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Abstract

77te power-xriu algorithm ia developed for a siogk xrver queue witó a Batch Markovian Arrival
Proceaa and independent general phax-type xrvice time diaribution. The aervix time distribution of
the firat xrvice after an idk period is anowed to difrer from the dietributioo of otóer xrvice timp. It
is proved that the eteady-uate probabilities as functioos of the kiad of the rystem are aoalytic u the
origin and recursive exprcasions ue derived to cakulue tóe coeffickms of tóe power-xries
expansions. 77tese power xries are uxd to study the queue kngth and the waiting time distributioo.
The prcxnt paper u a preliminary to erztemrom of the algorithm ro muhi-queue syapems with
tan-Poiaeonian arrival process and xrvice distributions.

Keywords: Single xrver qtu;ue, liatch Marknvian Arrival Proceas, power-xriea expamion.

1. [ntroduction

If customers arrive one at a time at a quetu and future arrivals are indepentient of the
arrivals in the past, a Poisson process is usually a good description of the atrival process.
However, these coMitions may not be satisfied. Consider for example a central computer
with several terminals where the offer~ed data packets consist of several jobs and the
ntunber of actíve terminals varies with titne. Here the Poisson process would be a very
inadequate approximation. Also in the study of ATM systems, the Poisson process is
considered to be ttnsuitable to model the bursty nature of the arrival process. A far less
limited class of arrival processes is the class of Batcó Markovian Arrivai Processes
(BMAP), which was introduced by Lucantoni [8J am is equivalent to the versatile
Markovian point process (N) introduceà earlier by Neuts [9]. This class of arrival
processes contains tnany well-known special cases. Examples of BMAPs with maximal
batch size equal to 1 are Markov-modulated Poisson pmcesses, processes with general
phase-type (Pf~ interarrival times (not necessarily indepentlent) and overflow processes
from finite Markovian qtteues. Also processes of which the ~bsequent batch sizes depend

~ 71te investigations were wpported in part by the Netherlatds Fwndation for Matheatatics SMC with fmaxial
aid from tlte Netherlands lkgan'vation foc the Advancement of Sckmific Rexarch (NWO).
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on each other or on the interarrival times are included in this class. A more detailed list of
special cases is given by Lucantoni [8].

The power-series algorithm (PSA) is a device to compute perfon~tance measures for
multi-queue systems that can be described as a contimious time Markov process. The basic
idea is to transform the infinite set of non-recursively solvable balance-equations into a set
of recursively solvable equations. This is done by multiplying all transitions in the arrival
process by a scalar p. For low values of p the system will be relatively empty, for high
values it will be full, so p is a measure of the load of the system and the steady-state
probabilities are clearly functions ol~ p. It will be shown for the BMAPIPH~I that they are
analytical functions of p, at least tbr small values of p, so that they can be written as
power series in the load p, and that the coefficients of these power series can be
calculated recursively.

The PSA has been applied to queues in parallel [1], coupled processor models [7], the
shortest-queue model [4] and various polling models [3]. Recently, the PSA has been
extended to calculate partial derivatives of performance measures with respect to system
parameters [5]. All previous models use Poisson arrival stneams and exponential or
Cozian service times. The aim of the present paper is to pmvide a better theoretical
justification of the PSA and to extend the PSA to models with a Batch Markovian Arrival
Process (with finite maximal batch size) and general phase-type service time distribution
(possibly different for the first service after each idle period). The discussion is restricted
to the single server model to keep the notation simple and to provide a basis for the
analysis of multi-queue systems. The BMAPIGIl queue was already analysed by
Lucantoni [8], using the matrix-analytic approach. However, this method seems to be
unsuitable for multi-queue systems.

In section 2 the BMAPIPHIl model and its global balance equations will be described.
In section 3 the algorithm to calculate the ccefficients of the power-series expansions of
the steady-state probabilities is derived and it is proved that the power-series ezpansion.c
converge on a disc around the origin. In section 4 it is shown how these power series can
be used to compute the queue-length distribution and moments of the waiting time
distribution. In section 5 some examples are given and in the fmal section 6 conclusions
are drawn.
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2. The BMAPIPHII model

The behaviour of a Batch Markovian Arrival Process depends on an underlying continuous
time Markov chain. Transitions in this chain may trigger batch arrivals. Let the number of
states of this chain be I( G oo). In state i, the transit9on rate is pa; and a transition to state
h occurs with probability x;~ (i,h-1,...,1). When such a transition is made, a batch of size
m arrives with probability q;h (m-0,...,M). The n~ are strictly posidve and fuvte and
normalized in such a way that the queueing system is stable for OSpC 1. The factor p is
used to set the time scale of the arrival process, while keeping the time scale of the
service process constant. It will be called the load of the system. The steady-state
probabilities will be consideted as functions of this load. It is assumed that the Markov
chain is irreducible, which is no restriction because only the steady-state behaviour will be
studied. The ma~timal batch size M ( Goo) is assumed to be such that arrivals of batches
with size M do occur: E;h a;~ q;~ ~ 0. This again is no restriction.

The service times are mutually independent random variables and aiso iadependent of
the arrival process. They have a general phase-type distribution with J(G oo) phases. The
transition rate in phase j is SI and a transition to phase h occurs with probability ~Iti
( h,j-1,..., J). Service is ended after phase j with probability ~jo -1 - Eh,t....~ ~Iti . The
service time is zem with probability ~p. If the service time is positive, then the initial
phase is phase j with probability ~~~ (j -1,...,J; Ej:t, ..~t~i-1 ). The rates ~I and the
mean service time are assumed to bc: strictly positive and fmite.

