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Abstract

The long-term operation of a wireless sensor network (WSN) requires the deployment of

new sensors over time to restore any loss in network coverage and communication ability

resulting from sensor failures. Over the course of several deployment actions it is impor-

tant to consider the cost of maintaining the WSN in addition to any desired performance

measures such as coverage, connectivity, or reliability. The resulting problem formulation is

approached �rst through a time-based deployment model in which the network is restored to

a �xed size at periodic time intervals. The network destruction spectrum (D-spectrum) has

been introduced to estimate reliability and is more commonly applied to a static network,

rather than a dynamic network where new sensors are deployed over time. We discuss how

the D-spectrum can be incorporated to estimate reliability of a time-based deployment policy

and the features that allow a wide range of deployment policies to be evaluated in an e�cient

manner. We next focus on a myopic condition-based deployment model where the network is

observed at periodic time intervals and a �xed budget is available to deploy new sensors with

each observation. With a limited budget available the model must address the complexity

present in a dynamic network size in addition to a dynamic network topology, and the de-

pendence of network reliability on the deployment action. We discuss how the D-spectrum

can be applied to the myopic condition-based deployment problem, illustrating the value of

the D-spectrum in a variety of maintenance settings beyond the traditional static network

reliability problem. From the insight of the time-based and myopic condition-based deploy-

ment models, we present a Markov decision process (MDP) model for the condition-based

deployment problem that captures the bene�t of an action beyond the current time period.



Methodology related to approximate dynamic programming (ADP) and approximate value

iteration algorithms is presented to search for high quality deployment policies. In addition

to the time-based and myopic condition-based deployment models, the MDP model is one

of the few addressing the repeated deployment of new sensors as well as an emphasis on

network reliability. For each model we discuss the relevant problem formulation, method-

ology to estimate network reliability, and demonstrate the performance in a range of test

instances, comparing to alternative policies or models as appropriate. We conclude with a

stochastic optimization model focused on a slightly di�erent objective to maximize expected

coverage with uncertainty in where a sensor lands in the network. We discuss a heuristic

solution method that seeks to determine an optimal deployment of sensors, present results

for a wide range of network sizes and explore the impact of sensor failures on both the model

formulation and resulting deployment policy.
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1 Introduction

The performance of a wireless sensor network (WSN) is heavily in�uenced by the capabil-

ities of individual sensor nodes and their locations throughout the network. Sensors must

contribute towards a network communication objective and be located near other sensors to

transmit and receive messages. Sensors must also be su�ciently scattered throughout the

region of interest to ensure a high degree of coverage is achieved. Network coverage and

connectivity are two important measures when describing the current condition of the WSN,

and are also impacted over time as a result of sensor failures. Individual sensor nodes contain

a �nite power supply supporting node operation such as monitoring the surrounding area

and communicating with neighbor sensor nodes. As an increasing number of sensor nodes

deplete their power supply and no longer contribute towards WSN functions, the status of

the overall network begins to deteriorate as well.

To maintain the WSN over a prolonged period of time it is necessary to repair, replace,

or deploy new sensors in the network. Repairing or replacing sensors require an ability to

directly access the network and are further complicated by the environment the WSN is

deployed in, as well as the size of the network with respect to both the area monitored and

the number of sensors. WSNs are typically characterized by the low cost of individual sensor

nodes and the lack of infrastructure (e.g., cables, wires, etc.) supporting network operations,

both of which contribute towards the deployment of new sensors as an attractive option.

Additionally, sensors are not required to be placed deterministically in the WSN; they can

be randomly deployed over a region in su�cient number to provide a high degree of coverage

and connectivity.
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In this work we discuss several di�erent models to maintain a WSN through the deploy-

ment of new sensors in the network. Whereas previous research on sensor deployment related

problems has focused on a network coverage or connectivity measure, our work focuses on

evaluating deployment policies with respect to reliability. Chapter 2 presents a time-based

deployment model and is de�ned by a deployment interval δ and the number of sensors in

the network n1. The main contribution is a model that balances cost and reliability, where

reliability is estimated using the network destruction spectrum (D-spectrum). The signi�-

cance of this model is that it decouples the complexity of the two decision variables where

the D-spectrum is in�uenced by n1 but independent of δ. We also present an e�cient de-

struction algorithm which performs a vital subroutine in estimating the D-spectrum. The

improved destruction algorithm allows for a larger number of replications, and reduces the

variance in the resulting reliability estimate.

In Chapter 3 we discuss a myopic condition-based deployment model that is de�ned by

an inspection interval δ and mission budget β. The model allows more control over how

new sensors are deployed by selecting a smaller subregion of the network for a sensor to

be randomly located in. As a result WSN reliability is complicated further by the decision

on the number of new sensors deployed in each subregion. We discuss how the D-spectrum

can be applied to approximate the reliability for a given deployment policy, avoiding the

computational e�ort of a traditional Monte Carlo reliability method. The resulting problem

formulation is also signi�cant as the model can now be viewed as a decision on how a �xed

number of sensors are allocated to di�erent subregions in the network. While determining

an optimal deployment policy remains a di�cult task due to the dependence on network

structure and unknown relationship between di�erent deployment policies, a number of poli-
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cies anticipated to result in a highly reliable network can now be estimated and compared

in an e�cient manner. Building on Chapter 2, Chapter 3 further explores the value of the

D-spectrum in a maintenance model and the ability to estimate reliability as new sensors

are deployed in the WSN.

Chapter 4 introduces a Markov decision process (MDP) model for the condition-based

deployment problem to incorporate the impact of sensor deployment on WSN performance

beyond the next δ time units as well. The model is de�ned by an inspection interval δ

and starting budget B0 which is available to deploy new sensors over a series of missions.

With greater control on how the budget is utilized the model places a larger emphasis on

the number of sensors deployed each mission, and more importantly deciding when the

network is in a state that does not require maintenance and the budget can be preserved

for future time periods. To determine an optimal deployment policy we discuss approximate

dynamic programming (ADP) methodology based on a combination of state aggregation

functions and a lookup table value function approximation. An approximate value iteration

algorithm is applied to solve for an optimal deployment policy and we explore the impact of

both the inspection interval and starting budget on the performance of the resulting policy.

The bene�t of the ADP policy is also demonstrated by comparing the performance to an

appropriate myopic condition-based and time-based deployment policy.

Chapter 5 approaches a sensor deployment problem with an expected coverage objective

instead of the previous reliability based objectives. We present a stochastic optimization

model that determines an optimal deployment of sensors in various subregions throughout the

network, with uncertainty in the exact placement of a sensor and an objective of maximizing

the resulting WSN coverage. To solve for an optimal deployment policy we discuss a scenario
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based approach to sample the location for every sensor in the network. The model requires a

large number of scenarios to properly re�ect the randomness in sensor location and obtain an

accurate estimate on the expected coverage of a deployment policy. Initial results indicate

that an exact approach is intractable for even a small number of scenarios and motivates a

heuristic solution method. We present a heuristic approach combining elements of greedy

search, neighborhood search, and bread-�rst search algorithms, and discuss the results on

a range of test instances. Finally, we discuss a simple extension of the model to address a

probability of sensor failure and explore the impact on the resulting deployment policy.
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2 Time-Based Deployment Policies for Reliable Wireless Sensor Networks

Abstract

Wireless Sensor Networks (WSNs) are commonly used to monitor a remote environment over

an extended period of time. One important design consideration is the WSN's reliability of

area coverage, as sensors fail over time and functionality of the network degrades. When the

WSN no longer su�ciently covers the region, maintenance actions may consider repairing

failed nodes or deploying new sensors to reestablish network capability. Towards identifying

an optimal maintenance policy, speci�cally the deployment of new sensors, we present an

optimization model formulated using the network destruction spectrum (D-spectrum), that

seeks to determine a time-based deployment policy balancing cost and reliability. While the

bene�ts of using the D-spectrum in reliability are widely researched, the application of the

D-spectrum to enable the modeling and solving of an optimization problem is new. With

the complexity already present in estimating reliability, the signi�cance of this optimization

model is that it decouples the complexity of estimating the D-spectrum from the estimation

of network reliability in the presence of a given deployment policy. This key feature allows

us to quickly evaluate a wide range of time-based deployment policies. Additionally, we

present an e�cient destruction algorithm that performs a vital subroutine in estimating the

D-spectrum, allowing for a larger of number of replications to be performed in the Monte

Carlo simulation thereby reducing the variance of the resulting reliability estimate. Finally,

the optimization model is illustrated through a numerical example.
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2.1 Introduction & Literature Review

Wireless sensor networks (WSNs) consist of a set of sensors, distributed over a region of

interest, that monitor and report desired conditions within the region. The number of

sensors in these networks can vary greatly depending on the coverage required, the detection

and communication capabilities of sensors, as well as the initial e�ort to design and allocate

sensors across the network. The network application can further in�uence network size

ranging from areas such as �re and �ood detection [1], military operations with battle�eld

tracking and surveillance, or environmental control in buildings [2]. Another attractive

feature of WSNs is that they can be designed and constructed for a speci�c application

(such as those previously mentioned), but also o�er the �exibility to be quickly deployed as

required. Whether a network is specially designed or randomly deployed can be impacted

by the application or operational setting. For example, in areas with harsh environmental

conditions or rough terrain, sensors can be air dropped over a desired location to achieve

coverage in a given area [3]. A consequence of this approach is that sensors are randomly

deployed throughout the region, but the lack of control over speci�cally locating sensors can

be o�set by deploying a larger number of sensors. The low-cost characteristic of sensors is an

additional component that contributes towards the random deployment of a larger number

of sensors as a feasible strategy [4].

Once established it is important that the network operate for a su�cient period of time,

particularly when sensors are deployed in remote areas and di�cult to access for repair. The

performance of a WSN is primarily impacted by the number of operating sensors and the

ability of these sensors to communicate with each other [5]. These are both characteristics
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of the network that decline over time as sensors start to fail. The lifetime of an individual

sensor is bounded by a battery or power supply, and once diminished the sensor no longer

operates [6]. Sensors additionally have components required for monitoring, processing,

and routing information through the network. Software errors in any of these functions,

potentially in the form of failing to properly send/receive information from nearby sensors,

result in a drop in network capability and may propagate failures through the network [7].

Hardware failures also arise with physical damage and can possibly cause components to

break, particularly when operating in a harsh environment where sensors are exposed to

weather or other external factors [2].

The failure process has led to research on methods to extend sensor lifetimes, commonly

through topology control algorithms. By modifying the communication range the power

consumed by a sensor can be managed while still ensuring a message can be routed through

the network [8]. Energy consumption can further be controlled by specifying which paths

are used to route data, as well as aggregating data to avoid sending duplicate messages [9].

Similarly, the network topology can be dynamically controlled through periodically turning

sensors on and o�. Such a sleep/wake schedule results in redundant nodes conserving energy

until required to help prolong network lifetime [6, 10]. These algorithms commonly aim to

maximize the time until the �rst sensor fails, but sensor networks often have redundancy built

in and can tolerate some sensor failures without losing capability [11]. Another limitation

is that sensor lifetime is treated to be bounded by a battery supply that is consumed at

some known rate and once depleted the sensor fails. Addressing random sensor failures that

can arise (e.g., environmental interference, physical damage [4]) adds a layer of di�culty to

estimating network lifetime, particularly when we are interested in the status of the network
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beyond the �rst sensor failure.

Another approach to extend network lifetime is through the use of movement based

connectivity methods. With sensor nodes randomly deployed throughout the region it may be

desirable to relocate sensors immediately after deployment in an e�ort to improve the overall

network coverage and connectivity [12, 13]. We may also be interested in re-positioning sensor

nodes in response to failures that occur [14�16]. One of the advantages of a movement based

approach is that network topology can be dynamically controlled to prolong network lifetime.

However the cost of mobile sensors is typically signi�cantly larger than static sensors [4, 15]

which introduces questions about their suitability for a large scale WSN of interest.

The attractiveness of topology control algorithms and movement based connectivity

methods is their ability to extend the lifetime of a given network. The long-term opera-

tion of a WSN must also consider deploying new sensors in the network, particularly in

the presence of an increasing number of sensor failures. In [17], di�erent node replacement

policies are examined to maintain a coverage requirement to maximize lifetime where a deci-

sion to replace a failed sensor or not is made immediately after observing a failure, however

only a small number of sensors can be replaced. A similar problem focuses on deploying

new sensors to restore some level of connectivity and/or coverage, with the additional chal-

lenge of deploying the fewest number of new sensors [18�20]. Problems related to optimal

node placement commonly fall in the NP-Hard class of problems [21], which motivates the

search for approximation algorithms. One of the primary limitations of current models is

that they are framed in the context of single stage. That is, the deployment of new sensors

is concerned with immediately preserving network functionality, but does not consider the

future failure probability of sensors. As a result it is reasonable to question the reliability

8



of the network after sensors have been deployed. To the best of our knowledge, attempts at

creating a durable network with the deployment of additional sensors focus on providing a

level of redundancy or k-connectivity [20, 22]. This is certainly a desirable characteristic for

the network, but a node redeployment strategy should also be in�uenced by the residual life

distribution of sensors and how frequently such a policy needs to be implemented.

Existing research has focused primarily on extending network lifetime (common in topol-

ogy control and movement based methods) or maintaining a coverage/connectivity require-

ment (common in node redeployment methods), but there appears to be a lack of emphasis

on analyzing a maintenance policy with respect to network reliability. The focus of this

work is directly concentrated on evaluating and comparing the performance of time-based

maintenance policies, speci�cally the deployment of new sensors in the network, with respect

to both cost and estimated reliability. One of the di�culties of this task is that network

reliability problems commonly fall in the #P-Complete class of problems [23] and can be

di�cult to solve exactly, particularly for larger size networks or when reliability estimation

is performed as a subroutine in another algorithm. As a result network reliability problems

are routinely solved by approximate solution methods.

One theme that arises with respect to approximate methods is to bound network relia-

bility. Compared to an exact method that explores every possible network state, carefully

selecting a subset of states to evaluate can lead to more e�cient algorithms that provide

upper and/or lower bounds on network reliability [24]. Depending on the manner in which

bounds are constructed, these algorithms still require a large amount of e�ort particularly

for larger sized networks [25].

Closely related, and often utilized within bounding techniques, is to use a Monte Carlo
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method to estimate network lifetime. A naive/crude Monte Carlo approach is to randomly

generate a failure time for each sensor according to its life distribution, order the sensor

failures, and then examine the network state after each successive sensor failure to determine

the instant of network failure. Repeating this process allows for an estimation of overall

network reliability upon completion. One main drawback of this approach is the unbounded

growth of the relative error for highly reliable and highly unreliable networks [26]. This issue

has been addressed through the use of improved Monte Carlo methods [27] and variance

reduction techniques [25, 28].

A crude Monte Carlo method can also be improved leveraging the destruction spectrum

(D-spectrum) of the network, also referred to as the network signature, where the resulting

reliability estimation has bounded relative error [29]. Under the assumption of independent

and identically distributed sensor lifetimes, the destruction spectrum also yields an e�cient

representation of the network's reliability but depends only on the system structure [30].

While both the D-spectrum and crude Monte Carlo approaches require solving an embedded

destruction problem in order to determine the time at which all sensors are disconnected

from one or more sink nodes, we show the destruction problem for the network signature

can be solved more e�ciently than the one for crude Monte Carlo.

With an understanding of network reliability we can now begin to explore the impact

from the deployment of new sensors in the network. The objective of deploying new sensors

is directed at restoring network function (i.e., as a corrective maintenance action) or im-

proving network capability (i.e., as a preventive maintenance action) [31]. Depending on the

application of the WSN, a temporary failure of the network may lead to serious consequences

making corrective deployment policies unattractive. For this reason we focus on preventive
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deployment policies which could be based on the number of functioning sensors, the size

of the region the network covers, or the time since the last deployment action. Preventive

policies have also been explored in related network maintenance models, such as power dis-

tribution networks studied in [32, 33]. Also discussed is the added di�culty in that we must

now estimate the cost of such an action as well to compare di�erent policies, in addition to

estimating network reliability in the presence of a deployment policy.

Time-based (or periodic) deployment is one version of a preventive deployment policy in

which new sensors are deployed at �xed time intervals. We examine a time-based deployment

policy in a network consisting of n1 sensors, where every δ time units new sensors are

deployed in the network to increase the number of functioning sensors back up to n1. An

alternative action is to repair a failed sensor node, but given the low-cost characteristic

of sensors combined with the potential di�culty in accessing a speci�c sensor for repair,

the deployment of new sensor nodes is an attractive policy. Additionally, WSNs lack the

requirement for a physical connection between sensors (e.g., wire, cable, etc.) which further

avoids the need to repair failed sensors.

Towards identifying an optimal time-based deployment policy, the main contribution of

this work is an optimization model, formulated using the D-spectrum, that seeks to determine

a time-based deployment policy balancing cost and reliability. While the bene�ts of using the

D-spectrum in reliability are widely researched, the application of the D-spectrum to enable

the modeling and solving of an optimization problem is new. The inclusion of the D-spectrum

in determining an optimal time-based deployment policy is of interest as the D-spectrum is

a property of the network structure impacted by n1, which can be viewed as a network

design variable, but is independent of the deployment interval δ. As a result the Monte
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Carlo simulation for estimating the signature, which may be a large source of computational

e�ort, is not impacted by the time-based deployment policy. This modeling approach thus

decouples the complexity of estimating the network signature for evaluating reliability, and

estimating reliability in the presence of a given time-based deployment policy. In a related

e�ort, we demonstrate how to exploit random geometric graph structure commonly used to

model WSNs to e�ciently update the destruction spectrum estimate for networks of varying

size, yielding further computational advantages in the optimization model.

Additionally, we provide an e�cient destruction algorithm that performs a vital sub-

routine in estimating the D-spectrum and in turn reliability for a WSN. This algorithm is

based on recognizing that a single iteration of a Monte Carlo algorithm (for estimating the

D-spectrum) yields a maximum capacity path problem. The D-spectrum's unique character-

istics enable Dial's implementation of Dijkstra's algorithm to be utilized when solving for the

maximum capacity path. This improvement in the algorithm allows for a larger number of

replications, thereby reducing the variance of our reliability estimate beyond the traditional

approach of estimating the D-spectrum. We also discuss a simple extension that allows net-

work reliability to be calculated for di�erent coverage requirements without increasing the

complexity of the algorithm.

The remainder of this work is organized as follows. Section 2.2 summarizes the model-

ing of the WSN and the methodology to estimate reliability in the network both with and

without the deployment of new sensors. Section 2.3 presents a destruction algorithm nec-

essary for estimating the network signature, which is then used to estimate reliability and

evaluate various time-based deployment policies. Section 2.4 conveys the procedure of opti-

mizing time-based deployment policies of a WSN, which is then demonstrated in Section 2.5.
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Section 2.6 summarizes conclusions and directions for further work.

2.2 Modeling Fundamentals and Network Reliability

We model a WSN as a network whose node set consists of a sink node 0, sensor nodes

{1, . . . , n1}, and target nodes {n1 +1, . . . , n1 +n2}. We de�ne N1 = {0, 1, . . . , n1} as the set

of sink and sensor nodes and N2 = {n1 +1, . . . , n1 +n2} as the set of target nodes. The two

main functions of a sensor node are to communicate with other sensor nodes and to monitor

targets. Sensor nodes i ∈ N1 and j ∈ N1 are capable of communicating with one another

provided they are within a given range d1 > 0 of each other. Let E ⊆
(N1

2

)
denote the set

of undirected edges {i, j} created due to each pair of sensor nodes i ∈ N1 and j ∈ N1 that

can communicate, and de�ne A1 =
⋃

{i,j}∈E{(i, j), (j, i)} as the expanded, directed edge set

associated with E . A sensor node is capable of monitoring any target within a range d2 > 0.

Let A2 ⊆ N1×N2 denote the set of directed edges that de�nes which targets are covered by

which sensors. Thus, an arc (i, j) ∈ A2 exists if sensor i ∈ N1\{0} monitors target j ∈ N2.

Without loss of generality, going forward we assume a single sink node is located in the

network. We can always transform the network to one that contains a single sink by adding

a new arti�cial sink node, and adding an arc from this new node to every sensor connected

to one of the original sink nodes. The original set of sink nodes and their adjacent arcs are

then removed.

In what follows, it will be useful to consider both the directed network G = (N1∪N2,A1∪

A2) and the undirected network G ′ = (N1, E) as representations of the WSN. For brevity,

we de�ne N = N1∪N2 and A = A1∪A2. An example of both networks for n1 = 100 sensor

nodes randomly distributed over a [0, 1]× [0, 1] region is illustrated in Figure 1.
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G = (N ,A) G ′ = (N1, E)

Figure 1: Example realization of the network G and G ′ over the [0, 1]× [0, 1] region, n = 100,
d1 = 0.2, d2 = 0.1, and a single sink node (marked by �⋆�) located at (0.5, 0.5). The set
of 10 × 10 target nodes marked by �■� is de�ned as N2 = {0.00, 0.11, 0.22, . . . , 1.00} ×
{0.00, 0.11, 0.22, . . . , 1.00}. Note that for ease of illustration in the network G, the edge pair
(i, j) and (j, i) is represented by a single dashed arc, while a solid arc represents a sensor to
target arc.

Due to the failure of sensor nodes the WSN evolves over time. At any time t ≥ 0 the

network G, so that G ′(t) is well de�ned, is represented by G(t), and consists of only sensors

that are still functioning, indicated by the set N1(t), and the resulting communication edges

(i.e., excludes failed nodes from N1 and adjacent edges). Let T ≥ 0 represent the lifetime of

a sensor, F (t) denote the cumulative distribution function (cdf) of T , and F̄ (t) = 1 − F (t)

the survival function of T . Upon generating a deterministic failure time for each sensor from

the distribution of T , let π represent the order of sensor failures where π(k) = i if node

i ∈ N1\{0} is the kth sensor to fail, and let qi ∈ {1, . . . , n1}, i ∈ N1\{0}, be the index such

that π(qi) = i. For the network constructed in this manner, the following assumptions are

also imposed.

Assumption 1 Sensor lifetimes are independent and identically distributed (i.i.d.).
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Assumption 2 Sensor capabilities are identical.

Under Assumption 1, each sensor has the same life distribution T and sensors fail inde-

pendently of one another. This yields favorable theoretical properties with respect to the

D-spectrum we can leverage to develop more e�cient algorithms. We later discuss the im-

pacts of relaxing the assumption that lifetimes are identically distributed, while maintaining

independent failures, in the context of deploying new sensors in the network. Assumption 2

implies that all sensors also have the same communication radius d1 and common sens-

ing radius d2. With identical sensors, this alleviates concerns of sensor compatibility and

integrating multiple sensor types to function together.

Assumption 3 The sink node is perfectly reliable.

For a target to be covered it must be both within the coverage radius of a functioning

sensor, and there must exist a communication path from this monitoring sensor back to the

sink. Given this requirement, it is clear that the sink node is one of the most important

nodes in the network. We can guarantee that if the sink node fails we no longer cover any

of the targets, and the network fails as well. For this reason, with Assumption 3 we assume

that the sink node does not fail.

The network condition is classi�ed into one of two states, either operating or failed,

and is determined by the proportion of targets that are covered denoted by C(G). For a

given α-coverage requirement, 0 < α ≤ 1, the α-failure time is the time at which C(G)

drops below α and the network transitions to a failed state. Depending on the size of the

region covered and application of the WSN, we may not require 100% coverage of targets to

construct a picture of the overall status. Environmental applications such as o�ce building
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climate control may allow for a smaller α-coverage requirement, while applications in target

tracking or surveillance may require a larger coverage requirement [2]. It may also be that

100% coverage is too costly or impractical to maintain over the life of the network. With

an α-coverage requirement speci�ed, the network's reliability r(t;α, n1) = Pr[C
(
G(t)

)
≥ α]

is de�ned to be the probability that the network's coverage is at least α at time t. In the

following sections we are interested in comparing the reliability of networks of varying size,

resulting in n1 appearing in the expression r(t;α, n1) to denote its dependence on the number

of sensors.

Assumption 4 The initial WSN G ′(0) is a random geometric graph (RGG) with uniform

density over a bounded region R ∈ R2.

The arrangement of sensors in a WSN is typically classi�ed as either deterministic or

random [3]. With the complexity already present in (i) estimating network reliability and (ii)

evaluating time-based deployment policies, Assumption 4 models the the initial network as a

random geometric graph with senor nodes randomly distributed over a bounded region R ∈

R2. Modeling the sensors as uniformly distributed imposes no additional loss of generality, as

the results that follow hold for any density function. This removes the di�culty of designing

a WSN in addition to considering these aspects, and also re�ect a scenario in which a network

has to be rapidly deployed in a remote area.

