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Abstract For a broad class of polling models the evolution
of the system at specific embedded polling instants is known
to constitute a multi-type branching process (MTBP) with
immigration. In this paper it is shown that for this class of
polling models the vector that describes the state of the sys-
tem at these polling instants, say X = (X1, . . . ,XM), sat-
isfies the following heavy-traffic behavior (under mild as-
sumptions):

(1 − ρ)X →d γ �(α,μ) (ρ ↑ 1), (1)

where γ is a known M-dimensional vector, �(α,μ) has a
gamma-distribution with known parameters α and μ, and
where ρ is the load of the system. This general and power-
ful result is shown to lead to exact—and in many cases even
closed-form—expressions for the Laplace-Stieltjes Trans-
form (LST) of the complete asymptotic queue-length and
waiting-time distributions for a broad class of branching-
type polling models that includes many well-studied polling
models policies as special cases. The results generalize and
unify many known results on the waiting times in polling
systems in heavy traffic, and moreover, lead to new ex-
act results for classical polling models that have not been
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observed before. To demonstrate the usefulness of the re-
sults, we derive closed-form expressions for the LST of the
waiting-time distributions for models with cyclic globally-
gated polling regimes, and for cyclic polling models with
general branching-type service policies. As a by-product,
our results lead to a number of asymptotic insensitivity prop-
erties, providing new fundamental insights in the behavior of
polling models.
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1 Introduction

Polling systems are multi-queue systems in which a single
server visits the queues in some order to serve the customers
waiting at the queues, typically incurring some amount of
switch-over time to proceed from one queue to the next.
Polling models find a wide variety of applications in which
processing power (e.g., CPU, bandwidth, manpower) is
shared among different types of users. Typical application
areas of polling models are computer-communication sys-
tems, logistics, flexible manufacturing systems, production
systems and maintenance systems; the reader is referred
to [21, 37] for extensive overviews of the applicability of
polling models. Over the past few decades the performance
analysis of polling models has received much attention in
the literature. We refer to the classical surveys [36, 38], and
to a recent survey paper by Vishnevskii and Semenova [47]
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for overviews of the available results on polling models. One
of the most remarkable results is that there appears to be a
striking difference in complexity between polling models.
Resing [32] observed that for a large class of polling mod-
els, including for example cyclic polling models with Pois-
son arrivals and exhaustive and gated service at all queues,
the evolution of the system at successive polling instants at
a fixed queue can be described as a multi-type branching
process (MTBP) with immigration. Models that satisfy this
MTBP-structure allow for an exact analysis, whereas mod-
els that violate the MTBP-structure are often more intricate.

In this paper we study the heavy-traffic behavior for the
class of polling models that have an MTBP-structure, in a
general parameter setting. Initiated by the pioneering work
of Coffman et al. [12, 13], the analysis of the heavy-traffic
behavior of polling models has gained a lot of interest over
the past decade. This has led to the derivation of asymptotic
expressions for key performance metrics, such as the mo-
ments and distributions of the waiting times and the queue
lengths, for a variety of model variants, including for ex-
ample models with mixtures of exhaustive and gated service
policies with cyclic server routing [39], periodic server rout-
ing [26, 27], simultaneous batch arrivals [42], continuous
polling [18], amongst others. In this context, a remarkable
observation is that in the heavy-traffic behavior of polling
models a central role is played by the gamma-distribution,
which occurs in the analysis of these different model vari-
ants as the limiting distribution of the (scaled) cycle times
and the marginal queue-lengths at polling instants. This ob-
servation has motivated us to develop a unifying theory on
the heavy-traffic behavior of polling models that includes all
these model instances as special cases, such that everything
falls into place. We believe that the results presented in this
paper are a significant step towards such a general unifying
theory.

The motivation for studying heavy-traffic asymptotics
in polling models is twofold. First, a particularly attrac-
tive feature of heavy-traffic asymptotics (i.e., when the
load tends to 1) for MTBP-type models is that in many
cases they lead to strikingly simple expressions for queue-
length and waiting-time distributions, especially when com-
pared to their counterparts for arbitrary values of the load,
which usually leads to very cumbersome expressions, even
for the first few moments (cf., e.g., [19]). The remarkable
simplicity of the heavy-traffic asymptotics provides funda-
mental insight in the impact of the system parameters on
the performance of the system, and in many cases attrac-
tive insensitivity properties have been observed (see also
Sects. 3.1 and 3.2). A second motivation for consider-
ing heavy-traffic asymptotics is that the computation time
needed to calculate the relevant performance metrics usu-
ally becomes prohibitively long when the system is close to
saturation, both for branching-type [10] and non-branching-
type polling models [3, 4], which raises the need for simple

and fast approximations. Heavy-traffic asymptotics form an
excellent basis for developing such approximations (see also
Sect. 3.3), and in fact, have been found to be remarkably ac-
curate in several cases, even for moderate load (cf., e.g., [27,
39, 41]).

Recently, polling models in heavy traffic have received
attention in the literature, and significant progress has been
made in this area. For a two-queue model with exhaustive
service and independent renewal arrival processes, Coff-
man et al. [12, 13] use the theory of diffusion processes to
derive expressions for the joint workload distribution and
the waiting-time distributions under heavy traffic assump-
tions. For models with independent Poisson arrivals, Kudoh
et al. [19] give explicit expressions for the second moment
of the waiting time in fully symmetric systems with gated
or exhaustive service at each queue for models with two,
three and four queues, by exploring the classical buffer-
occupancy approach [36], which is based on the relation
between the joint queue-length distributions at successive
polling instants. They also give conjectures for the heavy-
traffic limits of the first two moments of the waiting times
for systems with an arbitrary number of queues. In a series
of papers, van der Mei and co-authors explore the use of
the Descendant Set Approach (DSA) [17] to derive exact
expressions the waiting-time distributions in models with
mixtures of exhaustive and gated service and cyclic [39] or
periodic [26] server routing. Following a similar approach,
van der Mei also derives the exact asymptotics waiting-time
distribution in cyclic queueing models with simultaneous
batch arrivals [42]. Kroese [18] studies continuous polling
systems in heavy traffic with unit Poisson arrivals on a ring
and shows that the steady-state number of customers at each
queue has approximately a gamma-distribution. Vatutin and
Dyakonova [46] use the theory of MTBPs to obtain the lim-
iting distributions for several two-queue polling models with
zero switch-over times. In addition to the evaluation of the
performance of heavily loaded polling systems, the results
can also be used to address stochastic scheduling problems
[23, 24, 30, 31].

To develop a unifying theory on the heavy-traffic be-
havior of branching-type polling models, it is interesting to
observe that the theory of MTBPs, which was developed
largely developed in the early 1970s, is well-matured and
powerful [2, 15, 16, 29]. Nonetheless, the theory of MTBPs
has received remarkably little attention in the literature on
polling models. In fact, throughout this paper we will show
that the following result on MTBPs can be used as the ba-
sis for the development of a unifying theory on branching-
type polling models under heavy-traffic assumptions: the
joint probability distribution of the M-dimensional branch-
ing process {Zn,n = 0,1, . . .} (with immigration in each
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state) converges in distribution to v�(α,μ) in the sense that
(cf. Quine [29]):

lim
n→∞

1

πn(ξ)
Zn →d v�(α,μ) (ξ ↑ 1), (2)

where ξ is the maximum eigenvalue of the so-called mean
matrix, πn(ξ) is a scaling function, v is a known M-
dimensional vector and �(α,μ) is a gamma-distributed ran-
dom variable with known shape and scale parameters α

and μ, respectively. We emphasize that relation (2) is valid
for general MTBPs under very mild moment conditions (see
Sect. 2 for details). In this paper, we show that this result (2)
can be transformed into (1), providing an asymptotic analy-
sis for a very general class of MTBP-type polling models.
Subsequently, we show that (1) leads to exact asymptotic
expressions for the scaled time-average queue-length and
waiting-time distributions under heavy-traffic assumptions;
for specific model instances, basically all we have to do is
calculate the parameters v, α and μ, and the derivative of
ξ as a function of ρ at ρ = 1, which is usually straightfor-
ward. In this way, we propose a new and powerful approach
to derive heavy-traffic asymptotics for polling models that
have MTBP-structure. To demonstrate the usefulness of the
results we use the approach developed in this paper to derive
new and yet unknown closed-form expressions for the com-
plete asymptotic waiting-time distributions for a number of
classical polling models. To this end, we derive closed-form
expressions for the asymptotic waiting-time distributions for
cyclic polling models with the Globally-Gated (GG) service
policy, and for models with general branching-type service
policies. As a by-product, the results also lead to asymptotic
insensitivity properties providing new fundamental insights
in the behavior of polling models. Moreover, the results lead
to simple approximations for the waiting-time distributions
in stable polling systems.