Type-I customers are customers who are served after an idle period, up to and
including the first customer with non-zero service time, that is all customers with zero
waiting time. A type-2 customer is any other customer. The service times of both types of
customers are allowed to differ in the initial distribudon: ~ap and ~oj for type-1
customers, ~ro and ~oI for type-2 customers (j-1,...,J). That differenrxs are not
modelled with different pj and ~Ih (h,j-1,...,J) may at fitst sight seem more restrictive
than it actually is: any pair of phase-type distribudons can be modelled by taking
{~iti }i.h3t.....~ block-diagonal, with the blocks cotresponding to the different
distributions. The queueing system is stable if the mean intetarrival time is larger than tbe
mean of the type-2 service time distribution. If the type-1 attd type-2 distributions have
equal means, the factor p is equal to the overall mean service time divided by the tnean
interarrival time (the usual definition of the load).

The queue-length distribution is determined under the assumption that the service
discipline is non-preemptive, workconserving and service titne independent. This means
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that services are not interrupted, the service requiremetus an: not affected by the service
discipline, the server is idle only if the system is empty and the service order am service
times are independent. Examples are first-come-first-served, last-come-first-served and
service in random order. For this class of service disciplines the order of service does not
influence the queue-length distribution. The waiting titne distribution is studied under the
assumption that the service discipline is first-come-fust-served, so that the waiting time
distribution can be determined by condidoning on the situation at arrivais.

Consider the continuous time Markov process {[N~,I~,Jr];tZO}, where Nt denotes the
number of customers in the system (waiting or being served), 1~ the state of the BMAP,
and Jt the service phase, all at time t z0. For N~ -0, let J1 be the initial phase of the next
customer (with non-zero service time) to be served, so that the initial phase of the service
of any customer is detetmined right after the departure of the preceding customer. The
steady-state probabilities are defined as

P(P;n,f,j) - lim Pr{ N~-n, I~-i, Jr-j I No-no. 1o-fo, Jo-jo, atload p},(2.1)
c-.o~

with (n,i, j) E Q- No x{1,...,1 } x{ 1,..., J}. The steady-state probabilities do not depend
on the initial conditions (no,io,lo ). "~he balance equations are

M I
P~i P(P;O,i,j) - ~ ~ Pahxhi9lu ~pp P(P;O,h.j)

m~ h-1

t

(P~i}Sj) P(P;n,iJ) -

ao J
~ ~ Sh~ho~oo~oj P(P;lfl,i,h) .
t-0 h-l
M I

~. Z. Pahx~;q~ m~"(1-~op) P(P;O,h,j)
(2.2)

ms0 h-1
!

~ Qh~ty P(P;n,i,~)

~ ~
~ ~ Sh~ho~oo(1-~oo)~oj P(P;ntl}l,i,h) ,

' ~ ~ ~h~hi9ht P(P;n-m,h,J)
Mn(n-1) 1

m
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for n Z 1, i E{ 1, ...,! }, jE{ 1,... , J }, and where x ny denotes the minimum of x and y. In
the right-hand side (RHS) of the fust equadon, the first term corresponds to a batch
arrival in an empty system. All custo~rs in this batch have a zero service time (of
type-1), so that the system is itnmediately empty again. The second term corresponds to a
service completion, followed by enough zero service times (of type-2) to empty the
system. In the RHS of the second cquation, the first tetm vanishes if n is larger than the
maximal batch size M. It conresponds to a batch arrival in an empty system, followed by
a number of zero services. The second term wnresponds to a batch arrival in a non{mpty
system. Sittce no new service is started, there can be no uro service times here. The lasi
two terms correspond to changes in the service phase: the fitst without completion, the
second with compledon and followed by a ttumber of zero service times. Together with
the normalization

~ r J
~ ~ ~ P(p:n,i,j) - 1 , (2.3)
n-0 i-1 j-1

this set of equations deten:nines the steady-state probabilities. However, since the number
of s~ates is nut finite it can only be solved in special cases. Approximations can be
obtained by truncating the state space. Altetnatives are the matrix-geometric approach and
the PSA. The latter will be described in the next section. If the buffer size of the queue is
futite, the state space is also finite. Hence, solving the balance equations directly seems
more natural than using the PSA. However, fot large buffer sizes the PSA may still be
more efficient.

3. The power-series algorithm to calculate the steady-state probabilities

In this section it is proved that the steady-state probabilities, as fimctions of p, are analytic
at p-0 and recutsive expressions are derived to calculate the coefficients of the
power-series expansions at p-0. This is done in thtee steps. In Theorem 1 it is proved that
thc state prubabilities satisfy p(p;n,~,j)-(x p~"~M ) for p l0 , where

~n~,y - Min ~ k E Np I k z M~, for n E 1Vo (3.1)

(so ~n~,y denotes nIM rounded upward). This does not imply that the steady-state
probabilities are analytic at the origin. (For example the function F(x) -~x is O(1)
for x a0, but it is not analytic at x-0 .) The order fouad in Theorem 1 is used in
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Theorem 2 to derive recursive expressions for the coefficients of the power series,
basically by determining all derivatives at p-0. That these coefficients ezist still does not
prove that the state probabilities are analytic at the origin, sittce the power series may not
converge. (For example, the series E„ZOn!x" has finite coefficients, but it does not
converge for x;EO, so it is not an;~lytic at x-0 .) Finally, in Theorem 3 it is proved that
the power series found in Theorem 2 do converge in a disk arou~ the origin. Of course,
one would like to have convergence for all values of p in [0,1), but in general this is not
the case. Examples can be given with singularities close to the origin. To obtain
convergence in these cases, a conformal mapping is used, resulting in different power
series.

