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1. Introduction 

Manual assembly line work is currently still necessary in the manufacturing industry. The 
human body despite its organic limitations is still more flexible than machines, and the 
human mind possesses creative and intuitive functions above that of robotic devices. 
Automation and robotic cells have limitations and manual assembly lines are considered a 
significant and justifiable solution (Hunter, 2002). In traditional assembly lines, such as 
Fixed Worker Assembly Lines (FWAL), each worker has a designated task, and is required 
to continuously repeat that task. Although FWALs are efficient and generally reliable, they 
have the following deficiencies (Wang et al., 2005): 

 Low flexibility (in terms of workers and products),  

 Need constant attention and management, and 

 Difficult balancing. 

It is essential that assembly systems are flexible, in order to respond adequately to the 
changeable characteristics and demands of the market. These demands are typically; an 
increasing customisation of product, shortening of a product lifecycle, and highly varied 
production of small batches of product (Miyake, 2006). For this reason, it has become 
necessary to develop dynamic, flexible and reconfigurable assembly systems. The flexible 
manpower line (or flexible assembly line), is one of the promising techniques for configuring 
effective and productive assembly systems, responding well to the challenges of the 
manufacturing industry (Stockton et al., 2005). It focuses on work force as key resources due 
to their flexibility and creativity. An example of such systems is so-called Walking Worker 
Assembly Line (WWAL), in which each worker utilizes various skills and functions by 
travelling along the manufacturing line to carry out all the required tasks. 

2. Description of the WWAL 

In last 15 years, several researchers have treated the topic of multifunctional walking 
(moving) workers performance, in production systems. Wang, Owen and Mileham (Wang et 
al., 2005) and Nakade and Nishiwaki (Nakade & Nishiwaki, 2008) gave a summary of this 
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research. In all of this research, application of moving multifunctional workers was found to 
be limited to a cell in linear or U-shaped production lines. In addition, most of this research 
referred to the systems under scrutiny by various different names than WWAL. 

The term WWAL is recent concept (Wang et al., 2005; Bley et al., 2007). The term is usually 

used to designate workstations configuration as horizontal “U” shape or straight line layouts. 

Each multifunctional worker travels by walking down the line carrying out each assembly task 

at each workstation as scheduled. Thereby, each walking worker completes the assembly of a 

product in its entirety from start to completion. Figure 1 illustrates concept of WWAL, where a 

walking worker completes a product assembly process at the last workstation K ˆ and then 

moves back to the first workstation 1 to begin the assembly of a new product.  

 

Fig. 1. Form of the walking worker assembly line. 

2.1 Workstations and tools 

The nature of assembly process at most of workstations in WWAL requires a manual task to 

be performed by the worker, using simple hand powered equipment such as trimming, 

riveting and fastening tools...etc. This type of workstation limits worker input to the loading 

and tooling of components for the end product, prior to the next step in the process. Work-

pieces are loaded into a specially designed fixture. The work-pieces then put through a fixed 

cycle of operations using a predefined range of tools. 

The process operations at each workstation are relatively small and highly specific to 

individual components, utilizing the specialized skills of the worker. The set-up process is 

relatively quick, thus losing little or no time in non-productive activity, consequently it is 

more efficient and cost-effective. 

2.2 The workers 

The workers in WWAL operate to an unaltered, repetitive sequence in which they carry out 

manual tasks. These tasks consist of the picking up or installing parts, or picking up and 

using tools and incorporates quality checks or inspections at certain stages of production.  
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This repetitive sequence is known as a worker operating time. The time taken to complete a 

worker operating time sequence is known as the overall cycle time. It is the sum of the times 

required to perform manual tasks, the walking times between the different workstations and 

in-process waiting time (if exists’) of the worker at the bottleneck workstation on the line. 

Manual transport of components between the workstations of the assembly line requires 

that the time and energy required doing so, be reduced as far as possible. This is often 

achieved by shortening the distances between workstations. The WWAL is designed to be 

able to run effectively with more or fewer workers. The capacity to adjust staffing levels to 

suite varying required production volumes, is the key to the ability of these lines in response 

to changes in demand. 

2.3 Line layout design 

Three types of layout using multifunctional walking (moving) workers have been identified 

by the authors in terms of the system layout design (Wang et al., 2009):  

1. U-shaped design,  
2. Straight line design, and 
3. L-shaped design. 

The U-shaped design is perhaps the most common layout used to implement WWAL. 

Organizing the WWAL along U-shaped layout eliminates virtually all Work-In-Process (WIP). 

