6 research outputs found

    An MIP Approach to the U-line Balancing Problem With Proportional Worker Throughput

    Get PDF
    One of the major challenges faced by manufacturing companies is to remain competitive in dynamic environments, where fluctuations in customer demand and production rates require systems capable of adapting in a practical and economical way. A U-shaped production cell is considered one of the most flexible designs for adapting the workforce level to varying conditions. However, re-balancing efforts are time consuming and often require a new work allocation and line design. In this paper, a two-stage MIP model to determine the best cell design under varying workforce levels is proposed. The model seeks to maintain proportionality between throughput and the number of workers. Computational experiments considering various line configurations (up to 19 stations) and workloads (up to 79 tasks) are performed. The results show the proposed algorithm provides excellent results for all small and medium size problems addressed in this study, as well as for certain configurations of large problems. This approach can be used to generate lookup tables of line designs to help with quick reallocation of worker assignments on the shop floor and with minimal disruption

    Mixed-integer linear programming approach to U-line balancing with objective of achieving proportional throughput per worker in a dynamic environment

    Get PDF
    One of the major challenges of manufacturing companies is to remain competitive in a very dynamic environment dictated by fluctuations in production rate and customer demand. These challenges may be attributed to frequent changes in customer expectations, unsteady economic conditions or failure to reach the projected throughput due to inefficiencies in production systems. Survival in such a dynamic environment is contingent on implementing manufacturing systems that are able to adapt to change quickly and economically. The U-Shaped production cell is considered to be one of the most flexible techniques for changing the number of workers in the cell to match cell cycle time to planned cycle time. However, companies currently use a trial-and-error method to develop walk-paths. It is a very iterative and time consuming process that does not always guarantee an optimal solution. Walk-paths need to be performed for all possible number of workers. Fluctuations are adapted to by altering only the number of workers and the worker’s walk-path without changing the number of stations and task allocations. Selecting the best configuration (i.e. optimal number of stations and task allocation) is dependant upon the linearity metric i.e. the measurement of the proportional throughput per worker. Designing the production cell by considering the linearity helps to keep direct labor costs per unit at a minimum for any number of workers employed. This thesis proposes a mixed integer linear model for U-shaped lines that determines the best cell configuration for various number of workers with the objective function of achieving proportional throughput per worker and decreasing the iteration time. The problem originated at Delphi Corporation but has been generalized to be applicable to other Lean systems. The model has been constructed using OPL Studio 3.7

    Análisis para la reducción de impacto en seguridad, producción y calidad de la caída de piezas a granel en la malla de líneas auxiliares

    Get PDF
    El objeto de este Trabajo de Fin de Grado es el Análisis para la reducción de impacto en seguridad, producción y calidad en la caída de piezas granel en Renault España S.A. concretamente en la factoría de carrocería y montaje de Valladolid, en el taller de líneas auxiliares.Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de FabricaciónGrado en Ingeniería Mecánic
    corecore