) 

  

load('MHUM_EXPONENTIAL','MHUM_EXPONENTIAL'); 

load('X_0_EXPONENTIAL','X_0_EXPONENTIAL'); 

  

Mhum=MHUM_EXPONENTIAL; %paramètre mhumax 

X_m=p_var(1,1); 

Ks_Y_xs=p_var(1,2); 

X_O=X_0_EXPONENTIAL; 

  

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

for i=1:N 

     

    Y_1=Y_2; 

     

  

    k1=Mhum*(X_m-Y_1)*Y_1/(Ks_Y_xs+(X_m-Y_1)); 

     

    k2=Mhum*(X_m-(Y_1+0.5*h*k1))*(Y_1+0.5*h*k1)/(Ks_Y_xs+(X_m-(Y_1+0.5*h*k1))); 

     

    k3=Mhum*(X_m-(Y_1+0.5*h*k2))*(Y_1+0.5*h*k2)/(Ks_Y_xs+(X_m-(Y_1+0.5*h*k2))); 

     

    k4=Mhum*(X_m-(Y_1+h*k3))*(Y_1+h*k3)/(Ks_Y_xs+(X_m-(Y_1+h*k3))); 

     

    Y_2=Y(i)+(1/6)*h*(k1+2*k2+2*k3+k4); 

  

  

    Y(i+1)=Y_2; 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Deasy_Jankowski_model.m 

function Yest = Deasy_Jankowski_model(p_var,T) 

  

Alpha=p_var(1,1); 

DT=p_var(1,2); 

X_O=p_var(1,3); 

  

%Parameters must be bounded 

  

if X_O<0 

    X_O=abs(X_O); 

end 

  

if Alpha>1 

    Alpha=1; 

end 

  

  

Y_O=X_O; 

  

Ymodel=[]; 

  

h=0.25; 

  

Y_2=Y_O; 

  

N=1000/h; 

  

Y=[]; 

t=[]; 

  

Y(1)=Y_O; 

t(1)=0; 

  

  

difference=1; 

  

  

  

for i=1:N 

     

     

    Y(i+1)=Y_O*(0.5+(1-(2*Alpha)^(t(i)/DT+1))/(2*(1-2*Alpha))); 

    t(i+1)=t(i)+h; 

     

end 

  

  

for i=1:length(T) 

    Yest(i)=Y(find(t==T(i))); 

end 

  

Yest=Yest'; 
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Deasy_Jankowski_model_FMINCON.m 

function ERREUR = Deasy_Jankowski_model_FMINCON(p_var) 

  

  

load('BUFFER_DEASY_YEXP','Yexp'); 

load('BUFFER_DEASY_TIME','Time'); 

  

  

Yest = Deasy_Jankowski_model(p_var,Time); 

  

  

  

ERREUR=sum((Yest-Yexp).^2); 
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MIA_v0r9.m 

%This function is for perfoming MIA on multiple RGB images. The data can be exported to 

PROMV. 

  

%Pierre-Marc Juneau, March 2014 

  

clear 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

LATENT_SPACE_GENERATION=0; 

MINIMUM_MAXIMUM_SCORES_CALCULATION=0; 

SCORE_DENSITY_HISTOGRAM_MATRIX=0; 

INDIVIDUAL_SCORE_DENSITY_HISTOGRAM_MATRIX=0; 

SHOW_SCORE_DENSITY_HISTOGRAM=0; 

INDIVIDUAL_SHOW_SCORE_DENSITY_HISTOGRAM=0; 

MASK_DATA_GENERATION=0; 

MASK_FINDER_ROIPOLY=0; 

X_MATRIX_GENERATION=0; 

Y_MATRIX_GENERATION=0; 

COVARIANCE_X_Y=0; 

PHASE_ANGLE=0; 

HISTOGRAMS_GENERATION=1; 

PROMV_EXPORT=0; 

CROSSVAL=0; 

PLS_MODEL=0; 

  

NUMBER_OF_COMPONENTS_PLS=10; 

  

Y_MATRIX_SOURCE='D:\Analysis\4_Materna_Bunch_results_3\Y_Matrix_Materna.xlsx'; 

  

  

%% 

MASK_NUMBER=1; 

  

INVERSE_MASKING=0; 

  

%% 

MASK_SINGLE_IMAGE=0; 

IMAGE_NUMBER_TO_ANALYZE=1; 

  

Number_of_lambdas=3; 

  

COMPOSANTE_NUM_1=1; 

COMPOSANTE_NUM_2=2; 

  

  

nbrgroupes=32; 

%Paramenters for score density histogram display 

NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM=10; 

Decimation_factor=10; 

HIGH_BOUND=0.5; 

  

  

%Threshold=1; 

IMAGE_FORMAT='.TIF'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

  

%if SHOW_SCORE_DENSITY_HISTOGRAM~=1 

%Get the directory where the images are 

directory_name_image = uigetdir('','Choose the directory where the images are'); 

listing_image = dir([directory_name_image,'\','*.TIF']); 

[Number_of_images,b]=size(listing_image); 

  

IMAGES_NAME_LIST={listing_image.name}'; 

  

  

%end 
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%% 

%Generating common latent space for all images 

  

if LATENT_SPACE_GENERATION==1 

     

    Z=zeros(Number_of_lambdas,Number_of_lambdas); 

    save('Zmatrix.mat','Z'); 

     

     

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

        MATRIX_NAME=strrep(IMAGE_NAME,'.TIF', ''); 

         

        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

    

        SPECTRAL=double(IMAGE); 

         

         

         

        [a,b,c]=size(SPECTRAL); 

         

         

        for i=1:b 

             

             

            PARTIAL=reshape(SPECTRAL(:,i,:),a,c); 

             

             

            Z=Z+PARTIAL'*PARTIAL; 

            save('Zmatrix.mat','Z'); 

             

        end 

         

         

         

    end 

     

    save('Zmatrix.mat','Z'); 

     

end 

  

  

%% 

if MINIMUM_MAXIMUM_SCORES_CALCULATION==1 

  

Z=load('Zmatrix.mat','Z'); 

Z=Z.Z; 

[P,E,PT]=svd(Z); 

%variancecaptured = sum(E)./sum(sum(E)); 

%variancecaptured1_10 = variancecaptured(1,1:10); 

  

%% 

  

%We find the minimum and the maximum value of all the scores 

  

NUMBER_TOTAL_COMPONENTS=size(Z,1); 

  

SCORES_MIN=ones(1,NUMBER_TOTAL_COMPONENTS).*realmax; 

SCORES_MAX=ones(1,NUMBER_TOTAL_COMPONENTS).*(-realmax); 

  

for m=1:Number_of_images 

    m 

     

    IMAGE_NAME=listing_image(m).name; 

     

    IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

     

    SPECTRAL=double(IMAGE); 
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    [a,b,c]=size(SPECTRAL); 

     

    for i=1:b 

         

        X =reshape(SPECTRAL(:,i,:),a,c)'; 

        T=X'*PT; 

         

        for k=1:NUMBER_TOTAL_COMPONENTS 

            SCORES_LOCAL_MAX=max(T); 

            SCORES_LOCAL_MIN=min(T); 

             

            if SCORES_LOCAL_MAX(k)>SCORES_MAX(k) 

                SCORES_MAX(k)=SCORES_LOCAL_MAX(k); 

            end 

             

            if SCORES_LOCAL_MIN(k)<SCORES_MIN(k) 

                SCORES_MIN(k)=SCORES_LOCAL_MIN(k); 

            end 

             

        end 

         

    end 

     

end 

  

save('SCORES_MIN.mat','SCORES_MIN'); 

save('SCORES_MAX.mat','SCORES_MAX'); 

  

end 

  

