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Abstract

The power-series algorithm is developed for a single server queue with a Batch Markovian Arrival
Process and independent general phase-type service time distribution. The service time distribution of
the first service after an idle period is allowed to differ from the distribution of other service times. It
is proved that the steady-state probabilities as functions of the load of the system are analytic at the
origin and recursive expressions are derived to calculate the coefficients of the power-series
expansions. These power series are used to study the queue length and the waiting time distribution.
The present paper is a preliminary to extensions of the algorithm to multi-queue systems with
non-Poissonian arrival process and service distributions.

Keywords: Single server queue, Batch Markovian Arrival Process, power-series expansion.

1. Introduction

If customers arrive one at a time at a queue and future arrivals are independent of the
arrivals in the past, a Poisson process is usually a good description of the arrival process.
However, these conditions may not be satisfied. Consider for example a central computer
with several terminals where the offered data packets consist of several jobs and the
number of active terminals varies with time. Here the Poisson process would be a very
inadequate approximation. Also in the study of ATM systems, the Poisson process is
considered to be unsuitable to model the bursty nature of the arrival process. A far less
limited class of arrival processes is the class of Batch Markovian Arrival Processes
(BMAP), which was introduced by Lucantoni [8] and is equivalent to the versatile
Markovian point process (N) introduced earlier by Neuts [9]. This class of arrival
processes contains many well-known special cases. Examples of BMAPs with maximal
batch size equal to 1 are Markov-modulated Poisson processes, processes with general
phase-type (PH) interarrival times (not necessarily independent) and overflow processes
from finite Markovian queues. Also processes of which the subsequent batch sizes depend
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on each other or on the interarrival times are included in this class. A more detailed list of
special cases is given by Lucantoni [8].

The power-series algorithm (PSA) is a device to compute performance measures for
multi-queue systems that can be described as a continuous time Markov process. The basic
idea is to transform the infinite set of non-recursively solvable balance-equations into a set
of recursively solvable equations. This is done by multiplying all transitions in the arrival
process by a scalar p. For low values of p the system will be relatively empty, for high
values it will be full, so p is a measure of the load of the system and the steady-state
probabilities are clearly functions of p . It will be shown for the BMAP/PH/1 that they are
analytical functions of p, at least for small values of p, so that they can be written as
power series in the load p, and that the coefficients of these power series can be
calculated recursively.

The PSA has been applied to queues in parallel [1], coupled processor models [7], the
shortest-queue model [4] and various polling models [3]. Recently, the PSA has been
extended to calculate partial derivatives of performance measures with respect to system
parameters [5]. All previous models use Poisson arrival streams and exponential or
Coxian service times. The aim of the present paper is to provide a better theoretical
justification of the PSA and to extend the PSA to models with a Batch Markovian Arrival
Process (with finite maximal batch size) and general phase-type service time distribution
(possibly different for the first service after each idle period). The discussion is restricted
to the single server model to keep the notation simple and to provide a basis for the
analysis of multi-queue systems. The BMAP/G/1 queue was already analysed by
Lucantoni [8], using the matrix-analytic approach. However, this method seems to be
unsuitable for multi-queue systems.

In section 2 the BMAP/PH/1 model and its global balance equations will be described.
In section 3 the algorithm to calculate the coefficients of the power-series expansions of
the steady-state probabilities is derived and it is proved that the power-series expansions
converge on a disc around the origin. In section 4 it is shown how these power series can
be used to compute the queue-length distribution and moments of the waiting time
distribution. In section 5 some examples are given and in the final section 6 conclusions

are drawn.



2. The BMAP/PH/1 model

The behaviour of a Batch Markovian Arrival Process depends on an underlying continuous
time Markov chain. Transitions in this chain may trigger batch arrivals. Let the number of
states of this chain be 7 (< ). In state /, the transition rate is po; and a transition to state
h occurs with probability 7, (i,h=1,...,I'). When such a transition is made, a batch of size
m arrives with probability g/} (m=0,...,M). The «; are strictly positive and finite and
normalized in such a way that the queueing system is stable for 0<p<1. The factor p is
used to set the time scale of the arrival process, while keeping the time scale of the
service process constant. It will be called the load of the system. The steady-state
probabilities will be considered as functions of this load. It is assumed that the Markov
chain is irreducible, which is no restriction because only the steady-state behaviour will be
studied. The maximal batch size M (< ) is assumed to be such that arrivals of batches
with size M do occur: Ly, 7, g2 >0 . This again is no restriction.

The service times are mutually independent random variables and also independent of
the arrival process. They have a general phase-type distribution with J (< o) phases. The
transition rate in phase j is Bj and a transition to phase k& occurs with probability i
(h,j=1,...,J). Service is ended after phase j with probability ¢p=l - Eh-l.....l"jh- The
service time is zero with probability ¢,. If the service time is positive, then the initial
phase is phase j with probability ¢; (j =1,...,J; Ej-n,,,.,}%j=1 ). The rates §8; and the
mean service time are assumed to be strictly positive and finite.