Theorem 1. The steady-state probabilities of a stable BMAP~PHII queue satisfy

P(p;n,1~Í) - O~p[R~MI , pj0 , for ( n,l~!)EQ . (3.2)

Proof. Define the following subset of Q:

S(n ,r) - { (e ,i,j)Ef1 ~ (PSn) or ( P-nt1 and jEr) } ,
(3.3)

for n z0 , r S{1,...,J} . In steady state, the rates at which the process leaves and enters
S( n ,r ) are equaL

! ! M I
` m m-n-t(jEr)

F. ~ ~ L. pai ~ih qih 1 -~pp ) P ( P ;~ ~ 1 ~.l )
i~l j-t m-n.l.l(jEr) h-i

n I J M t

t L. ~. .~.. L. L. pai ~ih 9iy P( p;[~ i~J)
f-1 i-1 j~l m-n-laltl(jE1~ hzl

l p~i~ih9ih ' ~ ~j~jh P(p;nt1,1.J) (3.4)~ ~ ~ I ~ ~ m
Ji-t jer m-t h-t h r

i l
- ~ Rj~jo t ~ ~j~jh J P(p;ntl.l.l)

rnt j~r hEr
~ i J

t ~ ~ ~ Sj ~jo ~óo } ~ ~j ~jv ~óo t (1-~op) ~oh ~ P ( p ; n t 1 tl , i ,J ) -
t-t i-t j-t hEr



The function I(E) denotes the indicator funcdon of event E. In the fuat two tenms, the
summation over m is zero if the upper indez is stnaller than the lower imex. The first
ternt of the LHS corresponds to a batch arrival in an empty system, followed by a limited
number of zero service times. The second term corresponds to a batch arrival in a
non-empty system. The states with n f I customers in the system are only in S( n,I` ) if
the service phase is in I'. If so, then after a batch arrival or a transition to a service phase
not in I' the system will leave S( n,I' ). If not, then after a service completion or a
transition to a service phase in I' the system will enter S(n,I' ). Finally, if the number of
customers in the system is larger than n t 1, then a service completion followed by a
sufficiently large number of zero service times will bring the system back into S( n,I' ).
A distinction has to be made between whether the new number of customers is smaller
than or exactly equal to n f 1, since in the second case the system will only enter S( n,I' )
if the new service phase is in I'.

Let I'k S{ 1, . ..,J} , k Z0, be the set of all phases from which service can be ended
within k transitions:

Pl , k-0 ,

r {jE{ I,...,J} I ~~0~0 } , k-1 ,
k - (3.5)

Because the mean service time is finite, there exists a K5J such that I'K-{1,...,J} .
The theorem is proved by induction over k and n. Suppose that for some n ZO and

k E {0,...,K-1}

P(P;t,i,j) - O~p~~~w~, PiO, for (l.~.j)ES(n,rk) . (3.6)

Because pmbabilities are bounded, (3.6) is true for n-k-0: P(p;0,i,j)-0(1) for p~0 ,
for all (O,i, j) E S( 0,0 ). Coasider equation (3.4) for the set S(n,I't ). In the second
term of the LHS, the lower i~tdex of the summation over m is larger then the upper index
if l c n t 1-M. Because arrivals ot' batches with size M do occur and because of (3.6),
this second tetm is of order O(p~} ~"} t -M~w ) -C( p~nf 1~ ) for p a0. The first and
third term of the LHS are of the same or higher order. Since all coefficients in (3.4) are
non-negative, this implies that all probabilities in the RHS of (3.4) with positive
ccefficients are also of this order, especially those in the fuat tenn:

rk-1 ~ ~ IE { I,...,J} I ~hErx-~ ~jti ~U ~ , ka2 .
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P(P;ntl,i,j) - 01P~n~t~y', PiO, for iE{1,...,I},jErk.t`I'k. (3-~
Hence, ( 3.6) is true for (P,i,j) E S( n,I'kt t) and, by induction over k, also for
(l,i, j) E S( n,I'K ). The fact that S( n,I'K ) sS( n f 1,I'o ) finishes the proof of Theorem 1,
by induction over n. p

Theorem 1 shows that the order of the steady-state probability of a certain state is equal
to the minimal number of trattsitions in the arrival process to reach that state from an
empty system. For single arrivals (M-1), p(p;n,i,j)-0(p") for pi0, which is indecà
what was used in the previous applications of the PSA. The theotem also shows that, if
the power-series expansion of p( p;n,r, j) exists, the coefficients of all powers pk with
kc ~n~,y are zero. Ttteorem 2 describes how this can be used to calculate the remaining
coefficients. To formulate the balance equadons in matrix notation, define the following
matrices aitd coltunn vectors:

P„(P) - { P(P;n,i.J ) };-t....,LÍzt....J . for nz0 ,
A - diag( { ai }i-t,...,i ) ~
ti - { x;~, }~h-t....,~ ~
Qm - { 9ih }i.h-1.....~ ~ for m~,...,M ,

~m ' { ~rh Qih }i.n-t,....~ ~ for m~,...,M ,
B - diag( { Bj }j:t,....J ) . (3.8)
~ ` { ~Jn }j.n-t....,J ~
m.o - { ~jo }j-t....,J ~
~o. ' { ~oj }j-t....,J ~
~0. - { ~Oj }jst....,J ~

Let further eH (Oy) be a column vector with all its H components equal to 1(0), and
Oyg an H by K matrix with ail its components equal to 0. Notice that the matrices ~Y,a ,
m-0, .. .,M , are entry-wise products of II with Q,,,, and that Em~Y,~ -II. Notice also that
( I-~ ) e~ -~.o . Tbe set of equations (2.2) and ( 2.3) can be rewritten as:

M
P A Pp(P) -~ P~pp ~Ym A P~(P)

m~

t~, tbpp Pt.t(P) B ed.o ~o.
t -o

m t
(3.9)
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M
P A Pn(P) t Pn(P) B- ~,

m -n
P ~ppn (1-~pp) ~YM A Po(P)

Mn(n-1)
t ~

m -0
t

oc

for n Z 1, and

~ ef Pn(P) e~ - 1.
n~0

P ~m A Pn-m(P)

Pn(P) B ~

~00 (1 -~00) Pn,l.t(P) B ~.p ~p ,

(3.10)

(3.11)

If zero service times do not occur, then most summations in (3.9) and (3.10) reduce to a
single tetm, sittce in that case ~pp -~p~p -0 unless h~0.