There are small spaces between workstations to enable a worker with a partially assembled 

product to queue on reaching the next workstation (if the worker arrives during the time that 

the preceding worker is still operating at that workstation) until it becomes empty.  

Reducing space for in-process waiting enables workstations to be placed very close to one 

another, thereby reducing the amount of energy and time expended, increasing 

performance, and efficiently utilizing the available floor space. Close spacing also means 

products and the rest of the line are more visible to the workers, and is considered to have a 

beneficial effect on morale. Workers are able to see the progress of parts through the entire 

line, rather than at just one operation. In addition, shortened travelling distance has other 

inherent benefits beyond efficiency improvements; not only increased visibility of active 

areas, but ease of communication and increased teamwork among workers (Grassi et al., 

2004; Al-Zuheri et al., 2010a). 

2.4 Experiences of manufacturing companies with WWAL 

Walking worker assembly line results in a series advantages over a traditional line—FWAL. 

In this context, rearranging assembly lines from the FWAL to the WWAL by a number of 
companies has led to achieve the following (Mileham et al., 2000):  

1. Increased ease in line balancing, thus reducing the number of buffers required,  
2. Flexible and optimal adjustment of the number of line workers to suite output demand, 

and  
3. Minimizing the cost of labour and tooling. 

Bischak (Bischak, 1996) and Zavadlav E et al. (Zavadlav et al., 1996) investigated using 

(moving) walking workers approach in the case of variability in operation times is high (e.g. 
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manual assembly line). Both found that WWAL gives the best expected production and 

FWAL is the worst. WWAL system and process design provides workers more control over 

the speed of the production process and encourages focussed attention to detail, ensuring 

higher work quality, and hence higher overall product quality. Deploying a WWAL 

approach also provides increased ergonomic benefits reducing potential muscular-skeletal 

problems in jobs where single and repetitive tasks are required of static workers. Increased 

freedom of movement, in particular walking, by the worker in WWAL systems can reduce 

the probability of Work-Related Muscular-Skeletal Disorders (WMSD), in the arms, back 

and shoulders (Moller et al., 2004). 

Although implementation of WWAL systems offers a variety of benefits to manufacturers 

(as stated above), it has yet to be widely adopted within the industry. In this regard, 

Miltenburg (Miltenburg, 2001) stated that U-lines with more than one multi-skilled walking 

worker rarely run in chase mode, (another name of organising walking workers in this 

way). Only 1.3% of the U-lines deploying numerous multi-skilled walking workers use this 

system of production. The Japanese management institute (Gemba Research and Kaizen 

Institute) interpreted the lack of WWAL deployment in industrial environments to 

assertions by some practitioners that it has certain aspects detrimental to labour 

productivity and ergonomic conditions (Miller, 2007). This was mainly due to two main 

reasons; firstly, adopting WWAL in assembly processes, requires multifunctional workers. 

These have specialised skills and cost more to employ. Secondly, there is some question as 

to whether workers actually keep up with completing all required production steps in one 

cycle time. This claim is based on the time used standing and for carrying in-process 

products to each process point.  

Undoubtedly, the question arises as to whether or not workers will have the endurance to 

complete a shift time of eight hours, and still have enough energy for a normal life after work. 

Furthermore, existing research about WWAL or similar dynamic systems (e.g. cellular system) 

provides only incomplete data modelling for WWAL ergonomics from which to assess the 

relevant concerns of practitioners about the health and wellbeing of the WWAL work force. 

3. Workers postures in WWAL: Implications and investigation 

3.1 Workers postures and their implications for workers  

Like other manual works in industrial assembly, the tasks of WWAL include lifting, 

carrying, pushing, pulling of materials, and quality control. Sometimes such work requires 

frequently lifting heavy loads. This may include the use of non-powered or power hand 

tools. In addition to that, it may have long cycle and excessive walking time including load 

carrying (Melin et al., 1999). In general, this work involves postures that cause discomfort 

and fatigue. These include sustained static neck flexion, shoulder flexion, forearm muscle 

exertion, extreme wrist postures, and prolonged standing (Lutz et al., 2001).  

WWAL is associated with various well recognised health risks resulting from sustained 

exposure to the above and is a major contributing factor to WRMDs, such as carpal tunnel 

syndrome, tendonitis, thoracic outlet syndrome, and tension neck syndrome (Lutz et al., 

2001). Each of these diagnostic terms is linked to certain types of occupational activity which 

affect various parts of the body resulting in these painful disorders.  
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A complete and useful understanding of the performance capabilities of workers on WWAL 

production lines requires knowledge of the mechanism of musculoskeletal dynamics. Thus, 

a brief explanation of this is presented in next section. 

