1,089 research outputs found

    Performance Review of Selected Topology-Aware Routing Strategies for Clustering Sensor Networks

    Get PDF
    In this paper, cluster-based routing (CBR) protocols for addressing issues pertinent to energy consumption, network lifespan, resource allocation and network coverage are reviewed. The paper presents an indepth  performance analysis and critical review of selected CBR algorithms. The study is domain-specific and simulation-based with emphasis on the tripartite trade-off between coverage, connectivity and lifespan. The rigorous statistical analysis of selected CBR schemes was also presented. Network simulation was conducted with Java-based Atarraya discrete-event simulation toolkit while statistical analysis was carried out using MATLAB. It was observed that the Periodic, Event-Driven and Query-Based Routing (PEQ) schemes performs better than Low-Energy Adaptive Clustering Hierarchy (LEACH), Threshold-Sensitive Energy-Efficient Sensor Network (TEEN) and Geographic Adaptive Fidelity (GAF) in terms of network lifespan, energy consumption and network throughput.Keywords: Wireless sensor network, Hierarchical topologies, Cluster-based routing, Statistical analysis, Network simulatio

    Node placement optimization using extended virtual force and cuckoo search algorithm in wireless sensor network

    Get PDF
    Node placement is one of the fundamental issues that affects the performance of coverage and connectivity in Wireless Sensor Network (WSN). In a large scale WSN, sensor nodes are deployed randomly where they are scattered too close or far apart from each other. This random deployment causes issues such as coverage hole, overlapping and connectivity failure that contributes to the performance of coverage and connectivity of WSN. Therefore, node placement model is develop to find the optimal node placement in order to maintain the coverage and guaranteed the connectivity in random deployment. The performance of Extended Virtual Force-Based Algorithm (EVFA) and Cuckoo Search (CS) algorithm are evaluated and EVFA shows the improvement of coverage area and exhibits a guaranteed connectivity compared to CS algorithm. Both algorithms have their own strength in improving the coverage performance. The EVFA approach can relocate the sensor nodes using a repulsive and attractive force after initial deployment and CS algorithm is more efficient in exploring the search of maximum coverage area in random deployment. This study proposed Extended Virtual Force and Cuckoo Search (EVFCS) algorithm with a combination of EVFA and CS algorithm to find an optimal node placement. A series of experimental studies on evaluation of proposed algorithm were conducted within simulated environment. In EVFCS, the algorithm searches the best value of threshold distance and relocated the new position of sensor nodes. The result suggested 18.212m is the best threshold distance that maximizes the coverage area. It also minimizes the problems of coverage hole and overlapping while guaranteeing a reasonable connectivity quality. It proved that the proposed EVFCS outperforms the EVFA approach and achieved a significant improvement in coverage area and guaranteed connectivity. The implementation of the EVFCS improved the problems of initial random deployment

    Maximization of Network Lifetime with Coverage and Connectivity Improvement Using Network Partition

    Get PDF
    Coverage of interest points and network connectivity are two main challenging and practically important issues of Wireless Sensor Networks (WSNs). Although many studies have exploited the mobility of sensors to improve the quality of coverage and connectivity, little attention has been paid to the minimization of sensors’ movement, which often consumes the majority of the limited energy of sensors and thus shortens the network lifetime significantly. To fill in this gap, this paper addresses the challenges of the Mobile Sensor Deployment (MSD) problem and investigates how to deploy mobile sensors with minimum movement to form a WSN that provides both target coverage and network connectivity. To this end, the MSD problem is decomposed into two sub-problems: the Target Coverage (TCOV) problem and the Network Connectivity (NCON) problem. We then solve TCOV and NCON one by one and combine their solutions to address the MSD problem. The proposed method uses the concept of Network Partition to improve network lifetime and coverage. The combination of the solutions to TCOV and NCON, as demonstrated by extensive simulation experiments, offers a promising solution to the original MSD problem that balances the load of different sensors and prolongs the network lifetime consequently

    An artificial intelligence based quorum system for the improvement of the lifespan of sensor networks.