Summing (3.9) and (3.10) over all nz0 and post-multiplying with a column of ones
shows that

(I-II)T A ~ Pn(P) e~ - 0~ .
n-0

(3.12)

Together with (3.11) this implies that the I-vector En Pn(p) e~ equals the steady-state
distribution v of the Markov chain underlying the BMAP, determined by ( I-II )T Av -0~
and e~v-1 . The solution to these equations does not depend on p and is unique, because
II is itreducible.

Reatranging (3.9) shows that Pp(p) is an outer product of an I-vector with ~p :

( M t ( m
Po(P) - p A -t I I - ~ ~óo ~Ym 1 I ~ ~ Pt.t(P) ~ B ~.o ~ó . (3.13)

Post-multiplying this equality with c~ shows thatlthe 1-vector must equal Po(p)e~, since
~ore~ - 1. Hence,

Po(P) - Po(P) e~ ~o . (3.14)

This is a consequence of the definition of Jt at times when N~-O (see section 2).
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Theorem 2. The steady-state probabilities oj a stable BMAPIPHII queue can fornralty be
expanded as power series in ternrs of the load p of the system:

~
Pn(P) - ~ Pk Uk,n , (3.15)

k- ~n~y

where the Uk n are 1 by J matrices determined by

U0,0 - v~T . (I-II)T ~ r - Ot , e~ ~- 1,

kM
t

Uk.U - - ~ Uk.n e!~0. ~
n-1

Ukn B (I-4')
M

- ~ ~~"(1-~~)

kzl ,

~Ym A Uk-1.0
m-n

Mn(n-1)
t(~YO-I)T A Uk-l,n } ~ ~in A Uk-I.n-rn

m-1
kM-n-1

t E ~óo (1 -~oo) Uk,n.t.r B~.o~ó . 1 snskM ,
r -o

with Uk,n - O~~ if kMCn.

(3.16')

(3.16b)

(3.16~)

Proof. Define for p E[o, l) and n z 0:

Pn(P) , k- ~n~M ,
~,rt(P) -

Rk-l,n(P) -pk -t Rk-l,n ~ k 1 ~n~,y , (3.17)

Rk,n - lim p-k
Rk.,~(P) , k z~n~M .p10

It will be shown that all the Rk n exist a~ that they satisfy the equalities detennining the
corresponding Uk n, which implies that they are identical. Notice from the definition that
if Rk-t.n ezists, then Rk n(P) so(pk-~) for p l0 .

Substituting (3.17) into (3.11), (~.12) and (3.14) leads to
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~r

et ~ R~n~~,n(P) e! - 1 ,
n-0

~r(I-II) A-0 R~n~r,n(P) e! a 0~ .

Rp.o(P) - RO.o(P) e! ~p .

(3.18)

By theorettt 1, the R~n~y~( p) are O(P ~"~y ) for p ~ 0. Hence, letting p ~0 in (3.18)
rendets

e 1 Ro o e! - 1, (1- II )T A Ro o e! - 01 , RO.o ` Ro.o e! ~oT .
This shows that lto o ezists and satisfies the same equalities as Uo o in (3.16~.

Substituting (3.17) into (3.10) for 15n5M leads to

R~,n(P) B (I -~)
M- ~ ~~ n

m-n
(1-~00) P `Ym A KpA(P)

Mn(n-1)

' P(~0-I)T A Rl.n(P) 4 L, P ~Y~ A Rt n-m(P)
m-1

~
~ T

i ~ ~pp ( 1 -~W) k~n.l.f~N.nfl,l(P) B ~.0 ~. '

Dividing by p and lettittg p 10 renders

M
Rt n B (I-~) - ~. ~~oón (1-~op) `Yui A ~0.0

m-n
M-n-1

rbao (1-~ao) Rt.n.t.t B ~.o ~oT .

(3.19)

(3.20)

(3.21)

Considering nzM down to n-1 shows that, since Roo exists, so do Rt~ (15n5M) and
they satisfy the same equalities as the U~ n in (3.16~.

Substituting (3.17) into (3.18) anJ using (3.19) leads to
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ej ~ Ri,p(P) t~ { R~n~y.i.n(P) t Prnlx R~n~M~n 1 1 eJ ' 0~

(I-II)TA [ Ri,p(P) tn~, { R~n~w.l,n(P) t Prn~r R~n~y.n ~ 1 e! z Ol ~(3.22)

RiA(P) ~ Ri,p(P) eJ ~p ,

which implies

RI.O(P) - - ~ { R~n1M , I.n(P) ' P rnlw ~i ~n1M n } e J ~p .
n-1

Dividing by p and letting p ~ 0, now renders

M

RI.o(P) - - ~ R~n~M,n eJ ~~ .
n-i

Hence, also Rl,p exists, aM satisfies the same equality as UI,O in (3.16~.
Nezt, suppose tliat for some K~ 1 it has boen shown that, for 15k 5K,

Rk.O(P) - -~ rR~n~y tk.n( P) t p ÍnÍu `k-i
k-I ~ }-

e
n~i `

~ Ín~y k I,n.hM } J~p. ~

and that for 15 n 5kM,

(3.23)

(3.24)

(3.25)

Rk,n(P) B (I-~)
M

-~~pp n(1-~00) P `y In A Rk- ÍnÍu.O(P)
m -n

Mn (n-i)
' P(`Yp-I)T A R,t,n(P) t ~ P~Y~ A Rk-I(m2n-M ~n~r.M-1).n-m(P)

m-1

4 pk (~Yp-I)T A Ák-I.n

n-M ~n~y.M-!