%% 

%Computation of the density histogram matrix 

  

if SCORE_DENSITY_HISTOGRAM_MATRIX==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

    A = zeros(nbrgroupes,nbrgroupes); 

     

    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

         

        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

         

        SPECTRAL=double(IMAGE); 

         

        [a,b,c]=size(SPECTRAL); 

         

         

        for i=1:b 

             

            X =reshape(SPECTRAL(:,i,:),a,c)'; 
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            t1=X'*PT(:,COMPOSANTE_NUM_1); 

            t2=X'*PT(:,COMPOSANTE_NUM_2); 

             

             

            s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-

t1min))).*(nbrgroupes-1)); 

            s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-

t2min))).*(nbrgroupes-1)); 

             

            for k = 1:length(s1) 

                 

                A(s2(k), s1(k)) = A(s2(k), s1(k)) + 1; 

                 

            end 

             

        end 

    end 

     

    

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.

mat']; 

    save(NAME,'A'); 

     

     

end 

  

  

%% 

if INDIVIDUAL_SCORE_DENSITY_HISTOGRAM_MATRIX==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

    A = zeros(nbrgroupes,nbrgroupes); 

     

    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

         

        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

         

        SPECTRAL=double(IMAGE); 

         

        [a,b,c]=size(SPECTRAL); 

         

        A = zeros(nbrgroupes,nbrgroupes); 

         

        for i=1:b 

             

            X =reshape(SPECTRAL(:,i,:),a,c)'; 

            t1=X'*PT(:,COMPOSANTE_NUM_1); 

            t2=X'*PT(:,COMPOSANTE_NUM_2); 

             

             

            s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-

t1min))).*(nbrgroupes-1)); 



370 
 

            s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-

t2min))).*(nbrgroupes-1)); 

             

            for k = 1:length(s1) 

                 

                A(s2(k), s1(k)) = A(s2(k), s1(k)) + 1; 

                 

            end 

             

        end 

         

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

IMAGE_',IMAGE_NAME,'.mat']; 

        save(NAME,'A'); 

         

         

         

    end 

     

end 

  

  

  

%% 

%Showing the score density histogram 

  

if SHOW_SCORE_DENSITY_HISTOGRAM==1 

     

    

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.

mat']; 

    A=load(NAME,'A'); 

    A=A.A; 

     

    RELATIVE=max(max(A)); 

     

    SPLIT=256/NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM; 

     

    [h,j] = find((round(RELATIVE*HIGH_BOUND))<=A); 

    for m = 1:length(h), 

        H(h(m),j(m)) = 256; 

    end; 

     

    for k=1:1:(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-3); 

        k; 

         

        [h,j] = find((round(RELATIVE*HIGH_BOUND/(Decimation_factor^k)))<=A & 

A<(round(RELATIVE*HIGH_BOUND/(Decimation_factor^(k-1))))); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 

round(SPLIT*(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-k)); % Those bins in A 

having 76-150 hits are reassigned to a pixel intensity value of 226 

        end; 

         

         

    end 

     

    [h,j] = find(A==2); 

    for m = 1:length(h), 

        H(h(m),j(m)) = round(SPLIT*2); 

    end; 

     

    [h,j] = find(A==1); 

    for m = 1:length(h), 

        H(h(m),j(m)) = round(SPLIT*1); 

    end; 

     

     

     

    [h,j] = find(A==0); 
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    for m = 1:length(h), 

        H(h(m),j(m)) = 0; 

    end; 

     

     

    colormap(hot(256)); 

    map = colormap; 

     

    figure(1); 

    imshow(H,map,'InitialMagnification','fit');% 

    xlabel(num2str(COMPOSANTE_NUM_1)); 

    ylabel(num2str(COMPOSANTE_NUM_2)); 

     

    

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'.mat']; 

    save(NAME,'H'); 

     

     

end 

  

%% 

if INDIVIDUAL_SHOW_SCORE_DENSITY_HISTOGRAM==1 

    MAXIMUM=0; 

    for m=1:Number_of_images 

         

        IMAGE_NAME=listing_image(m).name; 

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

IMAGE_',IMAGE_NAME,'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

        if max(max(A))>MAXIMUM 

            MAXIMUM= max(max(A)); 

        end 

         

    end 

     

    RELATIVE=MAXIMUM; 

  

  for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

         

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

IMAGE_',IMAGE_NAME,'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

         

         

        SPLIT=256/NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM; 

         

        [h,j] = find((round(RELATIVE*HIGH_BOUND))<=A); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 256; 

        end; 

         

        for k=1:1:(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-3); 

            k; 

             

            [h,j] = find((round(RELATIVE*HIGH_BOUND/(Decimation_factor^k)))<=A & 

A<(round(RELATIVE*HIGH_BOUND/(Decimation_factor^(k-1))))); 

            for m = 1:length(h), 

                H(h(m),j(m)) = 

round(SPLIT*(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-k)); % Those bins in A 

having 76-150 hits are reassigned to a pixel intensity value of 226 

            end; 
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        end 

         

        [h,j] = find(A==2); 

        for m = 1:length(h), 

            H(h(m),j(m)) = round(SPLIT*2); 

        end; 

         

        [h,j] = find(A==1); 

        for m = 1:length(h), 

            H(h(m),j(m)) = round(SPLIT*1); 

        end; 

         

         

         

        [h,j] = find(A==0); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 0; 

        end; 

         

         

        colormap(hot(256)); 

        map = colormap; 

         

        handle=figure(1); 

        imshow(H,map,'InitialMagnification','fit');% 

        xlabel(num2str(COMPOSANTE_NUM_1)); 

        ylabel(num2str(COMPOSANTE_NUM_2)); 

         

        

filename_figure=['SCORE_DENSITY_FIGURE_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANT

E_NUM_2),'_IMAGE_',IMAGE_NAME]; 

         

        print(handle,'-djpeg',filename_figure); 

         

        

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_IMAGE_',IMAGE_NAME,'.mat']; 

        save(NAME,'H'); 

         

    end 

  

end 

%% 

  

if MASK_DATA_GENERATION==1 

     

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

     

     

     

    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

        MATRIX_NAME=strrep(IMAGE_NAME,IMAGE_FORMAT, ''); 
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        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

         

        SPECTRAL=double(IMAGE); 

         

        [a,b,c]=size(SPECTRAL); 

        t1new=[]; 

        t2new=[]; 

         

        for i=1:b 

             

            X =reshape(SPECTRAL(:,i,:),a,c)'; 

            t1=X'*PT(:,COMPOSANTE_NUM_1); 

            t2=X'*PT(:,COMPOSANTE_NUM_2); 

             

             

            s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-

t1min))).*(nbrgroupes-1)); 

            s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-

t2min))).*(nbrgroupes-1)); 

             

            t1new=[t1new s1']; 

            t2new=[t2new s2']; 

             

             

             

             

        end 

         

  

         

        NAME=['T',num2str(COMPOSANTE_NUM_1),'_NEW_','_IMAGE_',MATRIX_NAME,'.mat']; 

        save(NAME,'t1new'); 

        NAME=['T',num2str(COMPOSANTE_NUM_2),'_NEW_','_IMAGE_',MATRIX_NAME,'.mat']; 

        save(NAME,'t2new'); 

    end 

     

end 

  

  

%% 

if MASK_FINDER_ROIPOLY==1 

     

    

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'.mat']; 

    H=load(NAME,'H'); 

    H=H.H; 

     

    colormap(hot(256)); 

    map = colormap; 

    HRGB = uint8(round(ind2rgb(H,map)*255)); 

     

     

    criteria=1; 

     

    BW=zeros(nbrgroupes,nbrgroupes); 

     

    while criteria==1 

         

         

        figure(1),imshow(HRGB); 

        BW_inter=roipoly; 

         

        BW=BW+BW_inter; 

