787 research outputs found

    Reducing false wake-up in contention-based wake-up control of wireless LANs

    Get PDF
    This paper studies the potential problem and performance when tightly integrating a low power wake-up radio (WuR) and a power-hungry wireless LAN (WLAN) module for energy efficient channel access. In this model, a WuR monitors the channel, performs carrier sense, and activates its co-located WLAN module when the channel becomes ready for transmission. Different from previous methods, the node that will be activated is not decided in advance, but decided by distributed contention. Because of the wake-up latency of WLAN modules, multiple nodes may be falsely activated, except the node that will actually transmit. This is called a false wake-up problem and it is solved from three aspects in this work: (i) resetting backoff counter of each node in a way as if it is frozen in a wake-up period, (ii) reducing false wake-up time by immediately putting a WLAN module into sleep once a false wake-up is inferred, and (iii) reducing false wake-up probability by adjusting contention window. Analysis shows that false wake-ups, instead of collisions, become the dominant energy overhead. Extensive simulations confirm that the proposed method (WuR-ESOC) effectively reduces energy overhead, by up to 60% compared with state-of-the-arts, achieving a better tradeoff between throughput and energy consumption

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Routing for Wireless Sensor Networks: From Collection to Event-Triggered Applications

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of sensing devices using wireless communication to exchange data. In the past decades, steep advancements in the areas of microelectronics and communication systems have driven an explosive growth in the deployment of WSNs. Novel WSN applications have penetrated multiple areas, from monitoring the structural stability of historic buildings, to tracking animals in order to understand their behavior, or monitoring humans' health. The need to convey data from increasingly complex applications in a reliable and cost-effective manner translates into stringent performance requirements for the underlying WSNs. In the frame of this thesis, we have focused on developing routing protocols for multi-hop WSNs, that significantly improve their reliability, energy consumption and latency. Acknowledging the need for application-specific trade-offs, we have split our contribution into two parts. Part 1 focuses on collection protocols, catering to applications with high reliability and energy efficiency constraints, while the protocols developed in part 2 are subject to an additional bounded latency constraint. The two mechanisms introduced in the first part, WiseNE and Rep, enable the use of composite metrics, and thus significantly improve the link estimation accuracy and transmission reliability, at an energy expense far lower than the one achieved in previous proposals. The novel beaconing scheme WiseNE enables the energy-efficient addition of the RSSI (Received Signal Strength Indication) and LQI (Link Quality Indication) metrics to the link quality estimate by decoupling the sampling and exploration periods of each mote. This decoupling allows the use of the Trickle Algorithm, a key driver of protocols' energy efficiency, in conjunction with composite metrics. WiseNE has been applied to the Triangle Metric and validated in an online deployment. The section continues by introducing Rep, a novel sampling mechanism that leverages the packet repetitions already present in low-power preamble-sampling MAC protocols in order to improve the WSN energy consumption by one order of magnitude. WiseNE, Rep and the novel PRSSI (Penalized RSSI, a combination of PRR and RSSI) composite metric have been validated in a real smart city deployment. Part 2 introduces two mechanisms that were developed in the frame of the WiseSkin project (an initiative aimed at designing highly sensitive artificial skin for human limb prostheses), and are generally applicable to the domain of cyber-physical systems. It starts with Glossy-W, a protocol that leverages the superior energy-latency trade-off of flooding schemes based on concurrent transmissions. Glossy-W ensures the stringent synchronization requirements necessary for robust flooding, irrespective of the number of motes simultaneously reporting an event. Part 2 also introduces SCS (Synchronized Channel Sampling), a novel mechanism capable of reducing the power required for periodic polling, while maintaining the event detection reliability, and enhancing the network coexistence. The testbed experiments performed show that SCS manages to reduce the energy consumption of the state-of-the-art protocol Back-to-Back Robust Flooding by over one third, while maintaining an equivalent reliability, and remaining compatible with simultaneous event detection. SCS' benefits can be extended to the entire family of state-of-the-art protocols relying on concurrent transmissions

    A Dynamic Channel Switching for ROD-SAN

    Get PDF
    Wireless sensor and actuator networks (WSANs) are expected to become key technologies supporting machine-to-machine (M2M) communication in the Internet of things (IoT) era. However, sensors must be able to provide high demand response (DR) levels despite severely limited battery power. Therefore, as part of efforts to achieve a high DR, we are working on research and development related to radio-on-demand sensor and actuator networks (ROD-SANs). ROD-SAN nodes are equipped with wake-up receivers that allow all nodes to stay in sleep mode for a long period of time, and transmit only after the receiver receives a wake-up signal. In addition, sender nodes can direct the receiver nodes to switch communication channels because the wake-up signal also includes information on the channel to use for communication between each other. However, as the number of nodes utilizing the same channel increases, frequent packet collisions occur, thereby degrading response performance. To reduce packet collisions, we propose an own-channel-utilization based channel switching (OCS) scheme, which is a modification of the average-channel-utilization based switching (ACS) as our previous works. The OCS scheme decides whether or not to switch channels based on a probability value that considers not only average-channel utilization of nearby nodes but also own-channel utilization. This approach permits node switching to other channels by considering the overall utilization states of all channels. In this paper, based on simulations, we show that our scheme can improve the delivery ratio by approximately 15% rather than ACS scheme

    Planning and realization of a WiFi 6 network to replace wired connections in an enterprise environment

    Get PDF
    WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections.WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy

    Mitigating interference coexistence issues in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) comprise a collection of portable, wireless, interconnected sensors deployed over an area to monitor and report a variable of interest; example applications include wildlife monitoring and home automation systems. In order to cater for long network lifetimes without the need for regular maintenance, energy efficiency is paramount, alongside link reliability. To minimise energy consumption, WSN MAC protocols employ Clear Channel Assessment (CCA), to transmit and receive packets. For transmitting, CCA is used beforehand to determine if the channel is clear. For receiving, CCA is used to decide if the radio should wake up to receive an incoming transmission, or be left in a power efficient sleep state. Current CCA implementations cannot determine the device type occupying the media, leaving nodes unable to differentiate between WSN traffic and arbitrary interference from other devices, such as WiFi. This affects link performance as packet loss increases, and energy efficiency as the radio is idly kept in receive mode. To permit WSN deployments in these environments, it is necessary to be able to gauge the effect of interference. While tools exist to model and predict packet loss in these conditions, it is currently not possible to do the same for energy consumption. This would be beneficial, as parameters of the network could be tuned to meet lifetime and energy requirements. In this thesis, methods to predict energy consumption of WSN MAC protocols are presented. These are shown to accurately estimate the idle listening from environmental interference measurements. Further, in order to mitigate the effects of interference, it would be beneficial for a CCA check to determine the device type occupying the media. For example, transmitters may select back-off strategies depending on the observed channel occupier. Receivers could be made more efficient by ignoring all non-WSN traffic, staying awake only after detecting an incoming WSN transmission. P-DCCA is a novel method presented in this thesis to achieve this. Transmitters vary the output power of the radio while the packet is being sent. Receivers are able to identify signals with this characteristic power variation, enabling a P-DCCA check to reveal if the medium is currently occupied by WSN traffic or other interference. P-DCCA is implemented in a common WSN MAC protocol, and is shown to achieve high detection accuracy, and to improve energy efficiency and packet delivery in interference environments
    • …
    corecore