The remainder of this paper is organized as follows. In
Sect. 2 we give a brief introduction on MTBPs and formu-
late the limiting result by Quine [29] (see Theorem 1) that
will be used throughout. In Sect. 3 we translate this result
to the context of polling models, and give an approach for
how to obtain heavy-traffic asymptotics for branching-type
polling models. To illustrate the usefulness of the approach,
we consider two specific types of polling models: (1) cyclic
models with GG service, and (2) cyclic models with general
branching-type service policies. For these models, we derive
a complete characterization of the asymptotic waiting-time
distributions. The implications of these results are discussed
extensively. Finally, in Sect. 4 we address a number of chal-
lenging topics for further research.

2 Multitype branching processes with immigration

We consider a general multi-type branching process with
M particle types, denoted by Z = {Zn,n = 0,1, . . .}, where

Zn =(Z
(1)
n , . . . ,Z

(M)
n ), where Z

(i)
n is the number of type-

i particles in the nth generation, for i = 1, . . . ,M , n =
0,1, . . . . The particle production is defined by the particle
offspring function f (z) = (f (1)(z), . . . , f (M)(z)), with z =
(z1, . . . , zM), and where for |zk| ≤ 1 (k = 1, . . . ,M), i =
1, . . . ,M ,

f (i)(z) =
∑

j1,...,jM≥0

p(i)(j1, . . . , jM)z
j1
1 · · · zjM

M , (3)

where p(i)(j1, . . . , jM) is the probability that a type-i par-
ticle produces jk particles of type k (k = 1, . . . ,M). We
consider a MTBP with an independent immigration in each
state. So in addition to the generation functions f (i)(z) de-
fined in (3), representing the offspring distributions, an ad-
ditional generating function g(z) is given, representing the
immigration distribution: For |zk| ≤ 1 (k = 1, . . . ,M),

g(z) =
∑

j1,...,jM≥0

q(j1, . . . , jM)z
j1
1 · · · zjM

M , (4)

where q(j1, . . . , jM) is the probability that a group of im-
migrants consists of jk particles of type k (k = 1, . . . ,M).
Note that (3) and (4) provide a full characterization of the
MTBP with immigration in each state. Denote

g := (g1, . . . , gM), where gi := ∂g(z)

∂zi

∣∣∣
z=1

, (5)

and where 1 is the M-vector where each component is equal
to 1. A key role in the analysis will be played by the first and
second-order derivatives of f (z). The first-order derivatives
are denoted by the mean matrix

M = (mi,j ),

with mi,j := ∂f (i)(z)

∂zj

∣∣∣
z=1

, i, j = 1, . . . ,M. (6)

Thus, adopting the standard notion of “children”, for a given
type-i particle in the nth generation, mi,j is the mean num-
ber of type-j children it has in the (n+1)st generation. Sim-
ilarly, for a type-i particle, the second-order derivatives are
denoted by the matrix

K(i) =
(
k
(i)
j,k

)
,

with k
(i)
j,k := ∂2f (i)(z)

∂zj ∂zk

∣∣∣
z=1

, i, j, k = 1, . . . ,M. (7)
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Denote by v = (v1, . . . , vM) and w = (w1, . . . ,wM) the
left and right eigenvectors corresponding to the largest real-
valued, positive eigenvalue ξ of M, commonly referred to
as the maximum eigenvalue (cf., e.g., [2]), normalized such
that

v�1 = v�w = 1. (8)

The following conditions are necessary and sufficient con-
ditions for the ergodicity of the process Z (cf. [32]): ξ < 1
and

∑

j1+···+jM>0

q(j1, . . . , jM)log(j1 + · · · + jM) < ∞. (9)

Throughout the following definitions are convenient. For
any variable x that depends on ξ we use the hat-notation x̂

to indicate that x is evaluated at ξ = 1. Moreover, for ξ > 0
let

π0(ξ) := 0, and πn(ξ) :=
n∑

r=1

ξ r−2, n = 1,2, . . . .

(10)

A non-negative continuous random variable �(α,μ) is said
to have a gamma-distribution with shape parameter α > 0
and scale parameter μ > 0 if it has the probability density
function

f�(x) = μα

�(α)
xα−1e−μx (x > 0)

with �(α) :=
∫ ∞

t=0
tα−1e−t dt, (11)

and Laplace-Stieltjes Transform (LST)

�∗(s) =
(

μ

μ + s

)α

(Re(s) > 0). (12)

Note that in the definition of the gamma-distribution μ is a
scaling parameter, and that �(α,μ) has the same distribution
as μ−1�(α,1). Using these definitions, the following result
holds.

Theorem 1 Assume that all derivatives of f (z) through or-
der two exist at z = 1 and that 0 < gi < ∞ (i = 1, . . . ,M).
Then

lim
n→∞

1

πn(ξ)

⎛

⎜⎜⎝

Z
(1)
n

...

Z
(M)
n

⎞

⎟⎟⎠→d A

⎛

⎜⎝
v̂1
...

v̂M

⎞

⎟⎠�(α,1) (ξ ↑ 1), (13)

where v̂ = (v̂1, . . . , v̂M) is the normalized left eigenvector
of M̂, and where �(α,1) is a gamma-distributed random

variable with scale parameter 1 and shape parameter

α := 1

A
ĝ

�
ŵ = 1

A

M∑

i=1

ĝi ŵi ,

with A :=
M∑

i=1

v̂i (ŵ
�K̂(i)ŵ) > 0. (14)

Proof See [29] (Theorem 4). �

In the next section we will show how this result, which was
derived in the context of generic MTBPs, can be transformed
into results for a general class of polling models.

3 Heavy-traffic asymptotics for polling models

In this section we show how Theorem 1 can be transformed
to derive new closed-form expressions for the LST of the
queue-length and waiting-time distributions for a broad
class of polling models, under heavy-traffic scalings. To this
end, we consider two classical models that have been widely
studied in the literature. In Sect. 3.1 we derive the LST of the
asymptotic waiting-time distribution for cyclic polling mod-
els with globally-gated (GG) service. In Sect. 3.2 we derive
asymptotic expressions for cyclic polling models with gen-
eral branching-type service policies. In Sect. 3.3 we discuss
the implications, the generality and the limitations of the re-
sults.

To avoid duplication, the following model assumptions
and notation are introduced for both types of models. Con-
sider an asymmetric cyclic polling model that consists of
N ≥ 2 queues, Q1, . . . ,QN , and a single server that visits
the queues in cyclic order. Customers arrive at Qi accord-
ing to a Poisson process with rate λi , and are referred to as
type-i customers. The total arrival rate is 
 :=∑N

i=1 λi . The
service time of a type-i customer is a random variable Bi ,
with LST B∗

i (·) and kth moment b
(k)
i , which is assumed to

be finite for k = 1,2. The kth moment of the service time of
an arbitrary customer is b(k) := ∑N

i=1 λib
(k)
i /
 (k = 1,2).

The total load of the system is ρ := ∑N
i=1 ρi . We define a

polling instant at Qi to be the moment at which the server ar-
rives at Qi , and a departure epoch at Qi a moment at which
the server departs from Qi . The visit time at Qi is defined
as the time elapsed between a polling instant and its succes-
sive departure epoch at Qi . Moreover, an i-cycle is the time
between two successive polling instants at Qi . Upon depart-
ing from Qi the server immediately proceeds to Qi+1, in-
curring a switch-over time Ri with LST R∗

i (·) and first two

moments r
(k)
i (k = 1,2), which are assumed to be finite. De-

note by r > 0 and r(2) > 0 the first two moments of the total
switch-over time per 1-cycle of the server along the queues.
The interarrival times, service times and switch-over times
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are assumed to be mutually independent and independent of
the state of the system.

Throughout, we focus on the behavior of the model when
the load ρ approaches 1. For ease of the discussion we as-
sume that as ρ changes the total arrival rate changes while
the service-time distributions and ratios between the arrival
rates are kept fixed; note that in this way, the limit for
ρ ↑ 1, which will be used frequently throughout this pa-
per, is uniquely defined. Similar to the hat-notation for the
MTBPs defined in Sect. 2, for each variable x that is a func-
tion of ρ we use the hat-notation x̂ to indicate its value at
ρ = 1.

For both models to be discussed below, joint queue-
length vector at successive moments when the server arrives
at a fixed queue (say Qk) constitutes an MTBP with immi-
gration in each state. To this end, the following notation is
useful. Let X

(k)
i,n be the number of type-i customers in the

system at the nth polling instant at Qk , for i, k = 1, . . . ,N

and n = 0,1, . . . , and let X
(k)
n = (X

(k)
1,n, . . . ,X

(k)
N,n) be the

joint queue-length vector at the nth polling instant at Qk .
Moreover, X(k) = {X(k)

n , n = 0,1, . . .} is the MTBP describ-
ing the evolution of the state of the system at successive
polling instants at Qk . For ρ < 1, we have X

(k)
n →d X(k) for

n → ∞, where X(k) denotes the steady state joint queue-
length vector at an arbitrary polling instant at Qk .