         

        criteria=input('Do you wish to add another mask? Yes-1 No-0  ?'); 

         

    end 
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NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_MASK_',num2str(MASK_NUMBER),'.mat']; 

    save(NAME,'BW'); 

     

    if INVERSE_MASKING==1 

        

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_MASK_',num2str(MASK_NUMBER),'.mat']; 

        BW=~BW; 

        save(NAME,'BW'); 

        BW=~BW; 

    end 

     

    [aaa,bbb]=size(BW); 

    for ii=1:aaa 

        for jj=1:bbb 

            if INVERSE_MASKING==0 

                if BW(ii,jj)==1 

                    HRGB(ii,jj,1)=0; 

                    HRGB(ii,jj,2)=191; 

                    HRGB(ii,jj,3)=255; 

                end 

            end 

             

            if INVERSE_MASKING==1 

                 

                if BW(ii,jj)==0 

                    HRGB(ii,jj,1)=0; 

                    HRGB(ii,jj,2)=191; 

                    HRGB(ii,jj,3)=255; 

                end 

            end 

             

        end 

    end 

     

    handle2=figure(2); 

    imshow(HRGB); 

     

    

filename_figure=['SCORE_DENSITY_MASK_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_

NUM_2),'_MASK_',num2str(MASK_NUMBER),'.jpg']; 

         

    print(handle2,'-djpeg',filename_figure); 

         

     

     

    [MASK_ROW,MASK_COLUMN]=find(BW==1); 

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

        MATRIX_NAME=strrep(IMAGE_NAME,IMAGE_FORMAT, ''); 

        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

        [a,b,c]=size(IMAGE); 

         

        NAME=['T',num2str(COMPOSANTE_NUM_1),'_NEW_','_IMAGE_',MATRIX_NAME,'.mat']; 

        t1new=load(NAME,'t1new'); 

        t1new=t1new.t1new; 

        NAME=['T',num2str(COMPOSANTE_NUM_2),'_NEW_','_IMAGE_',MATRIX_NAME,'.mat']; 

        t2new=load(NAME,'t2new'); 

        t2new=t2new.t2new; 

         

        pixelmaskt1 = zeros(size(t2new)); 

         

         

        for a = 1:length(MASK_ROW) 

            for b = 1:length(t1new) 

                if MASK_ROW(a)==t2new(b) && MASK_COLUMN(a)==t1new(b) 
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                    pixelmaskt1(b) = 1;% On met des valeurs 

                     

                end 

            end 

        end 

        [hauteurt1image,largeurt1image,lamda]=size(IMAGE); 

        SEGMENTATION_BINARY = (reshape(pixelmaskt1,hauteurt1image,largeurt1image)); 

         

        IMAGE_OUT=double(IMAGE); 

        [a,b,c]=size(IMAGE_OUT); 

        for ii=1:a 

            for jj=1:b 

                if INVERSE_MASKING==0 

                    if SEGMENTATION_BINARY(ii,jj)==1 

                        IMAGE_OUT(ii,jj,1)=0; 

                        IMAGE_OUT(ii,jj,2)=191; 

                        IMAGE_OUT(ii,jj,3)=255; 

                    end 

                end 

                 

                if INVERSE_MASKING==1 

                    if SEGMENTATION_BINARY(ii,jj)==0 

                        IMAGE_OUT(ii,jj,1)=0; 

                        IMAGE_OUT(ii,jj,2)=191; 

                        IMAGE_OUT(ii,jj,3)=255; 

                    end 

                end 

            end 

        end 

         

        handle=figure(3); 

        imshow(uint8(IMAGE_OUT)); 

         

        

filename_figure=['SCORE_DENSITY_FIGURE_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANT

E_NUM_2),'_IMAGE_',IMAGE_NAME,'_MASK_',num2str(MASK_NUMBER),'.jpg']; 

         

        print(handle,'-djpeg',filename_figure); 

         

        

    end 

     

end 

  

  

%% 

if X_MATRIX_GENERATION==1 

     

    X=[]; 

     

    for m=1:Number_of_images 

        m 

         

        IMAGE_NAME=listing_image(m).name; 

        MATRIX_NAME=strrep(IMAGE_NAME,IMAGE_FORMAT, ''); 

        IMAGE=imread([directory_name_image,'\',IMAGE_NAME]); 

        [a,b]=size(IMAGE); 

         

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

IMAGE_',MATRIX_NAME,'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

        X=[X;reshape(A,1,nbrgroupes*nbrgroupes)]; 

         

    end 

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    save(NAME,'X'); 
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end 

  

%% 

if Y_MATRIX_GENERATION==1 

     

    [num,txt,raw]= xlsread(Y_MATRIX_SOURCE); 

     

    Y=num; 

    Y_VARIABLES=txt; 

    %Y_VARIABLES=[cellstr(['Variable 1']),cellstr(['Variable 2'])]; 

     

  

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    save(NAME,'Y'); 

    save('Y_VARIABLES.mat','Y_VARIABLES'); 

end 

  

%% 

% Covariance matrix between X and y 

  

if COVARIANCE_X_Y==1 

     

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    X=load(NAME,'X'); 

    X=X.X; 

     

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    Y=load(NAME,'Y'); 

    Y=Y.Y; 

    load('Y_VARIABLES.mat'); 

    [a,b]=size(X); 

     

    [c,d]=size(Y); 

     

     

    for i=1:d 

         

        COVARIANCE=[]; 

         

        for j=1:b 

             

            C=cov(X(:,j),Y(:,i)); 

             

            COVARIANCE=[COVARIANCE,C(2,1)]; 

             

        end 

         

        COVARIANCE=reshape(COVARIANCE,nbrgroupes,nbrgroupes); 

         

        colormap(jet); 

        map = colormap; 

         

        % 

        COVARIANCE_NEGATIVE=COVARIANCE; 

        COVARIANCE_POSITIVE=COVARIANCE; 

         

        COVARIANCE_NEGATIVE(COVARIANCE>0)=0; 

        COVARIANCE_NEGATIVE=abs(COVARIANCE_NEGATIVE); 

        COVARIANCE_POSITIVE(COVARIANCE<0)=0; 

         

        

COVARIANCE_NEGATIVE=round(COVARIANCE_NEGATIVE/max(max(COVARIANCE_NEGATIVE)).*255); 

        

COVARIANCE_POSITIVE=round(COVARIANCE_POSITIVE/max(max(COVARIANCE_POSITIVE)).*255); 

         

        COVARIANCE_NEGATIVE=label2rgb(round(COVARIANCE_NEGATIVE),'winter','k'); 

        COVARIANCE_POSITIVE=label2rgb(round(COVARIANCE_POSITIVE),'autumn','k'); 

         

        COVARIANCE_OUT=COVARIANCE_NEGATIVE+COVARIANCE_POSITIVE; 

        % 
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        filename_figure=['COVARIANCE_MATRIX_',char(Y_VARIABLES(i))]; 

        handle=figure(2); 

        %imshow(COVARIANCE_OUT,map,'InitialMagnification','fit');% 

        imshow(COVARIANCE_OUT,'InitialMagnification','fit');% 

         

        print(handle,'-djpeg',filename_figure); 

         

         

    end 

     

end 

  

%% 

  

if PHASE_ANGLE==1 

     

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    X=load(NAME,'X'); 

    X=X.X; 

     

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    Y=load(NAME,'Y'); 

    Y=Y.Y; 

    load('Y_VARIABLES.mat'); 

    [a,b]=size(X); 

    [c,d]=size(Y); 

     

     

    %Computing Z1 and Z2 (see Honglu Yu, John F. MacGregor 2003) 

     

    Z1=Y(:,1); 

     

    minY=min(Y(:,1)); 

    maxY=max(Y(:,1)); 