3.2 Investigation of musculoskeletal dynamics related walking and carrying  

Motion such as walking and carrying is achieved by activation of the skeletal muscles 

(contracting and relaxing rhythmically), to produce the required kinetic energy. The 

activation of muscles causes bone loading and joint contact forces and consequently allows 

for moving the joints in a controlled fashion to accomplish the predetermined task 

requirements (Cappozzo, 1984). 

Quite often, motions such as walking and carrying are influenced by a number of inter-

individual factors, such as the weight and gender of worker (Brooks et al., 2005) as well as 

the effect of external forces such as the nature of the job requirements being undertaken 

(Cham & Redfern, 2004). In addition to these factors, the force-generation properties of the 

muscles, the anatomical features of the skeletal system (e.g. anthropometric properties, 

muscle paths) and the underlying neuronal control system, contribute substantially to 

generating the force to perform the tasks, such as supporting body weight, walking and 

carrying (LaFiandra et al., 2003). 

4. Ergonomics measures in WWAL 

In manual assembly systems, the focusing on only single aspects of ergonomics human 

performance measures may lead to conflicting conclusions in assessment of ergonomics 

stress level in work situations due to the following reasons (Al-Zuheri et al., 2010b): 

 The possible interactions between more than one measure that may lead to conflicting 
conclusions about certain work hazards for the assemblers if these measures are 
considered separately, 

 The large number of postures and the different exposures during manual assembly 
operations (as mentioned earlier) that should be considered in ergonomics evaluation, 
and 

 The proposed ergonomically measures are sensitive to changes in the physical structure 
of workstations and workplaces in assembly systems. 

Consequently, for obtaining accurate ergonomics understanding of work activities during 

manual assembly work, the evaluation process should examine by more than one measure 

to gain sufficiently precise data. The biomechanical and physiological measurements used 

have been instrumental in comparing different types of industrial jobs with respect to 

physical strain and fatigue (Garg et al., 1978; Bossi et al., 2004). 

4.1 Ergonomics assessment of WWAL based on physiological and biomechanical 
models  

4.1.1 Physiological model  

Energy expenditure varies among assembly workers. The variations are caused by differing 
tasks involving work on components at various stages and walking from one place to another. 
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This is the most significant factor contributing to the variation of energy expenditure among 
assemblers (Honaker, 1996). Thus, average metabolic energy expenditure has been suggested 
for determining the amount of energy requirement needed to perform a given work without 
accumulating an excessive amount of physical fatigue (Garg et al., 1978).  

Much research has been done estimating the energy expenditure of different assembly tasks 
(Holt et al., 1990; Chryssolouris et al., 2000; Ben-Gal & Bukchin, 2002; Longo et al., 2006 ). 
This research is used to ensure that the reasonable workload expectations are placed on the 
worker. This model can be used to estimate the energy expenditure of each task in WWAL; 
the parameters of the task being performed (e.g. object weight, speed, grade, and how a load 
is carried/moved in the hands/arms, height, etc.) as well as the individual factors such as 
gender, body weight and time taken to perform each task. 

4.1.2 Biomechanical and dynamic motion models  

Several biomechanical models have been developed to collect data on the nature of the 
strain placed on bodily structures and tissues by loads and forces during manual assembly 
processes (Kumar, 2006). The tools used to gather, and or analyse data in manual assembly 
works, included lifting limitations according to the National Institute for Occupational 
Safety and Health (NIOSH) guideline for biomechanical measure (Waters et al., 1994); 
workers posture during the task according to the Ovako Working-Posture Analysis System 
(OWAS) guidelines on risk or injury measure (Karhu & Kuorinka, 1977); cycle time from 
Methods Time Measurement (MTM) (Stevenson, 2002); and Rapid Upper Limb Assessment 
(RULA) (McAtamney & Corlett, 1993), is a measure for risk factors associated with upper 
limb disorders; Lifting Strength Rating (LSR) (Chaffin & Park, 1973); the university 3D Static 
Strength Prediction Program (3DSSPP) (Michigan, 2009); psychophysical approach (Snook & 
Hart, 1978); Lumbar Motion Monitor (LMM) and Ohio State University (OSU) Model (Davis 
& Waters, 1998). 

Most of the mentioned biomechanical models are used to estimate the muscle forces in static 
postures. However, the effects of inertia are not accounted in these models; hence static 
models alone are not considered accurate enough to offer truly predictive data (Granata & 
Davis, 1999).  