3.1 Globally-Gated service

The Globally-Gated (GG) service discipline works as fol-
lows [6]. At the beginning of a 1-cycle, marked by a
polling instant at Q1 (see above), all customers present at
Q1, . . . ,QN are marked. During the coming 1-cycle (i.e.,
the visit of queues Q1, . . . ,QN ), the server serves all (and
only) the marked customers. Customers that meanwhile ar-
rive at the queues will have to wait until being marked at
the next cycle-beginning, and will be served during the next
1-cycle. Since at each cycle the server serves all the work
that arrived during the previous cycle, the stability condi-
tion is ρ < 1, which is both necessary and sufficient [6, 14].
Throughout this paper, this model will be referred to as the
GG-model.

In Sect. 3.1.1 we show how Theorem 1 can be used
to derive expressions for the LST of the asymptotic
scaled waiting-time distributions at each of the queues. In
Sect. 3.1.2 we discuss several interesting implications that
follow from these expressions.

3.1.1 Analysis

To analyze the heavy-traffic behavior of the GG-model, we
establish the relation with the general MTBP-model de-
scribed in Sect. 2. To this end, recall that for the model
considered here the joint queue-length process at embed-
ded polling instants at Qk (for any k) can be described as

an N -dimensional MTBP with immigration in each state.
For notational ease of the discussion that will follow, we
proceed along two steps. First we focus on the heavy-traffic
asymptotics for the joint queue-length vector at the succes-
sive moments at which the server arrives at Q1 (Theorem 2).
Second, we will transform these results to the joint queue-
length distribution at polling instants at Qk, k = 1, . . . ,N

(Theorem 3).
To start, we consider the MTBP X(1) := {X(1)

n ,
n = 0,1, . . .} describing the evolution of the joint queue-
length vector at successive polling instants of the server
at Q1. Then the process X(1) is characterized by the off-
spring generating functions, for i = 1, . . . ,N , |zk| ≤ 1 (k =
1, . . . ,N),

f (i)(z1, . . . , zN) = B∗
i

(
N∑

j=1

λj (1 − zj )

)
(15)

and the immigration function

g(z1, . . . , zN) =
N∏

i=1

R∗
i

(
N∑

j=1

λj (1 − zj )

)
. (16)

Note that it follows directly from (16) that, for j = 1, . . . ,N ,

gj =
N∑

i=1

riλj = rλj . (17)

To derive the limiting distribution of the joint queue-length
vector at polling instants at Q1, we need to specify the fol-
lowing parameters: (1) the mean matrix M and its corre-
sponding left and right eigenvectors v̂ and ŵ at ρ = 1 (nor-
malized according to (8)), and (2) the parameters A and ĝ.
These parameters are obtained in the following two lemmas.

Lemma 1 For the GG-model, the mean matrix M is given
by the following expression:

M =

⎛

⎜⎜⎜⎜⎜⎝

b
(1)
1 λ1 b

(1)
1 λ2 · · · b

(1)
1 λN

b
(1)
2 λ1 · · · · · · b

(1)
2 λN

...
...

...
...

b
(1)
N λ1 · · · · · · b

(1)
N λN

⎞

⎟⎟⎟⎟⎟⎠
and hence,

M̂ =

⎛

⎜⎜⎜⎜⎜⎝

b
(1)
1 λ̂1 b

(1)
1 λ̂2 · · · b

(1)
1 λ̂N

b
(1)
2 λ̂1 · · · · · · b

(1)
2 λ̂N

...
...

...
...

b
(1)
N λ̂1 · · · · · · b

(1)
N λ̂N

⎞

⎟⎟⎟⎟⎟⎠
.

(18)
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Moreover, the right and left eigenvectors of M̂ (i.e., M at
ρ = 1) are

ŵ = |b|−1

⎛

⎜⎜⎜⎜⎝

b
(1)
1

b
(1)
2
...

b
(1)
N

⎞

⎟⎟⎟⎟⎠
, and

v̂ = |b|

⎛

⎜⎜⎜⎝

λ̂1

λ̂2
...

λ̂N

⎞

⎟⎟⎟⎠ , respectively,

(19)

with

b := (b
(1)
1 , . . . , b

(1)
N )�, and |b| :=

N∑

i=1

b
(1)
i . (20)

Proof The first equation of (18) follows directly from (15)
by differentiation: For i, j = 1, . . . ,N ,

mi,j := ∂f (i)(z)

∂zj

∣∣∣∣
z=1

= ∂

∂zj

B∗
i

(
N∑

j=1

λj (1 − zj )

)∣∣∣∣∣
z=1

= b
(1)
i λj , (21)

and the second equation in (18) then follows directly by
evaluating the first equation at ρ = 1. To prove that ŵ is
a right eigenvector of M̂, note that it follows directly from
(18) that, for i = 1, . . . ,N ,

N∑

j=1

b
(1)
i λ̂j b

(1)
j = b

(1)
i ρ̂ = b

(1)
i , (22)

so that M̂b = b, and hence, M̂ŵ = ŵ. Similarly, to show that
v̂ is a left eigenvector of M̂, note that for i = 1, . . . ,N ,

N∑

j=1

λ̂j b
(1)
j λ̂i = ρ̂λ̂i = λ̂i , (23)

which implies M̂�v̂ = v̂. The proof of Lemma 1 is then
completed by properly normalizing the eigenvectors accord-
ing to (8). �

Lemma 2 For the GG-model, we have

ĝ
�
ŵ = |b|−1r, (24)

and

A = |b|−1 b(2)

b(1)
. (25)

Proof To start, (24) follows directly the following sequence
of equalities:

ĝ
�
ŵ :=

N∑

i=1

ĝi ŵi =
N∑

i=1

r|b|−1λ̂ib
(1)
i

= ρ̂|b|−1r = |b|−1r, (26)

which follows directly from (17) and (19), and using the fact
that ρ̂ = 1 by definition. To prove (25), we first observe that
by differentiating (15) two times we have, for i = 1, . . . ,N ,

K(i) = b
(2)
i

⎛

⎜⎜⎜⎝

λ2
1 λ1λ2 · · · λ1λN

λ2λ1 λ2
2 · · · λ2λN

...
...

...
...

λNλ1 · · · · · · λ2
N

⎞

⎟⎟⎟⎠ , and so

K̂(i) = b
(2)
i

⎛

⎜⎜⎜⎜⎝

λ̂2
1 λ̂1λ̂2 · · · λ̂1λ̂N

λ̂2λ̂1 λ̂2
2 · · · λ̂2λ̂N

...
...

...
...

λ̂N λ̂1 · · · · · · λ̂2
N

⎞

⎟⎟⎟⎟⎠
.

(27)

Consequently, using (19) we have for i = 1, . . . ,N ,

ŵ
�K̂(i)ŵ = |b|−2b

(2)
i

N∑

j=1

N∑

k=1

b
(1)
j λ̂j λ̂kb

(1)
k = |b|−2b

(2)
i ,

(28)

and hence, combining (19) and (28) we have

A :=
N∑

i=1

v̂i (ŵ
�K̂(i)ŵ) = |b|−1

N∑

i=1

λ̂ib
(2)
i

= |b|−1
̂b(2) = |b|−1 b(2)

b(1)
, (29)

where the last equality follows from the fact that 
̂ = 1/b(1).
This completes the proof of Lemma 2. �

Let us consider the heavy-traffic behavior of the maxi-
mum eigenvalue ξ of M. Note that in general, ξ is a non-
negative real-valued function of ρ (cf. [2]), say

ξ = ξ(ρ), (30)

for ρ > 0. Then the following result describes the behavior
of ξ(·) in the neighbourhood of ρ = 1.

Lemma 3 For the GG-model, the maximum eigenvalue ξ =
ξ(ρ) has the following properties:

(1) ξ < 1 if and only if 0 < ρ < 1, ξ = 1 if and only if
ρ = 1, and ξ > 1 if and only if ρ > 1;

(2) ξ = ξ(ρ) is a continuous function of ρ;
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(3) limρ↑1 ξ(ρ) = ξ(1) = 1;
(4) The derivative of ξ(·) at ρ = 1 is given by

ξ ′(1) := lim
ρ↑1

1 − ξ(ρ)

1 − ρ
= 1. (31)

Proof See Appendix 1. �

We are now ready to transform Theorem 1 to the model
under consideration.

Theorem 2 For the GG-model, the steady-state joint queue-
length distribution at polling instants at Q1 satisfies the fol-
lowing limiting behavior:

(1 − ρ)

⎛

⎜⎜⎝

X
(1)
1
...

X
(1)
N

⎞

⎟⎟⎠→d

b(2)

b(1)

⎛

⎜⎝
λ̂1
...