    Get PDF
    Artificial Intelligence-based Quorum systems are used to solve the energy crisis in real-time wireless sensor networks. They tend to improve the coverage, connectivity, latency, and lifespan of the networks where millions of sensor nodes need to be deployed in a smart grid system. The reality is that sensors may consume more power and reduce the lifetime of the network. This paper proposes a quorum-based grid system where the number of sensors in the quorum is increased without actually increasing quorums themselves, leading to improvements in throughput and latency by 14.23%. The proposed artificial intelligence scheme reduces the network latency due to an increase in time slots over conventional algorithms previously proposed. Secondly, energy consumption is reduced by weighted load balancing, improving the network’s actual lifespan. Our experimental results show that the coverage rate is increased on an average of 11% over the conventional Coverage Contribution Area (CCA), Partial Coverage with Learning Automata (PCLA), and Probabilistic Coverage Protocol (PCP) protocols respectively

    Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage and Cooperative Target Tracking

    Get PDF
    There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power and capabilities of a sensor node. In some environments, a controlled deployment of the WSN may not be attainable. In such case, the only viable option would be a random deployment over the region of interest (ROI), leading to a great deal of uncovered areas as well as many cutoff nodes. Three different scenarios are presented, each addressing the coverage problem for a distinct purpose. First, a multi-objective optimization is considered with the purpose of relocating the sensor nodes after the initial random deployment, through maximizing the field coverage while minimizing the cost of mobility. Simulations reveal the improvements in coverage, while maintaining the mobility cost to a minimum. In the second scenario, tracking a mobile target with a high level of accuracy is of interest. The relocation process was based on learning the spatial mobility trends of the targets. Results show the improvement in tracking accuracy in terms of mean square position error. The last scenario involves the use of inverse reinforcement learning (IRL) to predict the destination of a given target. This lay the ground for future exploration of the relocation problem to achieve improved prediction accuracy. Experiments investigated the interaction between prediction accuracy and terrain severity. The other WSN limitation is dealt with by introducing the concept of sparse sensing to schedule the measurements of sensor nodes. A hybrid WSN setup of low and high precision nodes is examined. Simulations showed that the greedy algorithm used for scheduling the nodes, realized a network that is more resilient to individual node failure. Moreover, the use of more affordable nodes stroke a better trade-off between deployment feasibility and precision

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Optimal Coverage in Wireless Sensor Network using Augmented Nature-Inspired Algorithm

    Get PDF
               One of the difficult problems that must be carefully considered before any network configuration is getting the best possible network coverage. The amount of redundant information that is sensed is decreased due to optimal network coverage, which also reduces the restricted energy consumption of battery-powered sensors. WSN sensors can sense, receive, and send data concurrently. Along with the energy limitation, accurate sensors and non-redundant data are a crucial challenge for WSNs. To maximize the ideal coverage and reduce the waste of the constrained sensor battery lifespan, all these actions must be accomplished. Augmented Nature-inspired algorithm is showing promise as a solution to the crucial problems in “Wireless Sensor Networks” (WSNs), particularly those related to the reduced sensor lifetime. For “Wireless Sensor Networks” (WSNs) to provide the best coverage, we focus on algorithms that are inspired by Augmented Nature in this research. In wireless sensor networks, the cluster head is chosen using the Diversity-Driven Multi-Parent Evolutionary Algorithm. For Data encryption Improved Identity Based Encryption (IIBE) is used.  For centralized optimization and reducing coverage gaps in WSNs Time variant Particle Swarm Optimization (PSO) is used. The suggested model's metrics are examined and compared to various traditional algorithms. This model solves the reduced sensor lifetime and redundant information in Wireless Sensor Networks (WSNs) as well as will give real and effective optimum coverage to the Wireless Sensor Networks (WSNs)

    Deployment Policies to Reliably Maintain and Maximize Expected Coverage in a Wireless Sensor Network