~ pk `i'm A Rk-l.n-m

ae
t ~ ~00 ( 1 -~00) R Ín, 1.1Í.. - ~nÍ.. tk.n,l~l(P) B~.O~OT

l-0

k- Ín~M oe

t ~ ~
h'i l-(h~~n~y-1)M-n

~

~pp (1-t,(~)
Prnrlal~Y-~nÍ~t.k-h

X It ~n ~i.l~M - j'n~w .k-h,n.l Fl B m.0~0.

(3.26)
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and that the Rk ~(15k5K) ezist and satisfy the same equalities as the corresponding Uk~
in (3.16). By (3.20) to (3.24), this is true for K-1 . It can be shown, by substituting
(3.17) and some more tedious calculations, that then ( 3.25) and (3.26) are also true for
k-Kf1 , and that the Rxtt,n exist and satisfy the same equalities as the corresponding
UK~ t ~ in (3.16). By i~uction over K, this proves theorem 2. p

Because the mean service time is fmite, B( I-~ ) is non-singular so that the matrices
Uk ~ can be fout~ from (3.16~. Notice that, if the service time distribution is Coxian, as
in previous applications of the PSA, B( I-~ ) consists of zeros, except for the main
diagonal and an adjacent diagonal so that no extra work needs to be done to compute the
LU-decomposition.

A more intuitive way to futd the recutsive relations (3.16) would be to assume
beforehand that the steady-state probabilides are analytic at p-0 , so that the power-series
expansions (3.15) exist. Two analytical functions are only equal if all coefficients of the
power :series expansions are equal. 'fherefore, substitution of these expansions into (3.10),
( 3.11), (3.12) and ( 3.14), and eyuating coefficients of corresponding powets of p on
either side of the equality signs, also leads to ( 3.16).

Fmm formula ( 3.16) it can be seen that each matrix Uk~ is a function of matrices of
which either the fitst index is smaller or of which the fust index is equal and the second
index is larger. Therefore, the ccefficients can be recursively calculated for increasing
values of k, and for each fixed k for decreasing values of rt, starting with n-kM. For
n~kM the ccefficients are zero. The power-series algorithm to compute all coefficients up
to and including the coefficients of the K~ power of p is as follows:

Solve the set of equations (1-II)TA v-0~ and e~v-1 ;

Uo.o ~ v~oT :
kfl;
while k 5 K do

Calculate U,t R from (3.16`) for n-kM,kM-1,...,1 ;
Calculate Uk o from (3.16b) ;
k rkfl.

"I'hc ~m:nwry n..yuirements to slorc ifx; ccefficicnts appmximately equals ~kKZM time.c the
memory requirements of an! by ! matrix of reats. However, if one is not interested in the
complete queue-length distribution, but only in some characteristics of the distribution
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(like moments and the probability of an empty system), the memory requirements can be
significantly reduced. If the memory space of matrices that are no longer needod for the
recursion is used again, the required number of tnatrices is only KM, which is equal to the
number of considered steady-state probabilities. The tnimber of multiplications to compute
the ccefficients is of the order IZ J4MZ K3, but if the arrival andlor service ptucess have
some special structure, the computation time can be coacidetably reduced. Usually, the
memory space requirements are more restrictive then the computation time tr,quirements.

In the following theorem it is proved that the steady-state probabilities are analytic in a
disk around the origin, which justifies writing the steady-state probabilides as power series
in p. This is proved by showing that the power series fou~ in Theorem 2 converge in a
neighbourhood of p-0 and a lower bound on the radius of convergence is obtained. Up till
now, analyticity at the origin was only proved for a specific coupled processor model [7],
using the special MIMII sttucture underlying the model.

Theorem 3. The steady-state probabilities of a stable BMAP~PHII queue are anatytic
functions of the load p in a disk aroundp-0 .

Proof. For a vector x and a (not rtec;essarily square) matrix A, consider the following
norms:

r

~x~p -'~h ~xhlP'o , 15p5 ~ ,
N A x N (3.27)

0 A N v.q - xmax -rr , 1 5 p, 4 S oo .
4

The nortn ~.~ t t is the maximal absolute column sum, ~.~,,,,, the maximal absolute
row sum, N. ~ t.,, the total absolute sum and ~.~„ t the maximal absolute value. The
following ittequalities hold:

~AtB~P.a 5 ~A~P.v' ~BNP,q '
(3.28)

NAB~P9 5'A~Pr ~~BAr.4 ' 15r5 0~ ,
known as the triangle inequality and consistency. Applying this to equations (3.16~ and
(3.16`) shows that, for kz 1 and 15n 5kM,
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Y Uk.~ N ~, ~