λ̂N

⎞

⎟⎠�(α,1) (ρ ↑ 1), (32)

where

α = r
b(1)

b(2)
. (33)

Proof First, it is readily verified that the joint-queue-length

process X(1) := {X(1)
n = (X

(1)
1,n, . . . ,X

(1)
N,n), n = 0,1, . . .}

at embedded polling instants at Q1 constitutes an N -
dimensional MTBP with offspring function f (i)(z) and im-
migration function g(z) defined in (15) and (16) and with
mean matrix M defined in (18). Moreover, is it easy to ver-
ify that the assumptions of Theorem 1 are satisfied (with
M = N ). Then using Lemmas 1 to 3 and Theorem 1 it fol-
lows that

lim
n→∞

1

πn(ξ(ρ))

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠→d

b(2)

b(1)

⎛

⎜⎝
λ̂1
...

λ̂M

⎞

⎟⎠�(α,1)

(ρ ↑ 1), (34)

where α is defined in (33). Consequently, relation (32) fol-
lows from the following sequence of equations:

lim
ρ↑1

(1 − ρ)

⎛

⎜⎜⎝

X
(1)
1
...

X
(1)
N

⎞

⎟⎟⎠

= lim
ρ↑1

lim
n→∞(1 − ρ)

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠

= lim
ρ↑1

lim
n→∞(1 − ρ)πn(ξ(ρ)) · 1

πn(ξ(ρ))

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠

= lim
ρ↑1

lim
n→∞(1 − ρ)πn(ξ(ρ))

× lim
ρ↑1

lim
n→∞

1

πn(ξ(ρ))

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠

= 1 · b(2)

b(1)

⎛

⎜⎝
λ̂1
...

λ̂N

⎞

⎟⎠�(α,1), (35)

where the last equality in (35) follows from Theorem 1 and
the fact that (10) implies

lim
ρ↑1

lim
n→∞(1 − ρ)πn(ξ(ρ))

= lim
ρ↑1

1 − ρ

1 − ξ(ρ)
· lim
n→∞

1 − (ξ(ρ))n

ξ(ρ)
= 1 · 1 = 1, (36)

by using the properties formulated in Lemma 3. �

The next result generalizes Theorem 2, which gives the
asymptotic scaled queue-length distribution at an arbitrary
polling instant at Q1, to the asymptotic queue-length distri-
bution at an arbitrary polling instant at Qk (k = 1, . . . ,N).

Theorem 3 For the GG-model, the steady-state joint queue-
length distribution at polling instants at Qk (k = 1, . . . ,N)

satisfies the following limiting behavior:

(1 − ρ)

⎛

⎜⎜⎝

X
(k)
1
...

X
(k)
N

⎞

⎟⎟⎠

→d

b(2)

b(1)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ρ̂1 + · · · + ρ̂k−1)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̂1
...

λ̂k−1

λ̂k

...

λ̂N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
λ̂k

...

λ̂N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× �(α,1) (ρ ↑ 1), (37)

where

α = r
b(1)

b(2)
. (38)

Proof For k = 1, . . . ,N , denote by X∗
k (z1, . . . , zN) the PGF

of (X
(k)
1 , . . . ,X

(k)
N ), the joint queue length at an arbitrary

polling instant at Qk . Then it is readily verified that, for
|zi | ≤ 1, i = 1, . . . ,N , k = 1, . . . ,N ,
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X∗
k (z1, . . . , zN)

=
k−1∏

i=1

R∗
i

(
N∑

j=1

λj (1 − zj )

)

× X∗
1

(
B∗

1

(
N∑

j=1

λj (1 − zj )

)
, . . . ,

B∗
k−1

(
N∑

j=1

λj (1 − zj )

)
, zk, zk+1, . . . , zN

)
.

(39)

To this end, consider the customer population at a polling
instant P ∗

k at Qk (k > 1); note that for k = 1 the re-
sult was shown in Theorem 2 and is therefore not con-
sidered here again. Then this population consists of three
independent parts: (1) the customers that were present at
Qi (i = k, k + 1, . . . ,N) at the last preceding polling in-
stant at Q1, (2) the customers who arrived during the ser-
vice times of the customers that were present at Qi (i =
1,2, . . . , k − 1) at the preceding polling instant at Q1, and
(3) the customers who arrived during the past switch-over
times Ri (i = 1,2, . . . , k − 1). Then (39) follows directly
by using standard generating function manipulations. Theo-
rem 3 then follows directly from Theorem 2 by using (32)
and taking the proper limits. �

We are now ready to obtain the main result for the GG-
model.

Theorem 4 For the GG-model, the waiting-time distri-
bution satisfies the following limiting behavior: For i =
1, . . . ,N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1) (40)

where the LST of W̃i is given by, for Re(s) > 0,

W̃ ∗
i (s) = 1

(1 − ρ̂i )rs

{(
μ

μ + s(ρ̂1 + · · · + ρ̂i )

)α

−
(

μ

μ + s(1 + ρ̂1 + · · · + ρ̂i−1)

)α
}

, (41)

where

α = r
b(1)

b(2)
, and μ = b(1)

b(2)
. (42)

Proof Denote by X
(i)
i and Y

(i)
i the number of customers at

Qi at the beginning and at the end of a visit period to Qi , re-
spectively, and denote by Ni the number of customers at Qi

at an arbitrary customer departure epoch from Qi . Denote
the corresponding PGFs by X∗

i (·), Y ∗
i (·) and N∗

i (·). Then

the following result was obtained by Borst and Boxma [8]:
For |z| ≤ 1, i = 1, . . . ,N ,

N∗
i (z) = (1 − ρi)(1 − z)B∗

i (λi(1 − z))

B∗
i (λi(1 − z)) − z

× Y ∗
i (z) − X∗

i (z)

(1 − z)λi(1 − ρi)r/(1 − ρ)
. (43)

Then from Theorem 3, taking the ith component only, we
have that in the limiting case ρ ↑ 1,

(1 − ρ)X
(i)
i →d

b(2)

b(1)
· λ̂i (1 + ρ̂1 + · · · + ρ̂i−1) · �(α,1).

(44)

Then, to determine the number of type-i customers Y
(i)
i at

the end of a visit of the server to Qi , note that we can write,
for i = 1, . . . ,N ,

X
(i+1)
i =d Y

(i)
i + Ai, (45)

where Ai stands for the number of arrivals at Qi during a
switch-over time from Qi to the next queue, with Y

(i)
i and

Ai independent. Then, it is readily seen that (1 − ρ)Ai → 0
(almost surely) as ρ ↑ 1. Moreover, it follows from Theo-
rem 3 (by letting k = i + 1 and taking the ith component in
(37)) that, for i = 1, . . . ,N ,

(1 − ρ)X
(i+1)
i →d

b(2)

b(1)
· λ̂i (ρ̂1 + · · · + ρ̂i ) · �(α,1). (46)

Then combining (46) and (45) immediately implies that

(1 − ρ)Y
(i)
i →d

b(2)

b(1)
· λ̂i (ρ̂1 + · · · + ρ̂i ) · �(α,1). (47)

Combining (43), (44) and (47), using the distributional form
of Little’s formula and the observation that a departing cus-
tomer sees the time average [35] is then easily seen to lead
to (41), which completes the proof of Theorem 4. �

3.1.2 Implications

Theorem 4 leads to a number of interesting implications that
will be discussed below.

Corollary 1 (Insensitivity properties) For i = 1, . . . ,N , the
asymptotic waiting-time distribution W̃i ,

(1) Is independent of the visit order (assuming the order is
cyclic),
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(2) Depends on the variability of the service-time distribu-
tions only through b(2), and

(3) Depends on the switch-over time distributions only
through r .

Note that similar insensitivity properties are generally not
valid for stable systems (i.e., ρ < 1), in which case the
waiting-time distributions do depend on the visit order, the
complete service-time distributions and each of the individ-
ual switch-over time distributions. Apparently, these depen-
dencies are of lower order, and hence their effect on the
waiting-time distributions becomes negligible, in heavy traf-
fic.

Corollary 2 (Zero switch-over times) For the case of zero
switch-over times, the LST of W̃i for the GG-model is given
by the following expression: For i = 1, . . . ,N , Re(s) ≥ 0,

lim
r↓0

W̃i(s) = 1

(1 − ρ̂i )s

b(1)

b(2)

× log

(
μ + s(1 + ρ̂1 + · · · + ρ̂i−1)

μ + s(ρ̂1 + · · · + ρ̂i )

)
, (48)

where α and μ are defined in (42), and where log(·) is an
inverse function of the (complex) function l(z) := exp(z).