2.2.1 Homogeneous Network Reliability

In the absence of additional sensors being deployed in the network, the collection of sensors

is homogeneous in the sense that all surviving sensors were installed at the same time and
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therefore have i.i.d. residual life distributions. Given the di�culty already present in esti-

mating network reliability in this case, we �rst turn attention to the homogeneous network

reliability using a Monte Carlo approach. Monte Carlo methods for WSN reliability evalu-

ation give rise to a network destruction problem, an optimization problem that determines

the instant of network failure given �xed sensor failure times [29]. For a network with node

failures, the destruction spectrum is a probability distribution on the number of failed nodes

required to cause network failure. The D-spectrum for a network can be estimated with

steps similar to the crude Monte Carlo where the number of failed nodes corresponding to

network failure is recorded instead of the time at which this occurs.

Let sn1
α,i denote the probability that in the network G with n1 sensors, the i

th sensor failure

results in C(G) falling below α. Network reliability is then given by

r(t;α, n1) =

n1∑
i=1

sn1
α,iB(i− 1;n1, F (t)), (1)

where B(i−1;n1, F (t)) is the cumulative binomial probability of no more than i−1 successes

in n1 trials with probability of success F (t) [34]. Although algorithms exist for computing

sn1
α,i exactly, we use a Monte Carlo approach to estimate the D-spectrum which is common

especially for large, complex networks [29, 35]. Therefore we use the notation ŝn1
α,i to refer to

the estimate of sn1
α,i, leading to the reliability estimate r̂(t;α, n1) of r(t;α, n1).

An estimate on the variance of network reliability may also be of interest, particularly if
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we wish to compare destruction algorithms, and is given by

V ar(r(t;α, n1)) =
1

M

[ n1∑
i=1

sn1
α,i(1− sn1

α,i)B(i− 1;n1, F (t))2

− 2

n1−1∑
j=1

n1∑
k=j+1

sn1
α,js

n1
α,kB(j − 1;n1, F (t))B(k − 1;n1, F (t))

]
,

(2)

whereM is the total number of replications [29]. Since we again use the D-spectrum estimate

ŝn1
α,i, the estimate of the variance is denoted V̂ ar(r(t;α, n1)).

As mentioned previously an appealing aspect of the D-spectrum is that it is a property

of the network structure and failure de�nition of the network, and does not depend on the

lifetimes of the individual components [30]. With Assumption 1, the implication is that each

of the n1! permutations of sensor failures are equally likely. Therefore instead of generating a

random failure time from the distribution of T for each sensor, we can proceed to generate a

random order of sensor failures. This is a key result that we revisit later towards identifying

an e�cient destruction algorithm on estimating the signature of the network.

2.2.2 A Generic Algorithm for Estimating the WSN's Destruction Spectrum

The �rst step towards estimating network reliability is now calculating the D-spectrum.

Estimating the D-spectrum is outlined in Algorithm 1, based on the work in [29]. The

driving component of Algorithm 1 is Step 5 of determining which sensor failure results in

network failure.

In Step 5, the network is subject to a destruction process where sensors are iteratively

removed from the functioning set of nodes based on the order π of sensor failures. After the

failure of each sensor, the network coverage C(G(t)) is computed and compared to the
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Algorithm 1 Monte Carlo algorithm for estimating destruction spectrum

1: function SignatureMC

2: Set mi ← 0, ∀ i ∈ N1.
▷ mi = # network failures caused by ith sensor failure

3: Generate G by simulating (xi, yi) ∈ R, ∀ i ∈ N1.
▷ (xi, yi) = coordinates for sensor i

4: Simulate random permutation π of the sensors
{1, 2, . . . , n1}; π = (i1, i2, . . . , in1).

5: Find the smallest value i⋆ ∈ {1, . . . , n1} such that
C(G \ {π(1), . . . , π(i⋆)}) < α.

▷ The i⋆-th sensor failure causes network failure
6: Set mi⋆ ← mi⋆ + 1.
7: Repeat Steps 3�6 M times.
8: Set ŝn1

α,i ← mi/M, ∀ i ∈ N1.
9: end function

α-coverage requirement. Consider a straightforward destruction algorithm for this step. For

each of the networks G\{π(1), . . . , π(i)}, i = 0, 1, . . . , n1, implement a breadth-�rst search

algorithm in order to identify how many of the target nodes N2 are reachable from the sink.

Dividing this count by |N2| we can determine C(G)\{π(1), . . . , π(i)} based on the number of

targets reached. Overall this requires O(|A|n1) e�ort per iteration of Step 5. The destruction

algorithm is implemented in each of the M replications of the Monte Carlo, which motivates

the search for an e�cient algorithm of �nding this sensor failure of interest. A binary search

method can improve the complexity of this step to O(|A| log(n1)). In Section 2.3 we present

a destruction algorithm that improves on this complexity by exploiting aspects of the D-

spectrum and the network construction.

Each iteration of Step 5 returns an observation on the number of failed nodes resulting

in network failure. By recording this value for every iteration we are able to obtain our

estimate ŝn1
α,i of the D-spectrum upon completion, and �nally estimate network reliability by

substituting into (1).
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2.2.3 Time-Based Deployment Policies

To prolong the functioning status of the WSN we are interested in periodically deploying

new sensors in the region in an e�ort to increase the number of functioning senors, thereby

increasing network coverage. We focus on a time-based deployment policy in which n1 sensors

are initially deployed over the region R. Every δ time units thereafter, all failed sensors in

the network are replaced by deploying new sensors over R such that the total number of

functioning sensors in the network is increased back to n1. Such a policy is identi�ed as an

(n1, δ) policy. By replenishing the number of functioning sensors to a constant value, the

present (n1, δ) policy assumes that we have knowledge about the number of failed sensors

in the network prior to any deployment action. Similar to the initial layout of sensors, by

assuming that new sensors are always deployed uniformly and independently over R and

that each sensor's location is independent of its time to failure we arrive at the following

properties.

Property 1 For all t ≥ 0, the WSN G ′(t) is a RGG with uniform density over R.

Property 2 For all t ∈ {kδ : k ∈ Z≥0}, |N1(t)| = n1.

2.2.4 Heterogeneous Network Reliability

Towards identifying an optimal time-based deployment policy, we now analyze network re-

liability in the presence of a given (n1, δ) policy. Compared to Section 2.2.1, the collection

of sensors is now heterogeneous in the sense that the surviving population of sensors have

di�erent ages, and thus di�erent residual life distributions. In [30] it was shown that the

D-spectrum representation of a network remains valid in stochastic mixtures of components,
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provided that the components are exchangeable. With this in hand, the D-spectrum ap-

proach in the previous section can be extended to the present (n1, δ) policy under consider-

ation to estimate network reliability.

We refer to the time interval [(k − 1)δ, kδ] as the kth epoch, k ∈ Z≥0. Immediately

after new sensors are deployed, the age X of each sensor is a random variable in the range

{kδ : k ∈ Z≥0}. In the presence of the (n1, δ) policy, we are interested in the network's

reliability for the in�nite-horizon setting, where at the beginning of an epoch the probability

distribution on the age X of a sensor does not change from one epoch to the next (i.e., there

is a stable mix of sensors).

In the in�nite-horizon setting, each sensor's age at the beginning of epochs k′ ∈ Z>0 can

be viewed independently as an irreducible Markov chain on the countably in�nite state space

k ∈ Z≥0, where state k corresponds to the sensor having age kδ. In this Markov chain, each

state k transitions into state k + 1 with probability F̄ ((k + 1)δ)/F̄ (kδ) and back to state 0

otherwise. This Markov chain has the unique stationary distribution

ρk =
F̄ (kδ)∑∞
j=0 F̄ (jδ)

, k ∈ Z≥0, (3)

provided that the denominator converges, in which case the Markov chain is ergodic.

Now, let Tx ≥ 0 denote the residual life of a sensor at age x > 0, and denote its cdf by

Fx(t) = [F (x+ t)−F (x)]/F̄ (x). Ergodicity of the Markov chain described above also implies

exchangeability of the sensors at stationarity: That is, immediately after the deployment of

new sensors, a subset of sensors selected at random have i.i.d. age described by the probability

distribution Pr{X = kδ} = ρk, k ∈ Z≥0. The residual lifetime of such a sensor (considering
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the randomness in its age), is then described (see, e.g., [36]) by the cdf

G(t; δ) = E[FX(t)], (4a)

=
∞∑
k=0

F (kδ + t)− F (kδ)

F̄ (kδ)
ρk, (4b)

=

∑∞
k=0[F (kδ + t)− F (kδ)]∑∞

j=0 F̄ (jδ)
. (4c)

We will refer to TX as the stable residual life distribution of a sensor under the (n1, δ) policy.

Considering the above, at stationarity, the remaining life of sensors selected at random are

independent and identical random variables with cdf given by (4c). Further, by Property 2,

at the beginning of every epoch k ∈ Z≥0 the network contains n1 functioning sensors and the

D-spectrum of the network remains applicable. Therefore, applying (1) to the i.i.d. residual

life distribution, the stable network's reliability (i.e., the probability that its coverage remains

at least α after t ≥ 0 additional time units) is given by

r∞(t;α, n1, δ) =

n1∑
i=1

sn1
α,iB(i− 1;n1, G(t; δ)), (5)

where the ∞-superscript has been appended to r to denote that it applies to the in�nite-

horizon setting. The heterogeneous network reliability estimate is represented by r̂∞(t;α, n1, δ),

as it again depends on the D-spectrum estimate ŝn1
α,i. The variance of the (n1, δ) policy can

be estimated applying (2), again substituting the residual life ccdf G(t; δ) for F (t). While we

are primarily interested in the stable network reliability immediately prior to the deployment

of additional sensors (i.e., at time t = δ), (5) can be applied to evaluate the stable network

reliability for any time t ≤ δ. This property maintains the ability to evaluate reliability over
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time, enabling system performance availability measures to be estimated as well.

Notice also that the D-spectrum is independent of the deployment interval δ. Thus, in

the process of exploring the space of (n1, δ) policies, we need only to estimate the signature

once for any value of n1 considered.

2.3 Destruction Algorithms

With a basis to estimate both the homogeneous and heterogeneous network reliability re-

lying on the D-spectrum, we now revisit Step 5 of Algorithm 1 and search for an e�cient

destruction algorithm. Over the course of exploring (n1, δ) policies it may be necessary to

estimate the D-spectrum for assorted values of n1. While there are e�ciencies that can be

gained as a result of Assumption 4 that are discussed later in Section 2.3.1, an improved de-

struction algorithm allows for a larger number of Monte Carlo replications thereby reducing

the variance of our resulting reliability estimate. Towards this e�ort, we present Algorithm 2

that seeks to identify which sensor failure, in a prede�ned sequence that speci�es the time

of all sensor failures, causes network coverage to drop below the α-coverage requirement.

Recall that for a target to be covered it must satisfy two criteria. First the target must be

within the coverage radius of a functioning sensor, and second there must be a communication

path from this sensor back to the sink node. From the construction of the network G, this

equates to a directed path from the sink node to the target node using only functioning

sensor nodes as internal nodes. Such a path fails as soon as one of its internal sensor node

fails, and the target becomes disconnected as soon as all such paths fail. Among all directed

paths from the sink to the target, de�ne a critical path as one in which the time until the

�rst failure of an internal node in the path is maximized. Thus the failure time of a critical
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path to a target node equals the time at which the target is no longer covered. A critical

path can be similarly de�ned for sensor nodes, and equates to the earliest time at which a

sensor node is either failed or no longer connected to the sink. With this characterization,

a critical path is de�ned for every node i ∈ N , and the failure time of this critical path is

referred to as the critical loss time, ηi. When necessary, the critical loss time can be further

distinguished as a critical sensor loss time for a node i ∈ N1, or a critical target loss time

for a node i ∈ N2.

Finding a critical path to every node i ∈ N is equivalent to the maximum capacity path

problem discussed by [37]. In a network with weights de�ned on every node, a maximum

capacity path between two nodes is a path such that the weight of the smallest node on the

path is maximized. Let hj
i denote the jth directed path from the sink node to node i, and

Hi = {1, 2, . . . , Hi} index the set of all directed paths from the sink node to node i ∈ N .

The value of a maximum capacity path to node i ∈ N is then maxj∈Hi
{min{qk : k ∈ hj

i}}.

In a directed network, such as the network G under consideration, a maximum capacity path

from a source node to every other node can be found using a slight modi�cation to Dijkstra's

algorithm while updating node labels [37]. When solving for the maximum capacity path,

the label of a node is initialized as ηi = 0 for all i ∈ N\{0}, and η0 =∞. Nodes then have

their label updated according to

ηj = max{ηj,min{ηi, qj}}. (6)

Under Assumption 3 the sink node does not fail, which is equivalent to representing the sink

node as the last node to fail by q0 = n1, while target nodes are regarded in a similar fashion
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with qi = n1 for all i ∈ N2.

Originally introduced as a variation of the shortest path problem, the maximum capacity

path is commonly de�ned for weights associated with every edge [37]. The network G can

be transformed to adopt this convention by de�ning edge weights according to the minimum

of the two adjacent nodes, with, wij = min{qi, qj} for all (i, j) ∈ A. The updating of

node labels in (6) can also be updated accordingly to compare the weight of the edge by

ηj = max{ηj,min{ηi, wij}}.

A naive implementation of Dijkstra's can be accomplished in O(|N |2) time, and improved

to O
(
|A| + |N | log(|N |)

)
with a heap data structure [38]. Further, the critical target loss

times will be marked permanent in a non-increasing manner within Dijkstra's algorithm

which means they can be sorted over the course of the algorithm, simplifying the search for

the α-failure time upon completion. While possible to sort the critical loss time for all nodes,

the order of critical target loss times are of particular interest as these values correspond to

a change in network coverage. Therefore, let η̃(i) represent the i
th smallest critical target loss

time for a node i ∈ N2, resulting in η̃(1) ≤ η̃(2) ≤ · · · ≤ η̃(n2).

Using the D-spectrum to estimate network reliability we can improve the complexity

further. Because qi ∈ {1, 2, . . . , n1} for all i ∈ N1, the labels ηi, i ∈ N , are always in the

range {0, 1, . . . , n1}. This feature motivates the use of Dial's implementation of Dijkstra's

algorithm. In Dial's implementation the node to mark permanent in Step 5 of Algorithm 2

during an iteration can be found more e�ciently by storing the temporary label of nodes

in a sorted bucket structure. Initially, buckets {0, 1, . . . , n1} are created with all nodes in

bucket zero, except for the sink node which is placed in bucket n1. Starting with bucket n1,

select the sink node to mark permanent, and update the label of adjacent nodes (i.e., by
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Algorithm 2 Coverage Destruction

1: function SignatureSubroutine

2: Initialize η0 =∞, ηi = 0 ∀ i ∈ N\{0}.
3: Initialize S = ∅, S̄ = N .
4: While |S| < |N |.
5: Select node i ∈ S̄ such that ηi = max{ηj : j ∈ S̄}.
6: Update S = S ∪ {i}, S̄ = S̄\{i}.
7: For each j : (i, j) ∈ A.
8: Update ηj = max{ηj,min{ηi, qj}}.
9: End For.

10: End While.
11: Let η̃(1) ≤ η̃(2) ≤ · · · ≤ η̃(n2) denote the sorted

ηi-values for i ∈ N2.
12: Find smallest integer κ such that n2−κ

n2
< α.

13: Set i∗ = η̃(κ).
14: end function

moving to the bucket numbered with the new label value) according to (6). Continuing in

this manner, the node to mark permanent at each iteration can be found e�ciently as the

node in the largest valued non-empty bucket. Using Dial's algorithm with ordered sensor

failures, the step of �nding the critical path from the sink node to every other node in the

network can now be accomplished in O(|N1|+ |A|) time [38].

The overall complexity of Algorithm 2 is also O
(
|N1|+ |A|

)
, driven by Dial's implemen-

tation of Dijkstra's in Steps 4−10. Step 2 and 3 each require O(|N |) = O(|N1| + n2) time,

and as a result of using modi�ed Dijkstra's algorithm nodes are marked permanent in a non-

increasing manner. Therefore the sort in Step 11 can be accomplished by simply recording

the order in which target nodes are marked permanent in Step 6, and the sorting of critical

target loss times does not add to the complexity. Step 12 requires O(n2) time, but can be

improved to O(1) time. With α known, network failure occurs when κ∗ = ⌈n2(1−α)⌉ targets

are no longer covered and we can simply return η̃(κ∗). In any case, under the assumption

that each target is initially within range of at least one functioning sensor, then |A2| ≥ n2,
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and since A = A1 ∪ A2 Step 12 (and Step 2−3) does not increase the complexity.

2.3.1 Extensions of Destruction Algorithms

In the exploration of various (n1, δ) policies, further e�ciency can be gained as a result of

Assumption 4. With sensors independently and randomly located in the network we have

the signature relation sn1
α,i = sn1−1

α,i−1 for i = 1, 2, . . . , n1. That is, failure of one node in a

RGG with n1 nodes yields a RGG with n1 − 1 nodes. This result is also previously stated

as Property 1. Therefore it is not necessary to recompute the network signature for every

value of n1 desired. Utilizing this feature allows the space of (n1, δ) policies to be explored

in a more e�cient manner.

We may also be interested in the impact that α has on network lifetime as this is ulti-

mately the criteria used to classify the network as operational. It seems reasonable to expect

that for a smaller α network lifetime would be longer, and at any time t the network reli-

ability would be higher. We can make a slight modi�cation to Algorithm 2 to explore how

large of an impact this will have. Note that the critical target loss times are independent of

α. If we are interested in network reliability for various coverage requirements, one option

is to �rst specify these various levels upfront. Then in Step 12 and 13 instead of returning

a single value η̃(κ∗), we can easily �nd the α-failure time for each of these levels and update

the D-spectrum estimate ŝn1
α,i for each di�erent requirement. Alternatively, we can store the

entire sequence of critical target loss times, specify α upon completion and then search for

the α-failure times as required. This second approach may be of more interest, particularly

with respect to the D-spectrum where we are more concerned with sensor failures that result

in a change in coverage. By storing the entire sequence of critical target loss times we can
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easily determine how sensitive the network is to the next sensor failure. In either case, the

complexity of Algorithm 2 does not increase as a result of estimating network reliability for

multiple coverage requirements.

2.3.2 Spanning Tree Destruction Algorithm

Thus far we have modeled the WSN as a directed network G = (N ,A) that includes every

node (sensor and target) in the network. Since the network G ′ is smaller than G, we might

�nd it appealing to �rst work with the smaller network before expanding to the larger

directed network as required. Whether we work with the network G or G ′, the critical

path for a sensor will not change. In undirected networks such as G ′, it is known that

a maximum weight spanning tree contains a maximum capacity path between all pairs of

nodes in the network [39]. This property gives rise to an e�cient approach for solving the

destruction problem in the case of K-terminal connectivity [26, 27, 35]. Such an approach

can also be adapted to our problem. If we work with the smaller undirected network G ′

and proceed with the spanning tree approach, edge weights must be de�ned according to

we = min{qi, qj} for every edge e = {i, j} ∈ E . Using Prim's Algorithm, a maximum

weight spanning tree over G ′ can now be found requiring O
(
|E|+ |N1| log(|N1|)

)
e�ort [38].

Once the spanning tree is constructed we are able to �nd the critical loss time ηi for each

sensor i ∈ N1. With the critical sensor loss times, we can consider the sensor-to-target arcs

A2 to determine the critical loss times for all targets i ∈ N2. For each target computing

ηj requires O(|{i ∈ N1 : (i, j) ∈ A2}|); therefore the total e�ort required for this step is

O(
∑

j∈N2
|{i ∈ N1 : (i, j) ∈ A2}|) = O(|A2|). From ηj ∈ {0, . . . , n1} for all j ∈ N2, a bucket

sort algorithm can be used to sort the critical target loss times resulting in O(|N1| + n2)
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e�ort [40].

The spanning tree approach to the D-spectrum thus requires O
(
|E|+|N1| log(|N1|)+|A2|

)
e�ort. From this we can see that it is actually advantageous to work on the entire directed

network G, as it allows us to implement a more e�cient algorithm to determine the critical

target loss time, and in turn the D-spectrum of the network.

2.4 Optimal (n1, δ) Policies

Section 2.2.4 provides a methodology for estimating network reliability for a given (n1, δ)

policy. We now focus on identifying values of n1 and δ that will e�ectively balance cost and

reliability. We assume, in the vein of economic dependence models in the multicomponent

maintenance literature [41], that a �xed cost of cF > 0 is incurred for each time at which

one or more new sensors are added to the network and a variable cost of cV > 0 is incurred

for each new sensor added. (The �xed cost would likely be large relative to the variable

cost, for instance, in a WSN that monitors a harsh/remote environment such as a glacier or

another planet's atmosphere.) In the in�nite-horizon setting the average cost per unit time,

or long-run average cost rate, associated with an (n1, δ) policy is given by

υ(n1, δ) =
cF{1− [Ḡ(δ; δ)]n1}+ n1cVG(δ; δ)

δ
, (7)

where the �rst term in the numerator is the expected �xed cost incurred (based on the

probability that at least one sensor fails), the second term is the expected variable cost

incurred (based on the expected number of sensor failures), and the denominator is the time

between deployment actions.
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We incorporate reliability into the optimization via maximizing with respect to ω(n1, δ) =

r∞(δ;α, n1, δ). The resulting bi-objective optimization model is

max
n1,δ
{−υ(n1, δ), ω(n1, δ)}. (8)

The two-variable model (8) can be approximately solved by enumerating combinations of n1

and δ, allowing for an e�cient frontier to be generated over the range of policies evaluated.

2.5 Numerical Results

We now illustrate the methodology described in Sections 2.2�2.4 in an example scenario,

where the lifetime T of each sensor is distributed according to a Weibull distribution with

a shape parameter β = 1.5 and scale parameter λ = 10. Sensor capabilities are de�ned

according to a communication radius of d1 = 0.075 and a sensing radius of d2 = 0.075. The

coverage area consists of |N2| = 441 targets uniformly spaced as a 21× 21 grid in the region

R = [0, 1]× [0, 1].

Before proceeding to the reliability results there are two components of Algorithm 1 that

are also worth discussing, those being the simulation of a RGG in Step 3 and the random

permutation of failures in Step 4. Implementing these steps in a naive manner can result

in signi�cant e�ort. In a straightforward approach, a RGG of n1 nodes can be generated in

O(n2
1) time by randomly placing each node inR, and then comparing the distance between all(

n1

2

)
pairs of nodes to determine if an arc between the nodes is present. Given the complexity

of Algorithm 2 is O(|N1|+ |A|), the potential O(n2
1) cost is signi�cant as we can now expect

to spend more time generating a RGG than implementing a destruction algorithm. E�cient
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methods to generate a random graph have thus attracted a large amount of attention. In an

attempt to reduce this source of complexity, Step 3 is implemented based on the technique

described in [42] which generates a RGG by assigning each node in R2 to a bin, and then

comparing nodes i and j from the appropriate bins to determine if the arc (i, j) is present.

The complexity now depends on the number of bins as well, but if done appropriately the

expected complexity is O(|N1|+ |E|) [42].

The next step of simulating a random permutation of sensor failures is also worth ex-

amining further. A naive approach is to generate a failure time for each sensor from the

distribution of T , then sort these values to determine the failure order. A number of avail-

able algorithms (e.g., [40]) can accomplish this in O(n1 log(n1)) time. Instead, we use a

modern version of the Fisher-Yates shu�e algorithm that generates a random permutation

directly in O(n1) time [43].

Figure 2: Plot of ŝ9000.8,i

The D-spectrum was estimated using Algorithm 1 with M = 50, 000 replications for

a coverage requirement of α = 0.8 in a network consisting of n1 = 900 sensors. A plot

of the resulting D-spectrum estimate is illustrated in Figure 2. By the discussion at the
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beginning of Section 2.3.1, we can also obtain an estimate of the signature for any network

containing n1 < 900 sensors with no additional replications. This becomes particularly useful

when evaluating time-based deployment policies, as we can now examine any (n1, δ) policy

(such that n1 < 900) without re-implementing Algorithm 1. As an example, Figure 3(a)

depicts the estimated D-spectrum for a network with n1 = 500 sensor nodes, based on the

D-spectrum estimate from the 900 node estimate from Figure 2. To illustrate the accuracy

of the signature relation, we have also utilized Algorithm 1 to estimate the signature on a

network with 500 sensor nodes, which is plotted in Figure 3(b).

Figure 3: Comparison of D-spectrum estimates

We can now turn to reliability, and apply (1) to estimate the homogeneous network

reliability if desired. Since this information is not speci�cally of interest in the context of

comparing (n1, δ) policies, the plot of r̂(t;α, n1) has been omitted. Instead, we proceed to

estimate the stable network's reliability under the presence of various (n1, δ) policies as given

by (5), and the cost of the policy as given by (7). In doing so we assume a �xed cost of
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cF = 100 and a variable cost of cV = 1. This information is plotted in Figure 4 for networks

of four di�erent selected sizes (n1 ∈ {450, 550, 650, 750}), and δ evaluated over the range

(1, 10) at 0.1 unit intervals. Additionally, δ at speci�c intervals has been identi�ed on the

plot. If there are factors that impose limitations on the network size (e.g., n1 must be a

multiple of 10) or the deployment interval, then Figure 4 can be particularly valuable in

comparing the performance of various policies. For example, both the (550, 4.5) policy and

the (650, 5.9) policy yield a stable network reliability of 0.85. To meet a stable network

reliability requirement above 0.85 the deployment interval for each policy must decrease, at

which point the (650, δ < 5.9) policy dominates any (550, δ < 4.5) policy.

