A classical result for the steady-state queue-length distribution of
single-class queueing systems is the following: the distribution of the queue
length just before an arrival epoch equals the distribution of the queue length
just after a departure epoch. The constraint for this result to be valid is
that arrivals, and also service completions, with probability one occur
individually, i.e., not in batches. We show that it is easy to write down
somewhat similar balance equations for {\em multidimensional} queue-length
processes for a quite general network of multiclass multiserver queues. We
formally derive those balance equations under a general framework. They are
called distributional relationships, and are obtained for any external arrival
process and state dependent routing as long as certain stationarity conditions
are satisfied and external arrivals and service completions do not
simultaneously occur. We demonstrate the use of these balance equations, in
combination with PASTA, by (i) providing very simple derivations of some known
results for polling systems, and (ii) obtaining new results for some queueing
systems with priorities. We also extend the distributional relationships for a
non-stationary framework