Optimal Coverage in Wireless Sensor Network using Augmented Nature-Inspired Algorithm

Abstract

           One of the difficult problems that must be carefully considered before any network configuration is getting the best possible network coverage. The amount of redundant information that is sensed is decreased due to optimal network coverage, which also reduces the restricted energy consumption of battery-powered sensors. WSN sensors can sense, receive, and send data concurrently. Along with the energy limitation, accurate sensors and non-redundant data are a crucial challenge for WSNs. To maximize the ideal coverage and reduce the waste of the constrained sensor battery lifespan, all these actions must be accomplished. Augmented Nature-inspired algorithm is showing promise as a solution to the crucial problems in “Wireless Sensor Networks” (WSNs), particularly those related to the reduced sensor lifetime. For “Wireless Sensor Networks” (WSNs) to provide the best coverage, we focus on algorithms that are inspired by Augmented Nature in this research. In wireless sensor networks, the cluster head is chosen using the Diversity-Driven Multi-Parent Evolutionary Algorithm. For Data encryption Improved Identity Based Encryption (IIBE) is used.  For centralized optimization and reducing coverage gaps in WSNs Time variant Particle Swarm Optimization (PSO) is used. The suggested model's metrics are examined and compared to various traditional algorithms. This model solves the reduced sensor lifetime and redundant information in Wireless Sensor Networks (WSNs) as well as will give real and effective optimum coverage to the Wireless Sensor Networks (WSNs)

    Similar works