N Uk,n N oc,l

kM
5 A ~ II Uk.n N oo,~ ,

nal

5 6 maX { IDaX N Uk-l,n-m N m,l ~
OSmSM~n

maX N Uk,n ~ l il N au, l},
O5f SkM-n-1

where

r
Q- N e.l ~o. N t. t - J max ~0~ 2 1,

~~t,....i
b - N(`)io-I)TAI~,~ ~~(I-fi)-1 B-1Nt.1

M
} ~, N~m A Nm.ao N(I-~)-1 B-tNl.l

m-1

t IB m.o~ó (I-~) ~ B-1N1 t.
So if there are numbers uk n, such that

u0,0 - N U0,0 N m,l ~
kM

uk,0 Z a ~ uk,n .
nzt

Uk n 2 6 maX { max uk-l,n-m ~
OSmsMnn

max ukn,l,f } , 15n5kM ,
O5f 5kM-n-I

(3.29)

(3.30)

(3.31)

then N Uk n N~ 15 uk n , which impl ies that the absolute value of each element of Uk n is at
most uk n . Of course, equality in (3.31) would give better bounds, but then (3.31) would
be far more difficult to solve. If 651, a solution is

~ b rn~~ N Uo,o N~,1 . kL ÍRÍiy ,

ukn -~ C b rn1M (btC)k r"1~ 1 u00 , k1 rn~M ,

with c-abM . If b~ 1 a solution is

b(M.1) rnl,y -n II [J0,0 N oo,l ~ k- I n~M ,

uk.n - k- Ín~M - I
c (btc) u ~n~~ n , k] ~n~M ,

15k ,

(3.32)

(3.33)
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with c-max{ a(btb2t... tbM) , bM }~}. Ttte proof that (3.32) and (3.33) satisfy (3.31) is
elementary and uses the fact that for both solutions, uk~, is non-increasing in n for each
fixed k. In both cases the geometric series EkZ ~"~ ~ pkuk,n , n 20, converges for

~ p ~ c (btc) - t. But then also the power-series expansions of the steady-state probabilities
(3.15) converge and are analytic for ~p~ C(btc)-t , which proves Theorem 3. O

An upper bound on the error in p(p;n,i,j) that is made, when only the first K ccefficients
are computed, is given by

R oa
I P( P;n, r,J)- ~ Pk Uk,",t J I S ~ Pk uk," . (3.34)

k. ~"~M k-R~l

Unfortunately, (btc)-t is usually to small to be of any practical use. Notice that
ccefficients are only calculated for probabilities P"(p) with nSKM, and that the number
of' calculated ccefficients dc~cn;a.u;ti with n. Nevertheless, if the power-series expansions
converge, any degree of accuracy can be obtained by increasing K.

There are systems for which (3.15) converges for all 05pC1. For example, for an
M~MII queue, the steady-state pmbabilities are equal to p"(1-p). TTte coefficients of the
power-series expansion are zero fur all kznt2, so that the analytic continuations of the
steady-state probabilities are entire functions of p. More generally, for an MXIGE~~I
queue, it can be shown by studying the balance equadons that Uk"-0~~ for all k2Jnt2 .
The arrival process MX has exponential interarrival times and batch arrivals with finite
maximal batch size. The GE~ service distribution is a generalized Erlang distribution, i.e.
the convolution of J independent, not necessarily similar, exponential distributions.

On the other hand, there are also systems with singularides very close to the origin.
For example, the steady-state probabilities of the GEZIMIl queue with 1latt 11a2-st -1
and at;t a2 have singularities at

P -
-1 r 1 t

at aZ - 4 L 2 (3.35)

Because a t a2 ~4, these singularíties are negative and can lie arbitrarily close to p LO if
n~aZ is large enough, that is if onc of ai and aq is large and the other is close to one.
This seems to be a typical example: no singularities with positive re.al part were found so
far, and the PSA behaves worse when the system parameters are of different orders of
magnitude.

If the radius of convergence is smaller than one, the following bilicear conformal



mapping can be used [lJ:

B-(1tG)P ,
1 t Gp

B
p- 1tG(1-B) '

GZO . (3.36)

This transformation maps the interval [0,1] onto itself, and the disk in C with centre
p-G(If2G)-1 and radius 1-p onto the unit disk. The steady-state probabilities can be
expanded as power series in terms of B:

B Ín~.y ~ kpn(B) - PnI I.G(1-B)) - e k~B Vk,n ,

and the ccefficients are now determined by

VO.o - v ~ó , (I -II)T A v - 0~ ,

kM r
Vk.O - - ~ Vkne~~0 . kzl ,

n-1

eÍ v - 1 ,

(1'G) Vkn - G Vk-I,n } B (I-~)
M

- ~
m -n

~Óp n (1 -~oo) 'Ym A Vk-1,0

Mn(n-1)
t(`YO-I)T A Vk-I,n } ~. ~m A Vk-t,n-m

mzl
kM-n -1

t (1tG) ~ ~~(1-~00) Vk,ntt.e B ~.0~0.t-0
(k-l)M-n I

- G ~ ~00 (1 -~00) Vk-l.n.l.[ B ~.0~0. ~r -o

(3.3~

(3.38')

(3.38b)

(3.38`)

15n5kM

with Vk n- 0~~ if kMG n.
Lower bounds on the radius of convergence are similar to those in Theorem 3, with b

replaced by

1;~ ~(`YO-I)TAII~,m ~(I-~)-t B-l~t.l

M Y p

t 14G ~ A~m A~~m,oo tl(I-~)-1 B-lll.l

m-1
(3.39)

} iGG } 11 G uB ~.o~o. ( I-~)-1 B-1~11
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The corresponding lower bound on the radius of convergence is usually still to small.
Nevertheless, the mapping dces serve its purpose. For Gyao, the mapping ( 3.36) maps
the disk ~ p-'fz ~ 5'fz onto the unit disk. So far, only singularities with negative tr.al part
were found. If this is generally true, [hen the analyticity at the origin of the steady-state
probabilities ensures that convergence can always be obtained by choosing G large
enough, since all singulari[ies can be mapped outside the unit disk, while keeping the unit
interval inside the unit disk. Unfortunately, convergence is usually slow for large G.