Much of the research undertaken on human dynamic motion, has been undertaken utilising 
the multi-segment models developed to assess moments of force or torque applied about the 
axes of the joints with the joint at various angles. Most of this research describes the 
biomechanical modelling of only one part of the body. A small proportion of that research 
has specifically addressed whole body models for activities involving both lower limbs and 
the upper body, such as whole body balance control (MacKinnon & Winter, 1993) and 
weight lifting (Kingma et al., 1996). However, none of this research has been focussed on 
biomechanical models that simulate dynamic walking and carrying conditions. 

4.2 Suggested biomechanical model for the lower limbs of workers walking. 

The worker in WWAL walks carrying work-pieces during movement from workstation to 
another sequentially (from workstation (1) to (2), to the point that the worker reaches the 
last one, workstation	݇), during the entire shift time. As stated earlier, this work is often 
associated with ergonomically poor conditions that result in WRMDs. 
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Therefore, there is a pressing need to propose a biomechanical model for effectively 

evaluating workers’ capability to perform their required tasks without putting themselves at 

risk of developing a musculoskeletal injury.  

In this research, a biomechanical model for the determination of net muscle moments and 

forces of lower limbs under dynamic motion conditions associated with performing 

assembly tasks of WWAL, in particular; walking and work-piece carrying. The resultant 

force and movements are calculated at the axis of hip, knee and ankle during level walking 

and carrying loads. In addition, the proposed model is used to investigate the possible 

effects of variables on the walking performance of workers during load-carriage tasks. These 

variables include walking speed and the weight of the work-piece carried. 

Details of this model were fully described by Winter (Winter, 1980) and were validated by 

Flanagan and Salem (Flanagan & Salem, 2005) via comparing a top-down to a bottom-up 

study of squatting through measuring of net joint moments. 

5. Materials and methods 

5.1 The model: Net support moment approach 

Biomechanical studies often total individual joint kinetics measurements (such as the net 

joint moment or net joint moment power) to obtain one biomechanical measurement of 

lower limb functions (Flanagan & Salem, 2005). However, it has been proposed that the net 

joint moments at the hip, knee, and ankle be collated into a single measure called “net 

support moment” (Winter, 1980). 

The need for such a measure is justified (according to Winter), by the actual moments in the 

strength level required to walk, stand and recover from a slip etc. In addition, Winter found 

that some form of internal compensation was present. For example, when hip moment was 

high, knee moment or ankle moment was low, and vice versa. Consequently, interpreting 

the three moment curves in study as shown in figure 2, led him to suppose that the sum of 

all three moments (represent by support moment) plays a significant role in preventing a 

collapse of the knee.  

Additionally to the above, Winter classified the joint moments to be positive when the 

pulling direction is counter clockwise and negative when clockwise, as shown in figure 3. 

Equation 1 shows the net supporting moment calculated by summation of the three net joint 

moments (Winter, 1980): 

 s k a hM M M M    (1) 

Where Ms the net support moment, Mk, Ma and Mh are the moments at the knee, ankle and 

hip respectively. Assuming that the thigh and shank are equally long, the support moment 

was redefined by Hof (Hof, 2000). With same postulation of moment polarity, the new 

equation proposal by Hof is: 

 
1 1
2 2s a k hM M M M    (2) 
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Fig. 2. Support and joint moments of force at hip, knee and ankle during walk (Winter, 2005). 

 

Fig. 3. Profile of joint moment of force at the ankle, knee and hip during walking  
(Winter, 2005). 

This measure is commonly used for the assessment of mechanical output by lower limbs 
during walking (Winter, 1980; Hof, 2000), and in other activity such as sitting and standing 
(Yoshioka et al., 2009). While collating individual joint kinetic measures into a single 
measure (net support moment) has been used to characterize the mechanical demands of the 
lower limb across many activities, the validity of this single measure during dynamic 
occupational task like those in WWAL is still questionable. 

Throughout this research, the goal of “net support moment” measure in an ergonomics 
context is to gain information about the overall mechanical demand placed on the muscles 
that cross each joint of lower limb. In other words, this measure is considered as the index 
for assessing the degree to which lower limb joints of the body are strained during manual 
tasks in WWAL.  
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5.1.1 Biomechanical modelling strategy  

Biomechanical research uses laws of physics and engineering concepts to describe the 
motion undergone by the various body segments and forces during normal or abnormal 
activities. As a general approach, the human body is treated as a mechanical system, made 
up of rigid links (the bones) that are connected at joints. (Chaffin, 1969; Garg et al., 1982; 
Chaffin & Andersson 1990; Yanxin Zhang, 2005; Chaffin, 2007) have been presented a set of 
linked segment models of the human body that can be used to estimate forces and 
mechanical moments (torques) imposed on the system during work activities.  