Corollary 3 (Expected asymptotic delay) For the GG-
model, the asymptotic expected delay at Qi is given by the
following expression: For i = 1, . . . ,N ,

E[W̃i] = 1

2

(
1 + 2

i−1∑

j=1

ρ̂j + ρ̂i

)(
b(2)

b(1)
+ r

)
. (49)

Remark 1 (Pseudo-conservation law) The pseudo-conserva-
tion law (PCL) for the present model is as follows (cf. [6]):
For ρ < 1,

N∑

i=1

ρiE[Wi] = ρ

N∑

i=1

λib
(2)
i

2(1 − ρ)
+ ρ

r(2)

2r

+ ρ2 r

1 − ρ
+

N∑

i=2

ρi

i−1∑

j=1

r
(1)
j . (50)

By taking heavy-traffic limits, it follows directly that

N∑

i=1

ρiE[W̃i] = b(2)

2b(1)
+ r. (51)

Then it is easy to verify that (49) indeed satisfies (51), which
supports the validity of Theorem 4.

3.2 Cyclic polling models with general branching-type
service policies

In this section we consider the cyclic polling model intro-
duced at the beginning of Sect. 3, with general branching-
type service policies that satisfy the following property (cf.
[32]):

Branching property If the server arrives at Qi to find
ki customers there, then during the course of the server’s
visit, each of these ki customers will effectively be re-
placed in an i.i.d. manner by a population of customers
having joint probability generating function (PGF) hi(z) =
hi(z1, . . . , zN), which can be any N -dimensional PGF.

We assume that the service disciplines are work con-
serving, in the sense that the server always works during
a visit to a queue. From the branching property, a visit pe-
riod of the server starting with ki original customers, say
C1, . . . ,Cki

, consist of ki mutually independent sub-busy
period, each of which is characterized by the joint PGF-LST:
For i = 1, . . . ,N , Re(u) > 0, |v| ≤ 1,

ψi(u, v) := E[e−uTi vLi ], (52)

where Ti is the duration of a sub-busy period, and Li is
the so-called sub-busy period residue, i.e., the number of
type-i children of the original customer that generates this
sub-busy period.

This class of service policies contains a variety of
classical service policies, including the exhaustive, gated,
binomial-gated [20] and binomial-exhaustive [32] policies,
amongst others. For gated and exhaustive service at Qi , we
have for |zk| ≤ 1 (k = 1, . . . ,N),

hi(z) = B∗
i

(
N∑

j=1

λj (1 − zj )

)
and

hi(z) = �∗
i

(∑

j �=i

λj (1 − zj )

)
,

(53)

respectively, where �∗
i (·) denotes the LST of a busy pe-

riod in an M/G/1 queue with arrival rate λi and service
time distribution B∗

i (·). Similarly, for the case of binomial-
gated service (with parameter 0 < pi ≤ 1) and binomial-
exhaustive service (with parameter 0 < qi ≤ 1) we have for
|zk| ≤ 1 (k = 1, . . . ,N),

hi(z) = (1 − pi)zi + piB
∗
i

(
N∑

j=1

λj (1 − zj )

)
and

hi(z) = (1 − qi)zi + qi�
∗
i

(∑

j �=i

λj (1 − zj )

)
,

(54)
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respectively. Adopting the terminology introduced in [41],
we define the exhaustiveness of the service policy at Qi

(i = 1, . . . ,N) by

fi := 1 − E[Li], (55)

where Li is the sub-busy period residue, defined in (52). The
exhaustiveness fi has the following simple interpretation:
each customer present at Qi at the beginning of a visit of
the server to Qi is effectively replaced by a number of cus-
tomers at Qi whose mean value is 1 − fi . In other words, fi

can be seen as

1 − fi

:= E[number of customers at Qi at the end of a visit to Qi ]

E[number of customers at Qi at the beginning of that visit to Qi ]
.

(56)

It is readily verified from (52–56) that for the case of ex-
haustive and gated service we have fi = 1 and fi = 1 − ρi ,
respectively (see also Remark 2 below). Notice also that
the work conserving property implies the following relation
between the sub-busy period duration Ti and the sub-busy
period residue Li : For i = 1, . . . ,N ,

E[Ti] = (1 − E[Li]) b
(1)
i

1 − ρi

= fi

b
(1)
i

1 − ρi

. (57)

3.2.1 Analysis

To establish the relation with the general MTBP-model
described in Sect. 2, we observe that for the model con-
sidered here the joint queue-length process at embedded
polling instants at Q1 can be described as an N -dimensional
MTBP with immigration in each state [32]. This process

is characterized by the offspring generating functions, for
|zk| ≤ 1 (k = 1, . . . ,N), i = 1, . . . ,N ,

f (i)(z1, . . . , zN)

= hi

(
z1, z2, . . . , zi , f

(i+1)(z1, . . . , zN), . . . ,

f (N)(z1, . . . , zN )
)
, (58)

with

hi(z1, . . . , zN) := ψi

(∑

j �=i

λj (1 − zj ), zi

)
, (59)

where ψi(· , ·) is defined in (52), and the immigration func-
tion, for |zk| ≤ 1 (k = 1, . . . ,N),

g(z1, . . . , zN) =
N∏

i=1

R∗
i

(
i∑

k=1

λk(1 − zk)

+
N∑

k=i+1

λk(1 − f (k)(z1, . . . , zN))

)
. (60)

To derive the limiting distribution of the joint queue-length
vector at polling instants at Q1, we need to specify the fol-
lowing parameters: (1) the mean matrix M̂ and its corre-
sponding (normalized) left and right eigenvectors v̂ and ŵ,
and (2) the parameters ĝ and A. These parameters are ob-
tained in the following two lemmas.

Lemma 4 For the cyclic branching-type polling model, the
mean matrix M is given by the following expression:

M = M1 · · ·MN, (61)

where for i = 1, . . . ,N ,

Mi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0 · · · · · · 0

0 1
. . .

... 0 0 · · · · · · 0
...

. . .
. . . 0 0 0 · · · · · · 0

0 · · · 0 1 0 0 · · · · · · 0

λ1fiϕi λ2fiϕi · · · λi−1fiϕi 1 − fi λi+1fiϕi

...
... λNfiϕi

0 · · · · · · 0 0 1 0 · · · 0

0 · · · · · · 0 0 0 1
. . . 0

0 · · · · · · 0 0 0
. . .

. . . 0
0 · · · · · · 0 0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (62)
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with ϕi := b
(1)
i /(1 − ρi). Moreover, if we define for i =

1, . . . ,N ,

ui := λi(1 − ρi)(1 − fi)

fi

+ λi

N∑

j=i+1

ρj , (63)

then the normalized right and left eigenvectors of M̂ are
given by

ŵ =
⎛

⎜⎝
ŵ1
...

ŵN

⎞

⎟⎠= |b|−1

⎛

⎜⎜⎝

b
(1)
1
...

b
(1)
N

⎞

⎟⎟⎠ , and

v̂ = |b|
δ

⎛

⎜⎝
û1
...

ûN

⎞

⎟⎠ ,

(64)

with

δ := û
�
ŵ =

N∑

i=1

⎛

⎝ ρ̂i (1 − ρ̂i )(1 − f̂i )

f̂i

+ ρ̂i

N∑

j=i+1

ρ̂j

⎞

⎠ , (65)

and where b and |b| are defined in (20).

Proof To prove (61) and (62), consider a tagged type-i cus-
tomer, say Ci , present at Qi at the beginning of a service
period at Qi . Following the branching property, Ci gener-
ates a sub-busy period with joint PGF-LST ψi(· , ·), defined
in (52). During this sub-busy period, the average number of
children Ci has at Qj (j �= i) is λjE[Ti] = λjfiϕi , by using
(57). Moreover, it is readily seen that the number of type-i
children of Ci is exactly the residue of the sub-busy period
generated by Ci , and its mean value equals E[Li] = 1 − fi .
Based on these observations, equations (61) and (62) are
easily seen to hold, for i = 1, . . . ,N . To show that ŵ is a
right eigenvector at M̂, note that it follows directly from (62)
that, for i = 1, . . . ,N ,

∑

j �=i

λ̂j f̂i ϕ̂ib
(1)
j + b

(1)
i (1 − f̂i )f̂i ϕ̂i

∑

j �=i

λ̂j b
(1)
j

+ b
(1)
i (1 − f̂i )f̂ib

(1)
i + b

(1)
i (1 − f̂i ) = b

(1)
i , (66)

so that M̂i ŵ = ŵ (i = 1, . . . ,N), and hence, M̂ŵ = ŵ,
which shows that ŵ is indeed a right eigenvector of M̂. Sim-
ilar arguments can be used to show that v̂ is a left eigenvec-
tor of M̂ (along the lines discussed in the Appendix of [40]).
The details are omitted for compactness of the presentation,
and are left as an exercise to the reader. This completes the
proof of Lemma 4. �

Lemma 5 For the cyclic branching-type polling model,

ĝ
�
ŵ = |b|−1r, (67)

and

A = |b|−1δ−1 · b(2)

2b(1)
. (68)

Proof Assume ρ = 1. To show (67) we first observe that it
follows from (60) that the mean number of type-j customers
that immigrate during a cycle is given by