Figure 4: Plot of stable network reliability

In the current context of a RGG and sensors randomly deployed, we can assume to freely

select both n1 and δ over a continuous range. Therefore, Figure 5 is of more signi�cance as

it illustrates an e�cient set of policies over a continuous range of (n1, δ) of interest. The
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fairly intuitive result behind Figure 5 is that to satisfy a larger requirement on the stable

network reliability, in general the network should contain a larger number of sensors and the

deployment interval δ should be smaller. We can also observe that near 100% reliability can

be achieved with n1 ≈ 675 with a deployment interval of δ ≈ 4.5. As we deviate from this

policy by either adding more sensors or decreasing the deployment interval, the cost rate

increases signi�cantly.

Figure 5: E�cient Frontier for α = 0.8

Using the methods previously described to generate a RGG and new failure order each it-

eration, along with the destruction algorithm from Section 2.3, estimating the D-spectrum for

a 900 node network required approximately 374 seconds (accomplished with c++ on an In-

tel(R) Core i7-6600U CPU with a 2.60 GHz processor and 16 GB of RAM). This D-spectrum

estimate is then used to evaluate the set of (n1, δ) policies for n1 ∈ {500, 501, . . . , 900} and

δ ∈ {1.0, 1.1, . . . , 10.0} and plot the e�cient frontier in Figure 5. This process is far more

computationally expensive, requiring approximately 5, 061 seconds (∼ 84 minutes).

Delineating the time between these two step allows us to clearly see the bene�t of

modeling assumption 4, and the advantage of using the D-spectrum relation sn1
α,i = sn1−1

α,i−1
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to estimate the signature of smaller networks. While we could use Algorithm 1 to esti-

mate the D-spectrum for each network size under consideration, doing so would add up to

374× (900− 500) = 149, 600 seconds (∼ 41.5 hours) to the overall computation time. Even

though we expect the time required to estimate the D-spectrum for smaller networks to

decrease (take Figure 3(b) for example, which only required 163 seconds to estimate), the

additional computation time by repetitively estimating the D-spectrum remains signi�cant

(using this estimate the additional time is approximately 18 hours).

Finally, we may be interested in how sensitive the e�cient frontier is to various param-

eters (e.g., cF , cV , β, λ). Figure 6 plots the e�cient frontier for two di�erent α-coverage

requirements: the original e�cient frontier for α = 0.8, along with the new e�cient frontier

for α = 0.9. This plot can help illustrate the robustness of various policies and the improve-

ment in network performance for a minor cost increase. Consider the (600, 5) policy, which

incurs a cost rate of 71.8. For a coverage requirement of α = 0.8 the corresponding stable

network reliability is 0.897, while for a coverage requirement of α = 0.9 the stable network

reliability drops signi�cantly to 0.678. Clearly, the same (n1, δ) policy will have a smaller

stable network reliability for a larger coverage requirement. But now consider this relation-

ship with respect to the (675, 5) policy, which incurs a cost rate of 78.3. For a coverage

requirement of α = 0.8 the corresponding stable network reliability is now 0.984, and for a

coverage requirement of α = 0.9 the stable network reliability is 0.922. Thus by increasing

the number of nodes in the network (at a minor increase to the policy cost) we can implement

a policy that not only meets an α-coverage requirement of 0.8 with high probability, but also

achieve a coverage requirement of 0.9 with high probability.

A similar process can be used to explore the impact of changing the associated costs of
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Figure 6: E�cient Frontier for di�erent α-coverage requirements

deployment actions or the sensor failure distribution parameters. The change to the e�cient

frontier in each scenario is similar to that illustrated in Figure 6, the general shape of the

curve remains the same but is shifted based on the direction of the parameter that is altered.

2.5.1 Con�dence Interval on Stable Network Reliability

From the discussion in Section 2.2.1 we can also obtain an estimate on the network reliabil-

ity variance, which in turn can be used to construct a con�dence interval. Computing the

con�dence interval halfwidth will also help compare the performance of di�erent destruction

algorithms, illustrating the improvement that Algorithm 2 (using Dial's implementation)

o�ers. With the variance in (2) a function of the number of replications M , the more repli-

cations we dedicate towards estimating the D-spectrum we can expect a tighter con�dence

interval.

To show the signi�cance of this improvement, we consider a n1 = 650 node network as a

test instance. The D-spectrum is estimated using both Dial's implementation of Algorithm 2

as previously described, and also by using a naive O(|N |2) implementation of Dijkstra's
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algorithm. For Dial's implementation we use M = 50, 000 replications, while for Dijkstra's

Algorithm we set M = 20, 000. These values were selected so that the total time dedicated

towards estimating the D-spectrum from the two methods was approximately equal.

For each D-spectrum estimate we can again compute the stable network reliability for

various (n1, δ) policies, while in addition estimating the corresponding halfwidth. The 95%

con�dence interval halfwidth on the stable network reliability for the (650, δ) policy is plotted

in Figure 7. The improvement in the con�dence interval halfwidth is most notable for

δ ∈ (5, 8). If we revisit Figure 4, this range is also where a change in δ results in a signi�cant

change to the stable network reliability. Thus, by using Dial's implementation in Algorithm 2

we can perform over twice as many replications in the same amount of time compared to

the traditional Dijkstra's algorithm, which in turn results in a con�dence interval halfwidth

that is twice as small compared to the original Dijkstra's estimate.

Figure 7: Con�dence Interval Halfwidth Comparison

It is also interesting to note that while the total time estimating the D-spectrum between
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the two methods is approximately the same, there are di�erent steps of Algorithm 1 that

dominate the complexity. For this purpose we focus primarily on Step 3 and Step 5. As

previously presented, generating a RGG of n1 nodes using [42] results in an expected com-

plexity of O(|N1|+ |E|), while the complexity of Algorithm 2, which accomplishes Step 5, is

O(|N1| + |A|). With |A| = 2|E| + |A2|, the complexity of these two steps is relatively bal-

anced. However when Dijkstra's algorithm is used as the destruction algorithm, the O(|N |2)

now becomes a large source of complexity and signi�cantly more time is dedicated to Step 5.

Thus, by using Algorithm 2 we are performing a larger number of replications while actually

spending less time in this step of the destruction spectrum algorithm.

2.5.2 Veri�cation of Stable Network Reliability

The stable network reliability is derived from the stable residual life distribution of a sen-

sor, as given in (4c). This is the long-run residual life distribution which is based on new

sensors being deployed every δ time units. Since this applies in the in�nite-horizon setting,

a compelling question that arises is how long it takes to reach this steady state behavior.

To investigate this we can utilize a crude Monte Carlo simulation that implements the

given (n1, δ) policy, and check the network status at various times over the length of the

simulation. This was accomplished for the (650, 5.6) policy, with the resulting estimated

transient network reliability illustrated in Figure 8. The stable network reliability estimated

using the methodology in Section 2.2.4 is also plotted in Figure 8.

From Figure 8 we can observe that the stable network reliability is reached early on in

the simulation, after the second or third deployment action. This helps demonstrate that

while the stable network reliability is built on a long-run horizon, it is reached fairly early on
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Figure 8: Veri�cation of Stable Network Reliability

the process of the (n1, δ) policy. While the transient Monte Carlo simulation is informative,

particularly in plotting the change in reliability over time, it is far more computationally

expensive and not conducive to optimizing time-based deployment policies. The transient

reliability data in Figure 8 is based on 10,000 replications, and required 1.7 hours. Addi-

tionally, this simulation evaluates a single value of n1 and δ. The transient Monte Carlo

simulation therefore quickly becomes intractable, particularity if we desire to evaluate the

range of polices necessary to generate an e�cient frontier similar to Figure 5.

2.5.3 Veri�cation of Long-Run Cost Rate

Similarly, the Monte Carlo simulation can also help verify the long-run cost rate estimated

by (7). Based on the simulation of the (650, 5.6) policy in Figure 8, the estimated long-

run cost rate is 70.3. This is smaller than the estimate using the stable life distribution

in (7), which results in an estimated cost rate of 72.5. The di�erence in these estimates is

attributed to the very �rst deployment action in the Monte Carlo simulation. Referring back
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to Figure 8, this is the �cheapest� deployment event in the sense that the fewest number of

sensors have failed at the time of the �rst deployment event compared to those that occur

later, which lowers the average cost rate slightly. If we omit the cost of the �rst deployment

action each replication (i.e., only calculate the cost once the steady state behavior has been

reached), we observe an average cost rate of 72.25 from the Monte Carlo simulation.

2.5.4 Multi-State Network

In Section 2.2 the network was characterized into either an operating for failed state. There

are numerous applications in which we may be interested in de�ning one or more intermediate

states to re�ect a partial degradation in network performance. An extension of the destruc-

tion spectrum to multi-state networks is discussed in [44], which can also be addressed with

the current modeling framework. Since the state of the network is dependent upon a cov-

erage requirement, multiple network states can be de�ned by multiple coverage levels where

the state of the network is now based on network coverage falling within a given range. For

example a three state network can be de�ned in which State 1 corresponds to C(G) ≥ α,

State 2 (intermediate state) in which α′ ≤ C(G) < α, and State 3 in which C(G) < α′.

For a given (n1, δ) policy we are now interested in the probability that the network is in

each of the given states. The probability the network is in State 1 can be estimated simply

by Pr(State 1) = r∞(δ;α, n1, δ). Similarly, the probability the network is in State 3 can

be estimated by Pr(State 3) = 1 − r∞(δ;α′, n1, δ). The probability the network is in the

intermediate State 2 can now be estimated by Pr(State 2) = 1−Pr(State 1)−Pr(State 3) =

r∞(δ;α′, n1, δ) − r∞(δ;α, n1, δ). Therefore, the additional work required in a multi-state

model corresponds to estimating network reliability for di�erent coverage requirements.
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An example for a three state network is illustrated in Table 1, where State 1 is de�ned

by C(G) ≥ 0.9, State 2 by 0.8 ≤ C(G) < 0.9, and State 3 by C(G) < 0.8. While it is

straightforward to calculate each state probability for the entire range of (n1, δ) policies

explored, the results for a smaller subset of policies are provided. Comparing the multi-state

Table 1: Multiple Network States

(n1, δ) Policy Cost Rate Pr(State 1) Pr(State 2) Pr(State 3)

(753, 4.5) 88.78 0.995 0.004 0.001

(676, 4.8) 79.78 0.946 0.044 0.010

(651, 5.1) 75.59 0.853 0.113 0.034

(615, 5.0) 73.13 0.752 0.180 0.069

(569, 5.1) 68.54 0.452 0.316 0.231

(555, 5.3) 66.17 0.282 0.339 0.379

performance is of particular interest when a decision must be made to select a speci�c policy

to implement. For example if we are comparing the (676, 4.8) policy with the (651, 5.1)

policy, the �rst policy achieves a coverage of 0.9 with higher probability but is also more

costly. We may also consider the second policy since it is less costly but still achieves a

coverage of 0.9 with fairly high probability, and in the event coverage drops below the �rst

coverage level is likely to be in the intermediate state. Notice that the data required to

construct Table 1 is also previously illustrated in Figure 6, and the table presents similar

information in a slightly di�erent manner. Modeling a larger number of network states is

also possible through the introduction of new coverage levels, at the expense of an additional

set of reliability calculations for each new state.

It is also of interest to investigate the impact a multi-state network has on optimizing

a policy with respect to multiple coverage levels. With this motivation, we compare the

similarity of the actual set of policies on each of the e�cient frontiers in Figure 6. Based on
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the results in Figure 6, from the entire set of policies that are on the e�cient frontier for at

least one of the coverage requirements, 85% of these policies are on both e�cient frontiers.

This implies with high probability that if we select an e�cient (n1, δ) policy to achieve a

coverage requirement of 0.8, this is also an e�cient policy to achieve a coverage requirement

of 0.9. Additionally, if we select some (n1, δ) policy that is on the e�cient frontier for a

coverage requirement of 0.8 but not 0.9, the improvement (with respect to reliability) from

deviating from this policy to an e�cient policy for the 0.9 coverage requirement is negligible.

2.6 Conclusion

As technology advances and becomes more a�ordable, WSNs are able to be integrated into

an increasing number of applications. While the deployment of a WSN is the initial concern,

the long-run operating cost is an important factor to consider. This is true in terms of

designing a network to meet requirements in addition to ensuring any maintenance policy

preserves network functionality without an excessive cost. Existing research has emphasized

methods to extend network lifetime, but does not focus on analyzing a maintenance policy

with respect to network reliability.

Towards this goal, we have contributed an optimization model that determines optimal

time-based deployment policies balancing cost and reliability. Of interest from this model is

the inclusion of the destruction spectrum to evaluate policies, as the destruction spectrum is

independent of the deployment interval parameter δ. This aspect helps decouple the complex-

ity of estimating the destruction spectrum necessary to evaluate reliability, and evaluating

the network's reliability in the presence of a given time-based deployment policy. Finally, we

have presented a destruction algorithm to e�ciently estimate the destruction spectrum, and
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illustrated the performance of the optimization model through a computational example.

In the network model we have focused on sensor failures that are identically distributed.

One possible direction for extending this work involves the modeling of multiple sensor

failure distributions. The incorporation of multiple failure distributions can be attractive, for

example, when modeling the energy hole phenomena in which sensor nodes located closer to

the sink node are relied on more often to route information through the network. As a result

these nodes consume energy at a faster rate which leads to a shorter expected lifetime [45].

The destruction spectrum approach from Section 2.2 can be adapted to address this scenario

(see [46]), with the drawback that the dimension of the signature increases.

Along the same direction, future work might consider the impact of load dependent

failures. As sensor nodes fail in the network, messages must be routed along di�erent paths

to reach the sink. This inevitably results in various sensor nodes being relied upon in a larger

capacity to route information, which can cause an increase in energy use and faster failure

rate.

Section 2.5.4 discussed the impact of modeling multiple network states. A related version

of this extension is to consider multi-state sensors. This problem variant introduces several

additional sources of complexity as we are now concerned not only with the initial capability

of a sensor and the total number of functioning sensors in the network, but the number of

sensors in each state and the capability of a sensor in a given state. A model must also be

incorporated to re�ect the transition of a sensor among the various states. Investigating how

these components can be incorporated into a reliability estimate, and the impact they have

on the current optimization model is a compelling problem to explore.

Another direction is to consider a deterministic network topology. The assumption that
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sensor nodes are always randomly deployed allowed us to leverage the D-spectrum relation-

ship between networks of di�erent sizes, saving a large amount of computation time. However

in many applications we can control the network topology more precisely by locating sensors

at speci�c points. While many of the results in Sections 2.2�2.4 remain applicable in this

case, it is not clear what/if there is a relationship between the D-spectrum for di�erent net-

works, or if the D-spectrum can be found in a more e�cient manner due to a deterministic

topology.

We have also primarily considered a time-based deployment policy, in which new sensors

are deployed every δ time units. Instead of scheduling a deployment based on time intervals,

an improved policy could consider the condition of the network as well, such as the current

number of failed sensors or the number of targets covered. Given the stochastic nature of

the network evolution and the potentially enormous state and maintenance decision space,

this modeling approach may be more amenable to approximate dynamic programming.
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3 Myopic Condition-Based Deployment Policies for Reliable Wireless Sensor

Networks

Abstract

Wireless sensor networks (WSNs) consist of a set of sensors distributed over a region of inter-

est that monitor and report on conditions within the network. Network reliability of region

coverage is often an important performance metric, as the status of the network degrades

over time due to sensor failures. To facilitate network operation over a prolonged period time,

failed nodes may be replaced or new sensors deployed to re-establish network capability. We

explore a condition-based sensor deployment policy, in which new sensors are periodically

deployed based on an observed network state. The destruction spectrum (D-spectrum) has

been utilized to estimate network reliability, and o�ers several advantages over a traditional

Monte Carlo approach. While the D-spectrum is a function of the network structure, or

the number of sensors and their distribution throughout the network, we discuss how the

D-spectrum can be incorporated into a model that estimates reliability in the presence of

a condition-based sensor deployment policy. This model is then demonstrated by evalu-

ating various policies with respect to the resulting reliability for region coverage. Finally,

the performance of these policies is compared to a simpler time-based sensor deployment

strategy.
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3.1 Introduction

Wireless Sensor Networks (WSNs) are commonly characterized by a large number of low-cost

sensor nodes operating in a cooperative manner to monitor a region of interest. Additionally,

WSNs require little infrastructure or supporting resources (e.g., physical wire connection)

for sensors to route information through the network [1]. These features enable WSNs to

be quickly established by randomly deploying sensors over a target location, which may also

be necessary when operating in harsh or di�cult to access terrain [2].

Over the course of network operation, sensors consume a �nite power supply while mon-

itoring the surrounding region and communicating with nearby sensors [3]. Once this power

supply is consumed the sensor fails and no longer contributes to network operation. The

lifetime of a sensor can be further accelerated by software or hardware complications, which

may arise as a result of external (e.g., environmental) factors [1]. While the WSN can likely

withstand a few sensor failures with minor impact to network capability, as a larger number

of sensors fail the WSN becomes increasingly degraded.

Several di�erent methods have been explored to prolong network lifetime in the presence

of sensor failures. Topology control algorithms commonly aim to extend sensor lifetime by

managing power consumption. One approach is to modify the communication radius based

on the distance of nearby sensors, as a smaller communication range between sensors requires

less energy [4]. There may also be redundant sensors in the network that provide little

additional coverage or communication capability. In this situation a sleep/wake schedule can

be used to turn sensors on and o� as necessary, allowing a sensor to conserve energy until

needed [5]. Another approach is through the introduction of one or more mobile sensors in
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the network to reposition sensors over time as necessary [6, 7]. However, there is a signi�cant

cost that accompanies this mobile capability, as the cost of such sensors can be signi�cant

compared to static sensors [3, 6]. Additionally, the WSN may be in an environment that is

not conducive to sensor mobility, such as a forest or steep mountain side.

The use of topology control algorithms and mobile sensor nodes aim to extend network

lifetime. That is, determining a policy to maximize the lifetime of a given WSN deployment.

To enable the long-term operation of a WSN, we must eventually consider deploying new

sensors in the network. The objective of deploying new sensors can be directed towards

restoring a level of network coverage, and/or improving sensor communication capability.

In [8] and [9] the deployment of new sensors is addressed, in addition to seeking a policy

that deploys the fewest number of new sensors. This objective adds further complexity to the

search for a deployment policy, as problems related to optimal node placement commonly

fall in the NP-Hard class of problems [10]. It may also be di�cult to locate sensors at a

speci�c location, particularly if we are forced into a random deployment of sensors due to

the operating environment.

Whereas the previous focus has primarily been on the deployment of sensors at a single

point in time, in this work we consider a problem where the decision to deploy new sensors is

made sequentially over a number of time periods. In doing so, we address the frequency with

which new nodes are deployed in the network and the associated cost. Further, throughout

the previously mentioned topology control algorithms, introduction of mobile sensor nodes,

and single-stage sensor deployment, the focus has been on extending network lifetime or

maintaining a coverage/connectivity requirement. We focus on evaluating a node deployment

policy with respect to network reliability which commonly fall in the #P-Complete class of
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problems [11], and are therefore routinely estimated by approximate solution methods such

as a Monte Carlo simulation.

In the following section, we discuss a condition-based node deployment model where the

deployment of new sensors is based on an observed state of the WSN. The objective is to

determine a sensor deployment policy that results in a highly reliable network given a �xed

budget available. A Monte Carlo simulation can be used to evaluate a given condition-

based deployment policy (CBDP), but improving upon and optimizing a policy is a more

challenging task. We illustrate how the network destruction spectrum (D-spectrum), or

signature, can be used to estimate reliability in the presence of a CBDP, alleviating some

of the di�culties encountered in network reliability problems. The model is then illustrated

through an example for various policies.

3.2 Problem Formulation and Methodology

Consider a WSN G that is comprised of a sink node and a collection of sensor nodes. These

sensor nodes are deployed throughout some region of interest R, which is partitioned into a

number of smaller subregions {1, 2, . . . , nr}. The main tasks of a sensor node are communi-

cating with neighboring sensors to route information through the network directed toward

the sink node, in addition to monitoring nearby targets. These sensor capabilities are de�ned

by a communication radius d1 > 0, and a monitoring radius d2 > 0.

Due to the failure of sensors the WSN evolves over time, impacting the ability of sensors

to communicate with each other and diminishing the collection of targets covered. For a

target to be covered at any given time it must be within the coverage radius of a functioning

sensor, and there must exist a communication path from this monitoring sensor bask to the
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sink node. At time t ≥ 0, the network G consists of sensors that have been deployed in the

network and remain functioning at time t. The condition of the network is then de�ned in

relation to network coverage, C(G), and represents the proportion of targets in the network

currently covered.

To maintain adequate coverage over a prolonged period of time, new sensors are deployed

in the WSN. First, the network is observed and degraded portions of the network can be

detected, which informs the deployment of new sensors. It may be impractical or costly to

constantly monitor the state of the network [12], but it is assumed that every δ time units

the network can be observed. The time intervals between observations now correspond to a

series of missions, where mission m refers to the period of time between mδ and (m + 1)δ.

If one or more sensors are deployed in the network, a �xed cost cF is incurred in addition

to a variable cost cV per sensor deployed. It is assumed that all sensors are deployed with

an independent and identically distributed (i.i.d.) life distribution, F , and that all sensor

capabilities are identical.

The observed state of the network is denoted Sm = (Sm1, Sm2, . . . , Smnr), where Smi is

the number of sensors functioning in subregion i ∈ R at the beginning of mission m. After

the network is observed, a decision xm = (xm1, xm2, . . . , xmnr) is made on how new sensors

are deployed in the network, where xmi is the number of sensors deployed to subregion

i ∈ R during mission m. Due to the di�culty encountered when attempting to deploy a

sensor to a speci�c coordinate location, the initial deployment of sensors, along with all

future deployments, is random within a subregion. A sensor deployment decision is faced

repeatedly over a series of missions, and the decision made during mission m may impact

the decision of how sensors are deployed in missions m′ > m. However given the stochastic
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nature of sensor failures and the potentially enormous state and deployment decision space,

we focus on a myopic condition-based deployment policy (M-CBDP) that focuses on the

impact on reliability for the current mission.

3.2.1 Myopic Condition-Based Sensor Deployment

In the myopic formulation of the condition-based sensor deployment problem, a �xed budget

β is available each mission and the objective is to maximize the probability of mission

success. An individual mission is successful if network coverage over the duration of the

mission satis�es a given coverage requirement, α. Equivalently, mission m is successful if

coverage at the end of the mission (time (m + 1)δ) is at least α. The reliability of the

network during mission m is de�ned as the probability the coverage requirement is satis�ed

for the duration of the mission, and is denoted R(Sm, xm) if we observe network state Sm

and deploy sensors according to action xm. The objective in the myopic condition-based

sensor deployment problem is therefore

maxR(Sm, xm), (9)

subject to a constraint that the cost of deploying sensors, cF + cV xm, not exceed the budget

available.

Selecting an optimal action requires evaluating (9) to determine network reliability. As

previously mentioned, network reliability problems commonly fall in the #P-Complete class

of problems. Network reliability can be estimated through the use of a Monte Carlo method

by simulating sensor failures over the next δ time units, determining network coverage at the
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end of the mission, and recording if the mission is successful or not. Repeating this process

over a large number of replications allows for an estimation of reliability upon completion.

One deterrent of this approach is the unbounded growth of the relative error for highly

reliable and highly unreliable networks [13]. Further, improving upon and optimizing a

policy through a Monte Carlo method requires a signi�cant computational e�ort.

3.2.2 Destruction Spectrum

The D-spectrum has been introduced to estimate network reliability [14], and o�ers several

advantages over a traditional Monte Carlo algorithm. First, the D-spectrum yields an e�-

cient representation of the network's reliability but depends only on the system structure.

Additionally, while the D-spectrum is also commonly estimated using a Monte Carlo method,

it is more e�cient than a Monte Carlo algorithm that estimates network reliability [13]. If

we consider a network of n sensors subject to failure, the D-spectrum is a probability dis-

tribution on the number of failed sensors necessary to cause network failure. Let sni be the

probability that in a network of n sensors, the ith sensor failure results in network coverage

falling below the requirement α. For the initial WSN that is deployed, every sensors follows

an i.i.d. failure distribution F , and network reliability at time t can be estimated by

r(t;α, n) =
n∑

i=0

sni B(i− 1;n, F (t)), (10)

where B(i− 1;n, F (t)) is the cumulative binomial probability of no more than i− 1 success

in n trials with probability of success F (t) [15].

