13 research outputs found

    Unmanned Aerial ad Hoc Networks: Simulation-Based Evaluation of Entity Mobility Models’ Impact on Routing Performance

    Get PDF
    An unmanned aerial ad hoc network (UAANET) is a special type of mobile ad hoc network (MANET). For these networks, researchers rely mostly on simulations to evaluate their proposed networking protocols. Hence, it is of great importance that the simulation environment of a UAANET replicates as much as possible the reality of UAVs. One major component of that environment is the movement pattern of the UAVs. This means that the mobility model used in simulations has to be thoroughly understood in terms of its impact on the performance of the network. In this paper, we investigate how mobility models affect the performance of UAANET in simulations in order to come up with conclusions/recommendations that provide a benchmark for future UAANET simulations. To that end, we first propose a few metrics to evaluate the mobility models. Then, we present five random entity mobility models that allow nodes to move almost freely and independently from one another and evaluate four carefully-chosen MANET/UAANET routing protocols: ad hoc on-demand distance vector (AODV), optimized link state routing (OLSR), reactive-geographic hybrid routing (RGR) and geographic routing protocol (GRP). In addition, flooding is also evaluated. The results show a wide variation of the protocol performance over different mobility models. These performance differences can be explained by the mobility model characteristics, and we discuss these effects. The results of our analysis show that: (i) the enhanced Gauss–Markov (EGM) mobility model is best suited for UAANET; (ii) OLSR, a table-driven proactive routing protocol, and GRP, a position-based geographic protocol, are the protocols most sensitive to the change of mobility models; (iii) RGR, a reactive-geographic hybrid routing protocol, is best suited for UAANET

    RGIM: An Integrated Approach to Improve QoS in AODV, DSR and DSDV Routing Protocols for FANETS Using the Chain Mobility Model

    Get PDF
    Flying ad hoc networks (FANETs) are a collection of unmanned aerial vehicles that communicate without any predefined infrastructure. FANET, being one of the most researched topics nowadays, finds its scope in many complex applications like drones used for military applications, border surveillance systems and other systems like civil applications in traffic monitoring and disaster management. Quality of service (QoS) performance parameters for routing e.g. delay, packet delivery ratio, jitter and throughput in FANETs are quite difficult to improve. Mobility models play an important role in evaluating the performance of the routing protocols. In this paper, the integration of two selected mobility models, i.e. random waypoint and Gauss–Markov model, is implemented. As a result, the random Gauss integrated model is proposed for evaluating the performance of AODV (ad hoc on-demand distance vector), DSR (dynamic source routing) and DSDV (destination-Sequenced distance vector) routing protocols. The simulation is done with an NS2 simulator for various scenarios by varying the number of nodes and taking low- and high-node speeds of 50 and 500, respectively. The experimental results show that the proposed model improves the QoS performance parameters of AODV, DSR and DSDV protocol

    Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility

    Get PDF
    [EN] Air pollution monitoring has recently become an issue of utmost importance in our society. Despite the fact that crowdsensing approaches could be an adequate solution for urban areas, they cannot be implemented in rural environments. Instead, deploying a fleet of UAVs could be considered an acceptable alternative. Embracing this approach, this paper proposes the use of UAVs equipped with off-the-shelf sensors to perform air pollution monitoring tasks. These UAVs are guided by our proposed Pollution-driven UAV Control (PdUC) algorithm, which is based on a chemotaxis metaheuristic and a local particle swarm optimization strategy. Together, they allow automatically performing the monitoring of a specified area using UAVs. Experimental results show that, when using PdUC, an implicit priority guides the construction of pollution maps by focusing on areas where the pollutants' concentration is higher. This way, accurate maps can be constructed in a faster manner when compared to other strategies. The PdUC scheme is compared against various standard mobility models through simulation, showing that it achieves better performance. In particular, it is able to find the most polluted areas with more accuracy and provides a higher coverage within the time bounds defined by the UAV flight time.This work has been partially carried out in the framework of the DIVINA Challenge Team, which is funded under the Labex MS2T program. Labex MS2T is supported by the French Government, through the program "Investments for the Future" managed by the National Agency for Research (Reference: ANR-11-IDEX-0004-02). This work was also supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R," the "Programa de Becas SENESCYT de la Republica del Ecuador," and the Research Direction of University of Cuenca.Alvear-Alvear, Ó.; Zema, NR.; Natalizio, E.; Tavares De Araujo Cesariny Calafate, CM. (2017). Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility. Journal of Advanced Transportation. 2017:1-14. https://doi.org/10.1155/2017/8204353S1142017Seaton, A., Godden, D., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176-178. doi:10.1016/s0140-6736(95)90173-6McFrederick, Q. S., Kathilankal, J. C., & Fuentes, J. D. (2008). Air pollution modifies floral scent trails. Atmospheric Environment, 42(10), 2336-2348. doi:10.1016/j.atmosenv.2007.12.033Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., & Gwynne, M. (1996). Urban air pollution in megacities of the world. Atmospheric Environment, 30(5), 681-686. doi:10.1016/1352-2310(95)00219-7Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24-25), 4029-4037. doi:10.1016/s1352-2310(99)00144-2Kanaroglou, P. S., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., & Brook, J. R. (2005). Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmospheric Environment, 39(13), 2399-2409. doi:10.1016/j.atmosenv.2004.06.049Alvear, O., Zamora, W., Calafate, C., Cano, J.-C., & Manzoni, P. (2016). An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution. Journal of Sensors, 2016, 1-13. doi:10.1155/2016/1458147Adam-Poupart, A., Brand, A., Fournier, M., Jerrett, M., & Smargiassi, A. (2014). Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches. Environmental Health Perspectives, 122(9), 970-976. doi:10.1289/ehp.1306566Pujadas, M., Plaza, J., TerĂ©s, J., ArtÄ±ÌĂ±ano, B., & MillĂĄn, M. (2000). Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the Madrid urban plume, a case of study. Atmospheric Environment, 34(19), 3041-3056. doi:10.1016/s1352-2310(99)00509-9Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., & Campbell, A. T. (2009). BikeNet. ACM Transactions on Sensor Networks, 6(1), 1-39. doi:10.1145/1653760.1653766AndrĂ©, M. (2004). The ARTEMIS European driving cycles for measuring car pollutant emissions. Science of The Total Environment, 334-335, 73-84. doi:10.1016/j.scitotenv.2004.04.070Hu, S.-C., Wang, Y.-C., Huang, C.-Y., & Tseng, Y.-C. (2011). Measuring air quality in city areas by vehicular wireless sensor networks. Journal of Systems and Software, 84(11), 2005-2012. doi:10.1016/j.jss.2011.06.043Dunbabin, M., & Marques, L. (2012). Robots for Environmental Monitoring: Significant Advancements and Applications. IEEE Robotics & Automation Magazine, 19(1), 24-39. doi:10.1109/mra.2011.2181683Hugenholtz, C. H., Moorman, B. J., Riddell, K., & Whitehead, K. (2012). Small unmanned aircraft systems for remote sensing and Earth science research. Eos, Transactions American Geophysical Union, 93(25), 236-236. doi:10.1029/2012eo250005Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. doi:10.1016/j.isprsjprs.2014.02.013Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138-146. doi:10.1890/120150Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. doi:10.1007/s11119-012-9274-5Bellvert, J., Zarco-Tejada, P. J., Girona, J., & Fereres, E. (2013). Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4), 361-376. doi:10.1007/s11119-013-9334-5Erman, A., Hoesel, L., Havinga, P., & Wu, J. (2008). Enabling mobility in heterogeneous wireless sensor networks cooperating with UAVs for mission-critical management. IEEE Wireless Communications, 15(6), 38-46. doi:10.1109/mwc.2008.4749746Khan, A., Schaefer, D., Tao, L., Miller, D. J., Sun, K., Zondlo, M. A., 
 Lary, D. J. (2012). Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles. Remote Sensing, 4(5), 1355-1368. doi:10.3390/rs4051355Illingworth, S., Allen, G., Percival, C., Hollingsworth, P., Gallagher, M., Ricketts, H., 
 Roberts, G. (2014). Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmospheric Science Letters, n/a-n/a. doi:10.1002/asl2.496Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399-413. doi:10.1016/j.ins.2009.10.001Wan, Y., Namuduri, K., Zhou, Y., & Fu, S. (2013). A Smooth-Turn Mobility Model for Airborne Networks. IEEE Transactions on Vehicular Technology, 62(7), 3359-3370. doi:10.1109/tvt.2013.2251686Briante, O., Loscri, V., Pace, P., Ruggeri, G., & Zema, N. R. (2015). COMVIVOR: An Evolutionary Communication Framework Based on Survivors’ Devices Reuse. Wireless Personal Communications, 85(4), 2021-2040. doi:10.1007/s11277-015-2888-yMeier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., & Pollefeys, M. (2012). PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision. Autonomous Robots, 33(1-2), 21-39. doi:10.1007/s10514-012-9281-4BoussaĂŻd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82-117. doi:10.1016/j.ins.2013.02.041Stein, M. L. (1999). Interpolation of Spatial Data. Springer Series in Statistics. doi:10.1007/978-1-4612-1494-