To store all ccefficients when using the algorithm with mapping, the memory
requirements are still about 'fzK2M times the memory requirements of an I by J matrix of
reals. If the memory space of matrices that are no longer needed for the recursion is used
again, the required number of matrices is now about 2KM, about doubled as compared to
computation without the mapping. The tntmber of multiplications to compute the
ccefficients is also roughly doubled.

4. The queue-length and waiting time distribution

When the ccefficients of the steady-state probabilities have been calculated, the probability
pn(p) of n customers in the system can be approximated in the obvious way:

K

Pn(P) - e~ Pn(P)eJ -~ Pk el UkneJ , nz0 . (4.1)
k- ~n~M

The epsilon algorithm can be used to accelerate the convergence of these series. For a
description of this algorithm see Wynn [11] or Blanc [2,3]. If the conformal mapping is
used, then p and U should be replaced by B and V. The same is true for all other formulas
in this section.

After the pn(p) have been computed, the P~ moment of number of customers in the
system, Lt(p), can easily be calculated from them. However, to accelerate the
convergence, it is better to compute the ccefficients of the power-series ezpansions of
these moments:

1-t(P) -~ n t pn(P) -~ n t ~ Pk eI Uk n eJ -~ Pk dt,~ , (4.2)
nLl n-1 ks ~n~N k-1

with
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kM
~ ~ Tn e~ Ukne~. (4.3)

Since Lr(p) has a pole of order f at p-1 , the power series will converge slowly for heavy
traffic, but the rate of convergence can be strongly improved by using the fact that the
series {dr k}kz0 will tend to a polynomial in k of order P-1 as kyoo . For f-1 ard P-2,
this means that there are constants a, b and c such that limky„(dt~-a)-0 and
limk-,,,(d2 k-b-ck)-0, which leads to the extrapolations

Lt(P)
K m

' ~ Pk dl,k } ~ Pk d1,K
k~l k-Kt1
K K, t

- ~ Pk dl.k } dI,K P ~
k-1 1 -P
K m

` ~ Pk d2.k } ~ pk [ d2.K } (d2.K-dz.K-t)(k-~ 1k-1 A-K~1

-~ pk d2,k t f d2.K t d2.K-d2.K-1 l PK.t .
kzt 1 -p f 1 -p

(4.4)

(4.5)

For higher order moments similar extrapolations can be used. From the generating
function of the queue-length distribution of an MIG~I queue [6, page 238], it can be
shown that these approximations of Lr(p) are exact for M~PHII systems if KZ Pf1, all
the same whether the approzimations of the steady-state probabilities are good or not. This
underlines the advantage of evaluating the power-series expansions of the moments instead
of calculating the moments fmm the steady-state probabilities.

Characteristics of the waiting time distribution are found by conditioning on the state of
the system at arrival moments. Define

An,,n(P) - P `I'm A Pn(P) . (4.6)

Then An m(p) is an 1 by J matrix whose (i, j)~ element equals the mean number of

transitions per unit time, caused hy arcivals of batches of size m which result in a

transition to state (nfm,i, j). The mean cus[omer arcival rate equals

0o M M
~(P) -~~ m e~ An m(P) e~ - P e! ~. m~Ym A v,

n-0 m-l m~l
(4.7)

where v is again the steady-state distribution of the Mazkov chain underlying the BMAP.
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Clearly 1`(p) is linear in p. The probability that an arbitrary customer is served without
delay, is equal to the arrival rate of type-1 customers divided by the total arrival rate,
which can be found by conditioning on the batch size:

M 1 m
Pr{ No Delay } - 1 ~ -~ro

~(P) m-t 1-~00
K M

L ~(P)
~ pk ~
k-0 m~l

r
e~ Ap,m(P) eJ

1-~ap
e~ ~I,m A UkA e~ .

1-~~

(4.8)

Moments of the waiting time distribution can be calculated under the assumpdon that
the service discipline is FCFS. Let ~ep n m be the J-vector whose j~ element equals the P~
moment of the waiting time of a customer, conditioned on the fact that the customer
arrives in a batch of size m while just before arrival there were n customers in the system
and the service process was in phase j. Then Wp(p), the P~ moment of the waiting time
distribution, is given by

m M

Wp(P) - 1 ~~ m eI Anm(P) 11t,n,m
~(P) n-0 m-l

K kM M

~ ~(P)
~ Pk ~ ~ m e~ `Ym A Uk,n Pt,n,rn ~

(4.9)

If the maximal batch size M is one, the fust ccefficient of W p(p) is zero because
customers who an ive in an empty system in a batch of size 1 have zero waitirtg time
( p p a p-0~ ). The use of extrapolations like in (4.4) and (4.5) and the use of the epsilon
algorithm again strongly accelerates the convergence. As before, the approximations of
moments of the waiting time are exact for MIPHII systems if Kz P t 1[6, page 256].