Under a M-CBDP sensors will be deployed in the network over a series of missions based
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on the budget β available leading not only to a variable network size, but also changing

the age composition of sensors in the network. As a result, sensors that were deployed in

previous missions and remain functioning now have a residual life distribution, denoted Tx

where x > 0 represents a sensor's age, and fail according to the cdf

Fx(t) =
F (x+ t)− F (x)

F̄ (x)
. (11)

We can use (11) to determine the residual lifetime of a sensor randomly selected in the

network, while considering the randomness of its age, as follows. Since network reliability

increases along with the number of sensors in the network, the entire budget β will be utilized

to deploy new sensors in the network each mission. We can now use the cost constraint,

cF + cV xm ≤ β, to determine the maximum number of sensors that can be deployed each

mission by

β̄ =
⌊β − cF

cV

⌋
. (12)

Every δ time units β̄ sensors will be pushed into the network, eventually resulting in a

stable mix of sensors where the probability distribution on the age k of a randomly selected

sensor does not change from on mission to the next. From [16], this probability distribution

is described by

ρk =
F̄ (kδ)

∞∑
j=0

F̄ (jδ)
, k ∈ Z≥0. (13)

With (11) and (13), the residual lifetime of a sensor in the network, considering the
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randomness of its age, is now described by the cdf

G(t; δ) =
∞∑
k=0

F (kδ + t)− F (kδ)

F̄ (kδ)
ρk, (14a)

=

∑∞
k=0[F (kδ + t)− F (kδ)]∑∞

j=0 F̄ (jδ)
. (14b)

The D-spectrum is independent on the failure distribution, but it is impacted by the size

of the network. Due to a �xed number of sensors β̄ deployed in the network each mission

and variability in the number of sensor failures, the number of sensors in the WSN will also

�uctuate over time. However immediately after new sensors have been deployed, the network

consists of

nβ = β̄
∞∑
j=0

F̄ (jδ), (15)

sensors, on average. The signi�cance of (15) is that we have an expression for the expected

size of a WSN in the presence of a M-CBDP with budget β available per mission. Addition-

ally, the remaining life of a sensor randomly selected in the WSN is an i.i.d. random variable

with cdf given by (14b).

Finally, to apply the D-spectrum to a M-CBDP we must have knowledge about the system

structure, or distribution of sensors in the network. For a �xed budget β available we now

know this corresponds to a network with approximately nβ sensors. With an expectation on

network size we can now search for the allocation of nβ sensors to each of the subregions to

maximize network reliability. Let Y be some policy that determines how the nβ sensors are

distributed to each subregion. For example, one policy is to distribute sensors so that each

subregion contains approximately the same number of sensors. A policy informs the overall
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con�guration of sensors in the network (i.e., the structure of a network that consist of nβ

sensors), in addition to how new sensors are deployed in the network based on the observed

state. Policy Y now provides a consistent network structure between missions (that is,

after the deployment of sensors each mission the network contains nβ sensors distributed

throughout the network in a similar manner), and the D-spectrum can be used to estimate

network reliability. Let sYi be the probability the ith sensor failure results in C(G) falling

below α when following the M-CBDP Y . Network reliability is estimated by

r(δ;α, β, Y ) =

nβ∑
i=0

sYi B(i− 1;nβ, G(δ; δ)). (16)

Using the network D-spectrum, (16) can be applied to e�ciently evaluate network reli-

ability when new sensors are deployed in the network according to a given M-CBDP Y . In

the following section we compare the performance of various policies, after which the best

policy from those evaluated can be selected.

3.3 Computational Results

In this section we compare the performance of various M-CBDPs for a varying budget, β,

and observation interval, δ. To model the failure of sensors, the lifetime of each sensor

is distributed according to a Weibull distribution with a shape parameter 1.5 and scale

parameter 10. Sensor capabilities are de�ned based on a common communication radius of

d1 = 0.075 and a monitoring radius of d2 = 0.075. The region of interest R is a [0, 1]× [0, 1]

square that is patritioned into nr = 16 equal sized regions (i.e., each subregion is of size

0.25 × 0.25), with a single sink node located centrall in R. The coverage requirement is
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selected as α = 0.8, meaning the WSN must cover 80% of the region to be successful. The

�xed cost of deploying sensors is set to cF = 100, with a variable cost of cV = 1.

The �rst M-CBDP we consider is to evenly distribute sensors to each subregion, denoted

policy Y1. That is, after observing the state of the network new sensors are deployed so that

each subregion contains approximately nβ/nr sensors. As a result, if we observe a subregion

that has su�ered more failures compared to another, more sensors will be deployed to this

subregion. The second myopic policy, Y2, is to deploy new sensors to a subregion based

on a weight wi assigned to each subregion. Since sensors located closer to the sink node

are relied upon more often to route information we may wish to place a larger weight on

subregions around the sink in order to deploy a larger number of sensors, providing a level of

redundancy and maintaining a communication path in the presence of failures. The weights

now in�uence how new sensors are deployed in the network, where even if we observe a large

number of sensors that remain functioning in a subregion it might be advantageous to deploy

sensors to this subregion if it is near the sink. For M-CBDP Y2, the weight of each subregion

is inversely proportional to the distance from the sink node to the center of a subregion, and

each subregion now contains approximately (wi/
nr∑
i=1

wi) × nβ sensors. Note that policy Y1

and Y2 are not necessarily optimal policies resulting from (9). However they are anticipated

to be high quality policies and selected to demonstrate the use of the D-spectrum to estimate

the reliability of a CBDP. Future work will be directed on e�cient methods to determine an

optimal policy beyond an enumeration strategy.

These two M-CBDPs are compared against a simpler time-based deployment policy

(TBDP), TB. In policy TB, rather than deploy sensors based on a budget available, sensors

are deployed to reach a constant network size. Additionally, only the number of sensors

58



functioning in the network is observed and sensors are then randomly deployed throughout

the entire region, instead of specifying the subregion a sensor is deployed in. A TBDP is

explained in more detail in [17]. Results for the two M-CBDPs along with the TBDP are

provided in Table 2 where the values under each policy correspond to the resulting network

reliability estimated using (16), given β and δ.

Table 2: Network Reliability for Various M-CBDPs

β δ Y1 Y2 TB β δ Y1 Y2 TB

278 2.5 0.9998 0.9999 0.9998 388 5.7 0.8004 0.8123 0.7359

364 5.0 0.9499 0.9598 0.9227 383 5.7 0.7503 0.7667 0.6820

353 5.0 0.8999 0.9136 0.8557 594 8.2 0.7003 0.7200 0.6542

353 5.1 0.8507 0.8719 0.7981 438 6.5 0.7002 0.7199 0.6357

In each of the test instances, M-CBDP Y2 results in the largest reliability, followed by

M-CBDP Y1, and �nally the TBDP TB. One of the primary di�erences between policy

Y1 and Y2 with TB is that in Y1 and Y2 we are able to observe the state of the network

and determine how new sensors are deployed in the region (i.e., which subregion sensors

are deployed in). This is a signi�cant improvement over policy TB, particularly as the time

between network observation increases. For example, in the instance with (β, δ) = (388, 5.7),

this results in an improvement in network reliability from 0.7359 for the TBDP to 0.8004

for M-CBDP Y1. By weighting each subregion and in�uencing the M-CBDP through this

method (policy Y2), network reliability is improved further.

The test instances also help illustrate the impact of β and δ on each policy. For example,

consider the (353, 5.0) instance and the (353, 5.1) instance. The observation interval in the

latter instance is slightly larger, but this results in a drop in network reliability from 0.9136

to 0.8719 for policy Y2, with a similar impact on policy Y1. In the following set of test

59



instances, (388, 5.7) and (383, 5.7), the observation interval is the same but the mission

budget has slightly decreased. With a variable cost cV = 1, this corresponds to �ve fewer

sensors available to deploy per mission in the second scenario. However, this again results

in a drop in network reliability from 0.8123 to 0.7667 for policy Y2.

Finally, because we are using an estimate of the D-spectrum for an approximate size

of the network to estimate reliability under a CBDP, we are interested in how accurate

this estimate is compared to a traditional Monte Carlo simulation. Although a Monte Carlo

simulation is more computationally expensive, it provides the ability to model the �uctuation

in network size and in the age of sensors over time. For a Monte Carlo simulation of 10000

replications on the (353, 5.0) instance, the resulting reliability estimate is 0.8993 and 0.9151

for policy Y1 and Y2, respectively. A Monte Carlo simulation for the remaining test instances

yields a similar performance comparison, demonstrating the suitability of the D-spectrum to

estimate reliability of a M-CBDP.

3.4 Conclusion

To maintain a WSN over a prolonged period of time, new sensors must be deployed in the

network to re-establish network coverage and communication capabilities. Towards this goal,

we have discussed a myopic condition-based sensor deployment problem in which the network

is observed prior to a decision on how new sensors are deployed in the network. We have

also demonstrated how the network D-spectrum can be used to estimate network reliability

as new sensors are deployed, and compare the performance of di�erent sensor deployment

policies. With this insight to a M-CBDP, future work is focused on a model that considers

the impact on future mission reliability as well.
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4 Approximate Dynamic Programming for Condition-Based Node Deployment

in a Wireless Sensor Network

Abstract

The �exibility of deployment strategies combined with the low cost of individual sensor nodes

allow wireless sensor networks (WSNs) to be integrated into a variety of applications. It is

important that the WSN function over a prolonged period of time, particularly as sensors

consume a �nite power supply and begin to fail. Extending network lifetime is possible by

deploying new sensors in the network, and is commonly concerned with a single stage deploy-

ment to restore a network coverage and/or communication measure. In this work we focus

on condition-based deployment policies (CBDPs) in which sensors are deployed over a series

of missions. The main contribution is a Markov decision process (MDP) model to maintain

a reliable WSN with respect to region coverage. Due to the resulting high dimensional state

and action space, we explore approximate dynamic programming (ADP) methodology in the

search for high quality CBDPs. Our model is one of the few related to maintenance through

the repeated deployment of new sensor nodes, and one of the �rst ADP applications for the

maintenance of a complex WSN. Additionally, our methodology incorporates a destruction

spectrum (D-spectrum) reliability estimate, addressing the complexity present in both a dy-

namic network topology and dynamic age composition of sensors. While the D-spectrum has

received signi�cant attention with respect to network reliability, the application and utility

in a maintenance setting has not been widely explored. We conclude with a discussion on

CBDPs in a range of test instances, and comparisons with alternative deployment strategies.
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4.1 Introduction

Through the cooperative e�ort of individual sensor nodes, a wireless sensor network (WSN)

can be deployed to monitor and report data on an event of interest in a desired region. WSNs

can also be left unattended once they are deployed, allowing them to be integrated into a

wide range of applications. In environmental settings WSNs can be valuable to monitor

a forest providing early detection of forest �res, or to monitor a coastline and warn about

potential �ooding [1]. WSNs have additionally been deployed to observe animals and their

behavior in a natural habitat over a period of time with minimal disruption [2]. In commercial

applications, WSNs can be utilized to track inventory or for temperature/climate control in

buildings and warehouses [3]. Sensors have also been integrated into military and healthcare

applications [4], illustrating the �exibility WSNs o�er.

While the area a single sensor is able to monitor can be relatively small, sensors are able

to communicate with neighboring sensors to route information through the network. By

su�ciently distributing sensors throughout a region of interest, the WSN is able to monitor a

much larger region. In some environments (e.g., buildings) this is possible by placing sensors

at speci�c locations, and may require fewer sensors to monitor the region e�ectively [4].

In other scenarios (e.g., dense forest, mountainside) where the construction of a speci�c

network topology is more di�cult, a WSN can be quickly established by randomly deploying

sensors over the target area [5]. This may require a larger number of sensors compared to a

controlled deployment, but the low cost nature of sensor nodes facilitate large WSNs that are

not cost prohibitive [3]. The randomness in sensor deployment can also be in�uenced by the

density with which sensors are deployed throughout the network, for example by deploying a
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sensor over a desired subregion in the network [6]. Further contributing to the feasibility of a

random deployment, sensors require very little infrastructure (e.g., wires, cables) to operate.

Each sensor contains components necessary for sensing and sending/receiving data, as well

as an individual power supply such as a battery [7]. Sensors consume this �nite power supply

over the course of network operation until there is no power remaining and the sensor ceases

to function properly. As an increasing number of sensors reach this failure stage, the overall

network coverage and connectivity also start to decline.

One method to delay the impact of sensor failures on network lifetime is through the use

of sleep/wake cycles [8�10]. This allows redundant sensors to remain in an energy conserv-

ing state until they are required to turn on and assist network functions. Dynamic power

management methods can also be implemented, which adjust the transmission power of indi-

vidual sensors to minimize the energy required while ensuring sensors can still communicate

with one another [11, 12]. For the deployment of sensors at a single point in time topology

control methods such as these can be an e�ective means to extend network lifetime. However

the issue of a �nite power supply and a reduction in the number of functional sensors over

time is still encountered. To contribute toward the long-term operation of a WSN we must

consider additional methods to address the impact of sensor failures. In applications where

the WSN is easily accessible it may be possible to replace or recharge the battery of failed

sensors. Several di�erent node replacement policies are examined in [13], where there are a

limited number of replacement sensors available and the decision to replace a sensor or not is

made immediately after observing a failure. However there are many environments in which

it is not practical to access failed nodes individually [14]. Another option to improve net-

work status, viable through the low cost of sensor nodes combined with the lack of physical
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connection between sensors, is to deploy new sensors (at new locations) in the WSN.

An additional emphasis is commonly placed on determining a minimal number of relay

sensors, more powerful (e.g., larger communication radius) but more costly sensors, directed

toward restoring sensor connectivity. This is the focus in [15] and [16], which explore algo-

rithms that determine the fewest number of relay sensors and their placement in the network.

The relay sensor placement problem restores a communication ability in the network, but

there is the possibility the next sensor failure immediately causes the network to become dis-

connected again. One attempt to address this issue is to deploy sensors such that a level of

redundancy or k-connectivity is present in the network [17, 18]. The resulting network now

has capability restored, in additional to a network intended to be robust to sensor failures.

One of the limitations in the previous models is that they are commonly concerned with the

deployment of sensors at a single point in time. The age of sensors in the network is often

not considered which is important as sensors that remain functioning in the network are

`older' compared to brand new sensors, and their residual life is likely smaller. As a result,

they are more likely to fail and there is the possibility the network becomes disconnected

again in the near future, requiring the deployment of even more relay sensors. Since the

long-term maintenance of a WSN will require the deployment of sensors at several di�erent

stages, a deployment policy can be improved by considering the residual life distribution of

sensors remaining in the network and the frequency with which sensors must be deployed.

The newly deployed sensors are also not required to be relay sensors; the deployment of a

larger number of new, identical sensors is possible and may help manage the cost over a

series of deployment actions.

When a WSN is maintained in this manner, a decision must be made on how many new
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sensors are deployed and where in the network to improve the ability of sensors to commu-

nicate with each other and restore coverage in portions of the network that has been lost.

Limiting the ability to deploy sensors is a �nite resource, for example a budget or limited

time window to access the network and deploy new sensors. This maintenance decision

relates closely to the selective maintenance problem, in which an action must be selected

from the many set of feasible actions available. A mathematical formulation of the selective

maintenance problem in a series-parallel system is discussed in [19], where models are pre-

sented that maximize system reliability subject to constraints on cost and maintenance time

available, or minimize cost (time) subject to a constraint on the time (cost) and minimum

system reliability requirement. In [20] the model is expanded to consider multiple mainte-

nance actions (e.g., minimally repair failed components, replace failed components, replace

functioning components), and model the lifetime of an individual component with a Weibull

failure distribution. In both [19] and [20] the maintenance decision is based on maximizing

or minimizing the objective for the next mission (i.e., until the next maintenance action).

Since the system is likely maintained over a series of missions, a maintenance policy can be

improved by considering the impact of a decision on future missions as well. This problem

is �rst explored in [21] through a Markov decision process (MDP) model for a small series-

parallel system, and later in [22] by applying approximate dynamic programming (ADP)

methodology to solve for a maintenance policy in a system comprised of a larger number of

subsystems and components.

Similar to a series-parallel system subject to component failure, WSNs are stochastic

systems and allow a wide range of opportunities to incorporate MDP methodology. A sur-

vey of MDP models applied to various problems involving WSNs is provided in [23]. Topics
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related to resource and power optimization (e.g., sleep/wake cycles, battery recharge poli-

cies), data exchange and topology formulation (e.g., transmission radius management, data

aggregation), and sensing coverage and object detection (e.g., tracking a mobile object) are

a few of the areas MDP models have been applied to. With respect to deploying new sensors

in a WSN, [24] presents an MDP model that minimizes the cost of replacing failed nodes.

One of the limitations in the model is it does not consider network topology, and instead as-

sumes that all failed nodes equally e�ect the performance of the WSN. Large scale networks

commonly feature redundant sensors and can withstand the �rst few failures with relatively

little impact, but as the number of failures increases it is more likely a `critical' sensor failure

(e.g., the only sensor that monitors a target or connects two portions of the WSN) results

in a large drop in network capability.

Compared to the selective maintenance problems discussed in [19�22] that maximize

system reliability, research related to WSNs has focused primarily on maximizing lifetime

for a given network, replacing a small number failed nodes to maintain network capability,

or deploying the fewest number of new sensors to restore the network to a functioning status.

WSNs typically lack the well de�ned structure of a series-parallel system which complicate

the estimation of network reliability. As a result, network reliability problems commonly

fall in the #P-Compete class of problems [25], and can be di�cult to solve exactly. This is

further complicated in a maintenance setting in that the number of sensors in the network

is changing over time, and the collection of sensors is heterogeneous. That is, sensors have

di�erent residual life distributions due to a variation in sensor age, and the age distribution

of sensors is also changing over time.

In addition to the complexity present in network reliability, one of the di�culties com-
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monly encountered in MDPs is the high dimensional variables that model the state space,

decision space, and/or outcome space. Known as the �three curses of dimensionality,� solv-

ing even moderately sized versions of a problem can quickly become intractable. Instead of

solving the problem exactly, ADP provides methodology to select a decision based on an

approximation of the future value (e.g., cost, reward, etc.) associated with an action. A brief

introduction to ADP is outlined in [26], a summary of common techniques in [27], and a

detailed discussion is provided in [28].

In this work we focus on the selective maintenance of a WSN where new sensors are

deployed over a series of several maintenance actions. Prior to the deployment of new

sensors, the WSN is observed to provide information related to the current state and inform

a decision on how new sensors are deployed in the network. Constraining the set of feasible

actions is a limited budget available over a �nite planning horizon. While the deployment of

new sensors is immediately concerned with restoring/maintaining a level of network coverage

and connectivity, the deployment of sensors at a current point in time may also in�uence how

sensors are deployed in future time periods. One of the main contributions of this work is an

MDPmodel to examine an optimal condition-based deployment policy (CBDP) to maintain a

WSN for region coverage. Due to the resulting high dimensional state and maintenance (i.e.,

sensor deployment) decision space, we explore ADP methodology to address the complexity

present in a repeated sensor deployment setting. While MDP models have been widely

applied to WSNs, our model is one of the few related to maintenance through the repeated

deployment of new sensor nodes, and one of the �rst ADP applications for the maintenance

of a complex WSN.

Additionally, our model focuses on maximizing a measure of network reliability. Due to
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the complexity encountered in network reliability problems, approximation methods such as

a Monte Carlo simulation [29] or bounding network reliability [30, 31] are commonly utilized.

A Monte Carlo simulation can be used to evaluate the performance of a given policy, but

improving upon and optimizing a policy is a more di�cult task. Network reliability can

also be estimated utilizing the destruction spectrum (D-spectrum), introduced in [32], and

is a function of the network structure, or the number of sensors and their distribution (i.e.,

locations) throughout the network. The D-spectrum has received signi�cant attention in

network reliability literature, but its application in a maintenance setting is still emerging.

A model for a node replacement policy when a network is subject to external shocks causing a

sensor failure with equal probability is provided in [33], where the decision is when (i.e., after

how many shocks) to replace failed nodes. A time-based deployment policy (TBDP) for a

WSN is explored in [34] where the network is restored to a �xed size at periodic time intervals,

allowing the D-spectrum to be applied in evaluating a wide range of policies. Closely related

to a TBDP is one in which a �xed number of sensors are deployed in the network at constant

time intervals. This now results in a varying network size, but the D-spectrum remains

valuable in this problem [35]. We discuss how the D-spectrum can be adapted into a model

to estimate reliability in the presence of a CBDP, which must address the complications

concerning both a dynamic network topology and a dynamic age composition of sensors.

The remainder of this work is organized as follows. Section 4.2 summarizes the modeling

of a WSN and outlines the progression of network observation followed by a deployment

decision over a period of time. This sequence of events informs a discussion on an MDP

model for the condition-based sensor deployment problem. Section 4.3 discusses our ADP

methodology to determine an optimal CBDP and addresses how the the D-spectrum can
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be incoporated to estimate reliability based on an observed state and action. Section 4.4

presents numerical results for a range of test instances and compares optimal ADP policies

to alternative deployment strategies. Finally, Section 4.5 concludes this article, and provides

a few directions for future research.

4.2 Problem Description and Model

In this section we discuss a condition-based sensor deployment MDP model in which a limited

budget is available to deploy additional sensors in the network. Consider a WSN deployed

over some region of interest, partitioned into a number of smaller subregions represented

by the indexed set R = {1, 2, . . . , nr}. The WSN, represented by G, is comprised of a

collection of sensor nodes and a single sink node located somewhere in the region. Sensors

in the network are responsible for communicating with neighboring sensor nodes to route

information through the network, with a desired destination at the sink node. In addition

to a communication capability, sensors are tasked with monitoring the surrounding area and

desired target locations in the region. These two primary sensor capabilities are de�ned

by a communication radius d1 > 0, and a monitoring radius d2 > 0. For a target to be

covered in the network it must not only be within the monitoring radius of a functioning

sensor; there must also be a communication path from the monitoring sensor back to the

sink node. The ability of sensors to communicate with one another declines over time as a

result of sensor failures, which also impacts the collection of targets covered. The lifetime of

an individual sensor is modeled by a survival function F̄ (t) = 1−F (t), where F (t) represents

the cumulative distribution function (cdf) of sensor lifetime and is assumed to be identically

distributed for all sensors. At time t ≥ 0, the WSN G is represented by G(t) and consists
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(a) (b) (c)

Figure 9: (a) Initial WSN with sink node (⋆) and functioning sensor nodes (•) ; (b) WSN
with failed sensors (◦) ; (c) WSN with newly deployed sensors (•).

of sensors that remain functioning at time t. The proportion of targets covered, or WSN

coverage, is denoted C(G(t)) and informs the condition of the network.

An example of the WSN evolution over time is illustrated in Figure 9. In Figure 9(a)

the WSN contains a large number of sensors and covers a signi�cant portion of the region.

Over time sensors fail and can dramatically impact network performance, as illustrated in

Figure 9(b). To prevent a further drop in coverage and restore network capability, new

sensors are deployed in the network, demonstrated in Figure 9(c). New sensors can be

deployed in the network with an objective to improve the ability of sensors to communicate

with one another, in addition to re-establishing coverage in portions of the network that were

severely impacted by failures.

The desire of deploying new sensors in the WSN is to enable the region of interest to be

monitored over a sequence of missions {0, 1, . . . ,M−1}. Each mission is of equal duration δ,

and mission m corresponds to the duration of time between mδ and (m+1)δ. Additionally,

it is assumed that the starting number of sensors deployed in the network at time t = 0 is

given. The �rst redeployment action therefore corresponds to mission 1 at time t = δ. At the

beginning of mission 1, and each subsequent mission, the network is observed and a decision

is then made on how new sensors are deployed in the network. In our discussion throughout
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we adopt the convention that network observation and the deployment of any new sensors

always occur at the beginning of a mission. Since the end of mission m − 1 corresponds to

the beginning of mission m, an equivalent statement is that the network is observed at the

end of mission m− 1, the deployment of new sensors occurs, and then mission m starts. For

consistency purposes and ease of state variable and decision variable de�nitions introduced

later, we always refer to both actions occurring at the beginning of a mission.

To avoid the e�ort/cost involved in deploying a sensor to a speci�c location (or replacing

a failed sensor), the subregion a sensor is deployed in is selected and the sensor is then

randomly deployed within the subregion. This is similar to varying the density with which

sensors are deployed throughout the network [36]. The decision is now how many sensors

are deployed, and in which subregion of the network. When new sensors are deployed in

the WSN, a �xed cost cF is incurred if at least one sensor is deployed in addition to a

variable cost cV for each sensor deployed. The �xed cost plus variable cost model relates to

the hardware plus non-hardware model discussed in [24], and is also used in a related work

investigating time-based redeployment policies [34]. It is assumed that all sensors deployed

in the network are homogeneous, in the sense that all sensor capabilities are identical and

sensors follow and independent and identically distributed (i.i.d.) failure distribution, F .