ĝj =
N∑

i=1

r
(1)
i

⎛

⎝λ̂j I{j≤i} +
N∑

k=i+1

λ̂km̂k,j

⎞

⎠ , (69)

where IE stands for the indicator function on the event E.
This implies

ĝ�ŵ :=
N∑

j=1

ĝj ŵj = |b|−1
N∑

j=1

ĝj b
(1)
j

= |b|−1
N∑

i=1

r
(1)
i

(
λ̂j b

(1)
j I{j≤i}

+
N∑

k=i+1

λ̂k

N∑

j=1

m̂k,j b
(1)
j

)

= |b|−1r

N∑

i=1

ρ̂i = |b|−1r, (70)

by using (64), (69), and the fact that
∑N

j=1 m̂k,j b
(1)
j = b

(1)
k ,

which is an immediate consequence of the second part of
Lemma 1, see (19). Finally, the proof of (68) can be obtained
along similar lines as the proof of (25) in (26–29), but with
notationally cumbersome derivations, the details of which
are omitted for compactness of the presentation. See also
Remark 5 for an alternative proof of (68). �

Lemma 6 For the cyclic branching model, the maximum
eigenvalue ξ = ξ(ρ) has the following properties:

(1) ξ < 1 if and only if ρ < 1, ξ = 1 if and only if ρ = 1 and
ξ > 1 if and only if ρ > 1;

(2) ξ(ρ) is a continuous function of ρ;
(3) limρ↑1 ξ(ρ) = ξ(1) = 1;
(4) The derivative of ξ(ρ) at ρ = 1 is given by

ξ ′(1) = lim
ρ↑1

1 − ξ(ρ)

1 − ρ
= 1

δ
, (71)
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where δ is defined in (65).

Proof See Appendix 2. �

We are now ready to present the main result for the model
under consideration.

Theorem 5 For the cyclic branching-type polling model,
the joint queue-length vector at polling instants at Q1 has
the following asymptotic behavior:

(1 − ρ)

⎛

⎜⎜⎝

X
(1)
1
...

X
(1)
N

⎞

⎟⎟⎠→d

b(2)

2b(1)

1

δ

⎛

⎜⎝
û1
...

ûN

⎞

⎟⎠�(α,1) (ρ ↑ 1),

(72)

where

α = 2rδ
b(1)

b(2)
, (73)

and where δ and ûi (i = 1, . . . ,N) are defined in (65) and
(63), respectively.

Proof To start, note that the joint-queue-length process
X(1) := {X(1)

n = (X
(1)
1,n, . . . ,X

(1)
N,n), n = 0,1, . . .} at embed-

ded polling instants at Q1 constitutes an N -dimensional
MTBP with offspring function f (i)(z) and immigration
function g(z) defined in (58) and (60), and with mean matrix
M defined in (61), (62). Moreover, is it easy to verify that
the assumptions of Theorem 1 are satisfied (with M = N ).
Then using Lemmas 4 to 6 and Theorem 1 it follows that

lim
n→∞

1

πn(ξ(ρ))

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠→d A

⎛

⎜⎝
v̂1
...

v̂N

⎞

⎟⎠�(α,1) (ρ ↑ 1),

(74)

where α, v̂ and A are given in (73), (64) and (68), respec-
tively. Hence, similar to the derivation of Theorem 2, rela-
tion (72) follows from the following sequence of equations:

lim
ρ↑1

(1 − ρ)

⎛

⎜⎜⎝

X
(1)
1
...

X
(1)
N

⎞

⎟⎟⎠

= lim
ρ↑1

lim
n→∞(1 − ρ)

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠

= lim
ρ↑1

lim
n→∞(1 − ρ)πn(ξ(ρ))

× lim
ρ↑1

lim
n→∞

1

πn(ξ(ρ))

⎛

⎜⎜⎝

X
(1)
n,1
...

X
(1)
n,N

⎞

⎟⎟⎠

= δ · A
⎛

⎜⎝
v̂1
...

v̂N

⎞

⎟⎠�(α,1)

= 1

δ
· b(2)

2b(1)

⎛

⎜⎝
û1
...

ûN

⎞

⎟⎠�(α,1). (75)

Here, the second equality in (75) follows from (74) and the
fact that

lim
ρ↑1

lim
n→∞(1 − ρ)πn(ξ(ρ))

= lim
ρ↑1

1 − ρ

1 − ξ(ρ)
lim

n→∞
1 − (ξ(ρ))n

ξ(ρ)
= δ · 1 = δ, (76)

which follows directly by using (10) and the properties listed
in Lemma 6. Finally, equation (75) follows from (64) and
(68). This completes the proof of Theorem 5. �

Theorem 6 For the cyclic branching-type polling model,
the waiting-time distribution satisfies the following limiting
behavior: For i = 1, . . . ,N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1) (77)

where the LST of W̃i is given by

W̃ ∗
i (s) = 1

(1 − ρ̂i )rs

{(
μi

μi + s(1 − f̂i )

)α

−
(

μi

μi + s

)α}

(Re(s) > 0), (78)

where

α = 2rδ
b(1)

b(2)
, μi = 2δ

b(1)

b(2)

f̂i

1 − ρ̂i

, (79)

and where δ is given in (65).

Proof Without loss of generality, we focus on the waiting
time distribution at Q1. Adopting the notation used in the
proof of Theorem 4, relation (43) is also applicable to the
cyclic branching-type model under consideration (and hence
also for the special case i = 1), so it remains to determine the
limiting behavior for X

(1)
1 and Y

(1)
1 , i.e. the number of type-1

customers present at the beginning and the end of a visit
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period to Q1, respectively. To this end, note that Theorem 4
implies that in the limiting case ρ ↑ 1,

(1 − ρ)X
(1)
1 →d

b(2)

2b(1)
· 1

δ
· u1 · �(α,1). (80)

Then, using the branching structure of the service policy at
Q1 it is then readily seen that, for ρ ↑ 1,

(1 − ρ)Y
(1)
1 →d (1 − f̂1) · b(2)

2b(1)
· 1

δ
· u1 · �(α,1). (81)

To see the latter, note that at the end of the visit period V1

at Q1, each type-1 customer that was present at the begin-
ning of V1 has been replaced by a population of customers
whose PGF is given by ψ1(· , ·), defined in (52). Focusing
on type-1 customers only, each type-1 customer present in
Q1 at the beginning of V1 is replaced by, on average, 1 − f1

type-1 customers at the end of V1. Then, combining (80),
(81), using the distributional form of Little’s formula and
the observation that a departing customer sees the time av-
erage [35] is easily seen to lead to (77), (78), recalling that
we assumed i = 1 without loss of generality. �

The results presented in Theorem 6 are new and have not
been observed before in the general context of the model
considered. We emphasize that the results are valid in the
general parameter setting of the model defined above. Re-
markably, the results can be obtained in closed form, and
moreover, are strikingly simple, and explicitly show the im-
pact of the system parameters on the asymptotic delay at
each of the queues.

3.2.2 Implications

Theorem 6 leads to a number of interesting implications that
will be addressed below.

Corollary 4 (Insensitivity properties) For i = 1, . . . ,N , the
asymptotic waiting-time distribution of W̃i ,

(1) Depends on the service policies only through the ex-
haustiveness factors f1, . . . , fN ,

(2) Is independent of the visit order (assuming the order is
cyclic),

(3) Depends on the variability of the service-time distribu-
tions only through b(2), and

(4) Depends on the switch-over time distributions only
through r .

Recall from Corollary 4 that in general these insensitivity
properties do not hold for stable systems, in which case the
waiting-time distributions depend on the complete distrib-
ution of the sub-busy periods defined in (52), the visit or-
der, the complete service-time distributions and each of the

individual switch-over time distributions. Apparently, these
dependencies are of lower order, and hence their effect on
the waiting-time distributions becomes negligible, in heavy
traffic.

Corollary 5 (Zero switch-over times) For the special case
of zero switch-over times, we have: For i = 1, . . . ,N ,
Re(s) > 0,

lim
r↓0

W̃i(s) = 2δ

(1 − ρ̂i )s

b(1)

b(2)
log

(
μi + s

μi + s(1 − f̂i )

)
, (82)

where α, μi and δ are defined in (79) and (65), respectively,
and where log(·) is an inverse function of the (complex)
function l(z) := exp(z).

Corollary 6 (Mean asymptotic delay) For the cyclic branch-
ing model, the asymptotic expected delay at Qi is given by
the following expression: For i = 1, . . . ,N ,

E[W̃i] =
(1 − ρ̂i )

( 2
f̂i

− 1
)

∑N
j=1 ρ̂j (1 − ρ̂j )

( 2
f̂j

− 1
)

b(2)

2b(1)

+ 1

2
r(1 − ρ̂i )

(
2

f̂i

− 1

)
. (83)

Note that this result was also shown in [42], where we ob-
tained the result via the Descendant Set Approach [17].

We end this subsection with a number of remarks.