In these models, a part of the human body is modelled as a chain of rigid body segments, 
interconnected by joints. Intersegment reactive forces and moment loads at each joint of 
body member are calculated by applying Newton’s second law and Euler’s equations. 
Generally in Newton-Euler mechanics, the applied forces (i.e., body segment weights and 
hand loads) are multiplied by their perpendicular distance from joint centres (i.e. moment 
arms). Figure 4 illustrates many of the force and moment vectors at specific joints of the 
body including (hand, knee, elbow, ankle, shoulder, foot, and hip) can be calculated by the 
similar way (Michigan, 2009).  

 

Fig. 4. Schematic representation of the strength model developed to calculate the muscle 
strength requirements needed to perform specified manual operations (Michigan, 2009). 
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Dynamic biomechanical analyses have been used in researches on walking and other 

activities such as lifting or carrying. In these analyses, inverse dynamics method is used to 

compute the joint moments of force in the lower limb (Redfern et al., 2001; Miller, 2002).  

5.1.2 Newtonian model of the lower limb 

The general logic that is used to predict forces and moments in lower limb joint during 

various jobs of WWAL is described in figure 5. 

Accurate estimation of joint forces and moments of the lower limb during the occupational 

tasks of WWAL is mainly dependant on the accurate measurements for the static and 

inertial load during worker movement. The static load can be calculated by measure the 

following (Chaffin & Andersson, 1990; Wu & Ladin, 1996; Zijlstra & Bisseling, 2004): 

1. Positions of the body segments, and 
2. Foot-ground reaction force and moment. 

While the calculation of inertial load due to requires kinematic description of the lower limb 

involves: 

1. The position and orientation (joint angles of hip, knee and ankle), and 
2. Walking speed and acceleration. 

The above data describes the movement pattern (kinematic data) and the forces which cause 

that movement (kinetic data). Based on these data, an inverse dynamics method is applied 

in estimating the determinants of worker lower limb, such as the reaction forces in joints.  

The method of inverse dynamics is used to derive the parameters of worker lower limb 

walking, starts from the foot segment toward the thigh segment with the motion data and 

the human body segmental characteristics that introduced in previous studies such as 

(Chaffin & Andersson, 1990; McLean et al., 2005).  

 

Fig. 5. Procedural steps in the prediction of joint forces and moments of the lower limb. 

www.intechopen.com



Biomechanical Assessment of Lower Limbs Using  
Support Moment Measure at Walking Worker Assembly Lines 141 

5.1.3 Assumptions  

The model represents the movement of a lower limb of the human body. The three segment; 

foot, knee and thigh are treated as three rigid links as illustrated in figure 6. The joints 

included in the model are; ankle, knee and hip. Each leg has six Degrees of Freedom (DOF); 

three DOF at hip (flexion-extension, abduction-adduction and internal-external rotation), 

one DOF at knee (rotation about a fixed flexion-extension axis) and two DOF at ankle 

(rotation about talocrural and subtalar joint axes) (McLean et al., 2005). Given the weight of 

the work piece, inertial property of the segments, and length of the segments, the model is 

based on assumptions for appropriate approximations. These assumptions include: 

1. The model for the sagittal plane, also can be applied in the frontal plane, 
2. The model considers the two-handed asymmetric load -carrying during WWAL tasks, 
3. The force of the load (the weight of work-piece to be assembled) passes through the 

central of mass of the hand, 

The model is also based on several assumptions made regarding the muscle activity of the 

ankle, knee and hip, which follows in preceding studies of (Lin, 1995; Winter, 2005; Yanxin 

Zhang, 2005):  

1. The centre of mass location of each segment remains fixed in the segment during the 
movement, 

2. The worker body has not change in mass, 
3. Throughout the movement, the length and cross-sectional area of each segment remains 

constant, 
4. The joints are frictionless, and 
5. Joints are considered to be hinge (2D motion) or ball and socket (3D motion). 

The dimensions, mass, and internal properties of lower limb segments are assumed to 

conform to those proportions of anthropometric data provided in (Chaffin & Andersson, 

1990; Winter, 2005). 

 
 

 
 

Fig. 6. A schematic representation of the lower limb segments where m1, m2 and m3 and also I1, 
I2 and I3 represent the mass and moment of inertia to the thigh, shank and foot respectively. 
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5.1.4 Model parameters 

1. Ground reaction force: The forces which interact between the human foot and the 
ground in walking or running are referred to as Ground Reaction Force (GRF), as 
shown in figure 7. The GRF causes (Giddings et al. 2000):  
a. A forward acceleration on the body, and 
b. A moment about the vertical axis of body. 