Since new sensors are deployed in the network over a sequence of missions, the collection of

sensors is heterogeneous in the sense that sensors have di�erent ages, and therefore di�erent

residual life distributions. Let k be the age of a sensor in the network, where sensors are

deployed with initial age k = 0. The age of a sensor therefore corresponds to how many

missions the sensor has survived. De�ne K = {0, 1, . . . , K} as the set of all possible ages,

where K is some upper bound on the age of a sensor in the network.
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The state space consists of two main components, the �rst of which is the observed

distribution of sensors in the network and is de�ned as

Nm = (Nmik)i∈R,k∈K ≡ (Nm10, Nm11, . . . , Nm1K , Nm20, . . . , NmnrK), (17)

where Nmik denotes the number of functioning sensors with age k ∈ K in subregion i ∈ R

at the beginning of mission m. The total number of functioning sensors in the network is

denoted by N̄m =
∑
i∈R

∑
k∈K

Nmik. The second component of the state space is the budget avail-

able to deploy sensors during mission m (and all future missions), denoted Bm. Combining

these two components, the state of the system at the beginning of mission m is de�ned by

Sm = (Nm, Bm) ∈ S, where S is the set of all possible states.

After observing the state of the network, a decision must be made on how new sensors

are deployed. Let xmi denote the number of sensors deployed in subregion i ∈ R at the

beginning of mission m, and x̄m =
∑
i∈R

xmi be the total number of sensors deployed. The

resulting cost from observing state Sm and implementing action xm is denoted Cm(Sm, xm),

where

Cm(Sm, xm) =


cF + cV x̄m, if x̄m > 0,

0, othwerwise.

(18)

The transition probability functions can now be used to characterize how the system

evolves from one state to another. First, note that an individual sensor with age k survives

the current mission with probability

pk =
F̄ ((k + 1)δ)

F̄ (kδ)
. (19)
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Using the survival probability for an individual sensor, the transition probability for the

number of sensors with age k in subregion i is determined by

Pr(Nm+1,i,k|Nmik−1, xm) =


b(Nm+1,i,1;xmi, pk−1), if k = 1 and 0 ≤ Nm+1,i,k ≤ xmi,

b(Nm+1,i,k;Nmik−1, pk−1), if k > 1 and 0 ≤ Nm+1,i,k ≤ Nmik−1.

(20)

where b(n;x, p) is the binomial probability of n successes in x trials with probability of success

p. The overall transition probability given maintenance action xm can now be determined

by

Pr(Nm+1|Nm, xm) =
∏
i∈R

∏
k∈K

Pr(Nm+1,i,k|Nmik−1, xm). (21)

The second component of the state variable is the budget, which transitions based on the

corresponding cost of the action implemented,

Bm+1 = Bm − Cm(Sm, xm). (22)

The state transition function is de�ned as Sm+1 = SM(Sm, xm,Wm+1), where Wm+1 repre-

sents information on sensor failures that occur during mission m.

Given a starting budget B0, the objective is to deploy sensors in the network to maxi-

mize the expected number of successful missions. For a given coverage requirement α, an

individual mission is successful if WSN coverage over the duration of the mission remains

above this requirement. Network reliability is also de�ned with respect to α, and is de�ned

as the probability the coverage requirement is satis�ed over the mission duration. From an

observed network state Sm and implementing action xm, the resulting network reliability is
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denoted Rm(Sm, xm). Let X
π
m(Sm) be a policy that determines the sensor deployment action

(how many sensors that are deployed and in which subregions) for each state Sm ∈ S. For

a given number of missions M , the objective is

max
π∈Π

Eπ
{M−1∑

m=0

Rm(Sm, X
π
m(Sm))

}
. (23)

Constraining a decision each mission is �rst the budget available, Bm, to deploy sensors in

the network. Additionally, there may be some desired minimum reliability (i.e., probability

of mission success), ϕ, that each mission achieve. This constraint is intended to prevent the

scenario where network reliability is completely sacri�ced (i.e., unacceptably low reliability

and almost certain network failure) one mission, while the reliability of a later mission is

near one. Finally, there may exist an upper limit on the number of sensors allowed in the

network, nmax, to prevent the region from becoming saturated with sensors at any given

time. Overall the set of feasible actions, XSm , during mission m is therefore de�ned by

XSm =
{
xm : Cm(Sm, xm) ≤ Bm, Rm(Sm, xm) ≥ ϕ, N̄m + x̄m ≤ nmax

}
. (24)

One of the complicating aspects in determining the set of feasible actions is the reliability

requirement an action must satisfy. As previously mentioned, network reliability problems

commonly fall in the #P-Compete class of problems, and therefore determining the exact

set of feasible actions as de�ned by (24) is not a trivial task. Later on we address this

di�culty by outlining an e�cient method to estimate network reliability and instead apply

the constraint to the estimated reliability of an action, R̂m(Sm, xm). In doing so the set of
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feasible actions is now approximated as well, and it is possible our approximation includes

actions that are not feasible to (24). That is, the estimated reliability of an action may

satisfy the constraint and therefore appear in our approximated action set, but the true

value might be below the requirement. However, this should only occur for a small number

of actions, and the actions are feasible to the original problem with only a cost constraint.

The value function, Vm(Sm), is de�ned as the maximum number of successful missions

remaining among missions m,m+1, . . . ,M − 1 if the system is in state Sm at the beginning

of mission m. To determine an optimal policy to (23) we must �nd a solution to Bellman's

equation,

Vm(Sm) = max
xm∈XSm

{
Rm(Sm, xm) + E

[
Vm+1(Sm+1)

∣∣Sm, xm]
}
. (25)

4.3 ADP Formulation

The previous section provides an initial MDP model for the condition-based sensor deploy-

ment problem over a sequence of M missions. Common to many dynamic programming

problems, this model su�ers from the three curses of dimensionality [28]. The large size of

the state space can be illustrated by examining the distribution of sensors in the network.

For a network containing i sensors, these sensors can be allocated to di�erent regions of the

network
(
nr+i−1

i

)
di�erent ways. Due to sensor failures and the deployment of new sensors,

the total number of sensors in the network also varies between 0 and nmax. As a result,

the size of the state space considering only the distribution of sensors in the network is

nmax∑
i=0

(
nr+i−1

i

)
. Note that this does not include any information about the age composition of

sensors, which further complicates the size of the state space. The remaining budget is also

a factor, and can bounded between 0 and B0. Assuming integer values of cF and cV then
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the budget for mission m can also assume integer values between 0 and B0, and the size of

the state space can be bounded by B0

nmax∑
i=0

(
nr+i−1

i

)
for a single mission. The large action

space (i.e., deciding how new sensors are deployed in di�erent subregions) and outcome space

(i.e., observing sensor failures) are additional components that limit exact algorithms to be

applied for only small problem instances.

For large scale WSNs of interest, ADP can be applied to the condition-based sensor

deployment problem. First, the optimality equations can be reformulated around the post-

decision state variable, Sx
m, which is the state at the beginning of missionm immediately after

new sensors have been deployed in the network. Similarly, the number of sensors functioning

in each subregion immediately after new sensors have been deployed and the total number

of sensors in the network are represented by Nx
m and N̄x

m, respectively. Let V
x
m(S

x
m) denote

the value of being in the post-decision state Sx
m, and is de�ned as the maximum number of

successful missions among missions m + 1,m + 2, . . . ,M − 1 given the post-decision state

variable Sx
m. The relationship between V x

m and Vm can be expressed by

V x
m−1(S

x
m−1) = E[Vm(Sm)|Sx

m−1], (26)

where

Vm(Sm) = max
xm∈XSm

{
Rm(Sm, xm) + V x

m(S
x
m)

}
. (27)

Substituting (27) into (26) we obtain the optimality equations around the post-decision state

variable

V x
m−1(S

x
m−1) = E

{
max

xm∈XSm

(
Rm(Sm, xm) + V x

m(S
x
m)

)
|Sx

m−1

}
. (28)
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One of the advantages of utilizing the post-decision state variable is the expectation is

now outside of the maximization problem. The resulting maximization problem in (28) is

less complicated than the original formulation in (25), but still requires an evaluation of

network reliability. The D-spectrum has been utilized to estimate network reliability, and

o�ers several advantages over a traditional Monte Carlo simulation. Notably, in the presence

of i.i.d. sensor failures the D-spectrum is only a function of the network structure, and does

not depend on the failure distribution of sensors in the network [37]. While it is possible

to compute the D-spectrum of a network exactly it is more common to use an approxima-

tion method, particularly when applied to a large, complex WSN. One such approximation

method relies on the use of a Monte Carlo method, however a Monte Carlo estimation of the

D-spectrum is more e�cient compared to a traditional Monte Carlo simulation that directly

estimates network reliability [29]. The lower computational e�ort required in estimating

the D-spectrum, algorithms of which are outlined in [34] and [38], becomes signi�cant when

reliability estimation is embedded in an optimization problem and may need to be repeated

over a large number of replications.

4.3.1 Destruction Spectrum Reliability Estimation

In a network of sensors subject to failure, the D-spectrum is a probability distribution on

the number of failed sensors that result in network failure. From information available in the

post-decision state variable we can apply the network D-spectrum to estimate reliability, but

must �rst de�ne a number of state aggregation functions. Let S(a) be the state space at the

ath level of aggregation, where the aggregation function Aa maps the original state space S to

S(a). De�ne A1 as the function that aggregates over the age composition of sensors in a sub-
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region, resulting in the number of sensors in each subregion, N
(1)
m = (N

(1)
m1, N

(1)
m2, . . . , N

(1)
mnr).

The second aggregation function, A2, aggregates over the subregions in the network, resulting

in the number of sensors with a given age, N
(2)
m = (N

(2)
m0, N

(2)
m1, . . . , N

(2)
mK).

Applying the �rst aggregation function to the post-decision state variable, we can deter-

mine the number of sensors functioning in each subregion. This is signi�cant as it now pro-

vides information on the resulting network structure, and we can estimate the corresponding

D-spectrum (i.e., the D-spectrum for a network with N
x,(1)
mi , i ∈ R sensors randomly located

in each subregion). The D-spectrum estimate is denoted ŝ
N̄x

m
α,i , and is the probability the

ith sensor failure results in network coverage falling below the requirement α in a network

of N̄x
m sensors. From the second aggregation function we can determine the probability of

randomly selecting a sensor with age k in the network by

ρ̃k =
N

x,(2)
mk

N̄x
m

, k ∈ Z≥0. (29)

With (29), the residual life distribution for a sensor randomly selected in the network is now

given by the cdf

G̃(t; δ) =
∞∑
k=0

F (kδ + t)− F (kδ)

F̄ (kδ)
ρ̃k, (30a)

=
∞∑
k=0

F (kδ + t)− F (kδ)

F̄ (kδ)

N
x,(2)
mk

N̄x
m

. (30b)

From the D-spectrum estimate and residual life distribution in (30b), network reliability over
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the next mission, given the observed state Sm and action xm can be estimated by

R̂m(Sm, xm) =

N̄x
m∑

i=0

ŝ
N̄x

m
α,i B(i− 1; N̄x

m, G̃(δ; δ)), (31)

where B(i − 1; N̄x
m, G̃(δ; δ)) is the cumulative binomial probability distribution of no more

than i − 1 successes in N̄x
m trials with probability of success G̃(δ; δ) [37]. The reliability

D-spectrum estimate resulting from (31) is also attractive in that the reliability estimate has

bounded relative error [38].

One of the limitations of the proposed approach to reliability estimation is that it uses the

stable residual life distribution derived in (30b), which relies on a probability distribution

of sensor ages aggregated over the entire network. Since we observe information on the

age distribution of sensors within a subregion, it is reasonable to question why this level of

detail is not retained and incorporated in our estimation method. That is, the residual life

distribution can be subregion dependent and more accurately re�ect the state of the network.

The disadvantage of this approach is it now requires an application of the multi-dimensional

D-spectrum [39] which is more complicated to estimate. Additionally, empirical testing

comparing the reliability estimate of the aggregated approach to a Monte Carlo simulation

indicates that any improvement achieved by the multi-dimensional D-spectrum estimate will

be minor. Similarly, the aggregated approach requires a single dimensional D-spectrum in

the reliability estimate given by (31), which provides the opportunity to avoid a signi�cant

source of computational e�ort as discussed later in Section 4.3.3.
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4.3.2 Value Function Approximation

Another powerful technique in ADP methodology to address the large state space is through

approximating the value function. In this work we approach the value function approxi-

mation through the use of the previously de�ned aggregation functions and lookup tables.

This is based on the observation that the age composition of sensors in the network and the

distribution of sensors contribute greatly to the size of the state space. The former is neces-

sary to estimate the stable residual life distribution while the latter is necessary to estimate

the destruction spectrum, both of which are required to estimate reliability of the current

mission. It is reasonable to expect that while both of these components will impact future

missions as well, the primary factor impacting future missions can be summarized by the

size of the network. Therefore, we can aggregate over the age composition and distribution

of sensors to determine the total number of sensors in the network, N̄m, to estimate the value

function.

Additionally, the starting budget B0 in�uences the size of the state space and impacts

the ability to deploy new sensors in the network. Assuming the variable cost of deploying

additional sensors is relatively small (particularly compared to the �xed cost), deploying one

or two additional sensors has a minor impact on the budget remaining. It is also reasonable

to assume that the impact of deploying one or two additional sensors has a minor increase

to the overall value function, particularly when compared to the impact of deploying 15

to 20 additional sensors. As a result we can aggregate the budget into di�erent intervals

corresponding to a range of values that result in a similar state value. If the budget is

aggregated into intervals of size d, there are now B̄0 = ⌈B0

d
⌉ di�erent budget states.
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The approximate value function for a given post-decision state Sx
m is denoted V̄m(S

x
m),

and with an aggregated state space size of approximately B̄0 × nmax is signi�cantly smaller

than the original state space.

4.3.3 Determining An Optimal Action

The primary question that remains is addressing how the maximization problem in (28) is

solved for the optimal value and corresponding action. From the observed state Sm, we

can �rst determine an upper bound on the number of sensors that can be deployed by

ñ = nmax − N̄m (assuming the budget does not limit us �rst). This results in a range of

(0, ñ) to search for the optimal deployment of new sensors and the regions they are deployed

in.

However, deciding how sensors are deployed to various subregions remains a signi�cant

task. We can simplify this problem through the assumption that the network size is also

indicative of the network structure. That is, if the network contains some number of sensors,

and more accurately the post-decision state network consisting of N̄x
m sensors, these sensors

will be distributed throughout the network in roughly the same manner regardless of the

age composition of the sensors and the current mission. The implication of this assumption

is that our decision transforms from selecting how many sensors to deploy and in which

subregions they are deployed in, to only selecting how many sensors are deployed in the

network. Once the number of sensors to deploy, x̄m, has been selected, the observed state

Nm will determine how many sensors are deployed in each subregion (i.e., xm) to achieve

the desired network structure speci�ed by N̄x
m. This assumption is primarily limiting for a

scenario in which a large number of sensors in a subregion all survive for a prolonged period
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of time, and therefore are more likely to fail during the same mission resulting in a sharp

drop in region coverage. However this scenario occurs with very small probability as it is

more likely that the sensors fail over a number of missions, at which point new sensors may

be deployed in the subregion.

This assumption is also of value when the D-spectrum is utilized to estimate reliability,

as it implies we do not have to repeatedly estimate the D-spectrum. Since the D-spectrum

is independent of the failure distribution of sensors in the network, we are not required to

constantly re-estimate the D-spectrum based on observing a di�erent age composition of

sensors. The only step that is required is to update the residual life distribution (30b), after

which reliability can be estimated by applying (31). While estimating the D-spectrum is

more e�cient than a traditional Monte Carlo simulation to estimate reliability, repeatedly

estimating the D-spectrum for di�erent network structures becomes computationally burden-

some. With the assumption that the network size informs the resulting network structure,

we can estimate the D-spectrum for a wide range of network sizes (e.g., for a network with

300 to nmax sensors) once at the very beginning of the problem and store the estimates for

use later in the ADP model.

Going forward, we adopt a network structure that is dependent upon a weight, wi, as-

signed to each subregion. The purpose of assigning weights is to in�uence the distribution

of sensors throughout the network, where increasing the weight assigned to a subregion cor-

responds to a larger proportion of the overall N̄x
m sensors located within the subregion. For

example, we may wish for a larger proportion of sensors to be located in subregions around

the sink node compared to those farther away in an attempt to lower the possibility that a

single sensor failure causes a large portion of the WSN to become disconnected. This behav-

84



ior can be observed by increasing the weight on subregions surrounding the sink node. With

weights properly assigned, even if a large number of sensors are observed in a given subregion

there will still be new sensors deployed in the subregion to account for the possibility of sen-

sor failures over the upcoming mission. In determining the network structure for a network

of N̄x
m sensors, the weight assigned to a subregion is inversely proportional to the distance

from the sink node to the center of the subregion. Once the weights have been selected each

subregion contains approximately (wi/
∑nr

i=1 wi)N̄
x
m sensors. Given the observed number of

sensors in a subregion Nm and decision to deploy x̄m sensors, the deployment action xm itself

is now determined such that the resulting number of sensors in a subregion is approximately

(wi/
∑nr

i=1 wi)N̄
x
m.

The primary decision is now how many new sensors to deploy in the network from which

the resulting network size is determined, and informs which subregion the sensors will be

deployed in. The number of sensors deployed can also be bounded between 0 and ñ. Based

on the previous assumption that deploying a single additional sensor has a minor impact

on network reliability and the future number of successful missions, we can also search the

range (0, ñ) in an interval of d sensors to �nd the optimal action. Through the use of

the D-spectrum and lookup tables we can now quickly evaluate the expression inside the

maximization operator in (28), and select the action resulting in a maximum value.

4.3.4 Initializing the Value Function

A more simplistic policy considers the impact of deploying sensors on only the upcoming

mission. This is a version of a myopic policy, and can be informative in our ADP formulation

as well. Since a myopic policy is interested in reliability of a single mission, the policy will
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always deploy sensors until a constraint limits the action. That is, the myopic policy will

never skip a deployment opportunity, and deploy sensors every mission until a constraint

is reached (e.g., budget no longer available or maximum network size reached). When con-

sidering a myopic policy it is therefore more appropriate to consider, or allocate, a small

budget to each mission to ensure there is a budget available to missions near the end of the

planning horizon as well. A myopic CBDP is explored in [35], and is of value to our ADP

model in two ways. First, as discussed in [35], a myopic CBDP allows greater focus on where

sensors are deployed (e.g., which subregion) which contributes to the search for a network

structure that maximizes reliability based on the number of sensors. While determining an

optimal network structure remains a di�cult task, a number of di�erent policies anticipated

to result in a highly reliable network can be compared e�ciently to select the best policy.

This methodology supports the decision to de�ne subregion weights based on the distance

from the sink node as described in Section 4.3.3 when characterizing the network structure

for a given network size. Second, the resulting reliability estimate of a myopic CBDP can

be of value in the ADP formulation to initialize the value function. In the ADP problem,

if there is a budget Bm remaining then one option is to evenly allocate this budget to the

remaining M − 1 −m missions. This essentially corresponds to a myopic policy with each

mission receiving Bm

M−1−m
of the budget. The reliability of the myopic policy can then be

used to estimate the number of successful missions in the remaining M −1−m missions and

initialize the value function.
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4.3.5 Approximate Value Iteration Algorithm

Algorithm 3 outlines an approximate value iteration (AVI) algorithm utilizing a value func-

tion approximation based on a lookup table representation on the aggregated state space,

adapted from [28]. The AVI algorithm updates our value function approximation over a

sequence of iterations y = 1, 2, . . . , Y , which in turn updates the CBDP. Sy
m represents

the observed state at the beginning of mission m in iteration y, and Sx,y
m represents the

post-decision state variable given action xm. V̄ y
m−1(S

x,y
m−1) represents the value function ap-

proximation for the post-decision state variable Sx,y
m−1 during iteration y, and is updated

based on the step size parameter ηy. While Algorithm 3 outlines a relatively standard AVI

algorithm, we hope to show that the resulting CBDP are a signi�cant improvement over

both a myopic condition-based deployment policy and a time-based deployment policy. As

this is also one of the �rst ADP applications for the maintenance of a complex WSN with

respect to a reliability evaluation, the performance of the AVI algorithm can also identify

components of the model to focus more on in future work.

4.4 Numerical Example

In this section we illustrate the performance of the ADP formulation and provide results for

a number of test instances. To model the failure of sensors, the lifetime of each sensor is

distributed according to a Weibull distribution with a shape parameter β = 1.5 and scale

parameter λ = 10. Sensor capabilities are de�ned by on a common communication radius

d1 = 0.075 and a monitoring radius of d2 = 0.075. The cost of deploying sensors in the

network is determined by the variable cost cV = 1, with a �xed cost cF = 100 incurred each
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Algorithm 3 AVI for Finite Horizon Problem Using the Post-Decision State

1: function AVI

2: Initialization: approximation of the value function V̄ 0
m(S

x
m) for all post-decision

states, and an initial state Sx,1
0 . Set y = 1.

3: For m = 0, 1, 2, . . . ,M − 1,
4: Determine v̂ym by

v̂ym = max
xm∈XSm

(
Rm(S

y
m, xm) + V̄ y−1

m (Sx,y
m )

)
and let xy

m be the optimal action.
5: Update V̄ y−1

m−1 using

V̄ y
m−1(S

x,y
m−1) = (1− ηy−1)V̄

y−1
m−1(S

x,y
m−1) + ηy−1v̂

y
m.

6: Sample W y
m+1 and compute the next state Sy

m+1 = SM(Sy
m, x

y
m,W

y
m+1).

7: Increment y. If y ≤ Y go to step 3.
8: Return the value functions (V̄ n

m)
M−1
m=0 .

9: end function

time one or more sensors are deployed. The region of interest is a [0, 1] × [0, 1] unit square

that is partitioned into nr = 16 equal sized subregions of size 0.25× 0.25. Additionally, 441

targets are uniformly spaced as a 21× 21 grid representing target locations where the WSN

must provide coverage.

The step size in�uences the rate at which the value function approximation is updated

and the convergence of the AVI algorithm. Since the value functions are initialized with a

myopic CBM policy, the initial step size for updating the value function approximation is

η0 = 0.7, and the step size is updated according to

ηy = η0
a

a+ y − 1
, (32)

with a = 20. This step size rule allows the rate at which η drops to zero to be in�uenced by

the parameter a, with larger values slowing the rate at which η decreases.
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For the test instances, the inspection interval δ varies among {2, 3, 4}, and the number

of missions is selected so that the total time horizon (M ∗ δ) is approximately the same.

The coverage requirement is set at α = 0.8, meaning if the WSN covers less than 80% of

target locations the network is in a `failed' state. The maximum network size is also �xed

at nmax = 950 sensors for every test instance, with an initial number of N̄0 = 650 sensors

deployed in the region. Parameter values for each test instance, to include the starting

budget, B0, and reliability requirement, ϕ, are provided in Table 3. To force exploration

in the decision space, each mission there is a 5% chance a random non-optimal deployment

action is implemented.

Table 3: Test Instances and Policy Performance

δ M B0 ϕ V0 MC-PE

4 25 8700 0 24.97 24.95

4 25 8700 0.95 24.97 24.97

4 25 7600 0 23.99 23.85

4 25 7600 0.89 23.66 23.66

4 25 7400 0 23.13 22.69

4 25 7400 0.79 22.97 22.65

3 33 8050 0 31.89 31.71

3 33 8050 0.85 31.88 31.69

3 33 7650 0 29.45 28.14

3 33 7650 0.65 26.27 27.42

2 50 8700 0 49.95 49.89

2 50 8700 0.95 49.96 49.94

2 50 7600 0 48.54 47.54

2 50 7600 0.89 48.05 46.73

2 50 7400 0 47.19 45.55

2 50 7400 0.79 46.33 44.89

Table 3 also provides performance results of Algorithm 3 with Y = 300 replications, where

column 5 (labeled V0) reports the expected number of successful missions from the resulting
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ADP policy. The �nal column in the table, labeled Monte Carlo Policy Evaluation (MC-PE),

reports the average number of successful missions observed when the optimal ADP policy is

evaluated through a Monte Carlo Simulation, assisting a later discussion on a comparison

of the expected vs observed policy performance. Starting with δ = 4 and the largest budget

B0 = 8700, the WSN is not overly strained and a su�cient number of new sensors can be

deployed when needed to maintain the WSN at a high level. The budget is also large enough

that enforcing a minimum reliability requirement on every mission has little impact on the

performance of the optimal deployment policy. The next pair of test instance reduces the

budget by 1, 100 which corresponds to a smaller number of sensors that can be deployed,

and a larger emphasis on deploying sensors e�ectively to avoid the �xed cost consuming a

large portion of the budget. While the budget is more constraining in this instance, the

expected number of successful missions of 23.66 (23.99 without a reliability requirement)

is still relatively high. The following pair of test instances result in a similar decline in

WSN performance, particularly when a reliability requirement is present. Compared to the

previous group of test instances the budget has decreased slightly to 7, 400, while the decline

in the expected number of successful missions is comparable to lowering budget from 8, 700

to 7, 600. This pair of test instances also help illustrate the value in providing a minimum

reliability requirement for each mission. When no requirement is imposed and there is no

penalty for WSN failure then network reliability for a given mission can be sacri�ced to avoid

the �xed cost. This allows a larger number of sensors to be deployed over the remaining

missions. When the reliability requirement is set to ϕ = 0.79 this ensures that the probability

a single mission is successful is still relatively high and also has little impact on the expected

number of successful mission over the planning horizon.
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In the next grouping of test instances the inspection interval is lowered to δ = 3, and

for the total time horizon to remain approximately the same the planning horizon for the

number of missions is increased to 33. The noticeable result from this grouping is again

observed in the smallest budget instance with a reliability requirement in place. With a

budget of 7, 650 and a minimum reliability requirement of ϕ = 0.65, the expected number of

successful missions is signi�cantly smaller compared to the case when no requirement is in

place. This is again a result of not penalizing WSN failure, and by sacri�cing performance

to avoid incurring the �xed cost the budget for the remaining missions is large enough to

maintain a highly reliable network.