Remark 2 (Generalization of known results) Theorem 6
generalizes and unifies known results that have been shown
before. Van der Mei [39] derived the result for the special
case of mixtures of gated and exhaustive service at each
queue. More precisely, if E denotes the set of queues that re-
ceive exhaustive service and G denotes the set of queues that
receive gated service, then it follows from (53) that fi = 1
for i ∈ E, and fi = 1 − ρi for i ∈ G. Moreover, it is easily
verified that in that case δ = (1 −∑

i∈E ρ̂2
i +∑

i∈G ρ̂2
i )/2.

Similarly, (54) implies that for the case of binomial-gated
service with parameter pi (0 < pi ≤ 1) we have fi = pi(1−
ρi), while for the fractional exhaustive policy with parame-
ter qi (0 < qi ≤ 1) we have fi = qi .

Remark 3 (Pseudo-conservation law) The pseudo-conserva-
tion law (PCL) for the present model is as follows (cf. [44]):
For ρ < 1,

N∑

i=1

ρ̂iE[Wi] = ρ

N∑

i=1

λib
(2)
i

2(1 − ρ)
+ ρ

r(2)

2r
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+ r

2(1 − ρ)

[
ρ2 −

N∑

i=1

ρ2
i

]
+

N∑

i=1

E[Mi],

(84)

where the mean amount of at Qi at a server departure instant
at Qi is, for ρ < 1, i = 1, . . . ,N ,

E[Mi] = rρi(1 − ρi)(1 − fi)

fi(1 − ρ)
. (85)

By taking heavy-traffic limits, it follows directly that

N∑

i=1

ρiE[W̃i] = b(2)

2b(1)
+ r

2

N∑

i=1

ρ̂i (1 − ρ̂i )

(
2

f̂i

− 1

)
. (86)

Then it is easy to verify that (83) indeed satisfies (86), which
supports the validity of Theorem 6.

Remark 4 (Direct calculation of mean values) The mean
values of X

(k)
i (i, k = 1, . . . ,N) can also be obtained directly

via simple balancing arguments. To this end, note first that
for i = k simple balancing arguments lead to the following
equations: For ρ < 1, i = 1, . . . ,N ,

E[X(i)
i ] = λir + λi

∑

j �=i

E[X(j)
j ]E[Tj ] + E[X(i)

i ]E[Li],
(87)

which is readily seen to lead to the following expression (cf.
also [44]): For ρ < 1, i = 1, . . . ,N ,

E[X(i)
i ] = r

1 − ρ

ρi

E[Ti] = λir(1 − ρi)

fi(1 − ρ)
. (88)

Notice that for the special case i = 1 it follows from Theo-
rem 5 that

lim
ρ↑1

(1 − ρ)E[X(1)
1 ] = b(2)

2b(1)
· 1

δ
· û1 · α

= b(2)

2b(1)
· 1

δ
· λ̂1(1 − ρ̂1)

f̂1
· 2rδ

b(1)

b(2)

= rλ̂1(1 − ρ̂1)

f̂1
, (89)

where the second equality follows from the fact that

û1 = λ̂1(1 − ρ̂1)(1 − f̂1)

f̂1
+ λ̂1(1 − ρ̂1) = λ̂1(1 − ρ̂1)

f̂1
. (90)

Note that (89) is indeed in line with (88). More generally,
from simple balancing arguments it follows directly that, for
ρ < 1, i, k = 1, . . . ,N ,

E[X(k)
i ] = λir(1 − ρi)(1 − fi)

fi(1 − ρ)
+ λir

1 − ρ

k−1∑

j=i+1

ρj . (91)

Then it is readily verified from Theorem 5 that for the case
k = 1 (without loss of generality), for i = 1, . . . ,N ,

lim
ρ↑1

(1 − ρ)E[X(1)
i ]

= 1

δ
· b(2)

2b(1)
· ûi · α

= rûi = λ̂ir(1 − ρ̂i )(1 − f̂i )

f̂i

+ λ̂ir

N∑

j=i+1

ρ̂j , (92)

which is in line with Theorem 5.

Remark 5 (Alternative proof of (68)) The results in (87–92)
provide an alternative proof for relation (68) in Lemma 5.
To this end, note that from (75) and (92), by taking i = 1, it
is readily seen that

λ̂1(1 − ρ̂1)r

f̂1
= δ · A · v̂1 · α. (93)

Equation (68) then follows directly by combining (93)
with the definitions of δ, v̂1 and α in (65), (64) and (79),
respectively, using standard algebraic manipulations.

3.3 Discussion and further remarks

Model extensions: The results presented in Sect. 3.1 and
3.2 can be readily extended to a broader set of models. The
requirements for the derivation of heavy-traffic limits sim-
ilar to Theorems 2 to 6 are that (1) the evolution of the
system at specific moments can be described as a multi-
dimensional branching process with immigration, and (2)
that the system is work conserving. In addition to the mod-
els addressed above, this class of models includes as spe-
cial cases for example models with gated/exhaustive service
and non-cyclic periodic server routing [26], models with (si-
multaneous) batch arrivals [22, 42], continuous polling mod-
els [18], models with customer routing [34], globally-gated
models with elevator-type routing [1], models with local pri-
orities [33], amongst many other model variants. Basically,
all that needs to be done for each of these model variants
is to determine the parameters α, û and the derivative of
ξ = ξ(ρ) at ρ = 1, which is usually straightforward.
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Generality of the results: The question raises which
polling models fall within the class of branching-type mod-
els for which the approach presented in this paper is applica-
ble. As stated above, the key requirements are the existence
of a suitable embedded process such that the evolution of the
state of the system can be described by an MTBP, and that
the system is work conserving. Although most polling sys-
tems that are used in practice are indeed work conserving,
it is not inconceivable that there exist non work-conserving
polling models for which an embedded process does sat-
isfy an MTBP-structure. In those cases, properties similar
to those stated in Lemma’s 3 and 6 are no longer valid,
so that the translation of Theorem 1 to results for polling
models similar to Theorems 3 and 5, which explicitly use
Lemma’s 3 and 6, may be more complicated. Moreover, the
required MTBP-structure of a proper embedded process im-
plies that the arrival processes should be memoryless, and
hence must be Poisson, or some batched variant of the Pois-
son process. For example, models with renewal processes
with non-exponential interarrival times generally violate the
required branching structure, and hence, fall beyond the
scope of the branching-type models for which our results
hold (see also the remarks about this in Sect. 4 below).

Choice of the embedded process: In general, the MTBP
need not always be the joint queue-length vector at embed-
ded polling instants at a fixed queue, with M = N . For ex-
ample, in the case of periodic server routing with polling
table π := (π1, . . . , πL) of length L ≥ N a proper choice for
the MTBP is the M := L-dimensional joint queue-length is
a fixed pseudo-queue [26]. As another example, in the case
of two-stage polling models with cyclic routing [28], one
should most likely consider the M := 2N -dimensional state
vector describing the numbers of customers at both stages
of all N types at embedded polling instants at a fixed queue;
here, the state of the system cannot be described completely
by an N -dimensional state vector.

Assumptions on the finiteness of moments: Theorems
4 and 6 are valid under the assumption that the second mo-
ments of the service times and the first moments of the
switch-over times are finite; these assumptions are an im-
mediate consequence of the assumptions on the finiteness
of the mean immigration function g and the second-order
derivatives of the offspring function K

(i)
j,k , defined in (5) and

(7), respectively. It is interesting to observe that the results
obtained in Van der Mei [39] via the use of the Descendant
Set Approach (DSA) assume the finiteness of all moments
of the service times and switch-over times; these assump-
tions were required, since the DSA-based proofs in [39] are
based on a bottom-up approach in the sense that the limiting
results for the waiting-time distributions are obtained from
the asymptotic expressions for the moments of the waiting
times obtained in [40, 41]. Note that in this way the DSA-
based approach differs fundamentally from the top-down ap-

proach taken in the present paper, where the asymptotic ex-
pressions for the moments of W̃1 can be obtained from the
expressions for the asymptotic waiting-time distributions in
Theorems 4 and 6. Note, however, that to prove convergence
of the kth moment in the general context of the present paper
requires a stronger means of convergence (namely, conver-
gence in Lk) than the convergence in distribution shown in
this paper [11], which addresses a challenging topic for fur-
ther research.

Local and global branching: Although the GG-model
discussed in Sect. 3.1 the joint queue-length vector at suc-
cessive polling instants at a fixed queue constitutes an
MTBP, the GG-model does not occur as a special case of
the branching model discussed in Sect. 3.2. To this end, note
that for the GG-model the service policy at Qi does not sat-
isfy the local branching property described in Sect. 3.2, for
i > 1. To see this, consider an arbitrary polling instant at
Qi (i > 1), which marks the beginning of a visit Vi to Qi .
Then the number of customers present at that moment, say
L

(total)
i , can be written as

L
(total)
i = L

(front)
i + L

(behind)
i , (94)

where L
(front)
i , L

(behind)
i stands for the number of type-i cus-

tomers that in front of and behind the global gate, respec-
tively. Then at the end of Vi all L

(front)
i customers that were

standing in front of the gate have been served and hence
have been effectively replaced by a population of customers
whose joint PGF is given by B∗

i (
∑N

j=1 λj (1−zj )), whereas

the remaining L
(behind)
i customers have not been served,

and hence, are “effectively replaced” by a population whose
PGF equals zi .