    Get PDF
    The long-term operation of a wireless sensor network (WSN) requires the deployment of new sensors over time to restore any loss in network coverage and communication ability resulting from sensor failures. Over the course of several deployment actions it is important to consider the cost of maintaining the WSN in addition to any desired performance measures such as coverage, connectivity, or reliability. The resulting problem formulation is approached first through a time-based deployment model in which the network is restored to a fixed size at periodic time intervals. The network destruction spectrum (D-spectrum) has been introduced to estimate reliability and is more commonly applied to a static network, rather than a dynamic network where new sensors are deployed over time. We discuss how the D-spectrum can be incorporated to estimate reliability of a time-based deployment policy and the features that allow a wide range of deployment policies to be evaluated in an efficient manner. We next focus on a myopic condition-based deployment model where the network is observed at periodic time intervals and a fixed budget is available to deploy new sensors with each observation. With a limited budget available the model must address the complexity present in a dynamic network size in addition to a dynamic network topology, and the dependence of network reliability on the deployment action. We discuss how the D-spectrum can be applied to the myopic condition-based deployment problem, illustrating the value of the D-spectrum in a variety of maintenance settings beyond the traditional static network reliability problem. From the insight of the time-based and myopic condition-based deployment models, we present a Markov decision process (MDP) model for the condition-based deployment problem that captures the benefit of an action beyond the current time period. Methodology related to approximate dynamic programming (ADP) and approximate value iteration algorithms is presented to search for high quality deployment policies. In addition to the time-based and myopic condition-based deployment models, the MDP model is one of the few addressing the repeated deployment of new sensors as well as an emphasis on network reliability. For each model we discuss the relevant problem formulation, methodology to estimate network reliability, and demonstrate the performance in a range of test instances, comparing to alternative policies or models as appropriate. We conclude with a stochastic optimization model focused on a slightly different objective to maximize expected coverage with uncertainty in where a sensor lands in the network. We discuss a heuristic solution method that seeks to determine an optimal deployment of sensors, present results for a wide range of network sizes and explore the impact of sensor failures on both the model formulation and resulting deployment policy

    An Internet of Things (IoT) based wide-area Wireless Sensor Network (WSN) platform with mobility support.