The last grouping of test instances contain the shortest inspection interval with δ = 2

and the largest number of missions with 50, in�uencing the policy in a number of areas.

With a smaller inspection interval the network is observed more frequently, and there is

an opportunity to observe a network state that might fail during the next mission that

would not be observed under a larger inspection interval. In this scenario, new sensors can

be deployed to avoid the potential network failure, and the overall number of successful

missions should increase. Alternatively, with a shorter time between inspections it might

be more advantageous to avoid deploying sensors in the network if the reliability of the

upcoming mission is already at a su�cient level. While this does not improve reliability

for the next mission, the �xed cost is avoided and allows a larger number of sensors to be

deployed in the network over the remaining missions. For the largest starting budget of

8, 700 the ADP policy again results in an expected number of successful missions that is

near the total number. Even though the smaller inspection interval results in more frequent

network observation and more �exibility in when sensors are deployed, the decline in the
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expected number of successful missions as the starting budget decreases remains noticeable.

4.4.1 Monte Carlo Policy Performance

The optimal CBDP identi�ed by the ADP algorithm is also implemented in a Monte Carlo

simulation to observe the average number of successful missions the policy achieves, and is

reported in the �MC-PE� (Monte Carlo Policy Evaluation) column of Table 3. These results

help demonstrate the performance of the deployment policy in a simulated setting obtain

results close to the predicted values. In several of the test instances with a larger inspection

interval the performance of the ADP policy matches the expected number of successful

missions. The largest di�erence between the expected and observed number of successful

missions occurs for the smallest budget and smallest inspection interval test instance. In this

test instance, the observed number of successful missions is slightly smaller than the expected

number. Observing the largest deviation in this test instance is somewhat expected since this

corresponds to a more di�cult scenario. A smaller δ results in more missions, which implies

a larger number of decisions are made. This instance is also more resource constrained since

it has the smallest budget. While the observed performance of the ADP policy does begin to

deviate as the test instances become more di�cult, the overall observed number of successful

missions remains relatively high.

The observed MC-PE also provides a more appropriate comparison on the results for an

inspection interval of δ = 4 with an inspection interval of δ = 2. For each test instance,

the resulting ADP policy with an inspection interval of δ = 4 is a also a feasible policy

for the corresponding δ = 2 test instance. As a result, the observed number of successful

missions in an optimal ADP policy for the δ = 2 instance should be at least twice that of the
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corresponding δ = 4 test instance. However in a majority of the test instances the observed

number of successful missions for the δ = 2 ADP policy is approximately double that of the

corresponding δ = 4 ADP policy, and is lower than expected in the B0 = 7400, ϕ = 0.89 test

instance. This again highlights the di�culty of the test instance and the impact of reducing

the time between network observations. When the network is inspected more frequently a

larger number of deployment decisions must be made regarding when and how many sensors

are deployed. The comparison in the observed performance of the ADP policy for di�erent

inspection intervals further demonstrates the complexity of a policy related to the repeated

deployment of sensors in a WSN, and suggest there is an opportunity for future work to

focus on improving a policy when the planning horizon increases.

4.4.2 ADP Comparison to Myopic Policy

In addition to initializing the value function, the myopic deployment policy provides a good

comparison to demonstrate the improvement of the ADP policy. For this purpose, the myopic

CBDP is also implemented in a Monte Carlo simulation with a budget of B0/M available

to deploy sensors per mission. The observed number of successful missions for the myopic

policy is provided in Table 4, along with the previous ADP results.

Table 4: Observed ADP and Myopic Policy Comparison

δ M B0 ϕ ADP Policy Myopic Policy

4 25 8700 0.95 24.97 23.96

4 25 7600 0.89 23.66 21.44

4 25 7400 0.79 22.65 19.34

3 33 8050 0.85 31.69 28.31

3 33 7650 0.65 27.42 18.98
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In each of the test instances the ADP policy results in a larger number of successful

missions, and is more noticeable with a smaller budget. This result is somewhat expected

since the ADP policy is allowed to deploy a variable number of sensors and reallocate the

budget as necessary, saving when able and deploying a larger number of sensors when needed.

However the magnitude of this improvement is quite signi�cant particularly when the budget

is more constraining, clearly seen in the instance with δ = 3 and a budget of B0 = 7650. With

the small budget available in this instance the myopic policy performs quite poorly and only

19 of the 33missions are successful, compared to the ADP policy which is able to achieve over

27 successful missions. A similar outcome is observed with an inspection interval of δ = 4,

in which the ADP policy again performs noticeably better than the myopic policy in each

instance. The signi�cant improvement of the ADP policy over a myopic policy illustrates

the value of a deployment policy that considers the impact on network performance over a

planning horizon, compared to traditional policies that focus on an immediate e�ect.

4.4.3 ADP Policy Investigation

We are also interested in investigating the impact any test instance parameters have on the

resulting ADP Policy. One observation is that the optimal policy is more likely to skip a

deployment opportunity (i.e., deploy zero sensors at the start of a mission) as the starting

budget B0 and/or the inspection interval δ decrease. For a large starting budget, it may

be possible to incur the �xed cost every mission and still deploy a su�cient number of

sensors to maintain a highly reliable network. As the budget decreases, the �xed cost of

deploying sensors every mission consumes a larger proportion of the overall budget which

results in fewer sensors deployed each mission. Therefore, it becomes more desirable to skip
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a maintenance opportunity when allowed to avoid the �xed cost, providing a larger budget

over the remaining missions and increasing the proportion of the budget consumed by the

variable cost, which equates to a new sensor in the network. Similarly, as the inspection

interval decreases the amount of time the network must function until the next deployment

window is also smaller. Compared to a larger inspection interval, it is likely that fewer

sensors will fail in a shorter time interval and the network will more often be observed in

a state providing the opportunity to skip sensor deployment while ensuring the upcoming

mission remains successful with high probability.

Table 5: Percent of Budget Dedicated to Variable Cost

δ M B0
No Reliability With Reliability

Requirement Requirement

4 25 8700 71.26% 71.41%

4 25 7600 68.42% 67.25%

4 25 7400 68.52% 67.38%

3 33 8050 61.00% 61.02%

3 33 7650 62.51% 61.24%

2 50 8700 70.75% 70.61%

2 50 7600 69.53% 69.71%

2 50 7400 69.94% 70.21%

The average percent of the budget consumed by the variable cost in each policy is re-

ported in Table 5. For each test instance the column labeled �No Reliability Requirement�

implies ϕ = 0, while the column �With Reliability Requirement� refers to the non-zero reli-

ability requirement for the corresponding test instance de�ned in Table 3. When δ = 4, the

signi�cant drop in the starting budget between the �rst and second test instance impacts

both the total number of missions in which sensors are deployed and the number of sensors

deployed. However given the longer time between inspection intervals it is more di�cult to

95



skip a deployment opportunity and maintain a highly reliable network, which is observed by

the decrease from 71.26% to 68.42% (71.41% to 67.25% with a reliability requirement) of

the the overall budget dedicated to variable cost. Meanwhile, the budget allocation appears

to be impacted less for the smaller inspection intervals. For example, when δ = 3 the overall

proportion of the budget consumed by the variable cost is approximately the same when

the starting budget decreases from 8, 050 down to 7, 650. Additionally, for the inspection

interval δ = 2 the decrease in the percent of budget allocated to the variable cost is not as

signi�cant compared to the larger interval of δ = 4. This result is somewhat expected since

the network does not have to operate as long until the next deployment decision, and there

is more �exibility for the ADP policy to control when sensors are deployed in the network

providing a better balance between the �xed and variable cost.

The discussion at the end of Section 4.4.1 also highlighted the di�culty encountered in

the δ = 2, B0 = 7400, ϕ = 0.79 test instance. Compared to the corresponding test instance

with δ = 4, a larger proportion of the overall budget is allocated to the variable cost under

the smaller inspection interval of δ = 2. This suggests that, as expected, the ADP policy

in the δ = 2 instance is skipping a deployment opportunity more often, but based on the

observed policy performance compared to the δ = 4 policy is struggling to do so in the most

e�ective manner. This suggests that the ADP policy can potentially be improved by focusing

more on the timing of when a deployment opportunity is skipped.

It is also interesting to note that for the smaller starting budgets and δ = 3 or δ = 4,

the variable cost consumes a larger proportion of the budget when there is no reliability

requirement present. The reason for this is that the ADP policy is actually more likely to

skip a deployment opportunity when there is no minimum reliability to maintain. With no
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penalty for network coverage falling below the requirement and no minimum reliability the

network must maintain the ADP policy is freely able to sacri�ce network performance. By

avoiding the deployment costs for the current mission, there is a larger budget for the re-

maining missions which likely contributes to an increase in the number of sensors deployed.

When there is a minimum reliability requirement the policy must be more strategic in when

a deployment opportunity is skipped to ensure reliability of every mission is su�ciently high.

As a result, the opportunity to skip a deployment window likely arises by deploying a larger

number of sensors at the beginning of a previous mission, and/or a favorable network obser-

vation in which only a small number of sensors failed during the prior mission. Compared

to an instance with no reliability requirement, where an increase in the overall number of

successful missions can be achieved by low network performance over one or more missions.

4.4.4 Single Region Comparison

Finally, we explore the in�uence specifying the subregion a sensor is deployed in has on

the overall number of successful missions. A simpler strategy to implement might involve

randomly deploying a sensor over the entire region of interest, and is one of the more common

assumptions when deploying a WSN [6, 36]. The previous model formulation can easily

address a single region by setting nr = 1. It is interesting to note that since we previously

de�ned a network structure by assigning weights to every subregion which determined how

new sensors were deployed, a decision in the multiple subregion model is no more complex

than the single subregion case. The only di�erence is that now sensors are randomly deployed

over the entire region, whereas we previously used a rule-set to determine how sensors were

allocated to each subregion.
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Table 6 contains the expected number of successful missions from the optimal ADP

policy when sensors are randomly deployed over the entire region. The �nal two columns of

Table 6, under the `Subregion' label, contain the results from the corresponding test instance

with multiple subregions originally reported in Table 3. As expected, removing the ability

to specify the subregion a sensor is deployed in lowers the expected number of successful

missions compared to the original performance with multiple subregions. Even if the state

variable de�nition remains the same (i.e., we are still able to observe the number and ages

of sensors in various subregions in the network), there is now no guarantee that deploying

new sensors based on observing a small number of sensors in one or more subregions at the

beginning of a mission will improve the performance in the degraded areas of the WSN.

Table 6: Single Region Policy Performance

Single Region Subregion

δ M B0 ϕ V0 MC-PE V0 MC-PE

4 25 8700 0.95 24.91 24.89 24.97 24.97

4 25 7600 0.89 22.59 22.40 23.66 23.66

4 25 7400 0.79 20.79 21.12 22.97 22.65

3 33 8050 0.85 30.55 30.52 31.88 31.69

3 33 7650 0.65 24.53 25.35 26.27 27.42

2 50 8700 0.95 49.88 49.84 49.96 49.94

2 50 7600 0.89 45.73 44.03 48.05 46.73

2 50 7400 0.79 42.67 43.39 46.33 44.89

The decrease in expected number of successful missions resulting from randomly deploy-

ing sensors over the entire region compared to a smaller de�ned subregion is more noticeable

for the smaller starting budgets. This can partially be attributed to the impact in�uenc-

ing network topology has on the probability of mission success in a smaller sized network

compared to the impact in a larger network. In terms of the budget available, a decrease to
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the budget results in a decrease in the total number of sensors that are deployed over the

planning horizon, and as a result the overall size of the WSN is generally smaller as well.

For smaller sized networks it is less likely that randomly deploying sensors over the entire

region of interest will result in sensors su�ciently distributed throughout the region for cov-

erage purposes, and within the communication radius of nearby sensors necessary to route

information to the sink node. While randomly deploying a sensor within a smaller subregion

does not entirely remove this problem, it does provide the ability to avoid the situation in

which one portion of the WSN is overly dense with sensor nodes whereas another portion

of the network is uncovered and individual sensors are isolated. Therefore, there is a larger

bene�t (e.g., improvement in probability of mission success) in a smaller network when the

subregion a sensor is deployed in can be speci�ed compared to the bene�t present in a larger

sized network. This is observed several of the test instances, for example with δ = 4 and

B0 = 7400 where the single region ADP policy achieves an expected number of successful

missions of 20.79, while the previous results with 16 subregions achieve an optimal ADP

policy with an expected 22.97 successful missions. Additionally, even if there is only a minor

improvement for a single mission the cumulative impact over the entire planning horizon can

be more substantial.

Exploring the performance in a single region model helps further illustrate the signi�cance

of the ADP policy and considering the impact of an action on future missions as well. Notice

that the observed performance of the single region ADP policy, reported in the `MC-PE'

column of Table 6, is still able to outperform the myopic condition-based policy. This

highlights the advantage of deciding if and how many sensors are deployed each mission,

allowing an appropriate allocation of the budget to each mission as necessary. Even if new
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sensors are randomly deployed over the entire region of interest, rather than more controlled

through a subregion deployment policy, the decision on when and how many sensors are

deployed has a signi�cant impact on WSN performance over an extended period of time.

A single region scenario also enables a more straightforward comparison with the TBDPs

considered in [34], where sensors are deployed in order to restore the network to a �xed

network size at periodic time intervals. Instead of a direct comparison with a TBDP, we can

�rst note that there exists a close relationship between a TBDP and a corresponding myopic

CBDP. In [34] an expression for the cost rate of an associated TBDP is derived based on the

expected number of sensors that fail during a mission. The expected number of failed sensors

informs the average cost of deploying sensors to reach a �xed network size, which can now

be treated as a �xed budget available in a myopic CBDP. A TBDP di�er from the myopic

CBDPs in Section 4.4.2 in that sensors are randomly deployed over the entire region rather

than a speci�ed subregion. Since the myopic CBDP provides more control over how sensors

are deployed, the performance of a myopic CBDP is at least as good as the related TBDP.

With this similarity, and the previous discussion on the improvement of a single region ADP

policy over a myopic CBDP, the ADP policy also improves upon a simpler time-based policy.

4.5 Conclusion

The coverage and communication capability of a WSN is made possible through the coop-

erative e�ort of a large number of sensor nodes. The �exibility with which WSNs can be

established, randomly deploying sensors over a target region when exact placement is not

feasible, enables their incorporation into a wide range of applications. It is important to

consider not only the initial capability provided by a WSN, but performance over a period
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of time and the impact of eventual sensor failures. As the number of failed sensors increases

the decline in network capability becomes more signi�cant and appropriate actions must

be taken to restore WSN coverage and communication abilities. A large focus on research

related to this problem has been on deploying a small number of new sensor nodes in the

network at a single point in time. The maintenance of a WSN over a prolonged period time

in which sensors are repeatedly deployed in the network has received less attention.

In this work we have contributed an MDP model for the condition-based sensor deploy-

ment problem in which new sensors are deployed in the network over an extended period of

time. While MDP models have been applied to a wide range of WSN related problems, our

model is one of the few addressing maintenance through the repeated deployment of new

sensor nodes, and one of the �rst ADP applications for the maintenance of a complex WSN.

Whereas previous sensor deployment models have primarily been interested in extending a

network lifetime metric, our work also addresses the complexity encountered by incorporat-

ing a reliability objective. A few of the di�culties that must be addressed in this problem

include a variation in the age composition of sensors as well as a dynamic network topology

as sensors fail and new sensors are deployed in the network. Our methodology has addressed

both of these issues by the incorporation of the network D-spectrum. The D-spectrum has

been widely research in network reliability problems, but only a handful of works discuss the

D-spectrum in a maintenance optimization model as well [33�35]. Finally, we discussed an

ADP solution approach using a value function approximations to determine optimal CBDPs,

and presented results on a range of test instances.

The model also provides several directions for future work, focusing both on the modeling

assumptions and ADP methodology discussed in Section 4.2. The reliability of a WSN is
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currently de�ned based on a given coverage requirement. The objective is to maximize

reliability, but there is otherwise no detriment to not satisfying the coverage requirement

over a mission. One possibility is to include a penalty based on the probability of network

failure, which could also re�ect need for immediate maintenance to provide a functioning

WSN at all times.

The current model also assumes the WSN is observed every δ time units and does not

explicitly incorporate any cost associated with observation. A more complex decision might

include whether the WSN is inspected/observed or not, where there is a cost associated with

observing the network. Similarly network observation may be imperfect or there might be

a time delay between our observation and deployment action. These directions begin to

incorporate uncertainty in the true state of the network at the time sensors are deployed and

might be better modeled as a partially observable MDP.

Our value function approximation was based on a combination of aggregation functions

and lookup tables. Future work might consider the use of several basis functions and build-

ing a parametric model to approximate the value function. In this approach the previously

de�ned aggregation functions may still be of use, but exploration is needed to de�ne addi-

tional basis functions and an appropriate model representation (e.g., linear, nonlinear, etc.).

A parametric model approximation of the value function is also of interest because it may

provide additional opportunities to solve the optimality equation each stage, allowing the

optimal action to determined more e�ciently.
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5 Maximizing the Expected Coverage of a Wireless Sensor Network under

Stochastic Sensor Deployment

Abstract

The coverage achieved by a wireless sensor network (WSN) is often an important factor when

deploying sensors over a region of interest. In certain applications network coverage can be

in�uenced by placing sensors at speci�c locations throughout the region. Other environments

may require sensors to be randomly deployed over the region, for example when deploying a

WSN over an extremely large region or when the terrain is di�cult to access. In this work

we address the problem of a WSN randomly deployed over a region of interest in which the

exact placement of a sensor is not possible but a smaller subregion of the network can be

selected for the sensor to be deployed in. The main contribution is a stochastic optimization

model to maximize the expected coverage of a WSN with uncertainty in the placement of

each sensor. A scenario based approach is applied to randomly sample the location for

each sensor and solve the model in order to determine an optimal deployment policy. To

address a large number of scenarios we present a heuristic solution method, and compare

the performance of our heuristic solution to both a random distribution of sensors over the

entire region and a policy that distributes an equal number of sensors to each subregion. We

also discuss an extension of the model to incorporate sensor failures and the impact on an

optimal deployment policy. As the number of sensors deployed decreases or sensors in the

network are subject to failure, the heuristic solution to the stochastic optimization model

demonstrates a clear improvement over both the random and equal distribution policies.
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5.1 Introduction

Wireless sensor networks (WSNs) can be broadly characterized by a number of sensor nodes

deployed over a region of interest with a responsibility to monitor and report desired measures

or events occurring within the region. The capability of an individual sensor is limited in that

it can only monitor an area immediately surrounding the sensor and communicate directly

with those in a small neighborhood. Transmitting information over a longer distance is made

possible through a communication path that routes a message using a series of sensor nodes,

often directed toward toward a sink node [1]. To monitor a large area this also requires that

sensor nodes are distributed throughout the region while maintaining a degree of network

connectivity. Depending on the environment the WSN is operating in this may be possible

by locating sensors at speci�c points within the region. For example, a WSN established in

a building for the purpose of regulating temperature in a heating/cooling system can place

sensors at speci�c points to satisfy desired performance criteria [2].

When WSN topology can be controlled through the deployment of sensors at speci�c lo-

cations, an additional emphasis is commonly placed on determining the locations to deploy

the fewest number of sensors while ensuring the network satis�es a coverage and/or connec-

tivity requirement [3, 4]. One of the advantages of this objective is it helps limit deployment

cost, but deploying the minimum number of sensors can be problematic for future WSN

performance. While the network will initially satisfy a coverage/connectivity requirement,

the performance of the WSN declines over time. This is attributed to the failure of sensors

resulting from a �nite power supply that must be consumed over the course of monitoring the

surrounding area and communicating with nearby sensors [5]. One method to prolong the
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decline in WSN performance is to place redundant sensors in the network and achieve a level

of k-connectivity [3]. When the network is easily accessible an alternative option is to deploy

additional sensors in the network over time as necessary. This is the focus in [6] and [7],

where the problem is to determine the fewest number of sensors and their locations in the

network to restore network connectivity. Similar to the initial deployment of sensors, this

problem can be expanded to deploy sensors based on maintaining a level of k-connectivity,

explored in [8�10].

A large focus in sensor deployment related problems has been on deploying the fewest

number of sensors to fully cover the region of interest or to result in a fully connected

network. A similar problem is to deploy a �xed number of sensors to maximize coverage

or connectivity. If coverage is the only concern and all sensors have an identical coverage

radius, determining optimal sensor locations relates closely to the circle packing problem

discussed in [11]. The problem addressing multiple types of sensors with di�erent coverage

radii was �rst explored in [12]. Due to the di�cultly present in solving the problem exactly

with di�erent sensor types, the authors propose a genetic algorithm that determines the

location for each sensor to maximize coverage. Heuristic algorithms for determining optimal

locations with heterogeneous sensors have been explored further in [13�15], with e�orts

directed toward improving solution quality and reducing the computation time required.

One of the limitations of the coverage model is it does not account for a communication

radius for sensors or address the potential for failures which may result in a large drop in

network coverage.

In other environments it may be impractical or costly to speci�cally locate sensors in

the network. An attractive feature of WSNs is that a network can still be established in
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this situation by randomly deploying sensors over a target region. For example, when a

WSN is located on a steep mountainside or over a dense forest, sensors can be dropped

from a helicopter to quickly set up network capability [16]. This may require a larger

number of sensors to be deployed to account for the randomness in where a sensor lands,

but is made feasible through the low cost of an individual sensor [2], as well as the lack of

infrastructure sensors require to communicate with each other [17]. If the sensors contain

a mobile capability it may also be possible to reposition sensors after they are randomly

deployed to improve coverage, addressed in [18]. However the ability of sensors to move

greatly increases the cost of an individual sensor which deviates from the attractive low-cost

characteristic of WSNs [19].

While managing network topology in a randomly deployed setting is more di�cult, WSN

coverage and connectivity measures can be in�uenced by controlling sensor density [20]. It

is common to assume this density is constant throughout the network resulting in a random

uniform distribution of sensors over the network, which we refer to as a uniform policy. An

attractive feature of a uniform policy is that the probability of full network coverage can be

estimated analytically [21]. In [22] a uniform policy is compared via simulation to a simple

di�usion strategy, in which sensors are randomly scattered around a central location (for

example the sink node), and a new strategy called R-random placement that emphasizes a

larger density of sensors surrounding the sink node compared to locations farther away. A

survey of random deployment strategies is provided in [23], in additional to a discussion on

simulated results. In [24], random deployment is addressed by deploying sensors in stages.

In the �rst stage a number of sensors are deployed according to a uniform policy and the

locations are observed, which enables an initial estimate on WSN coverage and connectivity.
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If the estimated performance is not satisfactory the process repeats and additional sensors

are randomly deployed until performance reaches a desired level or the maximum number of

sensors is reached.

Whether sensors are deployed in a deterministic or random manner, the resulting net-

work coverage is a common performance measure of interest. Under both deterministic and

random deployment network coverage is frequently used to approximate the network size

necessary to fully cover the region of interest. While full region coverage is desirable, there

are many applications in which partial coverage provides su�cient information to construct

a picture of the overall region. For example, monitoring the temperature or humidity at

every location in a region is often unnecessary, and measurements at a subset of the loca-

tions scattered over the region provides the desired information [2]. Alternatively, there may

only be a limited number of sensors available (e.g., due to cost or inventory restrictions)

and sensors must be deployed to maximize coverage of the resulting WSN [12]. Therefore,

it might not be as important for the network to provide full coverage but rather that a large

portion of the region is covered, and as long as some minimum coverage level is satis�ed the

network can still operate at a high level.

The previous discussion motivates the problem addressed in this work of deploying a

�xed number of sensors in various subregions throughout the network with the objective of

maximizing WSN coverage. Sensor deployment is in�uenced by selecting a subregion of the

the network a sensor is deployed in, but the exact location a sensor lands in a subregion

is random. Therefore, while the WSN can be in�uenced by varying the number of sensors

in di�erent subregions the resulting WSN topology is uncertain. We formulate this as a

stochastic optimization model that maximizes expected coverage with uncertainty in the
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�nal location of each sensor. To determine an optimal deployment policy (i.e., how many

sensors are deployed in each subregion), a scenario based approach is presented which samples

a location for each sensor randomly deployed in a subregion, allowing the resulting WSN

topology to be constructed. In order to solve the model when a large number of scenarios

are generated we present a heuristic approach to solve for an optimal deployment policy and

discuss the heuristic performance on a wide range of test instances. The expected coverage

of our heuristic solution is compared to a uniform policy, which is the most common model

for randomly deployed sensors. Lastly, we discuss a simple extension of the optimization

model to address the possibility of sensor failures as well.