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Contributions to Wireless multi-hop networks : Quality of Services and Security concerns

    Get PDF
    Ce document rĂ©sume mes travaux de recherche conduits au cours de ces 6 derniĂšres annĂ©es. Le principal sujet de recherche de mes contributions est la conception et l’évaluation des solutions pour les rĂ©seaux sans fil multi-sauts en particulier les rĂ©seaux mobiles adhoc (MANETs), les rĂ©seaux vĂ©hiculaires ad hoc (VANETs), et les rĂ©seaux de capteurs sans fil (WSNs). La question clĂ© de mes travaux de recherche est la suivante : « comment assurer un transport des donnĂ©es e cace en termes de qualitĂ© de services (QoS), de ressources Ă©nergĂ©tiques, et de sĂ©curitĂ© dans les rĂ©seaux sans fil multi-sauts? » Pour rĂ©pondre Ă  cette question, j’ai travaillĂ© en particulier sur les couches MAC et rĂ©seau et utilisĂ© une approche inter-couches.Les rĂ©seaux sans fil multi-sauts prĂ©sentent plusieurs problĂšmes liĂ©s Ă  la gestion des ressources et au transport des donnĂ©es capable de supporter un grand nombre de nƓuds, et d’assurer un haut niveau de qualitĂ© de service et de sĂ©curitĂ©.Dans les rĂ©seaux MANETs, l’absence d’infrastructure ne permet pas d’utiliser l’approche centralisĂ©e pour gĂ©rer le partage des ressources, comme l’accĂšs au canal.Contrairement au WLAN (rĂ©seau sans fil avec infrastructure), dans les rĂ©seaux Ad hoc les nƓuds voisins deviennent concurrents et il est di cile d’assurer l’équitĂ© et l’optimisation du dĂ©bit. La norme IEEE802.11 ne prend pas en compte l’équitĂ© entre les nƓuds dans le contexte des MANETs. Bien que cette norme propose di Ă©rents niveaux de transmission, elle ne prĂ©cise pas comment allouer ces dĂ©bits de maniĂšre e cace. En outre, les MANETs sont basĂ©s sur le concept de la coopĂ©ration entre les nƓuds pour former et gĂ©rer un rĂ©seau. Le manque de coopĂ©ration entre les nƓuds signifie l’absence de tout le rĂ©seau. C’est pourquoi, il est primordial de trouver des solutions pour les nƓuds non-coopĂ©ratifs ou Ă©goĂŻstes. Enfin, la communication sans fil multi-sauts peut participer Ă  l’augmentation de la couverture radio. Les nƓuds de bordure doivent coopĂ©rer pour transmettre les paquets des nƓuds voisins qui se trouvent en dehors de la zone de couverture de la station de base.Dans les rĂ©seaux VANETs, la dissĂ©mination des donnĂ©es pour les applications de suretĂ© est un vrai dĂ©fi. Pour assurer une distribution rapide et globale des informations, la mĂ©thode de transmission utilisĂ©e est la di usion. Cette mĂ©thode prĂ©sente plusieurs inconvĂ©nients : perte massive des donnĂ©es due aux collisions, absence de confirmation de rĂ©ception des paquets, non maĂźtrise du dĂ©lai de transmission, et redondance de l’information. De plus, les applications de suretĂ© transmettent des informations critiques, dont la fiabilitĂ© et l’authenticitĂ© doivent ĂȘtre assurĂ©es.Dans les rĂ©seaux WSNs, la limitation des ressources (bande passante, mĂ©moire, Ă©nergie, et capacitĂ© de calcul), ainsi que le lien sans fil et la mobilitĂ© rendent la conception d’un protocole de communication e cace di cile. Certaines applications nĂ©cessitent un taux important de ressources (dĂ©bit, Ă©nergie, etc) ainsi que des services de sĂ©curitĂ©, comme la confidentialitĂ© et l’intĂ©gritĂ© des donnĂ©es et l’authentification mutuelle. Ces paramĂštres sont opposĂ©s et leur conciliation est un vĂ©ritable dĂ©fi. De plus, pour transmettre de l’information, certaines applications ont besoin de connaĂźtre la position des nƓuds dans le rĂ©seau. Les techniques de localisation sou rent d’un manque de prĂ©cision en particulier dans un environnement fermĂ© (indoor), et ne permettent pas de localiser les nƓuds dans un intervalle de temps limitĂ©. Enfin, la localisation des nƓuds est nĂ©cessaire pour assurer le suivi d’objet communicant ou non. Le suivi d’objet est un processus gourmand en Ă©nergie, et requiert de la prĂ©cision.Pour rĂ©pondre Ă  ces dĂ©fis, nous avons proposĂ© et Ă©valuĂ© des solutions, prĂ©sentĂ©es de la maniĂšre suivante : l’ensemble des contributions dĂ©diĂ©es aux rĂ©seaux MANETs est prĂ©sentĂ© dans le deuxiĂšme chapitre. Le troisiĂšme chapitre dĂ©crit les solutions apportĂ©es dans le cadre des rĂ©seaux VANETs. Enfin, les contributions liĂ©es aux rĂ©seaux WSNs sont prĂ©sentĂ©es dans le quatriĂšme chapitre