Type-1 customers are customers who are served after an idle period, up to and
including the first customer with non-zero service time, that is all customers with zero
waiting time. A type-2 customer is any other customer. The service times of both types of
customers are allowed to differ in the initial distribution: J’oo and 4301 for type-1
customers, ¢q, and boj for type-2 customers (j=1,...,J). That differences are not
modelled with different B, and ¢j,, (h,j=1,...,J) may at first sight seem more restrictive
than it actually is: any pair of phase-type distributions can be modelled by taking
{dzjh }j.h=l,....l block-diagonal, with the blocks corresponding to the different
distributions. The queueing system is stable if the mean interarrival time is larger than the
mean of the type-2 service time distribution. If the type-1 and type-2 distributions have
equal means, the factor p is equal to the overall mean service time divided by the mean
interarrival time (the usual definition of the load).

The queue-length distribution is determined under the assumption that the service
discipline is non-preemptive, workconserving and service time independent. This means
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that services are not interrupted, the service requirements are not affected by the service
discipline, the server is idle only if the system is empty and the service order and service
times are independent. Examples are first-come-first-served, last-come-first-served and
service in random order. For this class of service disciplines the order of service does not
influence the queue-length distribution. The waiting time distribution is studied under the
assumption that the service discipline is first-come-first-served, so that the waiting time
distribution can be determined by conditioning on the situation at arrivals.

Consider the continuous time Markov process {[N;,],,J;];¢=0}, where N, denotes the
number of customers in the system (waiting or being served), I, the state of the BMAP,
and J, the service phase, all at time 1>0. For N, =0, let J, be the initial phase of the next
customer (with non-zero service time) to be served, so that the initial phase of the service
of any customer is determined right after the departure of the preceding customer. The
steady-state probabilities are defined as

p(pin,inj) = lim Pr{ Ny=n, I,=i, J,=j | No=no, Io=ig, Jo=jo. atload p } , @.1)
00

with (n,i,j) € @=Ny X{1,...,I}X{1,...,J}. The steady-state probabilities do not depend
on the initial conditions (ng,iy, j ). The balance equations are

M 1
poj  p(p;0,i)) = Y ey b P(pi0,h.j)
m=0 h=1
o i E o
« ¥ X Bn 1o $o0 P p(o;1+t,i,h),
= =
- J m sm-n v 3
(pai+B;) p(piminj) = 3 3 poymydy b0 (1-6g0) P(030,h,))
m=n h=1
2.2)
MA(n-1) J
£ Y ¥ PO i Gy p(p;n-m,h,j)
m=0 h=1
J
. b B bny p(p;n,i,h)
h=1

Brdnodoo (1-600) bgy  P(pin+1+L,i,h)

M
M-

&
U
—
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for n21, i€{1,...,I'}, jE€{1,...,J }, and where xAy denotes the minimum of x and y. In
the right-hand side (RHS) of the first equation, the first term corresponds to a batch
arrival in an empty system. All customers in this batch have a zero service time (of
type-1), so that the system is immediately empty again. The second term corresponds to a
service completion, followed by enough zero service times (of type-2) to empty the
system. In the RHS of the second cquation, the first term vanishes if n is larger than the
maximal batch size M. It corresponds to a batch arrival in an empty system, followed by
a number of zero services. The second term corresponds to a batch arrival in a non-empty
system. Since no new service is started, there can be no zero service times here. The last
two terms correspond to changes in the service phase: the first without completion, the
second with completion and followed by a number of zero service times. Together with
the normalization

o 1 )
¥ Y poinig) =1, 2.3)
n=0 i=1 j=1

this set of equations determines the steady-state probabilities. However, since the number
of states is not finite it can only be solved in special cases. Approximations can be
obtained by truncating the state space. Alternatives are the matrix-geometric approach and
the PSA. The latter will be described in the next section. If the buffer size of the queue is
finite, the state space is also finite. Hence, solving the balance equations directly seems
more natural than using the PSA. However, for large buffer sizes the PSA may still be
more efficient.

3. The power-series algorithm to calculate the steady-state probabilities

In this section it is proved that the steady-state probabilities, as functions of p, are analytic
at p=0 and recursive expressions are derived to calculate the coefficients of the
power-series expansions at p=0. This is done in three steps. In Theorem 1 it is proved that
the state probabilities satisfy p(p;n,1,j ) =00 " W) for p40 , where

rn‘|M=Min{keNo| kz%}, for n€ N, G.1

(so [n], denotes n/M rounded upward). This does not imply that the steady-state
probabilities are analytic at the origin. (For example the function F(x)=Vx is O(1)
for x40, but it is not analytic at x=0.) The order found in Theorem 1 is used in
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Theorem 2 to derive recursive expressions for the coefficients of the power series,
basically by determining all derivatives at p=0. That these coefficients exist still does not
prove that the state probabilities are analytic at the origin, since the power series may not
converge. (For example, the series I,,n!x" has finite coefficients, but it does not
converge for x#0, so it is not analytic at x=0.) Finally, in Theorem 3 it is proved that
the power series found in Theorem 2 do converge in a disk around the origin. Of course,
one would like to have convergence for all values of p in [0,1), but in general this is not
the case. Examples can be given with singularities close to the origin. To obtain
convergence in these cases, a conformal mapping is used, resulting in different power
series.