Our work relates to [22] and [23] in that we focus on the random deployment of sensor

nodes and allow for a more controlled deployment of sensors compared to a simple uniform

policy. Similar to [12�15] we seek to deploy a �xed number of sensors in the network, but

di�er in that we account for a communication radius limiting the ability of sensors to route

information through the network. The main contribution of this work is a stochastic opti-

mization model to address the optimal deployment of sensors when the exact location of each

sensor cannot be selected. While the optimal deployment of sensors in a deterministic setting

has received signi�cant attention, there appears to be far less in the optimal deployment of

sensors to maximize coverage under a random deployment. The focus in [22] and [23] is

primarily on evaluating and comparing di�erent policies, and while they each discuss a new

policy that improves desired performance metrics they do not further explore an optimal

policy nor discuss optimal parameter settings related to the respective policy. Nonuniform

random policies are also investigated in both [25] and [26], however the goal is to balance

the rate of energy consumption for every sensor node. That is, the objective is to deploy a
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larger number of sensors near the sink node to share the responsibility of routing messages

but the policy is designed so that every sensor fails at approximately the same time. A

policy that balances energy consumption or maximizes the time to �rst sensor failure might

be of value if full region coverage is required, but our model is concerned with maximizing

coverage particularly when full coverage is not attainable. It may also be possible to deploy

additional sensors in the network to restore communication abilities with isolated sensor

nodes. Meanwhile, an optimization model is addressed in [27], however it is assumed that

all sensors are able to communicate directly with a central sink node, and a single target is

randomly located in the region. Lastly, our formulation assumes that all sensors are deployed

at the same time, compared to the sequential approach in [24] which allows a network to be

constructed over a period of time based on a previous observation.

The remainder of this work is organized as follows. Section 5.2 outlines the problem for-

mulation, modeling of sensor location uncertainty and scenario construction, followed by our

stochastic optimization model. Section 5.3 brie�y discusses an exact solution methodology

and outlines a heuristic procedure to determine a deployment policy maximizing expected

coverage. Section 5.4 presents results on the expected coverage achieved for a wide range

of network sizes, both with and without sensor failures, and explores characteristic of the

deployment policy. The heuristic solution is also compared against both a uniform policy,

and a policy that evenly distributes sensors throughout the network. Finally, Section 5.5

concludes this article.
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5.2 Problem Formulation

In this section we present our WSN construction and modeling assumptions. We consider

a WSN G to be deployed over a region of interest R, partitioned into a number of smaller

subregions represented by the indexed set Rs = {1, 2, . . . , R}. Given a number of sensors

n to deploy in the WSN, the problem is to determine how many sensors are deployed in

each subregion to maximize network coverage. It is assumed that the subregion a sensor

is deployed in can be selected, but the sensor is then randomly deployed in the subregion.

While the number of sensors deployed in each subregion can vary greatly, a maximum of

N < n sensors can be deployed in a subregion. N can be set large enough to not limit the

deployment of sensors in an optimal solution, but is used later on to determine the maximum

number of locations that need to be sampled in a subregion. In addition to the n sensor

nodes, a single sink node is deployed in R as well.

A sensor is capable of communicating with any other sensor in the network, to include

those deployed in di�erent subregions and the sink node, provided the distance between

the two nodes is less than or equal to a communication radius d1. Sensors are additionally

capable of monitoring any target within a monitoring radius d2 of the sensor. For a target to

be covered it must satisfy two criteria. First, there must be a sensor within the monitoring

distance d2 of the target. Second, there must exist a communication path from the monitoring

sensor back to the sink node, either directly or through a communication path of several

sensor nodes. Given a collection of targets inR, network coverage is de�ned as the proportion

of targets that are covered.
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5.2.1 Maximum Flow Problem

In order to determine an optimal deployment of n sensors to maximize coverage we formulate

a maximum �ow problem where the value of the maximum �ow represents WSN coverage.

The uncertainty in sensor location is addressed by a set of scenarios, where a scenario consists

of an observation on the random location for each sensor deployed in a subregion. Since a

maximum of N sensors can be deployed in each subregion, this requires a sample of N

locations in each of the R subregions to model the possible location of a sensor deployed in

the subregion. Viewed in a slightly di�erent manner, for each subregion a scenario consists

of a location for the �rst sensor deployed in the subregion, the second sensor deployed

in the subregion, continuing up to the Nth sensor deployed in the subregion. Given a

decision nr on the number of sensors deployed in subregion r ∈ Rs, a scenario models the

random deployment of nr sensors in a subregion by selecting the �rst nr locations sampled.

With a scenario consisting of RN sampled locations, the problem is now re-framed in the

context of determining which n sensors are deployed from the set of potential sensors N1 =

{1, 2, . . . , RN}, to maximize expected WSN coverage. Without loss of generality, we assume

that the �rst group of N sensors correspond to sensors in subregion 1, the second group of

N sensors correspond to sensors in subregion 2, and so on. The set of sensors in subregion r

is therefore given by {(r − 1)N + 1, (r − 1)N + 2, . . . , rN}, with the sink node represented

by {0}. Provided a collection of m targets in the region, the set of target nodes is de�ned

by the set N2 = {RN + 1, RN + 2, . . . , RN +m}.

For every scenario ω, the WSN maximum �ow network is now constructed as follows.

First, for each sensor i ∈ N1 a location (xω
i , y

ω
i ) is randomly sampled from the appropriate
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subregion representing where the sensor lands in the subregion. Based on the previous sensor

grouping, this implies sensors 1 through N are randomly located in subregion 1, sensors N+1

through 2N are randomly located in subregion 2, etc. With a location for every sensor, the

distance between two nodes (sensor, sink, and/or target) i and j, denoted dω(i, j), can be

calculated. The sensor-to-sensor edge set re�ects the ability of any two sensors deployed

in the network within the appropriate range to communicate with one another, de�ned by

the edge set Aω
1 = {(i, j) : dω(i, j) ≤ d1, i ∈ N1, j ∈ N1, j ̸= i}. The sensor-to-sink edge

set, denoted Aω
2 , is constructed similarly, where Aω

2 = {(i, 0) : dω(i, 0) ≤ d1, i ∈ N1}. The

target-to-sensor edge set models the ability of a sensor to monitor any target within the

monitoring radius and is de�ned by Aω
3 = {(i, j) : dω(i, j) ≤ d2, i ∈ N2, j ∈ N1}. Lastly, an

arti�cial source node {0′} is introduced in the network, and a directed edge from the source

node to each each target node is added de�ned by the edge set A4 = {(0′, j) : j ∈ N2}. The

set of all directed edges in the network for a scenario is denoted Aω = {Aω
1 ∪Aω

2 ∪Aω
3 ∪A4}.

The decision is how many sensors are deployed in each subregion, represented by nr, r ∈

Rs, such that the total �ow through the network averaged over every scenario is maximized.

In addition to the number of sensors deployed in each subregion, there is a binary indicator

variable γ(i), i ∈ N1, to capture if sensor i is deployed or not. This variable is used in a

deployment constraint that forces the random location of nr sensors deployed in a subregion

to the �rst nr sampled locations in the subregion for every scenario. That is, for every

scenario the deployment constraint forces the �rst sensor deployed in the subregion to be at

the �rst location sampled, the second sensor deployed at the second location sampled, and so

on. This is equivalent to a constraint that only allows sensor i to be deployed in the network

if sensor i− 1 is also deployed. Similarly, the indicator variables help enforce that if sensor i
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is deployed in one scenario then it is deployed in every scenario, and ensures consistency in

the deployment decision across scenarios. The indicator variable γ(i) is also used to enforce

a constraint that the �ow on any edge originating at a sensor node can only be positive (i.e.,

a sensor can only contribute to communication and monitoring responsibilities) if sensor i is

deployed in the network.

An example of a network constructed for two di�erent scenarios, excluding the source

node and associated edges, is provided in Figure 10. The small examples are not necessarily

drawn to scale and used primarily for illustration purposes. In this example there are four

subregions (with borders indicated by a dashed line), and each subregion can contain a

maximum of �ve sensors. Based on the sensor node labeling scheme, nodes 1−5 corresponds

to sensors located in subregion 1, nodes 6−10 correspond to sensors located in subregion 2,

11−15 sensors loacted in subregion 3, and 16−20 sensors located in subregion 4. The purpose

of the deployment constraint can be demonstrated in subregion 2. Notice that in scenario 1,

target 22 can be covered by deploying three sensors to subregion 2. In this scenario the �rst

three sensors deployed, sensors 6, 7, and 8, connect the target to the sink node and the target

is covered. In scenario 2 however, the location of �rst three sensors are not as favorable and

the target remains uncovered. Further, the deployment of a fourth sensors (sensor 9) still

results in a lack of target coverage in scenario 2. Based on the scenarios generated, in order

for target 22 to be covered in both scenario 1 and 2 the maximum limit of �ve sensors must

be deployed in the second subregion.

Without the deployment constraint we may overestimate network coverage by selecting

the more desirable sensor locations from those sampled. For example, in both scenario 1

and 2 the fourth location sampled (i.e., sensor 9), is in an unfavorable location and does
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Figure 10: Example scenarios with sink node (⋆), sampled locations (◦), and targets (■).

not contribute to network coverage. Note that this is less likely to occur as the number of

scenarios increases since at least one scenario will likely sample a location for sensor 9 closer

to the interior of the overall region, but is useful for discussion purposes. In the absence

of the deployment constraint the model can `skip' this sensor and deploy sensor 10 instead,

resulting in the need to deploy only 4 sensors (6, 7, 8, and 10) in subregion 2 to cover target

22 in both scenarios. The purpose of this placement constraint can therefore be viewed

as capturing the randomness of deploying an additional sensor in a subregion, potentially

landing in an area that achieves no increase in overall network capability, and prevents the

model from omitting unfavorable locations due to random deployment.

The example scenarios in Figure 10 also help illustrate the applicability of a maximum

�ow problem formulation. Although omitted for clarity, the network formulation contains

a source node and a directed edge from the source node to every target node. By setting

the capacity on each of these edges to one, every unit of �ow that reaches the sink must

travel from the source node to a di�erent target node, and then through the network to the
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sink node. Therefore, by determining the number of sensors deployed in each subregion to

maximize the average �ow from the source to the sink node, the expected coverage of the

WSN deployed based on this policy is also maximized.

5.2.2 Stochastic Optimization Model

For a set of scenarios Ω = {1, 2, . . . ,W}, the stochastic optimization model is now formulated

below in (33)−(44). The decision variables in the model include the number of sensors

deployed in a subregion, nr, r ∈ Rs, the binary decision variable indicating if sensor i is

deployed or not, γ(i), i ∈ N1, the resulting network coverage (or �ow) for a scenario, β
ω, ω ∈

Ω, and the �ow variables, fω(i, j), (i, j) ∈ Aω, necessary that require a sensor within range

of a target node and a communication path to the sink node for a target to be covered in a

scenario.

The objective function in (33) maximizes the average WSN coverage over all scenarios.

Constraint (34) requires that the number of sensors placed in the network equal the total

number n, while Constraint (35) requires that the sum of the binary decision variables for

every sensor potentially deployed in a subregion equal the number of sensors deployed in

the subregion. Constraint (35) also ensures the number of sensors deployed in a subregion

does not exceed the maximum number N . Constraint (36) enforces the randomness in sensor

location as previously described by requiring that a sensor i can only be deploy if sensor i−1

is also deployed. Constraints (37) and (38) enforce an integer restriction on the number of

sensors deployed to a subregion and the binary decision variable for every potential sensor

deployed, respectively.
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max
1

W

W∑
ω=1

βω (33)

Subject to

∑
r∈Rs

nr = n, (34)

N∑
i=1

γ((r − 1)N + i) = nr, for r ∈ Rs, (35)

γ((r − 1)N + i+ 1) ≤ γ((r − 1)N + i), for i = 1, 2, . . . , N − 1, r ∈ Rs, (36)

nr ∈ {0 ∪ Z+}, for r ∈ Rs, (37)

γ(i) ∈ {0, 1}, for i ∈ N1, (38)∑
j:(i,j)∈A4

fω(i, j) = βω, for i ∈ {0′}, ω ∈ Ω, (39)

∑
j:(i,j)∈Aω

fω(i, j)−
∑

j:(j,i)∈Aω

fω(j, i) = 0, for i ∈ {N1 ∪N2}, ω ∈ Ω, (40)

∑
j:(j,i)∈Aω

1

fω(j, i) = βω, for i ∈ {0}, ω ∈ Ω, (41)

fω(i, j) ≤ 1, for (i, j) ∈ {Aω
3 ∪ A4}, ω ∈ Ω, (42)

fω(i, j) ≤ mγ(i), for (i, j) ∈ {Aω
1 ∪ Aω

2 }, ω ∈ Ω, (43)

fω(i, j) ≥ 0, for (i, j) ∈ Aω, ω ∈ Ω. (44)

Constraints (39)−(44) capture the �ow balance constraints common to a maximum �ow

problem, which model the coverage achieved by a sensor deployment in our model. From our

construction of the network, �ow travels through the network from the source node through

a target node, then through a number of sensor nodes as necessary to reach the sink node.
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By limiting the capacity of every source-to-target arc to a unit of �ow in Constraint (42),

every unit of �ow that reaches the sink node corresponds to a di�erent target that is covered

in the WSN. Therefore, the total value of the �ow equals the coverage of the WSN, and

can also be bounded by the number of targets m. Constraint (43) limits the �ow along a

sensor-to-sensor arc (i, j) or sensor-to-sink arc (i, 0), where the �ow can only be positive if

sensor i is deployed in the network. If the sensor is not deployed then the capacity of the

edge, along with every other outgoing edge) is zero, and due to the �ow balance constraint

in (40) the �ow into the sensor node must also be equal to zero. The capacity and �ow

balance constraints require that a target can only be covered if it is within range of a sensor

deployed in the network, and this sensor is able to communicate with the sink node.

5.3 Solution Methodology

For a set of scenarios generated, the model formulation in (33)−(44) is a mixed-integer linear

program. The �rst solution approach we consider is an exact method by solving the model

using CPLEX. Results are presented when a small number of scenarios are generated, which

indicate CPLEX is not well suited to address the large number of scenarios necessary to

accurately capture the randomness in sensor locations. This motivates our heuristic search

method, which we outline before discussing results on a wide range of test instances.

5.3.1 Test Instance Parameters

As a region of interest we consider a [0, 1] × [0, 1] unit square, partitioned into R = 16

subregions of equal size 0.25× 0.25. WSN coverage is determined by the number of targets

covered, where m = 441 target nodes are uniformly spaced over R as a 21 × 21 grid. The
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number of sensors deployed in the network may vary based on the test instance, however

sensor capabilities are constant throughout with a communication radius of d1 = 0.075 and

a monitoring radius of d2 = 0.075. The sink node is deployed centrally in the network, but

can easily be modeled by a random location as well.

5.3.2 Exact Approach

Scenarios are randomly created in c++ and the model is solved using IBM ILOG CPLEX

Optimization Studio version 12.8. Due to the complexity commonly encountered in loca-

tion/covering problems a direct CPLEX implementation may only be able to handle a rela-

tively small number of scenarios [28]. As Table 7 illustrates, we attempt to solve the model

exactly when W = 10 and W = 20 scenarios are generated, and set a time limit of 12 hours

and 24 hours, respectively.

Table 7 also presents results related to each test instance. The �Expected Coverage�

column contains the maximum expected coverage (i.e., objective function (33)) resulting from

the corresponding deployment policy at termination. The following column, �Computation

Time,� provides the computation time CPLEX required before returning a solution and

corresponding objective function value. Note that in every test instance CPLEX was unable

to terminate with an optimal solution and instead reached the time limit. As a result, the

�Best Bound� column reports an upper bound on the objective function with the optimality

gap between the upper bound and best solution found at termination in the �nal column.

The primary result of interest from Table 7 is the intractability of a direct CPLEX

implementation, especially for a larger number of scenarios. While variation in computation

time can be expected when only a small number of scenarios are generated, it is reasonable to
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Table 7: CPLEX Implementation

n W
Expected Computation Best

% Gap
Coverage (%) Time (sec) Bound (%)

304 10 95.49 43200 97.53 2.09

304 20 91.93 86400 96.60 4.84

288 10 91.32 43200 96.52 5.40

288 20 86.79 86400 96.40 9.97

272 10 86.49 43200 95.24 9.18

272 20 79.19 86400 95.77 17.31

expect that even if an optimal solution is found prior to reaching the time limit a signi�cant

amount of time will still be required. Further, decreasing the number of sensors available to

deploy corresponds to a more constrained network (e.g., harder to cover the entire region)

and increasing the number of scenarios increases both the number of decision variables and

the number of constraints in the model. Not surprisingly, as the test instances become more

di�cult the optimality gap of CPLEX at termination also increases. When the model is

solved with only a small number of scenarios there is a larger variability in the objective

function value, and as we describe below the optimal solution is dependent more on the

actual scenarios sampled. As a result the solution quality is not as large a concern, but the

computation time is still of interest. With this insight and a desire to solve the model when

a much larger number of scenarios are generated we explore a heuristic method to determine

an optimal deployment policy.

5.3.3 Heuristic Approach

Similar to [12�15] we explore a heuristic method to determine a deployment policy that

maximizes expected coverage. We are interested in a heuristic solution method capable
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of identifying high quality solutions while not requiring the signi�cant computation time

required by an exact approach, allowing the heuristic to solve the model for a much larger

number of scenarios. With this direction we propose a heuristic search method comprised

of two main steps. The �rst is a greedy search method which provides a feasible solution to

the problem, followed by a neighborhood search designed to look for solutions that improve

expected coverage. Both steps leverage the observation that for a given deployment solution

(i.e., how many sensors are deployed in each subregion) expected coverage can be estimated

with a breadth-�rst search (BFS) algorithm implemented on each scenario. The signi�cance

of this observation is that a BFS algorithm on a modi�ed network (where the direction of

edges in Aω
2 and Aω

3 are reversed) is more e�cient than using a maximum �ow algorithm to

determine the resulting coverage in a scenario. A maximum �ow formulation is necessary

for the optimization model, but if a deployment solution is provided than expected coverage

can be estimated in a more e�cient manner.

The greedy search method starts from a solution in which N sensors are deployed in

every subregion of the network. This is likely an infeasible solution since we are only able

to deploy n sensors, but it provides an upper bound on the expected coverage for a network

consisting of n sensors. The greedy method proceeds by iteratively removing q1 sensors from

the network until a feasible solution is reached. From the current solution, the expected

coverage resulting from the removal of q1 sensors from a subregion is estimated by temporarily

removing q1 sensors from the subregion and applying a BFS to every scenario. Repeating

this process for every subregion allows the subregion that results in the smallest decline in

expected coverage to be selected, and the current solution is then updated by the removal

of q1 sensors from the corresponding subregion.
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Once a feasible solution is reached (i.e., a solution that deploys exactly n sensors), a

neighborhood search algorithm is applied in an e�ort to improve the current deployment

policy. This is accomplished by methodically moving a small number of sensors from one

subregion to another, maintaining a feasible solution, and determining which relocation,

if any, results in an improvement to expected coverage. Since we are removing sensors

from one subregion we anticipate this decreasing network coverage, however this allows a

larger number of sensors to be deployed in another subregion which may increase the overall

coverage compared to the initial deployment. The neighborhood of a current solution is

generated by moving q2 ≥ 1 sensors from some subregion i to another subregion j, for all

subregions with at least one sensor. For example, consider the regionR partitioned into three

subregions, with 4, 6, and 5 sensors deployed in each subregion, respectively. The current

solution is represented by [n1 n2 n3] = [4 6 5], and if q2 = 2 the neighborhood is

neighbors([4 6 5]) =



2 8 5

2 6 7

6 4 5

4 4 7

6 6 3

4 8 3


.

The expected coverage for each of the neighborhood solutions is estimated, and the

solution resulting in the maximum expected coverage is selected to update as the current

solution. This process repeats until the current solution is the best compared to those

evaluated in the neighborhood (i.e., a local optima based on neighborhood de�nition). One

appealing aspect of the proposed heuristic approach is the simplicity with which it can be

implemented. Both the greedy removal of sensors and subsequent neighborhood search phase

rely on an implementation of a BFS algorithm, which can be accomplished in O(V +E) time
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on a network with V nodes and E edges. Therefore, increasing the number of scenarios

corresponds to an increase in the number of BFS algorithms implemented each iteration of

the heuristic, and the low computational complexity support the belief that the heuristic

should be able to address a larger number of scenarios without the signi�cant increase in

computation time.

Table 8 restates a subset of the results from the CPLEX implementation for each test

instance, along with the expected coverage and computation time required by the heuristic

solution method on the same instances generated. This allows for a more direct comparison

between the expected coverage and computation time of the two methods. The heuristic

approach requires signi�cantly less computation time than the exact approach. Whereas

CPLEX reached the maximum time limit of 12 and 24 hours, the heuristic returned a solution

to each instances in a few seconds. Additionally, the increase in computation time required

by doubling the number of scenarios matches that expected based on the previous discussion.

Table 8: Heuristic Comparison

Exact Solution Heuristic Solution

n W
Expected Computation Expected Computation

Coverage (%) Time (sec) Coverage (%) Time (sec)

304 10 95.49 86400 93.54 5.56

304 20 91.93 86400 90.56 13.66

288 10 91.32 43200 87.10 6.73

288 20 86.79 86400 85.58 13.68

272 10 86.49 43200 84.58 6.08

272 20 79.19 86400 80.86 13.86

In comparing the expected coverage of the heuristic and CPLEX solution, it is worth

mentioning that the expected coverage for a solution based on such a small number of

scenarios can be misleading. With a limited number of scenarios there is more opportunity
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to tailor a solution based on common features between scenarios (e.g., the ith sensor is always

sampled to land at a favorable location), which will not be present when a larger number

of scenarios are generated. That is, it is di�cult to accurately capture the randomness of a

sensor randomly deployed with a small number of scenarios. As a result, expected coverage is

in�uenced more by the actual scenarios generated which leads to an overestimate on expected

coverage compared to the average performance of a solution over a much larger number of

scenarios.

With this in hand, conclusions based on the expected coverage of the heuristic solution

compared to the best CPLEX solution returned are not entirely appropriate. An exact so-

lution approach is better suited to identify similarities between a small number of scenarios,

resulting in policies more dependent on the actual scenarios generated. The heuristic ap-

proach might have a more di�cult time identifying similar structure between scenarios, but

it is not designed to do so. The heuristic is intended to be applied to a much larger number

of scenarios that better capture the randomness in sensor location and the probability of

similarities among every scenario in�uencing the policy is less likely. Therefore, while it is

appealing that the expected coverage of the heuristic solution is comparable to the CPLEX

solution, the fact that the optimality gap of the heuristic solution in the smaller test in-

stances is up to 15% is not a cause of concern. The primary value of the results provided

in Table 8 is the drastic reduction in computation time required by the heuristic, and its

potential to solve the model with a much larger number of scenarios. In the following section

we discuss results related to the quality of the expected coverage a heuristic solution achieves

by comparing the expected coverage to a baseline uniform policy.
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Figure 11: Heuristic Solution Comparison with Uniform Distribution of Sensors

5.4 Computational Study and Model Extensions

The heuristic solution method now provides the desired capability of solving the model with

a much larger number of scenarios, the results of which are discussed in this section. For

a study on the performance of the heuristic solution, the number of sensors deployed in

the network varies from n = 550 down to n = 200. The region of interest, partition into

subregions, target distribution, and sensor capabilities are identical to those introduced in

Section 5.3.1. The number of sensors removed during the greedy search phase of the heuristic

is set by q1 = 3, and neighborhood of the current solution is de�ned by relocating q2 = 2

sensors from one subregion to another. Figure 11 presents the expected network coverage

for di�erent network sizes, where W = 1, 000 scenarios are generated are generated for every

test instance.

As previously discussed, when sensors are randomly deployed in a WSN it is common to

assume they are randomly deployed with uniform density throughout the region of interest.

Therefore, the expected coverage of the heuristic policy is compared to a uniform policy in
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which n sensors are randomly located over R. This is equivalent to randomly selecting a

subregion, increasing the number of sensors deployed in the subregion by one, and repeating

until all n sensors have been deployed. While policies that randomly deploy sensors according

to a non-uniform distribution (e.g., simple di�usion, R-random, etc.) have been proposed,

the computation study in [23] suggests that a uniform distribution of sensors is one of the

best policies with respect to coverage.

A comparison of the expected coverage resulting from the heuristic solution and the

uniform policy is illustrated in Figure 11. For networks with a large number of sensors

o�ering near perfect target coverage there is less opportunity for the heuristic solution to

reallocate sensors and improve WSN performance. The improvement in expected coverage

is more noticeable for smaller networks when the WSN struggles to cover the entire region.