Approximations: The results presented in Theorems 4
and 6 suggest the following simple approximations for the
waiting-time distributions for stable systems: For ρ < 1, i =
1, . . . ,N ,

Pr{Wi < x} ≈ Pr{W̃i < x(1 − ρ)}. (95)

Extensive validation of this approximation falls beyond the
scope of this paper. We refer to [39] for a discussion on the
accuracy of the approximation for the special case of ex-
haustive and gated service.

4 Topics for further research

The results presented in this paper provide a significant step
towards the development of a unified theory of polling in
heavy traffic. Nonetheless, the results raise a number of
challenging open questions for further research. First, in this
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paper it is assumed that the second moments of the service-
time distributions are finite, forced by the second-moment
assumption on the offspring function, needed for the valid-
ity of Theorem 1. An interesting area for further research
is to obtain heavy-traffic results for heavy-tailed service-
time distributions with infinite variance. In this context, in-
teresting results have been obtained by Boxma et al. [7],
who study the tail behavior of the waiting times in polling
systems with so-called regularly varying service times and
switch-over times, and by Boxma and Cohen [5], who derive
the heavy-traffic limiting distribution for the waiting times in
the single-server queue with heavy-tailed service-time dis-
tributions. Second, in order to use the theory of MTBPs the
arrival processes must be Poisson (or batched Poisson). In-
terestingly, in special cases similar heavy-traffic results have
been obtained under the weaker assumption of independent
renewal processes, where also the gamma-distribution ap-
pears to play a key role (see for example [13, 27]). Note,
however, that the proofs of these results for N > 2 are based
on partial conjectures. Moreover, for several polling models
it was found that the heavy-traffic limits of a Poisson-type
model and its renewal counterpart only differ by a simple
scaling constant (see for example [26, 27] for non-cyclic pe-
riodic polling models). Hence, based on these insights we
may formulate strong conjectures about the asymptotic be-
havior of polling models in the general setting of the present
paper, with renewal arrivals. Third, it is well known that
an exact analysis of polling models with service policies
that violate the branching structure (e.g., limited-type poli-
cies) are fundamentally more complex, and do not allow for
an exact detailed analysis of the waiting times. Nonethe-
less, focusing on the heavy-traffic behavior it is still an open
question whether exact—or approximate—asymptotic re-
sults can be obtained for non-branching type polling models.
Fourth, the derivation of rigorous proofs for the moment-
wise convergence of the results shown in Theorem 4 and 6
are to be obtained. To this end, note that moment-wise con-
vergence of the results in Theorems 4 and 6 requires exten-
sion of the results to convergence in L2. In this context, note
that the results in [29] suggest that convergence in L2 in-
deed holds. Providing rigorous proofs of the convergence of
moments is an interesting area for further research. Finally, a
related area of research is the analysis of the waiting times in
polling systems with multiple (say m > 1) servers. Multiple-
server polling models are notoriously hard, and do not leave
any hope for an exact analysis. Interestingly, based on nu-
merical experimentation it was observed in [9, 25, 43] that
if the servers follow the same route they tend to cluster to-
gether, particularly when the system is heavily loaded. These
results suggest that in the limiting case all servers tend to ef-
fectively work as a single server that works m times as fast.
This, in turn, suggests that we may use our heavy-traffic re-
sults for single-server polling models to develop simple ap-

proximations for the delay figures at each of the queues. Pre-
liminary experimentation with simulations show promising
results, opening up an interesting area for further research.
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Appendix 1: Proof of Lemma 3

Part 1 was shown in [32]. Part 2 follows from the fact that all
entries of M are continuous functions of ρ, which implies
continuity of ξ = ξ(ρ) with respect to ρ (see for example
[2]). The fact that ξ(1) = 1 follows directly from the fact
that M̂b = b, which is an immediate consequence of the fact
that the GG-model described in Sect. 3.1 is work conserving.
Finally, to prove Part 4 we adopt the concept and notation of
the Descendant Set Approach (DSA) from [17]. The DSA
focuses on an arbitrary polling instant of the server at Q1,
called the reference point, and focuses on X1, the number
of type-1 customers in the system at that moment. Denot-
ing by Ai,c the contribution to X1 of a type-i customer that
was present in the system at a polling instant c cycles before
the reference point, the mean values αi,c := E[Ai,c] can be
obtained via the following recursive relations (cf. [17] for
details): For i = 1, . . . ,N ,

αi,−1 := I{i=1}, (96)

and for c = 0,1, . . . ,

αi,c = b
(1)
i

N∑

j=1

λjαj,c−1. (97)

Then if we define, for ρ < 1,

� :=
N∑

i=1

λi

∞∑

c=0

αi,c, (98)

then substitution of (96) and (97) immediately leads to the
observation that, for ρ < 1,

� = ρ (� + λ1) = λ1ρ

1 − ρ
. (99)

Alternatively, it is easily verified that we can write αi,c =
e�
i Me1 (cf. (22) in [40]), where ei is the ith unit vector (i =

1, . . . ,N ). Then using Lemma 4.1 in [40] (see also [2]), we
can write for c = 0,1, . . . ,

Mc = ξcvw� + S(c), (100)
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where v and w are the right and left eigenvectors of M and
ξ is the maximum eigenvalue of M, and where there exist
K (0 < K < ∞) and ξ∗ (0 < ξ∗ < ξ) such that all entries
of S(c) = (s

(c)
i,j ) satisfy |s(c)

i,j | < Kξc∗ . Hence, we can decom-
pose αi,c into a dominant and a recessive part as follows: for
ρ < 1,

αi,c = ξc+1wiv1 + si,c, (101)

where si,c is a lower-order term in the sense that there
|si,c| < Kξc∗ for some K (0 < K < ∞) and ξ∗ (0 < ξ∗ < ξ),
for all c = 0,1, . . . . Equation (101) is readily seen to imply
that, for i = 1, . . . ,N ,

∞∑

c=0

si,c < ∞. (102)

From (101) we have, for ρ < 1 (and hence ξ < 1, see part 1
of Lemma 3),

� = ξ

1 − ξ

N∑

i=1

λiwiv1 +
N∑

i=1

λi

∞∑

c=0

si,c. (103)

Then by premultiplying � in (99) and (103) by a factor 1 −
ρ, taking the limit for ρ ↑ 1 and using (64), (102) and parts
1, 2 and 3 of Lemma 3 we obtain

λ̂1ρ̂ = ξ̂ ρ̂λ̂1 lim
ρ↑1

1 − ρ

1 − ξ
+ 0 = λ̂1 lim

ρ↑1

1 − ρ

1 − ξ
, (104)

which immediately implies

lim
ρ↑1

1 − ξ

1 − ρ
= 1. (105)

This completes the proof of Lemma 3.

Appendix 2: Proof of Lemma 6

Parts 1, 2 and 3 follow from similar arguments as those
of Lemma 3. To prove Part 4, for the cyclic branching
model the Descendant Set variables αi,c (defined above) sat-
isfy the following recursive equations (cf. also [45]): For
i = 1, . . . ,N , αi,−1 := I{i=1}, and for c = 0,1, . . . ,

αi,c = E[Ti]
⎛

⎝
N∑

j=i+1

λjαi,c +
i−1∑

j=1

λjαj,c−1

⎞

⎠+ E[Li]αj,c−1

= fi

b
(1)
i

1 − ρi

⎛

⎝
N∑

j=i+1

λjαj,c +
i−1∑

j=1

λjαj,c−1

⎞

⎠

+ (1 − fi)αi,c−1. (106)

Then if � is defined as in (98) it is readily verified that, for
ρ < 1 (and hence also ξ < 1, see part 1 of Lemma 4),

� = λ1(1 − ρ1 − f1(1 − ρ))

f1(1 − ρ)
. (107)

Then similar to the proof of (101) in Lemma 3 above we can
write, for ρ < 1,

αi,c = ξc+1wiv1 + si,c, (108)

where si,c satisfies (102), for i = 1, . . . ,N . This implies that,
for ρ < 1,

� = ξ

1 − ξ
v1

N∑

i=1

λiwi +
N∑

i=1

λi

∞∑

c=0

si,c. (109)

Then following similar arguments as in the proof of Lemma 3
in Appendix 1, combining (64), (93), (107), (109) and parts
1, 2 and 3 of Lemma 4 we obtain

lim
ρ↑1

1 − ξ

1 − ρ
= 1

δ
. (110)

This completes the proof of Lemma 6.
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