Theorem 1. The steady-state probabilities of a stable BUAP/PH/1 queue satisfy

p(oin.i.j) = 0olo™w) o0, for (n,ijyeq . 32)

Proof. Define the following subset of Q:

s(n,T) = { (€,i,j))EQ|(¢<n)or (£=n+1and jJET) } i
@3.3)
for n 20, I' €{1,...,J} . In steady state, the rates at which the process leaves and enters
S(n,I') are equal:

T M 1
~m-n-IET e
b Y oo magi (1-95" Y ’) p(p:0.i,)
i=1 j=1 men+i+IGET) h=1
n 1 J M 1 "
M W Y. poiTydy P(pit,i,j)
=1 i=1 jei men-L+T+IGET) h=1
1 M 1 .
B 3 Y Y eximpay + ; B; bjn p(p;n+l,i,j) (3.9
i=1 jer m=1 h=1 hET
Bidjp + Bid p(p;n+l,i,j)
[ J7jo =% J ¥ih ]

™Ms
MN

Bidjodeo + X ﬁj¢,o¢55‘(1—¢m)¢o,.] ppin+1+2,ij) .
hET

~
N
—
-~
"
—
~.
"
—

iM~
™M~ B
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The function /(E) denotes the indicator function of event E. In the first two terms, the
summation over m is zero if the upper index is smaller than the lower index. The first
term of the LHS corresponds to a batch arrival in an empty system, followed by a limited
number of zero service times. The second term corresponds to a batch arrival in a
non-empty system. The states with n+1 customers in the system are only in S(n,I') if
the service phase is in I'. If so, then after a batch arrival or a transition to a service phase
not inT' the system will leave S(n,I'). If not, then after a service completion or a
transition to a service phase in I' the system will enter S(»,I'). Finally, if the number of
customers in the system is larger than n+1, then a service completion followed by a
sufficiently large number of zero service times will bring the system back into S(n,I').
A distinction has to be made between whether the new number of customers is smaller
than or exactly equal to n+1, since in the second case the system will only enter S(n,I')
if the new service phase is in I'.

Let T, €{1,...,J}, k=20, be the set of all phases from which service can be ended
within k transitions:

g, k=0,
r, -1 {J€€..0) | 3p>0}, k=1, @5
I‘k—lU{je{lv--'J} l 2:"61':-1 ¢jh>0}, k=22 .

Because the mean service time is finite, there exists a K<J such that Te={1,....7}.
The theorem is proved by induction over k and n. Suppose that for some n =0 and
k€ {0,....Kk-1}

poit,ij) = 0(o"M) pi0, for (£,iJ)ES(,T) . (3.6)
Because probabilities are bounded, (3.6) is true for n=k=0: p(p;0,i,j)=0(1) for p40,
for all (0,i,j) € §(0,2). Consider equation (3.4) for the set S(n,I' ). In the second
term of the LHS, the lower index of the summation over m is larger then the upper index
if £<n+1—M. Because arrivals of batches with size M do occur and because of (3.6),
this second term is of order O(p'* ["*1=Mlu)-0(p["*1l) for p40. The first and
third term of the LHS are of the same or higher order. Since all coefficients in (3.4) are
non-negative, this implies that all probabilities in the RHS of (3.4) with positive
coefficients are also of this order, especially those in the first term:



p(oin+1,ij) = 0™ W), pi0, fori€(l,...1},j€T \T,. BD
Hence, (3.6) is true for (f,i,j) € S(n,I';,,) and, by induction over k, also for
(£,i,j) € S(n,I'y). The fact that S(n,I'y ) =S(n+1,T) finishes the proof of Theorem 1,
by induction over 7. O

Theorem 1 shows that the order of the steady-state probability of a certain state is equal
to the minimal number of transitions in the arrival process to reach that state from an
empty system. For single arrivals (M=1), p(p;n,i,j)=0(p") for p+0, which is indeed
what was used in the previous applications of the PSA. The theorem also shows that, if
the power-series expansion of p(p;n,i,j) exists, the coefficients of all powers o* with
k< [n],, are zero. Theorem 2 describes how this can be used to calculate the remaining
coefficients. To formulate the balance equations in matrix notation, define the following
matrices and column vectors:

P(p) = {p(oini.J) }ic,..1, jor,..0 > forn20,
A = diag({ o };=y, /) »

={aq} }l.h-l....,l ’ for m=0,....M ,
={ % qin Yin-1, 0> for m=0,....M ,
= diag({ B; }j-1,. 4) » (3.8)

={%n Yh-1,..0

Fepemepn

Let further ey (0y) be a column vector with all its H components equal to 1 (0), and
Ok an H by K matrix with all its components equal to 0. Notice that the matrices ¥, ,
m=0,...,M, are entry-wise products of II with Q,, and that £, ¥, =II. Notice also that
(I-®)e;=¢ o . The set of equations (2.2) and (2.3) can be rewritten as:
M
pAPYR) = Y gy ¥n APy
-k (.9

o
+ Y 66 Pre(o) B b .
=0



M
P AP +P (0B = Y 0 doo" (1-dgg) ¥ A Po(p)
m=n
MA(n-1) T
* & 0 ¥m A Prn(o) (3.10)
+ P,(o) B &
* B 900 (1-600) Preyoe(0) B g 65,
forn=1, and
Y e Po)e;=1. 3.11)
n=0

If zero service times do not occur, then most summations in (3.9) and (3.10) reduce to a
single term, since in that case ¢ = 4} =0 unless 4=0.