    Survey and taxonomy of clustering algorithms in 5G

    Get PDF
    The large-scale deployment of fifth generation (5G) is expected to produce a massive amount of data with high variability due to ultra-densification and the rapid increase in a heterogeneous range of applications and services (e.g., virtual reality, augmented reality, and driver-less vehicles), and network devices (e.g., smart gadgets and sensors). Clustering organizes network topology by segregating nodes with similar interests or behaviors in a network into logical groups in order to achieve network-level and cluster-level enhancements, particularly cluster stability, load balancing, social awareness, fairness, and quality of service. Clustering has been investigated to support mobile user equipment (UE) in access networks, whereby UEs form clusters themselves and may connect to BSs. In this paper, we present a comprehensive survey of the research work of clustering schemes proposed for various scenarios in 5G networks and highlight various aspects of clustering schemes, including objectives, challenges, metrics, characteristics, performance measures. Furthermore, we present open issues of clustering in 5G

    Um mecanismo de provisionamento de serviços com controle de demanda para a internet das coisas

    Get PDF
    The Internet of Things (IoT) challenges network scalability, given the huge number of connected devices, and also creates a fertile scenario to explore redundant resources for service robustness increasing. Consequently, new IoT protocols have been proposed, being CoAP (Constrained Application Protocol) one of the most important for the application layer. In this work, we present a leading scalability analysis of CoAP in a network composed only by constrained devices to show the influence of network configuration parameters on the protocol performance. Moreover, we propose a service provisioning mechanism with demand control divided into two main components. The first component runs at the CoAP server and controls the demand and the selection of observers (clients that subscribe at the server to receive notifications about a resource). This component is based on the radio duty-cycle at the server and its energy consumption for operation mode switching while delivering services. The second component, on the other hand, runs at the client and conducts CoAP servers selection and switching. This component uses CoAP capabilities to switch servers, by following a sorted list of IP addresses obtained from a central infrastructure. This list is built according to the application requirements and is stored at the client. The mechanism is evaluated in a simulator designed for IoT (Cooja) and the results obtained show a significant reduction on energy consumption at the server compared with traditional CoAP. The mechanism also increases the reliability and the robustness of the IoT service provisioning and, furthermore allows energy consumption balance among the servers.A Internet das Coisas (Internet of Things - IoT) desafia a escalabilidade em rede, dado o enorme nĂșmero de dispositivos interconectados, e cria um cenĂĄrio fĂ©rtil para exploração de recursos redundantes para aumentar a robustez dos serviços. Consequentemente, novos protocolos veem sendo propostos, sendo o CoAP (Constrained Application Protocol) um dos principais de IoT para a camada de aplicação. Este trabalho apresenta uma anĂĄlise pioneira de escalabilidade do CoAP em uma rede composta somente por dispositivos limitados, mostrando a influĂȘncia dos parĂąmetros de configuração da rede no desempenho do protocolo. Mais ainda, este trabalho propĂ”e um mecanismo de provisionamento de serviços com controle de demanda, o qual Ă© subdividido em dois componentes principais, sendo o primeiro executado no servidor e o segundo no cliente. O primeiro componente faz o controle de demanda e a seleção de observadores (clientes que se registram para receberem notificaçÔes sobre um recurso do servidor), baseando-se no ciclo de trabalho do rĂĄdio do servidor e no seu consumo de energia para definir o modo de operação no provimento dos serviços. O segundo componente, por sua vez, faz a seleção e comutação de servidores CoAP. As funçÔes do prĂłprio CoAP sĂŁo usadas para realizar a comutação dos servidores, seguindo uma lista ordenada de endereços IP obtida a partir de uma infraestrutura central. Essa lista Ă© construĂ­da com base nos requisitos da aplicação e fica armazenada no cliente. O mecanismo Ă© avaliado em um simulador especĂ­fico de IoT (Cooja) e os resultados mostram uma redução significativa no consumo de energia do servidor em comparação ao CoAP tradicional. O mecanismo tambĂ©m aumenta a confiabilidade e a robustez na obtenção de serviços de IoT, alĂ©m de permitir o balanceamento do consumo de energia entre os servidores

    H3N - Analysewerkzeuge fĂŒr hybride Wegewahl in heterogenen, unterbrechungstoleranten Ad-Hoc-Netzen fĂŒr RettungskrĂ€fte