 

Fig. 7. Projection of GRF vector that is used to predicate the joint moments of force at the 
lower limb (reproduced from Winter, 2005). 

The GRF can be calculated by using dynamic equations (Okada et al., 2006). The 

intersegment resultant forces and moments at the ankle, knee and hip are significantly 

dependent upon the magnitude of the GRF and its location relative to the joint centre for 

each. (Johnston et al., 1979). A number of researchers have examined GRF during walking 

(Redfern et al., 2001). 

2. Joints force and moment: The control of walking is a result of the interaction of forces 
acting on human body. These forces can be internal or external. Internal forces refer to 
the inertial loads of the body segments which are related to the segmental acceleration. 
External forces on the body refer to gravitational and external loads (or static loads) due 
to the body contact with the environment (Wu & Ladin, 1996). In conclusion, the first 
one generates individual body segment movements, while the second affects whole 
body movements. The joint moments can be created by concentric and eccentric muscle 
contractions (Simonsen et al., 2007).  

3. Mass segments and inertia: The inertia of the body segments is changed due to the 
non-uniform horizontal component of the propulsive force. Fluctuation in the amount 
of applied force will lead to change in the Centre of Gravity (COG) of the body 
segments. Variances in COG depend upon periods of speeding up and slowing down of 
the body segments (Cham & Redfern, 2004). Thus, the inertia of body segments changes 
also during the various activities of WWAL. The calculations of mass and inertial 
properties of each segment based on anthropometric measurements were made on the 
subjects as mentioned above. 

The equations to calculate the joint forces and the moments and moment of inertia are 

described in next section.  
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5.1.5 Model formulation: Joint moments calculation 

The drawing below (fig.8) is a Free-Body Diagram (FBD) representing the lower limb of a 
worker. The FBD demonstrates all the forces and moments that exist on the foot, shank and 
thigh. The equations derived to solve the resultant forces and moments are described below. 

 

Fig. 8. The FBD of lower limb depicted with the intersegment resultant force and moment at 
hip, knee and ankle during walking. 

Using inverse dynamics and the free body lower limb, much research concerned with  

the calculation of joint moments about the ankle, the knee and the hip joint (Hardt,  
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1978; Johnston et al., 1979; Wu & Ladin, 1996; Winter, 2005; Simonsen et al., 2007).  

This research uses slightly modified version of the formula presented by Johnston (Johnston 

et al., 1979). The resultants forces for the ankle, hip and knee are calculate as follows:  

 a 1 1 GRF m (a g) F  
 (3) 

 k

2

i i GR
i 1

F m (a g) F


       (4) 

 
3

h i i GR
i 1

F m (a g) F


       (5) 

Where: 

GRF = Ground reaction force acting on foot (kg), 

jF = Intersegment resultant force at the joint (j) (kg), 

im
=Mass of segment (i) (kg), 

ia =Acceleration vector of the centre of gravity of segment (i) (m/sec2), and  

g = Acceleration vector due to gravity, 9.8 m/sec2. 

The sagittal plane joint moments that generated at the ankle, knee and hip can be computed 
using the following equations: 

 
1a 1 A_C 1 1 GR GR_A GRM H r m (a g) M (r F )        

   (6) 

  i

2

k i K_C i i GR GR_K GR
i 1

M H r m (a g) M (r F )


            (7) 

  ih

3

i H_C i i GR GR_H GR
i 1

M H r m (a g) M (r F )


            (8) 

Where: 

GRM  The moment due to of the ground reaction force (kg),  

iM = Joint moment vector about joint (j), 

iC = Position of centre of mass of segment (i) (meter), 

j_ir = Position vector from joint (j) to the centre of gravity of segment (i) (meter), and  

iH = Inertial component vector of the joint moment about joint (j) (kg.m2).  

The moment of inertia about the pivot point of joint (j) can be calculated by using the 

following equation derived from the basic mechanics: 
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 i i iH I α 
 (9) 

Where: 

iI = Moment of inertia of segment (i) about the centre of mass (kg.m2), and 

i =Angular acceleration vector of segment (i) about the centre of mass (rad. /s2).  

The following points were taken as positions for the lower limb joints centres:  

A = Position of ankle joint centre (meter), 
K = Position of hip knee centre (meter), 
H = Position of hip joint centre (meter), and 
GR = Position of ground reaction force effect (meter). 