Summing (3.9) and (3.10) over all n=0 and post-multiplying with a column of ones
shows that

(I-MTAY Po)e, =0. (3.12)
n=0

Together with (3.11) this implies that the I-vector L, P,(p)e; equals the steady-state
distribution » of the Markov chain underlying the BMAP, determined by (I-I1)7 A» =0,
and e,Tv=l . The solution to these equations does not depend on p and is unique, because
IT is irreducible.

Rearranging (3.9) shows that Py(p) is an outer product of an /-vector with g :

Py(p) = = A1

1
]

-1 o
[ Y 0 Preo) ] B ¢ d, - G-13)
=0
Post-multiplying this equality with ¢, shows that the /-vector must equal Py(p)e,, since
éq'e,=1. Hence,

Py(p) = Po(p) €; &y, - (.14)
This is a consequence of the definition of J, at times when N,=0 (see section 2).

M - T
1-3 40 ¥m
m=0
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Theorem 2. The steady-state probabilities of a stable BMAP/PH/1 queue can Jormally be
expanded as power series in terms of the load p of the system:

Po)= ¥ U, (3.15)
k=[nT,,

where the Uy , are I by J matrices determined by

Ugo = '3{ . a-mTar=0, c,Tr =1, (3.16%
—] =T

Uio = - X Upnesdp . k21, (3.16%
n=1

Ui, B (I-9)

M
= Y b (1-dgp) ¥y A Ug-10
m=n
MA(n-1) (316C)
¥ (*O-I)T A Uk—l.n # E ‘P: A Uk-l.n-m
=1
kM-n-1 ¢ " r
Y %00(1-900) Ugnuye B bobp . 1Sns<kM,
=0

¥

with Uy, =0y, if kM<n.

Proof. Define for p€[0,1) and n=>0:

Pn(p) ’ k= r"-IM ’
(p) = .
s Re-1,n(0) 0" "Ry y 5 k> [nly , (3.17)
R, = limp*R, (), k= [nly .
pi0

It will be shown that all the li,‘,, exist and that they satisfy the equalities determining the
corresponding U, , , which implies that they are identical. Notice from the definition that
if R, ; , exists, then Ry ,(p) =0(p*") for p40.

Substituting (3.17) into (3.11), (3.12) and (3.14) leads to
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e X RinlyalP) es = 1,
=

- 3.18
(1-mTa )’__jo R[4, 40 €5 = 0p Q18
n

Roo(p) = R () €, &5 -

By theorem 1, the Rfﬂuﬁ(") are O(pm") for p40. Hence, letting p40 in (3.18)
renders
ef Roges =1, (I-IDTARype; =0, Ryg =Roge, o . B9
This shows that Ry g exists and satisfies the same equalities as Uy ¢ in (3.16%.
Substituting (3.17) into (3.10) for 1<n<M leads to
R .(p) B (I-9)

M
=Y b5" (1-dg) o ¥ A Roo(p)

m=n
MA(@-1) 3.20
+p (%-DTAR () + Y p ¥ ARy, (o) s

m=1

. ?;o b0 (1 =b00) Rpperse], me1ee(p) B dg &g .
Dividing by p and letting p ¢ 0 renders

M
Ri,B(-%)= ¥ d5" (1-d0) ¥ A Rgg
R 3.21)

* ‘Z_:o 00 (1-00) Ry ne1ee B 6o oy, -

Considering n=M down to n=1 shows that, since ﬁo'o exists, so do f(l’,, (1=sn<M) and
they satisfy the same equalities as the U, , in (3.16°).
Substituting (3.17) into (3.18) and using (3.19) leads to



12

elr[ Ry o(p) + El { an1u*l.n(p) * prﬂ. Rrﬂn.u } ]el =0,
n=

[ 'y |- (3.22)
(I-m7A [ Ry o(p) + z-:l { Rl'n'l‘, +1,(P) * pr e an]u,n } ] e; =0,

Ry o(0) = Ry o(p) €; &5

which implies

Riop) = - Y { R[,,]M v1,n(P) + Pl-"-l"ﬁr,ﬂ“',l }e, &g ; (3.23)

Dividing by p and letting p 40, now renders
Mo -T
Ry o(p) = - Zl Rpnly €1 %0, - (3.24)
n=