To calculate p p n m, first define p.p as the J-vector of which the j~ element equals the
P~ moment of the residual service time, conditioned on the fact that service is in phase j.
Since the type-1 and the type:-2 service time distributions differ only in the initial
distribution, Pp is valid for both. Define the scalaz ~p as the P~ moment of a complete
type-2 service time. Conform Neuts [10, page 46], pep and j~p satisfy

pp - P! [B(I-~)]-t e~ , !~t - (1-~pp) ~0 Wp , lZl (4.10)
Now, the Pr,n.,~ can be calculated by conditioning on the place in the batch and, for n-0,
on the number of type-1 zero service times:
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~l,n,m - ~

m h-2

1 ~ ~ ~óp(1-~ap)~1~tt(h-P-2)j~te~~, n-0,
m h-1 [s0

1 ~
m hat

~ pt t(nth-2)~te~ ~ , nZl ,

~2,n,m -

m h-2 (4.11)
1 ~ ~ ~~ (1 - ~~ )
m h~l [LO

[ pz t(h-f-2){ ~e~t2~tpt t(h-P-3)~.ie~ ~ J~ n-0 ~

m h~ [ pz t(nth-2){ ~2e~t2ut~~ t(nth-3)~je~ J, ~ nzl .

Moments of the waiting times of the first or last customer in a batch ( instead of an
arbitrary customer), and of sojourn times can be found by using appropriate defmitions of

pt n m. If type-1 and type-2 services have equal means, [he mean waiting time can also be
calculated from the mean queue length with Little's fonnula. If not, to apply Little's
forrnula, the probability of no delay is needed to calculate the overall mean service time,
which is not known in advance.

5. Examples

In this section some numerical ezamples are given. These will concern the HZIHZIl,
HZ~Hzll and MMPPZIHZII models. The parameters are chosen such that the mean
interarrival time and mean service time are equal to 1(for p-1). The hyperexponential
distributions have variance 2 and balanced means. The probability that in the HZ arrival
process the batch size equals m is 0.25 for m-1,...,4. In the MMPPZ arrival process, the
interarrival times also have variance 2 , the steady-state distribution of the underlying
Markov chain is (O.S,O.SJ and two suhx:yuent interarrival times have correlation
ccefficient 0.125 (if c2 is the variance divided by the squared mean, the correla[ion
ccefficient is at most 'fz(1-c-2), which is 0.25 in this case). For these models the
expectation and variance of the number of customers in the system are calculated for
different values of K, the number of calculated coefficients of these moments. In all cases
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the mapping (3.36) was used, where G was chosen such that the maximal coefficient in
absolute value was not too large. The epsilon algorithm was used, in a similar way as in
Blanc [3]. The results are given for p-0.7 in table 1 and for p-0.9 in table 2. A dot
indicates that the value rounded to the first 4 digits is the same as the value above it. In
table 3 the results are given for the same models, but with the variance of the interarrival
times and the service times equal to 4 and the correlation coefficient equal to 0.15.

Comparing table 1 and table 2, it can be concluded that the algorithm converges faster
for smaller values of p, which is no surprise since it calculates the power-series
expansions around p-0. The difference between the model in table 2 and the model in
table 3 is that the system parameters in the latter models have a wider range, which
results in slower convergence. Perhaps this could be avoided by some kind of scalittg, but
this has not been thoroughly investigated yet.

HZIHZII (G-2) HZ~HZII (G-2) MMPP~HZII (G-3)
E V E V E V

5 4.014 28.02 7.701 96.57 3.452 63.56
10 3.897 27.68 7.448 95.08 4.922 43.31
15 3.985 27.71 7.445 95.05 4.879 43.67
20 . . . . 4.878 43.59
30 . . . .

Table 1. Expectation and variance of the number of customers in the system, for p-0.7

K
HZIH2I1 (G-2) HZIHZII (G-2) MMPP~HZII (G-3)

E V E V E V

5 17.45 365.4 34.95 1199 .3501 1265
l0 17.19 352.1 32.23 1220 22.23 536.4
15 17.14 355.2 32.13 1232 21.37 570.6
20 . . 32.12 . 21.34 559.2
30 . . . . 21.36 562.8
40 . . . . . 560.2
50 . . . . . 560.3
75 . . . . . .

Table 2. Expectation and variance of the number of customers in the system, for p-0.9
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K
HZIH~II (G-6) H1IH~I1 (G-2) MMPP1IHZI1 (G-7)

E V E V E V

5 34.76 1349 76.54 3905 56.76 1252
10 33.36 1441 63.88 3714 42.67 2138
15 33.49 1418 61.17 4384 41.75 2237
20 33.48 1411 59.46 4636 41.93 2220
30 . 1413 60.61 4494 42.02 2193
40 . . 60.61 4498 41.88 2175
50 . . 60.56 4504 41.90 2145
75 . . . 4505 . 2208

100 . . . . . 2209
125 . . . . . 2208
150 . . . . .

Table 3. Expectation and variance of the number of customers in the system, for higher
variance and correlation and p-0.9

6. Conclusions

The power-series algorithm has been extended to the single server queue with Batch
Markovian Arrival Process (with finite maximal batch size) and independent general
phase-type service time distributions (possibly different for the first service after each idle
period). It has beeen shown that the steady-state probabilities are analytic at p-0 and a
lower bound on the radius of convergence of the power-series expansions has been given,
which has improved the theoretical justification of the PSA. The extension to
non-Poissonean arrival processes and non-Coxian service time disiributions can be
achieved by changing the order of computation and a limited number of matrix inversions.

For the single server queue, comparing the PSA with the matrix-geometric approach,
the latter seems preferable. With the latter, the service time distribution need not be
phase-type, the required memory space is much smaller and the method is more stable.
On the other hand, the main advantage of the PSA is its flexibility, illustrated by the wide
range of models it has been applied to. The analysis of more general arrival and service
processes in this paper can be extended to multi-queue systems, like forkjoin models,
networks of queues and polling models. Because of the high dimensionality, [he ntunber of
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queues and the sius of the supplementary spaces of the arrival and service processes has
to be limited, but for moderately sized systems the PSA is applicable, which will be the
subject of future research.
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