5.2 The hypothetical assembly line 

This research considers a U-shaped manual assembly line using walking worker approach 

and multifunctional workers to assemble a single model product (hydraulic valve actuator). 

The line is depicted in figure 9. The weight of hydraulic valve actuators that is assembled 

and handled manually at first workstation is 4.96 kg. Table 1 summarizes the example at 

each workstation in terms of the weight of the valve actuator after assembly process at each 

workstation on the line. 

 

Fig. 9. U-shaped assembly line of hydraulic valve actuators for (m) workers and  
(k) workstations. 

The work-piece is processed at workstations w1, w2,. . . , w10, sequentially, and departs 

from the line as a finished product. The worker arrives at workstation w (any workstation 

on the line) to perform the specified processing of the part assemblies at that workstation. 

When the operation at workstation w is accomplished, then he walks toward next 

workstation and carries out the essential assembly work as scheduled and continues until 

the product is built completely at workstation w10. The worker then moves back to the first 

Entrance of incoming  
work pieces  

 

 
Exit of  
assemblies’ actuators 

W 3 W 4 W 2 W 1 

W10 W 9 W 7 W 8 

W 6 

W 5 
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workstation w1 to begin the assembly of a new product with the same previously described 

procedure. The products being assembled are transported manually by workers between 

workstations of assembly line. 

 

Workstation
s 

Weight of 
actuators after 
process (Kg) ݇ ͳ 4.96 ݇ ʹ 5.70 ݇ ͵ 6.27 ݇ Ͷ 7.22 ݇ ͷ 7.58 ݇ ͸ 7.96 ݇ ͹ 8.750 ݇ ͺ 9.63 ݇ ͻ 9.63 ݇ ͳͲ 9.63 

 
Final weight of 
actuator = 9.63Kg 

Table 1. The weight of the actuator (the work-piece) at each workstation on the line 

5.3 Experimental data and procedure 

Part of this research was performed based on previously published data on the calculation 
of net summation of the moments at three joints (hip, knee and ankle), support moment 
(Winter, 1980; Hof, 2000). That data includes; (1) segmental relative weight, centre of gravity 
and moment of inertia data for the (hypothetical) workers as shown in table 2; (2) the 
resolution of the position of the body from the angles at each articulation; (3) the 
determination of the angular velocities and angular accelerations at each articulation, which 
in turn, gives the linear acceleration of the body links.  

It is based upon the assumption that the average weight of workers is 82 kg. The procedure 
of modelling includes two stages. Firstly, the calculation stage; this consists of several steps; 
(1) the calculation of inertial forces and inertial resistance moments due to acceleration: (2) 
calculation of moments and forces on the body from the motion input data (i.e. the x-y joint 
position data over time for the ankle, knee and hip); (3) the calculation of reactive moments 
and forces at each articulation exerted by the muscles to overcome the resultant forces due 
to external loads and body weight; and (4) the joint moments of all lower limb joint 
moments (hip, knee, and ankle) and also support moment were calculated. 

In the second stage, on the basis of inputting walking speed and the weight of the work 
piece, the effect of these variables at lower limbs joints is estimated. The model application 
consisted of using this data with two walking speed with carrying work-piece to be 
assembled; (1) slow walking (0.7 meter/sec.) and (2) fast walking (1.4 meter/sec.). The initial 
weight of work-piece is 4.96 kg, increasing gradually with assembling process to reaching a 
final weight of 9.63 kg at workstations 8, 9 and 10. The carrying technique is front with two-
hand.  
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Segment Relative 
Weight 

Centre of Gravity Moment of Inertia 
about CG (kg.m2) 

Head 0.073 46.4% vertex to chin 0.0248 

Trunk 0.507 38.0% shoulder to hip 1.2606 

Upper Arm 0.026 51.3% shoulder to elbow 0.0213 

Forearm 0.016 39.0% elbow to wrist 0.0076 

Hand 0.007 82.0% wrist to knuckle 0.0005 

Thigh 0.103 37.2% hip to knee 0.1052 

Calf 0.043 37.1% knee to ankle 0.0504 

Foot 0.015 44.9% heel to toe 0.0038 

Table 2. Segmental relative weight, centre of gravity and moment of inertia data 

6. Results and discussion 

6.1 Joint moments 

For the stance phase normalized to 100%, figures (10-b, 10-c and 10-d) represent the lower limb 

joint moments (hip, knee and ankle joints) on the sagittal plane for a single worker in WWAL 

during complete posture cycle under both normal walking and different work-piece carrying 

conditions. As illustrated in that figure, changes in the relative shape and magnitude were 

found in moment of hip, knee and ankle joints among different weights carrying (4.96, and 

9.63 kg) and also basically when workers walking without carrying any work-piece. 