Hence, also R; ¢ exists, and satisfies the same equality as U g in (3.16P).
Next, suppose that for some K>1 it has been shown that, for 1<k<K,

k-1
Rk.O(p) = '"2_; {an'lu ¢k,n(P) *pr’ﬂ”* . hz-:o kI'n'l‘, vk-l.ll*Ml} eja({ , 329

and that for 1 <n<kM,

Ry ,(p) B (1-®)
M
Y 45" (1-60) 0 ¥, A Re_[], o(0)

o3 MA(n-1) T
p (¥-I)' A Ry n(p) + E p ¥, A Rk—l(mzn—u [, +M-1),n-m(P)

m=1

+

n-M [n]y, +M-1 2
pk (*O_I)T ARgy, + 2 pk ¥, A Rk-l.n-m (3.26)

m=1

+

©o

=5 %00 (1-800) Rln.10e], - [, skme1+e() B & o0,

¢
k‘rﬂ“ o

" Y a0 (1-d00) P

k=1 ¢=(h+[n]y -1)M-n

—

[n+1+€T,0 - [l +k-h

X ﬁl’nohﬂu-rﬂ‘, wk-hn+1+¢ B 4’.04’5. ,
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and that the R, , (1<k<K) exist and satisfy the same equalities as the corresponding Upn
in (3.16). By (3.20) to (3.24), this is true for K=1. It can be shown, by substituting
(3.17) and some more tedious calculations, that then (3.25) and (3.26) are also true for
k=K+1, and that the Ry, , exist and satisfy the same equalities as the corresponding
Uk, 1,0 in (3.16). By induction over K, this proves theorem 2. O

Because the mean service time is finite, B (I—®) is non-singular so that the matrices
Uy, can be found from (3.16°). Notice that, if the service time distribution is Coxian, as
in previous applications of the PSA, B(I—®) consists of zeros, except for the main
diagonal and an adjacent diagonal so that no extra work needs to be done to compute the
LU-decomposition.

A more intuitive way to find the recursive relations (3.16) would be to assume
beforehand that the steady-state probabilities are analytic at p=0, so that the power-series
expansions (3.15) exist. Two analytical functions are only equal if all coefficients of the
power-series expansions are equal. Therefore, substitution of these expansions into (3.10),
(3.11), (3.12) and (3.14), and equating coefficients of corresponding powers of p on
either side of the equality signs, also leads to (3.16).

From formula (3.16) it can be seen that each matrix U, n is a function of matrices of
which either the first index is smaller or of which the first index is equal and the second
index is larger. Therefore, the coefficients can be recursively calculated for increasing
values of k, and for each fixed k for decreasing values of n, starting with n=kM. For
n>kM the coefficients are zero. The power-series algorithm to compute all coefficients up
to and including the coefficients of the Kt power of p is as follows:

Solve the set of equations (I-I)’ A» =0, and e] =1 ;
Ugo < dg :
k «1;
while k < K do
Calculate U , from (3.16°) for n=kM,kM—1,...,1;
Calculate Uy, from (3.16% ;
k«k+1.

The memory requirements to store the coefficients approximately equals 14K2M times the
memory requirements of an / by J matrix of reals. However, if one is not interested in the
complete queue-length distribution, but only in some characteristics of the distribution
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(like moments and the probability of an empty system), the memory requirements can be
significantly reduced. If the memory space of matrices that are no longer needed for the
recursion is used again, the required number of matrices is only KM, which is equal to the
number of considered steady-state probabilities. The number of multiplications to compute
the coefficients is of the order 72J* M2 K3, but if the arrival and/or service process have
some special structure, the computation time can be considerably reduced. Usually, the
memory space requirements are more restrictive then the computation time requirements.

In the following theorem it is proved that the steady-state probabilities are analytic in a
disk around the origin, which justifies writing the steady-state probabilities as power series
in p. This is proved by showing that the power series found in Theorem 2 converge in a
neighbourhood of p=0 and a lower bound on the radius of convergence is obtained. Up till
now, analyticity at the origin was only proved for a specific coupled processor model [7],
using the special M/M/1 structure underlying the model.

Theorem 3. The steady-state probabilities of a stable BMAP/PH/1 queue are analytic
Junctions of the load p in a disk around p =0 .

Proof. For a vector x and a (not necessarily square) matrix A, consider the following

norms:
1
s, =(5 . 1spse.
IAX| (3.27)
. P
1al,, -1:1:; T, 1<p,gso .

The norm |. |, is the maximal absolute column sum, |.| o, the maximal absolute
row sum, |.|, . the total absolute sum and |.|, ; the maximal absolute value. The
following inequalities hold:

IA+Blp,q s 'Alp,q+ "Blp_q ’

laBl,, = lAl,, IBl,,. 1Sr<o ,
known as the triangle inequality and consistency. Applying this to equations (3.16) and
(3.16°) shows that, for k=1 and 1 <n<iM,

(3.28)
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kM
IUk.OIw,I = a E "Uk,nloc_l'

n=|

U < b max max L : (3.29)
l k.nloo.l { OSMSMI\III k-1,n mlon,l

max |U | }
Oststitng & o ietlel o

where

Q
I
-_
o
<
4
=
I
.
\n.
=
B
>
~
b
<
1\
—

.....

1(¥%-DT Al oo I(1-2)" B,
M

+ Y ¥ Ale. la-#)'B7,,

+ IB ¢85 (1-2) B, .