     

    ystar=(minY+maxY)/2; 

     

    Z2=abs(Z1-ystar); 

     

    COVARIANCE_1=[]; 

    for j=1:b 

         

        C=cov(X(:,j),Z1); 

         

        COVARIANCE_1=[COVARIANCE_1,C(2,1)]; 

         

    end 

    COVARIANCE_1=reshape(COVARIANCE_1,nbrgroupes,nbrgroupes); 

     

     

    COVARIANCE_2=[]; 

    for j=1:b 

         

        C=cov(X(:,j),Z2); 

         

        COVARIANCE_2=[COVARIANCE_2,C(2,1)]; 

         

    end 

    COVARIANCE_2=reshape(COVARIANCE_2,nbrgroupes,nbrgroupes); 

     

     

    Theta=atan2(COVARIANCE_1,COVARIANCE_2); 

     

    COVARIANCE_NEGATIVE=Theta; 

    COVARIANCE_POSITIVE=Theta; 

     

    COVARIANCE_NEGATIVE(Theta>0)=0; 

    COVARIANCE_NEGATIVE=abs(COVARIANCE_NEGATIVE); 

    COVARIANCE_POSITIVE(Theta<0)=0; 

     

    COVARIANCE_NEGATIVE=round(COVARIANCE_NEGATIVE/max(max(COVARIANCE_NEGATIVE)).*255); 
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    COVARIANCE_POSITIVE=round(COVARIANCE_POSITIVE/max(max(COVARIANCE_POSITIVE)).*255); 

     

    COVARIANCE_NEGATIVE=label2rgb((COVARIANCE_NEGATIVE),'winter','k'); 

    COVARIANCE_POSITIVE=label2rgb((COVARIANCE_POSITIVE),'autumn','k'); 

     

    COVARIANCE_OUT=uint8(COVARIANCE_NEGATIVE+COVARIANCE_POSITIVE); 

    % 

     

    filename_figure=['THETA_MATRIX']; 

    handle=figure(3); 

    %imshow(COVARIANCE_OUT,map,'InitialMagnification','fit');% 

    imshow(COVARIANCE_OUT,'InitialMagnification','fit');% 

     

    print(handle,'-djpeg',filename_figure); 

     

    MODULE=sqrt(COVARIANCE_1.^2+COVARIANCE_2.^2); 

     

    COVARIANCE_POSITIVE=MODULE; 

  

    COVARIANCE_POSITIVE=round(COVARIANCE_POSITIVE/max(max(COVARIANCE_POSITIVE)).*255); 

     

    COVARIANCE_POSITIVE=label2rgb((COVARIANCE_POSITIVE),'autumn','k'); 

     

    COVARIANCE_OUT=uint8(COVARIANCE_POSITIVE); 

    % 

     

    filename_figure=['MODULE_MATRIX']; 

    handle=figure(4); 

    %imshow(COVARIANCE_OUT,map,'InitialMagnification','fit');% 

    imshow(COVARIANCE_OUT,'InitialMagnification','fit');% 

     

    print(handle,'-djpeg',filename_figure); 

     

     

     

end 

  

%% 

  

if HISTOGRAMS_GENERATION==1 

     

    HISTOGRAMS_COMPILED=[]; 

     

    for m=1:Number_of_images 

         

        IMAGE_NAME=listing_image(m).name; 

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

IMAGE_',IMAGE_NAME,'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

        [aa,bb]=size(A); 

         

        A_T2=sum(A,2); 

         

        A_T2_prob=A_T2./sum(sum(A)); 

         

         HISTOGRAMS_COMPILED=[HISTOGRAMS_COMPILED;A_T2_prob']; 

        

    end 

     

    HISTOGRAMS_COMPILED_SUMMED=zeros(Number_of_images,bb); 

    HISTOGRAMS_COMPILED_SUMMED(:,1)=HISTOGRAMS_COMPILED(:,1); 

     

    for i=2:bb 

         HISTOGRAMS_COMPILED_SUMMED(:,i)=HISTOGRAMS_COMPILED_SUMMED(:,i-

1)+HISTOGRAMS_COMPILED(:,i); 

    

    end 
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    filename_figure=['PROBABILITY_HISTOGRAM']; 

    handle=figure(1); 

    plot(HISTOGRAMS_COMPILED'),legend(listing_image.name); 

    print(handle,'-djpeg',filename_figure); 

     

    filename_figure=['SUMMED_HISTOGRAM']; 

    handle=figure(2); 

    plot(HISTOGRAMS_COMPILED_SUMMED'),legend(listing_image.name); 

    print(handle,'-djpeg',filename_figure); 

     

  

     

end 

  

  

  

%% 

if PROMV_EXPORT==1 

     

     

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    X=load(NAME,'X'); 

    X=X.X; 

     

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    Y=load(NAME,'Y'); 

    Y=Y.Y; 

    load('Y_VARIABLES.mat'); 

    [a,b]=size(X); 

     

    [c,d]=size(Y); 

     

    Nb=2; 

     

    obsIDs=cell(a,1); 

     

    num=1; 

    for i=1:a 

        obsIDs(i,1)={num2str(num)}; 

        num=num+1; 

    end 

     

    BlockNames=cell(Nb,1); 

     

    BlockNames(1,1)={'X'}; 

    BlockNames(2,1)={'Y'}; 

     

    BlockTypes=cell(Nb,1); 

     

    BlockTypes(1,1)={'normal'}; 

    BlockTypes(2,1)={'normal'}; 

     

     

    X_VARIABLES_STRINGS=cell(b,1); 

     

     

    for j=1:b 

        X_VARIABLES_STRINGS(j,1)={['SCORE_DENSITY_HISTOGRAM_BIN_',num2str(j)]}; 

         

    end 

     

     

    varIDs=cell(Nb,1); 

     

    varIDs(1,1)={X_VARIABLES_STRINGS}; 

    varIDs(2,1)={Y_VARIABLES'}; 

     

     

    DataBlocks=cell(Nb,1); 

     

    DataBlocks(1,1)={X}; 
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    DataBlocks(2,1)={Y}; 

     

    ObservationLengths=cell(Nb,1); 

    ObservationLengths(1,1)={'NaN'}; 

    ObservationLengths(2,1)={'NaN'}; 

     

     

    NAME=['PROMV_EXPORT',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    

save(NAME,'BlockNames','BlockTypes','varIDs','DataBlocks','ObservationLengths','obsIDs'); 

     

     

end 

  

  

  

  

%% 

if CROSSVAL==1 

     

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    X=load(NAME,'X'); 

    X=X.X; 

     

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    Y=load(NAME,'Y'); 

    Y=Y.Y; 

    load('Y_VARIABLES.mat'); 

     

     

    pre = {preprocess('autoscale') preprocess('autoscale')}; 

    opts.preprocessing = pre; 

     

    [press,cumpress] = crossval(X,Y,'sim',{'loo'},10,opts); 

     

end 

  

%% 

if PLS_MODEL==1 

     

    NAME=['X_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    X=load(NAME,'X'); 

    X=X.X; 

     

    NAME=['Y_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.mat']; 

    Y=load(NAME,'Y'); 

    Y=Y.Y; 

    load('Y_VARIABLES.mat'); 

     

     

    [rx,cx]=size(X); 

    [rYresp cYresp]=size(Y); 

    pre={['autoscale'] ['autoscale']}; 

    opts.preprocessing = pre; 

    opts.weights=['hist']; 

    opts.weights=[]; 

    opts.display='off'; 

    opts.plots= 'none'; 

    opts.outputversion=1; 

    opts.algorithm=['sim']; 

     

    model=pls(X,Y,NUMBER_OF_COMPONENTS_PLS,opts); 

     

    Y_pred=model.pred{1,2}; 

     

    Y_mean=mean(Y,1); 

     

    [a,b]=size(Y); 

    SST=0; 

    SSE=0; 

    for i=1:a 
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        SST=SST+(Y(i,:)-Y_mean).^2; 

        SSE=SSE+(Y(i,:)-Y_pred(i,:)).^2; 

    end 

    R2=(ones(1,b)-SSE./SST); 

     

     

    for j=1:b 

     

    figure(j),scatter(Y(:,j),Y_pred(:,j)); 

     

    end 

     

end 

             

            

 

  



382 
 

  



 383 

Appendix G. Matlab® scripts used for hyperspectral microscopy 

POINTS_GENERATOR_METAMORPH_v0r1.m 

%This m-file creates a text file to load points in Metamorph. The points 

%form a grid. There is one grid (one text file) per well. 