    Get PDF
    Wide-area remote monitoring applications use cellular networks or satellite links to transfer sensor data to the central storage. Remote monitoring applications uses Wireless Sensor Networks (WSNs) to accommodate more Sensor Nodes (SNs) and for better management. Internet of Things (IoT) network connects the WSN with the data storage and other application specific services using the existing internet infrastructure. Both cellular networks, such as the Narrow-Band IoT (NB-IoT), and satellite links will not be suitable for point-to-point connections of the SNs due to their lack of coverage, high cost, and energy requirement. Low Power Wireless Area Network (LPWAN) is used to interconnect all the SNs and accumulate the data to a single point, called Gateway, before sending it to the IoT network. WSN implements clustering of the SNs to increase the network coverage and utilizes multiple wireless links between the repeater nodes (called hops) to reach the gateway at a longer distance. Clustered WSN can cover up to a few km using the LPWAN technologies such as Zigbee using multiple hops. Each Zigbee link can be from 200 m to 500 m long. Other LPWAN technologies, such as LoRa, can facilitate an extended range from 1km to 15km. However, the LoRa will not be suitable for the clustered WSN due to its long Time on Air (TOA) which will introduce data transmission delay and become severe with the increase of hop count. Besides, a sensor node will need to increase the antenna height to achieve the long-range benefit of Lora using a single link (hop) instead of using multiple hops to cover the same range. With the increased WSN coverage area, remote monitoring applications such as smart farming may require mobile sensor nodes. This research focuses on the challenges to overcome LoRa’s limitations (long TOA and antenna height) and accommodation of mobility in a high-density and wide-area WSN for future remote monitoring applications. Hence, this research proposes lightweight communication protocols and networking algorithms using LoRa to achieve mobility, energy efficiency and wider coverage of up to a few hundred km for the WSN. This thesis is divided into four parts. It presents two data transmission protocols for LoRa to achieve a higher data rate and wider network coverage, one networking algorithm for wide-area WSN and a channel synchronization algorithm to improve the data rate of LoRa links. Part one presents a lightweight data transmission protocol for LoRa using a mobile data accumulator (called data sink) to increase the monitoring coverage area and data transmission energy efficiency. The proposed Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) utilizes direct or single hop to transmit data from the SNs using one of them as the repeater node. Wide-area remote monitoring applications such as Water Quality Monitoring (WQM) can acquire data from geographically distributed water resources using LDAP, and a mobile Data Sink (DS) mounted on an Unmanned Aerial Vehicle (UAV). The proposed LDAP can acquire data from a minimum of 147 SNs covering 128 km in one direction reducing the DS requirement down to 5% comparing other WSNs using Zigbee for the same coverage area with static DS. Applications like smart farming and environmental monitoring may require mobile sensor nodes (SN) and data sinks (DS). The WSNs for these applications will require real-time network management algorithms and routing protocols for the dynamic WSN with mobility that is not feasible using static WSN technologies. This part proposes a lightweight clustering algorithm for the dynamic WSN (with mobility) utilizing the proposed LDAP to form clusters in real-time during the data accumulation by the mobile DS. The proposed Lightweight Dynamic Clustering Algorithm (LDCA) can form real-time clusters consisting of mobile or stationary SNs using mobile DS or static GW. WSN using LoRa and LDCA increases network capacity and coverage area reducing the required number of DS. It also reduces clustering energy to 33% and shows clustering efficiency of up to 98% for single-hop clustering covering 100 SNs. LoRa is not suitable for a clustered WSN with multiple hops due to its long TOA, depending on the LoRa link configurations (bandwidth and spreading factor). This research proposes a channel synchronization algorithm to improve the data rate of the LoRa link by combining multiple LoRa radio channels in a single logical channel. This increased data rate will enhance the capacity of the clusters in the WSN supporting faster clustering with mobile sensor nodes and data sink. Along with the LDCA, the proposed Lightweight Synchronization Algorithm for Quasi-orthogonal LoRa channels (LSAQ) facilitating multi-hop data transfer increases WSN capacity and coverage area. This research investigates quasi-orthogonality features of LoRa in terms of radio channel frequency, spreading factor (SF) and bandwidth. It derived mathematical models to obtain the optimal LoRa parameters for parallel data transmission using multiple SFs and developed a synchronization algorithm for LSAQ. The proposed LSAQ achieves up to a 46% improvement in network capacity and 58% in data rate compared with the WSN using the traditional LoRa Medium Access Control (MAC) layer protocols. Besides the high-density clustered WSN, remote monitoring applications like plant phenotyping may require transferring image or high-volume data using LoRa links. Wireless data transmission protocols used for high-volume data transmission using the link with a low data rate (like LoRa) requiring multiple packets create a significant amount of packet overload. Besides, the reliability of these data transmission protocols is highly dependent on acknowledgement (ACK) messages creating extra load on overall data transmission and hence reducing the application-specific effective data rate (goodput). This research proposes an application layer protocol to improve the goodput while transferring an image or sequential data over the LoRa links in the WSN. It uses dynamic acknowledgement (DACK) protocol for the LoRa physical layer to reduce the ACK message overhead. DACK uses end-of-transmission ACK messaging and transmits multiple packets as a block. It retransmits missing packets after receiving the ACK message at the end of multiple blocks. The goodput depends on the block size and the number of lossy packets that need to be retransmitted. It shows that the DACK LoRa can reduce the total ACK time 10 to 30 times comparing stop-wait protocol and ten times comparing multi-packet ACK protocol. The focused wide-area WSN and mobility requires different matrices to be evaluated. The performance evaluation matrices used for the static WSN do not consider the mobility and the related parameters, such as clustering efficiency in the network and hence cannot evaluate the performance of the proposed wide-area WSN platform supporting mobility. Therefore, new, and modified performance matrices are proposed to measure dynamic performance. It can measure the real-time clustering performance using the mobile data sink and sensor nodes, the cluster size, the coverage area of the WSN and more. All required hardware and software design, dimensioning, and performance evaluation models are also presented
    • …
    corecore