<
"

(3.30)

So if there are numbers ¥, , , such that

uo = Yool
kM
ut.o = a E “k,ll 3 1<k ’

n=1

(3.31)
u = b max max Mt oy
L { 0<m<MAn tla-.

max Mg i+ , l<n<iM ,
oEtERM-a-1 ot }

then | U, , | o, <4, , Which implics that the absolute value of each element of U, , is at
most & , . Of course, equality in (3.31) would give better bounds, but then (3.31) would
be far more difficult to solve. If b<1, a solution is

rﬂu
b o0l o ¢ > k=[nl,, .
_—_ s el " (3.32)

! ¢ b MM payt Tl U0 » k> [nly

with c=abM . If b>1 a solution is

M+1 =
b( )r'l-lu n " Uo‘olw_l , k= l-n-IM ,

Uu, =
k.n . (bﬂ.‘)k_ [nly -1

(3.33)
Ulnlym » k> |'n"|M y
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with c=max{ a(b+b*+...+6M), bM*! }. The proof that (3.32) and (3.33) satisfy (3.31) is
elementary and uses the fact that for both solutions, ¥, , is non-increasing in n for each
fixed k. In both cases the geometric series L. ae ﬂk"t,u , n=0, converges for
|p| <(b+c)~!. But then also the power-series expansions of the steady-state probabilities
(3.15) converge and are analytic for |p| <(b+c)~!, which proves Theorem 3. O

An upper bound on the error in p(p;n,i,j) that is made, when only the first K coefficients
are computed, is given by

K ®

poinij) - Y AU |5 X Fu,. G394
k=[nl,, k=K+1

Unfortunately, (b+c)~! is usually to small to be of any practical use. Notice that

coefficients are only calculated for probabilities P,(p) with n<KM , and that the number

of calculated coefficients decreases with n. Nevertheless, if the power-series expansions

converge, any degree of accuracy can be obtained by increasing K.

There are systems for which (3.15) converges for all 0<p<1. For example, for an
M/M/1 queue, the steady-state probabilities are equal to p"(1—p). The coefficients of the
power-series expansion are zero for all k=n+2, so that the analytic continuations of the
steady-state probabilities are entire functions of p. More generally, for an Mx/GE_,/l
queue, it can be shown by studying the balance equations that Uy,n =0y, for all k2Jn+2 .
The arrival process MX has exponential interarrival times and batch arrivals with finite
maximal batch size. The GE, service distribution is a generalized Erlang distribution, i.e.
the convolution of J independent, not necessarily similar, exponential distributions.

On the other hand, there are also systems with singularities very close to the origin.
For example, the steady-state probabilities of the GE,/M/1 queue with 1/a;+1/cy=p;=1
and a; #«a, have singularities at

-1 2
v — | [ 8 (3.35)
ax -4 [ Jory g ]

Because oy, >4, these singularities are negative and can lie arbitrarily close to p=0 if
o, is large enough, that is if onc of a; and «, is large and the other is close to one.
This seems to be a typical example: no singularities with positive real part were found so
far, and the PSA behaves worse when the system parameters are of different orders of
magnitude.

If the radius of convergence is smaller than one, the following bilinear conformal
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mapping can be used [1]:

(1+G)p 0
[/ i Tl 2 o I - . 3.
7Go P EYIEED) G=0 (3.36)

This transformation maps the interval [0,1] onto itself, and the disk in C with centre
$=G(1+2G)! and radius 1—5 onto the unit disk. The steady-state probabilities can be
expanded as power series in terms of 0 :

& = 0 _ o THly x= ok
P(0) = Pn(m) D L (3.37)
and the coefficients are now determined by
Voo =rd., - Av=0,, elv=1, (3.38%
o =T
Vio = - X Vinesdy . k21, (3.38%)
n=1

{ 1+®) Vip -GV, | B (-9)

M
= ¥ d0"(-dy) ¥ A Veyg

- : MA@-D
+ (Yo-DT AV, + El ¥ A Ve ipim (3.38°
-
kM-n-1 ' T
+ (1+G) E $00 (1 -%00) Vine14¢ B & odg,
=0
@M1
- G Y d0(1-600) Vineree B ooby . 1snskM,
=0

with V=0, if kM<n .
Lower bounds on the radius of convergence are similar to those in Theorem 3, with &
replaced by

b = 1 1(¥-DT Ale l(1-2)" B,

M
+ LY ¥, Alw. la-2)1 B, (3.39)

I+ m=1

Q

G 1+2G T f)is, oy
* 1 *1eg IB égso (1-&)T B, .
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The corresponding lower bound on the radius of convergence is usually still to small.
Nevertheless, the mapping does serve its purpose. For G->co, the mapping (3.36) maps
the disk |p—'| <% onto the unit disk. So far, only singularities with negative real part
were found. If this is generally true, then the analyticity at the origin of the steady-state
probabilities ensures that convergence can always be obtained by choosing G large
enough, since all singularities can be mapped outside the unit disk, while keeping the unit
interval inside the unit disk. Unfortunately, convergence is usually slow for large G .