  

%The .STG files must be put in C:\MM\app\mmproc\DATA 

  

%Those files can be used with the MDA application in Metamorph (for 

%scanning multiwell plates). 

  

%IMPORTANT NOTE: The position (0,0) of the stage must be set at the center 

%of the first well (top left corner). 

  

  

%%Author: Pierre-Marc Juneau 

%%Date: August 2010 

  

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%INPUTS%% 

  

%Basename for the .STG files 

  

BASENAME='PMJ_HYPERSPECTRAL_20X_'; 

  

%Intervals (in um) between images (depending on focus): 

%10X: Delta_X=1.0, Delta_Y=0.8 

%20X: Delta_X=0.5, Delta_Y=0.4 

%40X: Delta_X=0.25, Delta_Y=0.2 

  

Delta_X=0.35/1000; 

Delta_Y=1; 

Corners=-2; %The Corners option could be used to "chop" some unwanted points at the 

corners 

  

%Distances between wells (depending on type of multiwell plate, in mm): 

%6 well plate: 40 

%12 well plate: 26 

%24 well plate: 19.4 

%96 well plate: 9.0 

  

Bias_X=40; 

Bias_Y=Bias_X; 

  

%Number of rows and columns in the multiwell plate: 
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n_Rows=2; 

n_Colums=3; 

  

%Grid dimensions (depending on acquisition time wanted): 

%For example, for an 11x11 grid, we have X_HEIGHT=11 and Y_HEIGHT=11 

%Note that those must be odd numbers! 

  

X_HEIGHT=1001; 

Y_HEIGHT=1; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Initialisation of the focus matrix 

Number_points=X_HEIGHT*Y_HEIGHT; 

z=zeros(Number_points,1); 

  

nX=floor(X_HEIGHT/2); 

nY=floor(Y_HEIGHT/2); 

  

HEIGHT_X=nX*Delta_X; 

HEIGHT_Y=nY*Delta_Y; 

  

Well_number=1; 

  

%For loop for printing the files 

  

for ii=1:n_Rows 

    for jj=1:n_Colums 

  

  

BiasX=(jj-1)*Bias_X; 

BiasY=(ii-1)*Bias_Y; 

  

pos_y_high=HEIGHT_Y+BiasY; 

pos_y_low=-HEIGHT_Y+BiasY; 

pos_x_high=HEIGHT_X+BiasX; 

pos_x_low=-HEIGHT_X+BiasX; 

  

  

filename=[BASENAME num2str(Well_number) '.STG'] 

  

fid=fopen(filename,'wt'); 

  

fprintf(fid,'"Stage Memory List", Version 5.0\n'); 

fprintf(fid,'0, 0, 0, 0, 0, 0, 0, "mm", "mm"\n'); 

fprintf(fid,'0\n'); 

fprintf(fid,'%0.0f\n',Number_points); 
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a=1; 

  

for i=pos_y_high:-Delta_Y:pos_y_low 

    for j=pos_x_low:Delta_X:pos_x_high 

         

        a 

        perm1=0; 

        perm2=0; 

         

        if i<(pos_y_high-Corners) && i>(pos_y_low+Corners) 

            perm1=1; 

        end 

        if j<(pos_x_high-Corners) && j>(pos_x_low+Corners) 

            perm2=1; 

        end 

        if perm1==1 || perm2==1;  

        fprintf(fid,'"%0.0f", %0.5f, %0.5f, %0.5f, 0, 0, FALSE, -9999, TRUE, TRUE, 

0\n',a,j,i,z(a)); 

         a=a+1; 

        end 

    end 

end 

fclose(fid); 

Well_number=Well_number+1; 

  

    end 

end 
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T1_generation.m 

 

%Script to compute a T1 score image on hypespectral microscopy hypercube 

%Script modified by Pierre-Marc Juneau (2010)  

%Adapted from LineScan2Image (Ryan Gosselin, 2006) 

% 

  

% START SCRIPT ------------------------- 

clc 

clear all 

  

% Start file select -------------------- 

  

  

% Inable script to work with bmp or png images differently. 

dname = uigetdir('Select Directory for images to analyze'); 

Folder = dname; 

Files = struct2cell(dir([Folder,'/', '*', '.TIF']))'; 

[l,c] = size(Files); 

  

  

NumberOfImages = 0; 

  

for i = 1:l 

    if Files{i,4} == 0 % Ignore subfolders 

        NumberOfImages = NumberOfImages + 1; 

        FilteredFiles(NumberOfImages,:) = Files(i,1:3); 

        %FilteredFiles{NumberOfImages,2} = datestr(datenum(Files{i,2}),31); 

        %FilteredFiles{NumberOfImages,3} = datenum(Files{i,2}); 

    end 

end 

  

% 1=sort by name, 2=sort by date/time 

SortedFiles = sortrows(Files, 2);  

  

% Determining camera used = N:NIR, U:UV, V:VIS 

Camera = SortedFiles{1,1}; 

  

     

disp(['Folder contains ' num2str(NumberOfImages) ' image(s).']) 

  

  

Z = zeros(1024); 

  

for i=1:NumberOfImages 

    i 

    ImageFileName = [Folder,'/', SortedFiles{i,1}]; 
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    RGB = imread(ImageFileName); 

    X = (double(RGB))'; 

    Z = Z + (X'*X); 

end 

  

[P,E,PT]=svd(Z); 

variancecaptured = sum(E)./sum(sum(E)); 

variancecaptured1_10 = variancecaptured(1,1:10) 

  

save('matriceZ.mat','Z') 

  

%We will determine the t1 score image 

  

p1=PT(:,1); 

  

GLOBAL=[]; 

  

for i=1:NumberOfImages 

    aa=i; 

    aa 

    ImageFileName = [Folder,'/', SortedFiles{i,1}]; 

    RGB = imread(ImageFileName); 

    X = (double(RGB))'; 

    T1part=X*p1; 

    GLOBAL =[GLOBAL T1part]; 

end 

  

RRR=GLOBAL./min(min(GLOBAL))*256; 

  

TTT1=flipud(uint8(RRR)); 

  

save('matriceT1.mat','TTT1') 

  

figure(1); 

imshow(TTT1) 
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HYPERSPECTRAL_MIA_v0r3.m 

 

%This function is used to perform MIA on NIR hyperspectral microscopy images 

  

%Pierre-Marc Juneau, February 2014 

  

clear 

clc 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%INPUTS 

  

Folder='E:\Experiment_January_06_2013\NIR\Dummy frames\'; 

Folder_NIR='E:\Experiment_January_06_2013\NIR\NIR_SHOTS\2013-01-0614_19_24'; 

BASE_NAME_1='BB13MP5_NIR_'; 

BASE_NAME_2='_s'; 

NUMBER_OF_WELLS=6; 

NUMBER_OF_LINESCANS=[1001 1001 1001 1001 1001 1001]; 

LAMBDA=256; 

NIR=1; 

NIR_CORRECTION=1; 

  

MAPPING_NIR=0; 