For example, when 300 sensors are available to deploy in the network a random deploy-

ment strategy over the entire region results in an expected coverage of approximately 77%.

Comparatively, the heuristic solution achieves an expected coverage of approximately 84%,

signi�cantly improving upon a random deployment strategy. An alternative comparison is

the number of sensors each policy requires to achieve a given expected coverage requirement.

For example, consider the task of determining the number of sensors necessary such that the

network covers 90% of the region. The random distribution strategy requires approximately

350 sensors, compared to the heuristic solution which achieves the same coverage with only

325 sensors. In situations where a smaller network size is desirable, possibly due to cost or

ease of network deployment, the heuristic solution allows a smaller network to satisfy the

given coverage requirement compared to a random deployment strategy.

As the number of sensors available to deploy decreases the improvement in expected cov-
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erage achieved by the heuristic solution becomes more profound. For the smaller network

sizes with n ≤ 275 this improvement is attributed to the heuristic solution sacri�cing network

coverage in one subregion in order to deploy a larger number of sensors in the remaining

subregions. That is, by deploying zero sensors in one subregion the network provides no cov-

erage in this portion of the region. However, sensors can now be deployed in a grater density

in the remaining subregions, which improves the ability of sensors to communicate and in-

creases the probability a sensor lands within monitoring distance of a target. Meanwhile,

randomly deploying the same number of sensors over the entire region of interest results

in a large number of sensors isolated from the sink node, and sensors struggle to route in-

formation through the network. While the test instances this phenomena occur in might

not appear as interesting since it is reasonable to question the suitability of a deployment

policy, and associated network size, that o�ers zero coverage in a portion of the region, this

is only observed in a small number of the overall instances. In a majority of the test instance

(e.g., n > 275), the improvement in expected coverage achieved by the heuristic solution

is attribute to allocating sensors in an e�cient manner to di�erent subregions contributing

towards both an improvement in coverage and sensor communication ability over the entire

region of interest.

5.4.1 Equal Distribution Policy

A notable di�erence between the heuristic policy and uniform policy is that the heuristic

policy allows more control over how sensors are distributed throughout the network. Perhaps

a more appropriate comparison than with a uniform distribution over the entire region is

a policy that evenly distributes sensors to each subregion in the network. This is referred
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Figure 12: Heuristic Solution Comparison with Equal Distribution of Sensors to Every Sub-
region

to as an equal distribution policy, where n sensors are allocated so each subregion contains

approximately ⌊n/nr⌋ sensors. The uniform policy is similar to the equal distribution policy

in that the expected number of sensors that land in each subregion in the uniform policy

is n/nr. However the observed number of sensors that land in a subergion will vary due to

randomly deploying sensors over the entire region, compared to the equal distribution policy

which removes this source of variation.

A comparison of the heuristic solution with the equal distribution policy is illustrated in

Figure 12. Once the number of sensors deployed in the network is above 300, there appears to

little or no improvement o�ered by the heuristic policy. For the smaller sized instances this

is again attributed to the heuristic solution sacri�cing coverage in at least one subregion to

improve coverage in the remaining subregions. This leaves only a small handful of instances

where the heuristic policy improves upon the equal distribution policy and o�ers coverage

throughout the entire region before the performance of the two policies is almost identical.

Therefore, it might be reasonable to always select the equal distribution policy and avoid
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solving the proposed stochastic optimization model. In the following section we discuss an

extension of the modeling approach when sensors are prone to failure, and provide results

indicating the heuristic solution to the stochastic optimization model with sensor failures

achieves a larger expected coverage than an equal distribution policy.

5.4.2 Homogeneous Sensor Failures

In addition to communication and monitoring components, sensors contain a �nite power

supply enabling sensor operations [29]. It is important for a WSN to not only satisfy a

coverage requirement when it is initially deployed, but also over a period of time and tolerate

sensor failures without a large drop in WSN capability. Sensor failures in�uence the ability of

sensors to route information through the network and target coverage, which might impact

the initial deployment decision. In this section we discuss a slight modi�cation enabling the

stochastic optimization model to determine an optimal deployment policy in the presence of

sensor failures. In fact, the model formulation in (33)− (44) does not actually change; the

modi�cation is in constructing the network for a given scenario.

To model sensor failures we assume that each sensor deployed in the network fails with

some probability p. Similar to the problem formulation with no failures, for every scenario

a random location (xω
i , y

ω
i ) is sampled in the appropriate subregion for each potential sensor

i ∈ N1. In addition to a random location, an indicator variable, zωi , is sampled to re�ect

if sensor i is functioning or failed in the scenario. zωi follows a Bernoulli distribution, equal

to zero (i.e., a failed sensor) with probability p, and one (i.e., a functioning sensor) with

probability 1 − p. Now, when creating the edge sets Aω
1 ,Aω

2 , and Aω
3 , the status of each

sensor is also considered. That is, for any edge originating and/or ending at a sensor node,
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Figure 13: Solution Comparison With Probability of Sensor Failure p = 0.2

the edge is only present if the corresponding sensor is functioning. This equates to edge sets

de�ned by Aω
1 = {(i, j) : dω(i, j) ≤ d1, z

ω
i = zωj = 1, i ∈ N1, j ∈ N1, j ̸= i}, Aω

2 = {(i, 0) :

dω(i, 0) ≤ d1, z
ω
i = 1, i ∈ N1}, and Aω

3 = {(i, j) : dω(i, j) ≤ d2, z
ω
j = 1, i ∈ N2, j ∈ N1}. The

edge set A4 is unchanged, resulting in the overall edge set A consisting of edges between the

sink node, target nodes, and functioning sensor nodes.

With a modi�cation on the network construction for each scenario, the resulting optimiza-

tion model and solution methodology remain unchanged. The expected coverage resulting

from each of the three policies for a sensor probability of failure of p = 0.2, p = 0.3, and p =

0.4 is provided in Figure 13 − Figure 15, respectively. Compared to the initial model with

perfectly reliable sensors (i.e., no failures), the heuristic solution to the stochastic optimiza-

tion model including failures is able to improve upon the equal distribution of sensors and

provides an increase in expected coverage.

For the larger sized networks sensors can be deployed to withstand failures and provide

coverage over a signi�cant portion of the region. Since larger sized networks are more robust

to sensor failure and any decrease in target coverage will be minor, Figure 12 suggests that
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Figure 14: Solution Comparison With Probability of Sensor Failure p = 0.3

Figure 15: Solution Comparison With Probability of Sensor Failure p = 0.4
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the expected coverage achieved by the heuristic policy and an equal distribution policy

will again be similar. This is indeed observed in Figure 13 − Figure 15, where once the

expected coverage of an equal distribution policy reaches 90% any improvement achieved by

the heuristic policy is relatively minor. While there is some bene�t to the heuristic policy

in these test instances, for each of the three failure probabilities considered the increase in

expected coverage over an equal distribution policy is around 0.5%, on average.

For smaller sized networks the impact of a sensor failure is more profound and an equal

distribution policy might not be well suited to maintain a communication path to the sink

node and/or provide redundant sensors monitoring a target. While deviating from an equal

distribution policy (e.g., to the heuristic policy) will not improve these conditions throughout

the entire network, there might be a few critical locations where deploying a larger number of

sensors will increase overall network capability. The improvement achieved by the heuristic

policy is more noticeable as the network size decreases, but is best illustrated when the

resulting network coverage is between 75% and 90%. For each of the failure probabilities

evaluated, the improvement achieved by the heuristic policy does not require sacri�cing

coverage in one or more subregions. That is, similar to an equal distribution policy the

heuristic solution provides coverage over the entire region of interest, but deploys a varying

number of sensors in di�erent subregions to maintain a communication path and/or coverage

of a target as sensors fail.

The heuristic policy achieves this increase in expected coverage primarily by deploying

a larger number of sensors in subregions immediately surrounding the sink node. Since a

sensor must also be able to communicate with the sink node, a sensor that monitors a large

number of targets but is disconnected from the sink node provides no capability to the overall
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network. The heuristic policy deploys a slightly larger number of sensors in the subregions

surrounding the sink node to maintain a communication path and reduce the number of

sensors that become disconnected from the sink node when a sensor fails. Considering only

the resulting heuristic solutions that deploy a positive number of sensors in each subregion

to provide coverage throughout the entire region, the increase in expected coverage over

an equal distribution policy is around 3.5% on average, for each of the failure probabilities

considered. The improvement of the heuristic policy is most signi�cant with a sensor failure

probability of p = 0.3, where the increase in expected coverage over an equal distribution

policy is up to 8%.

For ease of illustration each sensor was assumed to have a constant probability of failure

p. A more interesting approach might be to model sensor failures over time, where T ≥ 0

represents the lifetime of a sensor and is modeled by a cumulative distribution function F (t).

For example, say we are interested in maximizing network coverage at time t, at which new

sensors will be deployed to maintain the network over a prolonged period of time. The

proposed model is dependent on the time interval t, but is otherwise well suited to address

a given sensor failure distribution. The model can also handle multiple failure distributions,

for example to re�ect the energy hole phenomena in which sensors located around the sink

node fail at a faster rate [30], by simply changing the failure probability p for a sensor when

sampling the sensor status zωi .

5.4.3 Impact of Sensor Failures on Deployment Policy

We may also be concerned with the in�uence of sensor failure probability on an optimal

deployment policy. For this purpose we �rst consider the test instance that deploys n = 500
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sensors in the network, and examine how the deployment policy changes with the probability

of sensor failure. Rather than directly compare the number of sensors deployed in each

subregion, we �rst group the subregions based on their relation to the sink node. From

Section 5.3.1 the region of interest is partitioned into 16 subregions each of size 0.25× 0.25,

which can be viewed as a 4 × 4 grid overlaying the region (compared to the 2 × 2 grid in

Figure 10). Since the sink node is deployed centrally in the network, the four inner subregions

(grouped into �center subregions�) are all adjacent to the sink node. Meanwhile, there are

four �corner subregions� located near the border of the region, with each corner subregion

located diagonally from one of the center subregion. The remaining eight �border subregions�

are adjacent to a single edge of the border in the overall region. Based on this grouping,

the corner subregion group and the center subregion group each comprise 25% of the overall

region, and the border subregion group the remaining 50%.

Table 9 presents the expected coverage and the percent of sensors deployed in each

subregion group from the heuristic policy for each of the three failure probabilities considered

when 500 sensors are deployed in the network. As expected, increasing the probability of

sensor failure lowers the expected coverage of the resulting WSN. It is more interesting to

observe how the failure probability a�ects the distribution of sensors in the network. Notice

that the smallest failure probability results in a policy that deploys a larger percentage

of sensors in the four corner subregions than in the four center subregions. This can be

attributed to a bounded region of interest and a characteristic of the corner subregions, and

to a smaller extent the border subregions, that is not present in the center subregions. When

a sensor is deployed to a corner subregion there is a possibility it lands near the border of the

region. This is desirable since there are targets near the border for the sensor to monitor.
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However the closer the sensor lands to the border, the sensor is now only able to communicate

with neighbor sensors that are located closer to the interior of the subregion. As a result any

portion of the communication area that falls outside the region is lost or unusable, and there

is smaller e�ective area for neighboring sensors to land in necessary for connectivity to the

sink node. Similarly, for targets located near the border there is a smaller area of the region

a sensor must land in for the target to be monitored compared to a target located closer

to the sink node. Therefore, it might be necessary to deploy a larger number of sensors to

a corner or border subregion to increase the probability a sensor lands within monitoring

distance of a target on the border of R and ensure the sensor is connected to the sink node.

Table 9: Policy Comparison When Deploying n = 500 sensors

p
Expected Corner Border Center

Coverage Subregions Subregions Subregions

0.2 98.25% 29.87% 47.75% 22.38%

0.3 93.77% 26.82% 47.25% 25.93%

0.4 82.04% 21.52% 49.85% 28.63%

When the probability of an individual sensor failure is relatively low, the decline in

network connectivity is not as severe and a larger focus can be dedicated to coverage. This

helps explain why a larger proportion of sensors are deployed in the corner subregions than

the center subregions when p = 0.2. As the failure probability increases maintaining network

connectivity becomes more of a priority. To ensure sensors remain connected to the sink

node in the presence of failures, it becomes desirable to deploy a larger number of sensors

surrounding the sink node. This is observed with a failure probability of 0.3 and 0.4, where

the proportion of sensors deployed in the corner subregions starts to decline and a larger

proportion of sensors are now deployed in the center subregions.
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In Table 10 we allow the total number of sensors deployed to vary based on the failure

probability such that the heuristic policy achieves a selected expected coverage level. A

notable observation from Table 10 is that for a given coverage level, the proportion of sensors

deployed in each of the three subregion groups is approximately the same for the di�erent

failure probabilities. For example, in each of the deployment policies resulting in an expected

coverage of 90% based on the network size and failure probability combination, approximately

24% of the sensors are deployed in corner subregions, 26% in the center subregions, and the

remaining 49% of sensors in border subregions. While there is slightly more variability as

the expected coverage decreases, the proportion of sensors deployed in each group remains

relatively similar. Particularly for the center subregions, which contain approximately 29.5%

of the sensors and 34% of the sensors to achieve an expected coverage of 80% and 70%,

respectively.

Table 10: Policy Comparison For Selected Coverage Levels

Expected
p n

Corner Border Center

Coverage Subregions Subregions Subregions

90% 0.2 405 23.98% 49.81% 26.21%

90% 0.3 465 23.73% 49.95% 26.32%

90% 0.4 550 24.43% 49.05% 26.52%

80% 0.2 360 20.72% 49.79% 29.49%

80% 0.3 410 19.03% 51.39% 29.58%

80% 0.4 490 20.82% 49.85% 29.33%

70% 0.2 315 10.05% 56.14% 33.81%

70% 0.3 360 8.59% 57.06% 34.35%

70% 0.4 425 11.75% 54.41% 33.84%

Similar to Table 9, Table 10 also helps illustrate how a policy changes for a �xed failure

probability based on the number of sensors deployed. When both the failure probability p
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and number of sensors deployed n di�er, comparing policies with respect to the proportion

of sensors in each subregion grouping can be informative. It is also valuable to consider

the change in the actual number of sensors deployed in each subregion group, particularly

when the failure probability is �xed. While not directly provided, this information is ob-

tainable from Table 10. In comparing the number of sensors deployed in each subregion

group, it is interesting to observe that for a �xed failure probability the total number of

sensors deployed in the center subregions remains unchanged for the di�erent values of n

illustrated in Table 10. That is, in each instance with p = 0.2 approximately 106 sensors are

deployed in the center subregions, with p = 0.3 approximately 122 sensors are deployed in

the center subregions, and with p = 0.4 approximately 144 sensors are deployed in the center

subregions. Therefore, even though the number of sensors deployed in the center subregions

comprise a larger proportion of the deployment policy, the number of sensors deployed in

these subregions is unchanged. This indicates that a primary di�erence in the deployment

policy as n decreases is that a smaller number number of sensors are deployed in the corner

subregions, and to a smaller extend the border subregions as well. When considering the

larger failure probability of p = 0.4 and the decrease in n from 550 to 425, this result is

somewhat surprising since there are 125 fewer sensors available to deploy but the policy still

deploys the same number of sensors in the center subregions while deploying a signi�cantly

smaller number of sensors to the corner subregions.

5.4.4 Heterogeneous Sensor Failures

From the discussion at the end of Section 5.4.2 the proposed model o�ers the �exibility

to address heterogeneous sensor failure probabilities as well. The energy hole problem is
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a common issue in WSNs in which sensors near the sink node fail at a faster rate since

they are relied upon more often to route information [25, 30, 31]. One approach to re�ect a

larger use of sensor nodes close to the sink is to set a failure probability, or failure rate in a

lifetime distribution F (t), based on the distance of the sensor to the sink node for a given

scenario. To mitigate the energy hole problem it may be possible to aggregate information

at various sensor nodes to reduce the total number of messages transmitted [32] or place a

subset of nodes in an energy conserving state, switching to an active state later on when

necessary [33]. Similar to [25] and [26] nonuniform deployment policies related to the energy

hole problem commonly incorporate a lifetime objective, for example maximizing the time

of the �rst sensor failure.

The strategies discussed in [22] and [23] are also well suited to address the energy hole

problem and provide a more detailed discussion related to the coverage of a given policy. To

model the failure of sensors over time, each sensor has an individual starting power supply

that is consumed by sending and receiving messages. Models related to energy consumption,

and therefore sensor failure, can be complicated by a number of features such as whether or

not sensors �uctuate between an active or inactive state [33], the transmission power/radius

of a sensor [34], the path selected to route information to the sink node [1], and the rate

at which sensors transmit information [35]. In this work we select a simpler approach by

modeling sensor failures based on a probability, which avoids the numerous assumptions

necessary for an energy consumption model. It is also uncommon for energy consumption

models to address random sensor failures, for example arising when sensors are deployed in

a harsh environment, and su�er from physical damage [2], or software malfunctions [36].

Based on the previous discussion and a model focused on maximizing network coverage
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rather than a cost or lifetime objective, we do not believe a direct comparison with similar

nonuniform deployment strategies such as those discussed in [22, 23, 25] is entirely appro-

priate. Policies concerned more with energy consumption tend to place a larger emphasis

on connectivity and minimizing isolated sensors, which may impact coverage, rather than

the trade-o� between increasing connectivity near the sink node and coverage in remaining

regions of the network. The purpose of this section is rather to discuss a simple extension

of our proposed model capable of addressing multiple failure probabilities and an example

of where such a situation might be encountered.

There is one component to the solution of our model not present in a �xed policy (such

as simple di�usion, R-random, etc.) worth highlighting. Demonstrated in Table 10, the

proportion of sensors in a given subregion group di�ers based on both the network size and

sensor failure probability. As network size increases and the number of sensors deployed

near the sink node reaches a su�cient level to maintain connectivity, the optimal policy

starts to focus on subregions farther away from the sink node. Policies reliant on a �xed

distribution function, without considering network size and failure probability, may place a

greater focus on subregions near the sink node than necessary. For example if there is only

a small probability of sensor failure than the density of sensors near the sink node may only

need to be increased slightly, and the number of sensors deployed near the border of the

region of interest can remain relatively high. Similarly, if there is a high probability of sensor

failure but there are a large number of sensors available to deploy as well than the overall

focus might remain on improving coverage in the border regions. In a deployment policy

with a �xed distribution function increasing the number of sensors deployed likely results in

a larger number of sensors deployed near the sink node with only a small number of sensors
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in the exterior regions where an additional sensor will actually o�er a larger improvement to

coverage and connectivity. Based on the results in Table 10 parameters such as the network

size and failure probability should in�uence a deployment policy as well. Capturing a similar

behavior when deploying sensors according to a �xed distribution function might be possible

by varying distribution parameters (e.g., variance in distance from sink, center location),

mentioned in [25], or the distribution function itself (e.g., normal, uniform, simple di�usion)

based on the network size and failure probability, but has not been widely investigated and

is more commonly modeled by selecting a single distribution function.

5.5 Conclusion

Depending on the application and operating environment of a WSN, sensors might be placed

at deterministic locations or randomly deployed throughout a region of interest. The initial

deployment of a WSN can have a signi�cant in�uence on the ability of sensors to communicate

with one another and the resulting coverage achieved by the network. Related research

has focused primarily on deploying a �xed number of sensors in a deterministic setting

to maximize coverage [12], the smallest number of uniformly deployed sensors to satisfy

full coverage [21], or analyzing the performance of a few nonuniform random deployment

policies [22, 23]. Nonuniform deployment policies are also common in addressing the energy

hole issue in which sensors are deployed in a greater density near the sink node to o�set the

increased failure rate [25].

In this work we focus on maximizing expected coverage when there is uncertainty in

where a sensor lands. While problems that maximize a measure of network lifetime are

similar, they are more commonly de�ned in terms of the �rst sensor failure or the time
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at which a sensor is isolated from the sink node. The main contribution of this work is

a stochastic optimization model, formulated as a collection of maximum �ow problems, to

determine a deployment policy that maximizes expected coverage. The model is of particular

interest when full region coverage is not attainable but the resulting network is still able to

cover a large portion of the region. To solve the model when a large number of scenarios

are generated, which is necessary for an accurate estimate on the expected coverage of a

solution, we present a heuristic solution approach that determines the number of sensors

deployed in various subregions of the network. We also discuss slight modi�cations allowing

the model to handle both homogeneous and heterogeneous sensor failures, and present results

for a number of �xed failure probability test instances. The performance of our heuristic

solution is compared to the more common assumption that sensors are uniformly distributed

throughout the region and a more controlled equal distribution policy. As the number

of deployed sensors decreases and/or there is a increased probability of sensor failure, the

heuristic solution e�ciently allocates sensors in di�erent subregions of the network to improve

expected coverage over both the uniform and equal distribution policy.

The stochastic optimization model also provides several directions to build on in future

work. An appealing aspect of the proposed heuristic is the low computation complexity

and ease of implementation. There are several opportunities to explore di�erent heuristic

approaches to solve for a deploy policy, which might result in a policy that further improves

expected coverage. For example, one option is a more complex neighborhood de�nition or

an improved search in the solution space.

It might also be possible to deploy a number of relay sensors throughout the network to

assist network communication. While relay sensors are typically more powerful and have a
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larger communication radius, they are also more expensive than individual sensor nodes [7].

If a small number of relay sensors are available to deploy as well, it is interesting to see how a

deployment policy utilizes these relay sensors (e.g., where they are deployed in the network),

and the in�uence on the current deployment policy.
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6 Conclusion

Wireless sensor networks (WSNs) are complex structures relying on a large number of sensor

nodes to route information through the network and e�ectively monitor a region of interest.

Since WSN performance is heavily in�uenced by the number of sensors in the network and

their locations, a large research e�ort has focused on methods to extend WSN lifetime such

as power management techniques or introducing a small number of new sensors to improve

network connectivity. In this work we investigate the maintenance of a WSN over an extended

time horizon, in which sensors are deployed in multiple time periods. We present several

di�erent models addressing not only the reliability of a deployment policy, whereas similar

work has focused on a lifetime or coverage/connectivity measure, but the associated cost of

a policy as well.

We �rst introduce a time-based deployment model in Chapter 2 de�ned by a constant

deployment interval and a �xed network size. Estimating WSN reliability, already a di�cult

task due to the complex structure of the network, is complicated further by the deployment of

new sensors over time. We discuss several characteristics of the network destruction spectrum

(D-spectrum) that are well suited to address the complexity of estimating the reliability of

a time-based deployment policy. The resulting model formulation allows a wide range of

deployment policies to be evaluated in an e�cient manner which informs an e�cient frontier

of deployment policies that balance deployment cost and WSN reliability.

In Chapter 3 we present a myopic condition-based deployment model with a �xed bud-

get and greater control on the deployment of new sensors in the network. As a result, the

model must now address the added complexity in that network reliability depends on the
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deployment action as well. We discuss how the D-spectrum can be incorporated to ap-

proximate the reliability of a myopic deployment policy, further demonstrating the value of

the D-spectrum in a repeated sensor deployment setting. The signi�cance of the proposed

methodology is that the computational e�ort of a traditional Monte Carlo reliability simu-

lation can be avoided, and a number of deployment policies can e�ciently be estimated and

compared to one another.

Chapter 4 presents a Markov decision process (MDP) model for the condition-based de-

ployment problem. Compared to the myopic condition-based deployment problem, the MDP

model provides a budget for the entire planning horizon and must address the impact of the

current decision on future deployment actions as well. We apply approximate dynamic pro-

gramming (ADP) methodology and an approximate value iteration algorithm to determine

an optimal condition-based deployment policy. Our MDP model is one of the few addressing

maintenance through the repeated deployment of new sensors in the network, as well as one

of the �rst ADP applications for the maintenance of a complex WSN.

Finally, in Chapter 5 we discuss the problem encountered when �rst deploying a WSN

and how sensors are distributed throughout the region to maximize expected coverage. While

there is some control on how sensors are deployed in the region there exists randomness in

the exact location of a sensor. We present a stochastic optimization model and use a scenario

based approach to sample the location for every sensor deployed. An optimal deployment

policy is determined using a heuristic solution procedure, and the expected coverage of the

resulting solution is compared to a random distribution of sensors throughout the entire

network. The impact of sensor failures on the model formulation is also addressed, with

computational results further illustrating the bene�t of the optimization model over a random
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deployment strategy.

Future research might focus on the impact of multiple sensor failure distributions on the

resulting model formulation and methodology. As discussed in Chapter 5, the stochastic op-

timization model is capable of addressing heterogeneous sensor failures with minor changes to

the model and scenario construction, but the remaining models require additional attention

to properly re�ect such a change. Chapter 4 may also consider a value function approxima-

tion based on a parametric model and basis functions, with a comparison of the resulting

policy to the current lookup table approach. While the stochastic optimization model in

Chapter 5 focuses on a coverage objective, the correlation between network coverage and

reliability implies the solution may also be informative to the methodology in Chapters 3

and 4. Future work related to Chapter 5 may consider improving the heuristic solution

performance, or e�cient methods to estimate the quality of the heuristic solution compared

to the coverage of an optimal deployment policy.
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