To store all coefficients when using the algorithm with mapping, the memory
requirements are still about %4K2M times the memory requirements of an / by J matrix of
reals. If the merhory space of matrices that are no longer needed for the recursion is used
again, the required number of matrices is now about 2KM, about doubled as compared to
computation without the mapping. The number of multiplications to compute the
coefficients is also roughly doubled.

4. The queue-length and waiting time distribution

When the coefficients of the steady-state probabilities have been calculated, the probability
Py(p) of n customers in the system can be approximated in the obvious way:

K
Pa(p) = €] Pylp)e, = Yy o e,T Ugnty, n20. 4.1
k=[nly
The epsilon algorithm can be used to accelerate the convergence of these series. For a
description of this algorithm see Wynn [11] or Blanc [2,3]. If the conformal mapping is
used, then p and U should be replaced by 6 and V. The same is true for all other formulas
in this section.

After the p,(p) have been computed, the ¢ moment of number of customers in the
system, L,(p), can easily be calculated from them. However, to accelerate the
convergence, it is better to compute the coefficients of the power-series expansions of
these moments:

@ o o -]
Lo) =Y n'p0) =Y n' ¥ otefU,e,=% by, @2
n=1 n=1 "’r"]u k=1

with
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kM
dpg= Y n'ef U, 6p. “.3)

n=1
Since Ly(p) has a pole of order ¢ at p=1, the power series will converge slowly for heavy
traffic, but the rate of convergence can be strongly improved by using the fact that the
series {dy ;}; >0 Will tend to a polynomial in k of order £—1 as koo . For £=1 and £=2,
this means that there are constants a, b and ¢ such that lim,, . (d, x—a)=0 and
limy, .,(d; , —b—ck)=0, which leads to the extrapolations

+ Y g
k=K+1
4.4
;- Ediy v dyx P o
= + ,
"Z:: PGy *CL Kk T-p

K
L) = ¥ o dyy
=1

L =~ ¥ tdy+ ¥ o[ dog + Gy p-dy ) k-5 ]

k;| k=K+1 (4.5)
k b~k | pK!
- p + et ey e,
3 Fiiy | g BT o2

For higher order moments similar extrapolations can be used. From the generating
function of the queue-length distribution of an M/G/1 queue [6, page 238], it can be
shown that these approximations of L,(p) are exact for M/PH/1 systems if K=¢+1, all
the same whether the approximations of the steady-state probabilities are good or not. This
underlines the advantage of evaluating the power-series expansions of the moments instead
of calculating the moments from the steady-state probabilities.

Characteristics of the waiting time distribution are found by conditioning on the state of
the system at arrival moments. Define

Apl0) = 0 Y3y A Py(p) . @.6)
Then A, (o) is an I by J matrix whose (i,j)" element equals the mean number of
transitions per unit time, caused by arrivals of batches of size m which result in a
transition to state (n+m,i, j ). The mean customer arrival rate equals

o M M
NOEDID) mel AP ey =p el Yy m¥’ Ay, 4.7

n=0 m=1 m=1

where » is again the steady-state distribution of the Markov chain underlying the BMAP.
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Clearly A(p) is linear in p. The probability that an arbitrary customer is served without
delay, is equal to the arrival rate of type-1 customers divided by the total arrival rate,
which can be found by conditioning on the batch size:

M 1-¢g 1
Pr{No Delay } = T 1 e; Agm(p) €;
’";‘ o 4.8)
1-¢
Sy S Ty,
) k=0 m=1  1-¢gpg

Moments of the waiting time distribution can be calculated under the assumption that
the service discipline is FCFS. Let p, , ,, be the J-vector whose Jj™ element equals the ¢
moment of the waiting time of a customer, conditioned on the fact that the customer
arrives in a batch of size m while just before arrival there were n customers in the system
and the service process was in phase j. Then W,(p), the £ moment of the waiting time
distribution, is given by

1

W’(p) - T

Mz

C Anm(p) l‘f'n'm
4.9)

MaZM“
3

m

M M T.T

= me, ¥, AU :
)‘( D £ ng() mz':l I *m ko Be.nm

If the maximal batch size M is one, the first coefficient of W,(p) is zero because
customers who arrive in an empty system in a batch of size 1 have zero waiting time
(k0,1 =0;). The use of extrapolations like in (4.4) and (4.5) and the use of the epsilon
algorithm again strongly accelerates the convergence. As before, the approximations of
moments of the waiting time are exact for M/PH/1 systems if K=¢+1 [6, page 256].

To calculate p; , ,, , first define p, as the J-vector of which the Jj® element equals the
™ moment of the residual service time, conditioned on the fact that service is in phase j.
Since the type-1 and the type-2 service time distributions differ only in the initial
distribution, g, is valid for both. Define the scalar i, as the ¢ moment of a complete
type-2 service time. Conform Neuts [10, page 46], p, and i, satisfy

©n

=0 [BU-®)]" ey, iy = (1-dg) o0 ne, £21. 4.10)
Now, the p; , ,, can be calculated by conditioning on the place in the batch and, for n=0,
on the number of type-1 zero service times:
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m  h-2
LYY doo(l-doo) [m+(h-t-D)iye; ], n=0 ,
M p=1 =0
Kinm =]
i f: [ul+(n+h—2)ﬁ,e,], n21,
m =i
LA ) 4.11)
h=1 (=0
n " . 23
K2.nm o+ (h-0-2){ fpe;+2im +(h-t-3)ife, } [, n=0,
m
. {,,,l+(n+h—2){,12e,+2;.,u,+(n+h-3)ﬁfe,}]. n=1 .
h=1

Moments of the waiting times of the first or last customer in a batch (instead of an
arbitrary customer), and of sojourn times can be found by using appropriate definitions of
He.nm - If type-1 and type-2 services have equal means, the mean waiting time can also be
calculated from the mean queue length with Little’s formula. If not, to apply Little’s
formula, the probability of no delay is needed to calculate the overall mean service time,
which is not known in advance.