COMPUTE_AVERAGE_NIR_BACKGROUND=0; 

LATENT_SPACE_GENERATION=0; 

MINIMUM_MAXIMUM_SCORES_CALCULATION=0; 

SCORE_IMAGE_COMPUTATION=0; 

SCORE_DENSITY_HISTOGRAM_MATRIX=0; 

INDIVIDUAL_SCORE_DENSITY_HISTOGRAM_MATRIX=0; 

SHOW_SCORE_DENSITY_HISTOGRAM=0; 

INDIVIDUAL_SHOW_SCORE_DENSITY_HISTOGRAM=0; 

MASK_FINDER_ROIPOLY=1; 

  

  

  

COMPOSANTE_NUM_1=2; 

COMPOSANTE_NUM_2=3; 

  

MASK_NUMBER=8; 

INVERSE_MASKING=0; 

  

  

nbrgroupes=256; 

%Paramenters for score density histogram display 

NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM=10; 

Decimation_factor=10; 

HIGH_BOUND=0.5; 

  

alpha=0.5; %Alpha value for F-Berkeley function 

MIN_SCORE=135; 

MAX_SCORE=150; 

window_delta=5; 

  

IMAGE_FORMAT='.TIF'; 

  

listing_image = dir([Folder_NIR,'\',['*','.PNG']]); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

%Generating common latent space for all images 

  

if MAPPING_NIR==1 

     

    MAP_NIR=zeros(NUMBER_OF_LINESCANS(1),NUMBER_OF_WELLS); 

     

    Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

     

    [l,c]=size(Files); 

     



 389 

    NIR_DATES=[]; 

     

    for i = 1:l 

        if Files{i,4} == 0 % Ignore subfolders 

            NIR_DATES=[NIR_DATES;datenum(Files{i,2})]; 

        end 

    end 

     

  

     

    for m=1:NUMBER_OF_WELLS 

        m 

         

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

            Carac=struct2cell(dir(ImageFileName)); 

            Date_time=datenum(Carac{2}); 

             

            tmp = abs(NIR_DATES-Date_time); 

            [idx idx] = min(tmp); 

             

            MAP_NIR(k,m)=idx; 

             

             

        end 

         

    end 

    save('MAP_NIR.mat','MAP_NIR'); 

     

end 

  

if COMPUTE_AVERAGE_NIR_BACKGROUND==1 

     

    dname = uigetdir('Select Directory for images to analyze'); 

    Folder = dname; 

    Files = struct2cell(dir([Folder,'/', '*', '.PNG']))'; 

    [l,c] = size(Files); 

     

    NumberOfImages = 0; 

     

    for i = 1:l 

        if Files{i,4} == 0 % Ignore subfolders 

            NumberOfImages = NumberOfImages + 1; 

            FilteredFiles(NumberOfImages,:) = Files(i,1:3); 

            %FilteredFiles{NumberOfImages,2} = datestr(datenum(Files{i,2}),31); 

            %FilteredFiles{NumberOfImages,3} = datenum(Files{i,2}); 

        end 

    end 

     

    % 1=sort by name, 2=sort by date/time 

    SortedFiles = sortrows(Files, 2); 

     

     

    for i=1:NumberOfImages 

        i 

        if i==1 

             

            ImageFileName = [Folder,'/', SortedFiles{i,1}]; 

            RGB = imread(ImageFileName); 

            SUM=double(RGB); 

             

        else 

             

             

            ImageFileName = [Folder,'/', SortedFiles{i,1}]; 

            RGB = imread(ImageFileName); 

            SUM = SUM + double(RGB); 
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        end 

         

    end 

     

    AVERAGE=SUM./NumberOfImages; 

     

    %Need to remove zeros to avoid problems 

     

    MEAN_AVERAGE=mean(mean(AVERAGE)); 

     

    AVERAGE(AVERAGE==0)=MEAN_AVERAGE; 

     

    save('AVERAGE.mat','AVERAGE'); 

     

     

end 

     

%% 

  

if LATENT_SPACE_GENERATION==1 

     

     

    Z=zeros(LAMBDA,LAMBDA); 

     

        

    if NIR==1 

         

        MAP_NIR=load('MAP_NIR.mat','MAP_NIR'); 

        MAP_NIR=MAP_NIR.MAP_NIR; 

         

        AVERAGE=load('AVERAGE.mat','AVERAGE'); 

        AVERAGE=AVERAGE.AVERAGE; 

         

        Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

         

    end 

     

    for m=1:NUMBER_OF_WELLS 

        m 

         

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

             

            if NIR==1 

                 

                IDENTIFIER=MAP_NIR(k,m); 

                 

                ImageFileName = [Folder_NIR,'\',Files{IDENTIFIER,1};]; 

                 

            end 

             

            RGB = imread(ImageFileName); 

             

            if NIR_CORRECTION==1 

                 

                RGB=double(RGB)./AVERAGE; 

            

            end 

             

             

            X = (double(RGB))'; 

            Z = Z + (X'*X); 

     

        end 

         

    end 

    save('Zmatrix.mat','Z'); 
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end 

  

  

%% 

if MINIMUM_MAXIMUM_SCORES_CALCULATION==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

    %% 

     

    %We find the minimum and the maximum value of all the scores 

     

    NUMBER_TOTAL_COMPONENTS=size(Z,1); 

     

    SCORES_MIN=ones(1,LAMBDA).*realmax; 

    SCORES_MAX=ones(1,LAMBDA).*(-realmax); 

     

    if NIR==1 

         

        MAP_NIR=load('MAP_NIR.mat','MAP_NIR'); 

        MAP_NIR=MAP_NIR.MAP_NIR; 

         

        AVERAGE=load('AVERAGE.mat','AVERAGE'); 

        AVERAGE=AVERAGE.AVERAGE; 

         

        Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

         

    end 

     

    for m=1:NUMBER_OF_WELLS 

        m 

         

        GLOBAL_1=[]; 

        GLOBAL_2=[]; 

         

         

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

             

            if NIR==1 

                 

                IDENTIFIER=MAP_NIR(k,m); 

                 

                ImageFileName = [Folder_NIR,'\',Files{IDENTIFIER,1};]; 

                 

            end 

             

            RGB = imread(ImageFileName); 

             

             if NIR_CORRECTION==1 

                 

                 RGB=double(RGB)./AVERAGE; 

            

             end 

             

            X = (double(RGB))'; 

             

            T=X*PT; 

             

            SCORES_LOCAL_MAX=max(T); 

            SCORES_LOCAL_MIN=min(T); 

             

            for kk=1:LAMBDA 
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                if SCORES_LOCAL_MAX(kk)>SCORES_MAX(kk) 

                    SCORES_MAX(kk)=SCORES_LOCAL_MAX(kk); 

                end 

                 

                if SCORES_LOCAL_MIN(kk)<SCORES_MIN(kk) 

                    SCORES_MIN(kk)=SCORES_LOCAL_MIN(kk); 

                end 

                 

            end 

             

        end 

         

         

    end 

    save('SCORES_MIN.mat','SCORES_MIN'); 

    save('SCORES_MAX.mat','SCORES_MAX'); 

     

end 

  

  

%% 

if SCORE_IMAGE_COMPUTATION==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

    %% 

     

    %We find the minimum and the maximum value of all the scores 

     

    if NIR==1 

         

        MAP_NIR=load('MAP_NIR.mat','MAP_NIR'); 

        MAP_NIR=MAP_NIR.MAP_NIR; 

         

        AVERAGE=load('AVERAGE.mat','AVERAGE'); 

        AVERAGE=AVERAGE.AVERAGE; 

         

        Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

         

    end 

     

    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

   for m=1:NUMBER_OF_WELLS 

       m 

        

       GLOBAL_1=[]; 

       GLOBAL_2=[]; 