    Get PDF
    RettungskrĂ€fte mĂŒssen unter widrigen Bedingungen zuverlĂ€ssig kommunizieren können, um in RettungseinsĂ€tzen effizient arbeiten zu können und somit Leben zu retten. Idealerweise ist dazu ein selbstorganisiertes Ad-Hoc-Netz notwendig, weil die Kommunikationsinfrastruktur ggf. beschĂ€digt oder ĂŒberlastet sein kann. Um die geforderte Robustheit der Kommunikation auch in Szenarien mit grĂ¶ĂŸeren zu ĂŒberbrĂŒckenden Entfernungen zu gewĂ€hrleisten, werden zusĂ€tzlich Mechanismen benötigt, die eine Unterbrechungstoleranz ermöglichen. Verzögerungstolerante Netze (engl. Delay Tolerant Networks, kurz: DTN) stellen solche Mechanismen bereit, erfordern aber zusĂ€tzliche Verzögerungen, die fĂŒr Rettungskommunikation nachteilig sind. Deshalb werden intelligente hybride Wegewahlverfahren benötigt, um die Verzögerung durch DTN-Mechanismen zu begrenzen. Außerdem sollten entsprechende Verfahren heterogene Netze unterstĂŒtzen. Das ermöglicht zusĂ€tzlich eine effizientere Weiterleitung durch die Nutzung von GerĂ€ten mit unterschiedlichen Kommunikationstechnologien und damit auch Reichweiten. Um solche Systeme und die dafĂŒr benötigten Kommunikationsprotokolle zu entwickeln, werden verschiedene Analysewerkzeuge genutzt. Dazu gehören analytische Modelle, Simulationen und Experimente auf der Zielsystemhardware. FĂŒr jede Kategorie gibt es verschiedene Werkzeuge und Frameworks, die sich auf unterschiedliche Aspekte fokussieren. Dadurch unterstĂŒtzen diese herkömmlichen Analysemethoden jedoch meistens nur einen der oben genannten Punkte, wĂ€hrend die Untersuchung von hybriden und/oder heterogenen AnsĂ€tzen und Szenarien nicht ohne weiteres möglich ist. Im Falle von RettungskrĂ€ften kommt hinzu, dass die charakteristischen Merkmale hinsichtlich der Bewegung der Knoten und des erzeugten Datenverkehrs wĂ€hrend eines Einsatzes ebenfalls nicht modelliert werden können. In dieser Arbeit werden deshalb verschiedene Erweiterungen zu existierenden Analysewerkzeugen sowie neue Werkzeuge zur Analyse und Modelle zur Nachbildung realistischer Rettungsmissionen untersucht und entwickelt. Ziel ist es, die Vorteile existierender Werkzeuge miteinander zu kombinieren, um ganzheitliche, realitĂ€tsnahe Untersuchungen von hybriden Protokollen fĂŒr heterogene Netze zu ermöglichen. Die Kombination erfolgt in Form von gezielten Erweiterungen und der Entwicklung ergĂ€nzender komplementĂ€rer Werkzeuge unter Verwendung existierender Schnittstellen. Erste Ergebnisse unter Verwendung der entwickelten Werkzeuge zeigen Verbesserungspotentiale bei der Verwendung traditioneller Protokolle und erlauben die Bewertung zusĂ€tzlicher Maßnahmen, um die Kommunikation zu verbessern. Szenarien zur Kommunikation von RettungskrĂ€ften werden dabei als ein Beispiel verwendet, die Tools sind jedoch nicht auf die Analyse dieses Anwendungsfalls beschrĂ€nkt. Über die reine Analyse verschiedener existierender AnsĂ€tze hinaus bildet die entwickelte Evaluationsumgebung eine Grundlage fĂŒr die Entwicklung und Verifikation von neuartigen hybriden Protokollen fĂŒr die entsprechenden Systeme.Communication between participating first responders is essential for efficient coordination of rescue missions and thus allowing to save human lives. Ideally, ad hoc-style communication networks are applied to this as the first responders cannot rely on infrastructure-based communication for two reasons. First, the infrastructure could be damaged by the disastrous event or not be available for economic reasons. Second, even if public infrastructure is available and functional, it might be overloaded by users. To guarantee the robustness and reliability requirements of first responders, the Mobile Ad Hoc Networks (MANETs) have to be combined with an approach to mitigate intermittent connectivity due to otherwise limited connectivity. Delay Tolerant Networks (DTNs) provide such a functionality but introduce additional delay which is problematic. Therefore, intelligent hybrid routing approaches are required to limit the delay introduced by DTN mechanisms. Besides that, the approach should be applicable to heterogeneous networks in terms of communication technologies and device capabilities. This is required for cross multi-agency and volunteer communication but also enables the opportunistic exploitation of any given communication option. To evaluate such systems and develop the corresponding communication protocols, various tools for the analysis are available. This includes analytical models, simulations and real-world experiments on target hardware. In each category a wide set of tools is available already. However, each tool is focused on specific aspects usually and thus does not provide methods to analyze hybrid approaches out of the box. Even if the tools are modular and allow an extension, there are often other tools that are better suited for partial aspects of hybrid systems. In addition to this, few tools exist to model the characteristics of first responder networks. Especially the generalized movement during missions and the generated data traffic are difficult to model and integrate into analyses. The focus of this project is therefore to develop selected extensions to existing analysis and simulation tools as well as additional tools and models to realistically capture the characteristics of first responder networks. The goal is to combine the advantages of existing specialized simulation tools to enable thorough evaluations of hybrid protocols for heterogeneous networks based on realistic assumptions. To achieve this, the tools are extended by specifically designing tools that enable the interaction between tools and new tools that complement the existing analysis capabilities. First results obtained via the resulting toolbox clearly indicate further research directions as well as a potential for protocol enhancements. Besides that, the toolbox was used to evaluate various methods to enhance the connectivity between nodes in first responder networks. First responder scenarios are used as an example here. The toolbox itself is however not limited to this use case. In addition to the analysis of existing approaches for hybrid and heterogeneous networks, the developed toolbox provides a base framework for the development and verification of newly developed protocols for such use cases
    corecore