5. Examples

In this section some numerical examples are given. These will concern the H,y/H)/1,
HJ/H,/\ and MMPP,/H,/1 models. The parameters are chosen such that the mean
interarrival time and mean service time are equal to 1 (for p=1). The hyperexponential
distributions have variance 2 and balanced means. The probability that in the Hé" arrival
process the batch size equals m is 0.25 for m=1,...,4. In the MMPP, arrival process, the
interarrival times also have variance 2, the steady-state distribution of the underlying
Markov chain is [0.5,0.5] and (wo subscquent interarrival times have correlation
coefficient 0.125 (if ¢ is the variance divided by the squared mean, the correlation
coefficient is at most '%(1-c™2), which is 0.25 in this case). For these models the
expectation and variance of the number of customers in the system are calculated for
different values of K, the number of calculated coefficients of these moments. In all cases
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the mapping (3.36) was used, where G was chosen such that the maximal coefficient in
absolute value was not too large. The epsilon algorithm was used, in a similar way as in
Blanc [3]. The results are given for p=0.7 in table 1 and for p=0.9 in table 2. A dot
indicates that the value rounded to the first 4 digits is the same as the value above it. In
table 3 the results are given for the same models, but with the variance of the interarrival

times and the service times equal to 4 and the correlation coefficient equal to 0.15.

Comparing table 1 and table 2, it can be concluded that the algorithm converges faster
for smaller values of p, which is no surprise since it calculates the power-series
expansions around p=0. The difference between the model in table 2 and the model in
table 3 is that the system parameters in the latter models have a wider range, which
results in slower convergence. Perhaps this could be avoided by some kind of scaling, but

this has not been thoroughly investigated yet.

HyHy1 (G=2) HY/Hy1 (G=2) MMPPy/Hy/1 (G=3)

E v E v E v

5 4014  28.02 7.701  96.57 3452 63.56

10 3.807  27.68 7.448  95.08 4922 4331

15 3.985 2771 7.445  95.05 4.879  43.67

20 . . . . 4.878  43.59
30 :

Table 1. Expectation and variance of the number of customers in the system, for p=0.7

Hy/Hy/1 (G=2) HY/Hy1 (G=2) MMPP,/H,/1 (G=3)

E v E v E v

5 17.45  365.4 3495 1199 3501 1265
10 17.19 3521 3223 1220 223 53.4
15 17.14 3552 2.3 1232 21.37 5706
20 . : 32.12 . 2134 559.2
30 21.36  562.8
40 560.2
50 560.3
75 ;

Table 2. Expectation and variance of the number of customers in the system, for p=0.9
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Hy/Hy/l (G=6) HY/H1 (G=2) MMPPy/H,/1 (G=T)

E v E v E v

5 3476 1349 76.54 3905 56.76 1252

10 3336 1441 63.88 3714 4267 2138
15 3349 1418 61.17 4384 4175 2237
20 33.48 1411 59.46 4636 4193 2220
30 : 1413 60.61 4494 9202 219
40 : : 60.61 4498 41.88 2175
50 : i 60.56 4504 4190 2145
75 : : . 4505 . 2208
100 : : . . . 2209

125 : : ’ ; 3 2208

Table 3. Expectation and variance of the number of customers in the system, for higher
variance and correlation and p=0.9

6. Conclusions

The power-series algorithm has been extended to the single server queue with Batch
Markovian Arrival Process (with finite maximal batch size) and independent general
phase-type service time distributions (possibly different for the first service after each idle
period). It has beeen shown that the steady-state probabilities are analytic at p=0 and a
lower bound on the radius of convergence of the power-series expansions has been given,
which has improved the theoretical justification of the PSA. The extension to
non-Poissonean arrival processes and non-Coxian service time distributions can be
achieved by changing the order of computation and a limited number of matrix inversions.

For the single server queue, comparing the PSA with the matrix-geometric approach,
the latter seems preferable. With the latter, the service time distribution need not be
phase-type, the required memory space is much smaller and the method is more stable.
On the other hand, the main advantage of the PSA is its flexibility, illustrated by the wide
range of models it has been applied to. The analysis of more general arrival and service
processes in this paper can be extended to multi-queue systems, like fork-join models,
networks of queues and polling models. Because of the high dimensionality, the number of
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queues and the sizes of the supplementary spaces of the arrival and service processes has
to be limited, but for moderately sized systems the PSA is applicable, which will be the
subject of future research.
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