675 research outputs found

    Micro protocol engineering for unstructured carriers: On the embedding of steganographic control protocols into audio transmissions

    Full text link
    Network steganography conceals the transfer of sensitive information within unobtrusive data in computer networks. So-called micro protocols are communication protocols placed within the payload of a network steganographic transfer. They enrich this transfer with features such as reliability, dynamic overlay routing, or performance optimization --- just to mention a few. We present different design approaches for the embedding of hidden channels with micro protocols in digitized audio signals under consideration of different requirements. On the basis of experimental results, our design approaches are compared, and introduced into a protocol engineering approach for micro protocols.Comment: 20 pages, 7 figures, 4 table

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Robust error detection methods for H.264/AVC videos

    Get PDF
    The 3rd generation of mobile systems is mainly focused on enabling multimedia services such as video streaming, video call and conferencing. In order to achieve this, the Universal Mobile Telecommunications System (UMTS), is the standard that has been developed by the 3rd Generation Partnership ect (3GPP) in Europe, including the baseline profile of H.264/AVC in the specification. With the union of both technologies a great improvement on video transmission over mobile networks, and even modification of the user habits towards the use of the mobile phone is expected. Nevertheless, video transmission has always been related to wired networks and unfortunately the migration to wireless networks is not as easy as it seems. In real time applications the delay is a critical constraint. Usually, transmission protocols without delivery warranties, like the User Network Protocol (UDP) for IP based networks, are used. This works under the assumption that in real time applications dropped packets are preferable to delayed packets. Moreover, in UMTS the network needs to be treated in a different way, thus the wireless channel is a prone error channel due to its high time variance. Typically, when transmitting video, the receiver checks whether the information packet is corrupted (by means of a checksum) or if its temporal mark exceeds the specified delay. This approach is suboptimal, due to the fact that perhaps the video information is not damaged and could still be used. Instead, residual redundancy on the video stream can be used to locate the errors in the corrupted packet, increasing the granularity of the typical upper-layer checksum error detection. Based on this, the amount of information previous to the error detection can be decoded as usually. The aim of this thesis is to combine some of the more effective methods concretely, Syntax check, Watermarking and Checksum schemes have been reformulated, combined and simulated

    Data sharing in secure multimedia wireless sensor networks

    Full text link
    © 2016 IEEE. The use of Multimedia Wireless Sensor Networks (MWSNs) is becoming common nowadays with a rapid growth in communication facilities. Similar to any other WSNs, these networks face various challenges while providing security, trust and privacy for user data. Provisioning of the aforementioned services become an uphill task especially while dealing with real-time streaming data. These networks operates with resource-constrained sensor nodes for days, months and even years depending on the nature of an application. The resource-constrained nature of these networks makes it difficult for the nodes to tackle real-time data in mission-critical applications such as military surveillance, forest fire monitoring, health-care and industrial automation. For a secured MWSN, the transmission and processing of streaming data needs to be explored deeply. The conventional data authentication schemes are not suitable for MWSNs due to the limitations imposed on sensor nodes in terms of battery power, computation, available bandwidth and storage. In this paper, we propose a novel quality-driven clustering-based technique for authenticating streaming data in MWSNs. Nodes with maximum energy are selected as Cluster Heads (CHs). The CHs collect data from member nodes and forward it to the Base Station (BS), thus preventing member nodes with low energy from dying soon and increasing life span of the underlying network. The proposed approach not only authenticates the streaming data but also maintains the quality of transmitted data. The proposed data authentication scheme coupled with an Error Concealment technique provides an energy-efficient and distortion-free real-time data streaming. The proposed scheme is compared with an unsupervised resources scenario. The simulation results demonstrate better network lifetime along with 21.34 dB gain in Peak Signal-to-Noise Ratio (PSNR) of received video data streams

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation
    • …
    corecore