        

         

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

             

            if NIR==1 
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                IDENTIFIER=MAP_NIR(k,m); 

                 

                ImageFileName = [Folder_NIR,'\',Files{IDENTIFIER,1};]; 

                 

            end 

             

             

            RGB = imread(ImageFileName); 

             

             if NIR_CORRECTION==1 

                 

                 RGB=double(RGB)./AVERAGE; 

            

             end 

             

              

            X = (double(RGB))'; 

             

             

            t1=X*PT(:,COMPOSANTE_NUM_1); 

            t2=X*PT(:,COMPOSANTE_NUM_2); 

             

            GLOBAL_1 =[GLOBAL_1 flipud((t1))]; 

            GLOBAL_2 =[GLOBAL_2 flipud((t2))]; 

  

  

        end 

         

        GLOBAL_1=uint16(((GLOBAL_1-t1min)./(t1max-t1min)).*65535); 

        GLOBAL_2=uint16(((GLOBAL_2-t2min)./(t2max-t2min)).*65535); 

         

        %GLOBAL_1=label2rgb(GLOBAL_1,'Grey'); 

        %GLOBAL_2=label2rgb(GLOBAL_2,'Grey'); 

         

        handle=figure(1); 

        imshow(histeq(GLOBAL_1),[]); 

        

filename_figure=['SCORE_IMAGE_','T',num2str(COMPOSANTE_NUM_1),'_Well_',num2str(m)]; 

        print(handle,'-djpeg',filename_figure); 

        

NAME=['SCORE_IMAGE_MATRIX_','T',num2str(COMPOSANTE_NUM_1),'_Well_',num2str(m),'.mat']; 

        GLOBAL=GLOBAL_1; 

        save(NAME,'GLOBAL'); 

         

        handle=figure(2); 

        imshow(histeq(GLOBAL_2),[]); 

        

filename_figure=['SCORE_IMAGE_','T',num2str(COMPOSANTE_NUM_2),'_Well_',num2str(m)]; 

        print(handle,'-djpeg',filename_figure); 

        

NAME=['SCORE_IMAGE_MATRIX_','T',num2str(COMPOSANTE_NUM_2),'_Well_',num2str(m),'.mat']; 

        GLOBAL=GLOBAL_2; 

        save(NAME,'GLOBAL'); 

       

   end 

     

end 

             

         

%% 

%Computation of the density histogram matrix 

  

if SCORE_DENSITY_HISTOGRAM_MATRIX==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

    A = zeros(nbrgroupes,nbrgroupes); 
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    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

    if NIR==1 

         

        MAP_NIR=load('MAP_NIR.mat','MAP_NIR'); 

        MAP_NIR=MAP_NIR.MAP_NIR; 

         

        AVERAGE=load('AVERAGE.mat','AVERAGE'); 

        AVERAGE=AVERAGE.AVERAGE; 

         

        Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

         

    end 

     

    for m=1:NUMBER_OF_WELLS 

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

             

            if NIR==1 

                 

                IDENTIFIER=MAP_NIR(k,m); 

                 

                ImageFileName = [Folder_NIR,'\',Files{IDENTIFIER,1};]; 

                 

            end 

             

             

            RGB = imread(ImageFileName); 

             

             if NIR_CORRECTION==1 

                 

                 RGB=double(RGB)./AVERAGE; 

            

             end 

             

              

            X = (double(RGB))'; 

             

             

            t1=X*PT(:,COMPOSANTE_NUM_1); 

            t2=X*PT(:,COMPOSANTE_NUM_2); 

             

             

             

            s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-

t1min))).*(nbrgroupes-1)); 

            s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-

t2min))).*(nbrgroupes-1)); 

             

            for kk = 1:length(s1) 

                 

                A(s2(kk), s1(kk)) = A(s2(kk), s1(kk)) + 1; 

                 

            end 

             

             

        end 

    end 
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NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.

mat']; 

    save(NAME,'A'); 

end 

  

  

%% 

if INDIVIDUAL_SCORE_DENSITY_HISTOGRAM_MATRIX==1 

     

    Z=load('Zmatrix.mat','Z'); 

    Z=Z.Z; 

    [P,E,PT]=svd(Z); 

    %variancecaptured = sum(E)./sum(sum(E)); 

    %variancecaptured1_10 = variancecaptured(1,1:10); 

     

     

     

    SCORES_MIN=load('SCORES_MIN.mat','SCORES_MIN'); 

    SCORES_MIN=SCORES_MIN.SCORES_MIN; 

     

    SCORES_MAX=load('SCORES_MAX.mat','SCORES_MAX'); 

    SCORES_MAX=SCORES_MAX.SCORES_MAX; 

     

    t1min=SCORES_MIN(COMPOSANTE_NUM_1); 

    t2min=SCORES_MIN(COMPOSANTE_NUM_2); 

    t1max=SCORES_MAX(COMPOSANTE_NUM_1); 

    t2max=SCORES_MAX(COMPOSANTE_NUM_2); 

     

     

    if NIR==1 

         

        MAP_NIR=load('MAP_NIR.mat','MAP_NIR'); 

        MAP_NIR=MAP_NIR.MAP_NIR; 

         

        AVERAGE=load('AVERAGE.mat','AVERAGE'); 

        AVERAGE=AVERAGE.AVERAGE; 

         

        Files=struct2cell(dir([Folder_NIR,'/', '*', '.PNG']))'; 

         

    end 

     

    for m=1:NUMBER_OF_WELLS 

        A = zeros(nbrgroupes,nbrgroupes); 

        for k=1:NUMBER_OF_LINESCANS(m) 

            k 

             

            ImageFileName = 

[Folder,BASE_NAME_1,num2str(m),BASE_NAME_2,num2str(k),IMAGE_FORMAT]; 

             

            if NIR==1 

                 

                IDENTIFIER=MAP_NIR(k,m); 

                 

                ImageFileName = [Folder_NIR,'\',Files{IDENTIFIER,1};]; 

                 

            end 

             

             

            RGB = imread(ImageFileName); 

             

             if NIR_CORRECTION==1 

                 

                 RGB=double(RGB)./AVERAGE; 

            

             end 

             

              

            X = (double(RGB))'; 
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            t1=X*PT(:,COMPOSANTE_NUM_1); 

            t2=X*PT(:,COMPOSANTE_NUM_2); 

             

             

             

            s1 = ones(size(t1,1),1)+round(((t1 - (t1min*ones(size(t1,1),1)))./((t1max-

t1min))).*(nbrgroupes-1)); 

            s2 = ones(size(t2,1),1)+round(((t2 - (t2min*ones(size(t2,1),1)))./((t2max-

t2min))).*(nbrgroupes-1)); 

             

            for kk = 1:length(s1) 

                 

                A(s2(kk), s1(kk)) = A(s2(kk), s1(kk)) + 1; 

                 

            end 

             

             

        end 

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

Well_',num2str(m),'.mat']; 

        save(NAME,'A'); 

    end 

end 

  

  

  

%% 

%Showing the score density histogram 

  

if SHOW_SCORE_DENSITY_HISTOGRAM==1 

     

    

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'.

mat']; 

    A=load(NAME,'A'); 

    A=A.A; 

     

    RELATIVE=max(max(A)); 

     

    SPLIT=256/NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM; 

     

    [h,j] = find((round(RELATIVE*HIGH_BOUND))<=A); 

    for m = 1:length(h), 

        H(h(m),j(m)) = 256; 

    end; 

     

    for k=1:1:(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-3); 

        k; 

         

        [h,j] = find((round(RELATIVE*HIGH_BOUND/(Decimation_factor^k)))<=A & 

A<(round(RELATIVE*HIGH_BOUND/(Decimation_factor^(k-1))))); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 

round(SPLIT*(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-k)); % Those bins in A 

having 76-150 hits are reassigned to a pixel intensity value of 226 

        end; 