Among the three lower limb joints, the hip moment, which was consistently and 
significantly more biased with increasing work-piece weight during the 0-10% of the gait 
cycle. This can be explained by the fact that the positive hip joint angular impulse for the 
contralateral side tended to increase with the increase of work-piece weight. 

From the results of this research, it was found that when workers walked at different speeds 

carrying work- pieces, the moment of the lower limb joint would increase with the walking 

speed (figure 11). This is because the percentage of the stance phase decreased as the 

walking speed increased and the swing phase increased as the walking speed increased. 

Figure 10 presents the MS and the contributions to the MS of each joint for the stance phase 

normalized to 100%. 

6.2 Net support moment 

Figure 10 presents the contributions of each lower limb joint for the net support moment in 

carrying different work-piece weights as well as in normal walking. At the initial stage of 

the gait cycle (0-10%), the hip and knee joint moments were large. On the other hand, during 

that stage the ankle joint moment was nearly zero. Therefore, the hip and ankle contributed 

to the most part of the support moment throughout the stance phase.  

Net support moment was considerably reduced and even in negative values throughout the 

swing phase (50–100% of the gait cycle). This is because of the negative values of the hip 

moment in end of stance phase. From approximately 40% to 100% of the gait cycle, the knee 

and the ankle moment contributed positively to support the body-mass of worker during 

the job. 
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Fig. 10. The calculated net support moment MS according to the original definition of Winter 

and the resulting moment about the (b) hip moment; (c) knee moment and (d) ankle moment. 

The calculations were performed for different loading condition (as shown in legend). 

Workers data: male, 34 years, weight 82 kg and walking speed 0.7 m/sec. 
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From figure 11, it was evident, that support moment varies quite considerably when 

walking speed was increased from 0.7 to 1.4 meter/sec. This can be explained by the fact 

that both the GRF and the knee angle in stance are strongly dependent on walking speed. As 

expected, there was a significant increase in net support moment throughout the walking 

from workstation to another (figure 11). However, this was related significantly to 

increasing weight of work-pieces during assembly due to the addition of new components 

at to the work-piece at each workstation. 

 

Fig. 11. Net support moment MS at WWAL workstations, for two different carrying condition 
during the 10% stance period of movement cycle where the MS at that time reaches to the 
maximum value as the results indicated in figure 10. 

6.3 Ground reaction forces  

Ground reaction forces in walking increased significantly with work-piece carrying (figure 12). 

More specifically, carrying a 4.96 kg weight of work-pieces at first workstation and then 

increased to 9.63 kg load led to increases in the peak normal ground reaction force ranging 

from -75 to -50 N and to -50 from the normal walking, respectively. 

 

Fig. 12. Calculated ground reaction force during complete movement cycle (0-100%) while 
walking with carrying 4.96 weight for work-piece. 
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Normally, ground reaction forces depend on body mechanics, mass, and acceleration at the 

time when the individual touches the ground. Consequently, as mass (weight of work- 

piece) increases, ground reaction forces generally increases. Also, a worker’s gait pattern 

affects ground reaction forces. As a result, intensity, mass, speed and type of activity were 

expected to be significant fixed effects. 

7. Conclusion and further work 

The net support moment model, described by Winter in 1980, provides a useful framework 

to study the strategy used to support body weight during walking while performing a job in 

dynamic production systems like WWAL. In this research, the model was used to predict 

the moments for the hip, knee and ankle during walking and carrying different work-piece 

weights, as well as normal walking. In addition to work-piece weight, the effect of walking 

speed of walker on support moment was also investigated. In conclusion, the results of this 

research indicated that, the net support moment and the contributions the hip, knee and 

ankle moment respectively, is an interesting method to assess the weight bearing and 

walking speed strategies for walking workers. 

The net support moment is calculated by summation of the moments at hip, knee and ankle 

during walking. This enables a designer to construct a layout of WWAL in such a way as to 

obtain optimal movement, i.e. the movement in which the net support moment of all three 

joints is minimized.  

The reliability of the presented predictive model as a tool to investigate the mechanical 

demands of the lower limbs during dynamic occupational task like those in WWAL is still 

questionable. To enable the use of this model, it needs further work in two areas; (1) model 

validation by comparing the predicted results with the actual measurement data for 

dynamic walking whilst carrying a work- piece, (2) further investigation of the relationships 

of other variables during walking of worker with work-piece carriage, such as gender and 

the physical design of workstations. 
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