250 research outputs found

    Queue-length balance equations in multiclass multiserver queues and their generalizations

    Get PDF
    A classical result for the steady-state queue-length distribution of single-class queueing systems is the following: the distribution of the queue length just before an arrival epoch equals the distribution of the queue length just after a departure epoch. The constraint for this result to be valid is that arrivals, and also service completions, with probability one occur individually, i.e., not in batches. We show that it is easy to write down somewhat similar balance equations for {\em multidimensional} queue-length processes for a quite general network of multiclass multiserver queues. We formally derive those balance equations under a general framework. They are called distributional relationships, and are obtained for any external arrival process and state dependent routing as long as certain stationarity conditions are satisfied and external arrivals and service completions do not simultaneously occur. We demonstrate the use of these balance equations, in combination with PASTA, by (i) providing very simple derivations of some known results for polling systems, and (ii) obtaining new results for some queueing systems with priorities. We also extend the distributional relationships for a non-stationary framework

    The analysis of batch sojourn-times in polling systems

    Get PDF
    We consider a cyclic polling system with general service times, general switch-over times, and simultaneous batch arrivals. This means that at an arrival epoch, a batch of customers may arrive simultaneously at the different queues of the system. For the exhaustive service discipline, we study the batch sojourn-time, which is defined as the time from an arrival epoch until service completion of the last customer in the batch. We obtain exact expressions for the Laplace–Stieltjes transform of the steady-state batch sojourn-time distribution, which can be used to determine the moments of the batch sojourn-time and, in particular, its mean. However, we also provide an alternative, more efficient way to determine the mean batch sojourn-time, using mean value analysis. We briefly show how our framework can be applied to other service disciplines: locally gated and globally gated. Finally, we compare the batch sojourn-times for different service disciplines in several numerical examples. Our results show that the best performing service discipline, in terms of minimizing the batch sojourn-time, depends on system characteristics

    Towards a unifying theory on branching-type polling models in heavy traffic

    Get PDF
    htmlabstractFor a broad class of polling models the evolution of the system at specific embedded polling instants is known to constitute a multi-type branching process (MTBP) with immigration. In this paper we derive heavy-traffic limits for general MTBP-type of polling models. The results generalize and unify many known results on the waiting times in polling systems in heavy traffic, and moreover, lead to new exact results for classical polling models that have not been observed before. To demonstrate the usefulness of the results, we derive closed-form expressions for the LST of the waiting-time distributions for models with cyclic globally-gated polling regimes, and for cyclic polling models with general branching-type service policies. As a by-product, our results lead to a number of asymptotic insensitivity properties, providing new fundamental insights in the behavior of polling models

    Towards a unifying theory on branching-type polling systems in heavy traffic

    Get PDF
    For a broad class of polling models the evolution of the system at specific embedded polling instants is known to constitute a multi-type branching process (MTBP) with immigration. In this paper we derive heavy-traffic limits for general MTBP-type of polling models. The results generalize and unify many known results on the waiting times in polling systems in heavy traffic, and moreover, lead to new exact results for classical polling models that have not been observed before. To demonstrate the usefulness of the results, we derive closed-form expressions for the LST of the waiting-time distributions for models with cyclic globally-gated polling regimes, and for cyclic polling models with general branching-type service policies. As a by-product, our results lead to a number of asymptotic insensitivity properties, providing new fundamental insights in the behavior of polling models

    Discrete Time Analysis of Consolidated Transport Processes

    Get PDF
    Diese Arbeit beschäftigt sich mit der Entwicklung zeitdiskreter Modelle zur Analyse von Transportbündelungen. Mit den entwickelten Modellen für Bestands- und Fahrzeugbündelungen, insbesondere Milkrun-Systeme, kann eine detaillierte Leistungsbewertung in kurzer Zeit durchgeführt werden. Darüber hinaus erlauben die Modelle die Analyse der Umschlagslagerbündelungen, beispielweise Hub-und-Spoke-Netzwerke, indem sie im Rahmen einer Netzwerkanalyse mit einander verknüpft werden

    Stochastic Models for Order Picking Systems

    Get PDF

    Stochastic Models for Order Picking Systems

    Get PDF
    corecore