4,970 research outputs found

    Grid and sensor web technologies for environmental monitoring

    Get PDF

    A weather forecast model accuracy analysis and ECMWF enhancement proposal by neural network

    Get PDF
    This paper presents a neural network approach for weather forecast improvement. Predicted parameters, such as air temperature or precipitation, play a crucial role not only in the transportation sector but they also influence people's everyday activities. Numerical weather models require real measured data for the correct forecast run. This data is obtained from automatic weather stations by intelligent sensors. Sensor data collection and its processing is a necessity for finding the optimal weather conditions estimation. The European Centre for Medium-Range Weather Forecasts (ECMWF) model serves as the main base for medium-range predictions among the European countries. This model is capable of providing forecast up to 10 days with horizontal resolution of 9 km. Although ECMWF is currently the global weather system with the highest horizontal resolution, this resolution is still two times worse than the one offered by limited area (regional) numeric models (e.g., ALADIN that is used in many European and north African countries). They use global forecasting model and sensor-based weather monitoring network as the input parameters (global atmospheric situation at regional model geographic boundaries, description of atmospheric condition in numerical form), and because the analysed area is much smaller (typically one country), computing power allows them to use even higher resolution for key meteorological parameters prediction. However, the forecast data obtained from regional models are available only for a specific country, and end-users cannot find them all in one place. Furthermore, not all members provide open access to these data. Since the ECMWF model is commercial, several web services offer it free of charge. Additionally, because this model delivers forecast prediction for the whole of Europe (and for the whole world, too), this attitude is more user-friendly and attractive for potential customers. Therefore, the proposed novel hybrid method based on machine learning is capable of increasing ECMWF forecast outputs accuracy to the same level as limited area models provide, and it can deliver a more accurate forecast in real-time.Web of Science1923art. no. 514

    Semantic Services Grid in Flood-forecasting Simulations

    Get PDF
    Flooding in the major river basins of Central Europe is a recurrent event affecting many countries. Almost every year, it takes away lives and causes damage to infrastructure, agricultural and industrial production, and severely affects socio-economic development. Recurring floods of the magnitude and frequency observed in this region is a significant impediment, which requires rapid development of more flexible and effective flood-forecasting systems. In this paper we present design and development of the flood-forecasting system based on the Semantic Grid services. We will highlight the corresponding architecture, discovery and composition of services into workflows and semantic tools supporting the users in evaluating the results of the flood simulations. We will describe in detail the challenges of the flood-forecasting application and corresponding design and development of the service-oriented model, which is based on the well known Web Service Resource Framework (WSRF). Semantic descriptions of the WSRF services will be presented as well as the architecture, which exploits semantics in the discovery and composition of services. Further, we will demonstrate how experience management solutions can help in the process of service discovery and user support. The system provides a unique bottom-up approach in the Semantic Grids by combining the advances of semantic web services and grid architectures

    Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models

    Full text link
    We compare, for the overlapping time frame 1962-2000, the estimate of the northern hemisphere (NH) mid-latitude winter atmospheric variability within the XX century simulations of 17 global climate models (GCMs) included in the IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of the 500hPa geopotential height fields and introduce an integral measure of the variability observed in the NH on different spectral sub-domains. Only two high-resolution GCMs have a good agreement with reanalyses. Large biases, in most cases larger than 20%, are found between the wave climatologies of most GCMs and the reanalyses, with a relative span of around 50%. The travelling baroclinic waves are usually overestimated, while the planetary waves are usually underestimated, in agreement with previous studies performed on global weather forecasting models. When comparing the results of various versions of similar GCMs, it is clear that in some cases the vertical resolution of the atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be critical in determining the agreement with the reanalyses. The GCMs ensemble is biased with respect to the reanalyses but is comparable to the best 5 GCMs. This study suggests serious caveats with respect to the ability of most of the presently available GCMs in representing the statistics of the global scale atmospheric dynamics of the present climate and, a fortiori, in the perspective of modelling climate change.Comment: 39 pages, 8 figures, 2 table
    • …
    corecore