         

         

    end 

     

    [h,j] = find(A==2); 

    for m = 1:length(h), 

        H(h(m),j(m)) = round(SPLIT*2); 

    end; 

     

    [h,j] = find(A==1); 

    for m = 1:length(h), 

        H(h(m),j(m)) = round(SPLIT*1); 

    end; 
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    [h,j] = find(A==0); 

    for m = 1:length(h), 

        H(h(m),j(m)) = 0; 

    end; 

     

     

    colormap(hot(256)); 

    map = colormap; 

     

    figure(1); 

    imshow(H,map,'InitialMagnification','fit');% 

    xlabel(num2str(COMPOSANTE_NUM_1)); 

    ylabel(num2str(COMPOSANTE_NUM_2)); 

     

    

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'.mat']; 

    save(NAME,'H'); 

     

     

end 

  

%% 

if INDIVIDUAL_SHOW_SCORE_DENSITY_HISTOGRAM==1 

    MAXIMUM=0; 

    for m=1:NUMBER_OF_WELLS 

         

         

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

Well_',num2str(m),'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

        if max(max(A))>MAXIMUM 

            MAXIMUM= max(max(A)); 

        end 

         

    end 

     

    RELATIVE=MAXIMUM; 

  

  for mm=1:NUMBER_OF_WELLS 

        mm 

         

        

        

NAME=['SCORE_DENSITY_MATRIX_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2),'_

Well_',num2str(mm),'.mat']; 

        A=load(NAME,'A'); 

        A=A.A; 

         

         

         

        SPLIT=256/NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM; 

         

        [h,j] = find((round(RELATIVE*HIGH_BOUND))<=A); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 256; 

        end; 

         

        for k=1:1:(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-3); 

            k; 

             

            [h,j] = find((round(RELATIVE*HIGH_BOUND/(Decimation_factor^k)))<=A & 

A<(round(RELATIVE*HIGH_BOUND/(Decimation_factor^(k-1))))); 

            for m = 1:length(h), 
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                H(h(m),j(m)) = 

round(SPLIT*(NUMBER_OF_INTENSITY_LEVELS_SCORE_DENSITY_HISTOGRAM-k)); % Those bins in A 

having 76-150 hits are reassigned to a pixel intensity value of 226 

            end; 

             

             

        end 

         

        [h,j] = find(A==2); 

        for m = 1:length(h), 

            H(h(m),j(m)) = round(SPLIT*2); 

        end; 

         

        [h,j] = find(A==1); 

        for m = 1:length(h), 

            H(h(m),j(m)) = round(SPLIT*1); 

        end; 

         

         

         

        [h,j] = find(A==0); 

        for m = 1:length(h), 

            H(h(m),j(m)) = 0; 

        end; 

         

         

        colormap(hot(256)); 

        map = colormap; 

         

        handle=figure(1); 

        imshow(H,map,'InitialMagnification','fit');% 

        xlabel(num2str(COMPOSANTE_NUM_1)); 

        ylabel(num2str(COMPOSANTE_NUM_2)); 

         

        

filename_figure=['SCORE_DENSITY_FIGURE_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANT

E_NUM_2),'_Well_',num2str(mm)]; 

         

        print(handle,'-djpeg',filename_figure); 

         

        

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_Well_',num2str(mm),'.mat']; 

        save(NAME,'H'); 

         

    end 

  

end 

  

  

%% 

if MASK_FINDER_ROIPOLY==1 

     

    

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'.mat']; 

    H=load(NAME,'H'); 

    H=H.H; 

     

    colormap(hot(256)); 

    map = colormap; 

    HRGB = uint8(round(ind2rgb(H,map)*255)); 

    figure(1),imshow(HRGB); 

    BW=roipoly; 

     

    

NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_MASK_',num2str(MASK_NUMBER),'.mat']; 

    save(NAME,'BW'); 

     

    if INVERSE_MASKING==1 
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NAME=['SCORE_DENSITY_HISTOGRAM_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_NUM_2)

,'_MASK_',num2str(MASK_NUMBER),'.mat']; 

        BW=~BW; 

        save(NAME,'BW'); 

        BW=~BW; 

    end 

     

    [aaa,bbb]=size(BW); 

    for ii=1:aaa 

        for jj=1:bbb 

            if INVERSE_MASKING==0 

                if BW(ii,jj)==1 

                    HRGB(ii,jj,1)=0; 

                    HRGB(ii,jj,2)=191; 

                    HRGB(ii,jj,3)=255; 

                end 

            end 

             

            if INVERSE_MASKING==1 

                 

                if BW(ii,jj)==0 

                    HRGB(ii,jj,1)=0; 

                    HRGB(ii,jj,2)=191; 

                    HRGB(ii,jj,3)=255; 

                end 

            end 

             

        end 

    end 

     

    handle2=figure(2); 

    imshow(HRGB); 

     

    

filename_figure=['SCORE_DENSITY_MASK_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANTE_

NUM_2),'_MASK_',num2str(MASK_NUMBER),'.jpg']; 

         

    print(handle2,'-djpeg',filename_figure); 

         

     

     

    [MASK_ROW,MASK_COLUMN]=find(BW==1); 

     

    for m=1:NUMBER_OF_WELLS 

        m 

         

       

        

NAME=['SCORE_IMAGE_MATRIX_','T',num2str(COMPOSANTE_NUM_1),'_Well_',num2str(m),'.mat']; 

        t1new=load(NAME,'GLOBAL'); 

        t1new=t1new.GLOBAL; 

        t1new=floor(double(t1new)./65535.*255); 

        

NAME=['SCORE_IMAGE_MATRIX_','T',num2str(COMPOSANTE_NUM_2),'_Well_',num2str(m),'.mat']; 

        t2new=load(NAME,'GLOBAL'); 

        t2new=t2new.GLOBAL; 

        t2new=floor(double(t2new)./65535.*255); 

         

        [aaa,bbb]=size(t1new); 

         

        pixelmaskt1 = zeros(aaa,bbb); 

         

         

        for a = 1:length(MASK_ROW) 

            for b = 1:aaa 

                for c=1:bbb 

                    if MASK_ROW(a)==t2new(b,c) && MASK_COLUMN(a)==t1new(b,c) 

                         

                        pixelmaskt1(b,c) = 1;% On met des valeurs 
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                    end 

                end 

            end 

        end 

        

         

        IMAGE_OUT=label2rgb(uint8(t1new),'Gray'); 

         

        

         

        [a,b]=size(t1new); 

        for ii=1:a 

            for jj=1:b 

                if INVERSE_MASKING==0 

                    if  pixelmaskt1(ii,jj)==1 

                        IMAGE_OUT(ii,jj,1)=0; 

                        IMAGE_OUT(ii,jj,2)=191; 

                        IMAGE_OUT(ii,jj,3)=255; 

                    end 

                end 

                 

                if INVERSE_MASKING==1 

                    if  pixelmaskt1(ii,jj)==0 

                        IMAGE_OUT(ii,jj,1)=0; 

                        IMAGE_OUT(ii,jj,2)=191; 

                        IMAGE_OUT(ii,jj,3)=255; 

                    end 

                end 

            end 

        end 

         

        handle=figure(3); 

        imshow(IMAGE_OUT); 

         

        

filename_figure=['SCORE_DENSITY_FIGURE_T',num2str(COMPOSANTE_NUM_1),'T',num2str(COMPOSANT

E_NUM_2),'_Well_',num2str(m),'_MASK_',num2str(MASK_NUMBER),'.jpg']; 

         

        print(handle,'-djpeg',filename_figure); 

         

        

    end 

     

end 

  

  

%% 

 

 

 

 

 

 


