56 research outputs found

    Development of level set methods for computing the semiclassical limit of Schrödinger equations with potentials

    Get PDF
    In this thesis, several level set methods are developed and analyzed for computing multi-valued solutions to the semiclassical limits of Schroedinger equations. Both formulation and numerical results are obtained for level set method. Superposition is also proved via let set method setting. Meanwhile, multi-valued solutions of the Euler-Poisson equations are also analyzed and computed using level set formulation via field space. Multi-scale computation and homogenization are studied for a class of Schroedinger equations. A Bloch band based level set method is developed with a series of numerical examples

    Exact Dynamics and Shortcuts to Adiabaticity in the Tomonaga-Luttinger Liquid

    Full text link
    Controlling many-body quantum systems is a highly challenging task required to advance quantum technologies. Here, we report progress in controlling gapless many-body quantum systems described by the Tomonaga-Luttinger liquid (TLL). To do so, we investigate the exact dynamics of the TLL induced by an interaction quench, making use of the SU(1,1)SU(1,1) dynamical symmetry group and the Schr\"odinger picture. First, we demonstrate that this approach is useful to perform a shortcut to adiabaticity, that cancels the final non-adiabatic residual energy of the driven TLL and is experimentally implementable in the semiclassical limit of the sine-Gordon model. Second, we apply this framework to analyze various driving schemes in finite time, including linear ramps and smooth protocols.Comment: 14+11 pages, 10 figure

    Semiclassical Nonadiabatic Dynamics with Quantum Trajectories

    Get PDF
    Dynamics based on quantum trajectories with approximate quantum potential is generalized to nonadiabatic systems and its semiclassical properties are discussed. The formulation uses the mixed polar-coordinate space representation of a wave function. The polar part describes the overall time evolution of the wave-function components semiclassically using the single-surface approximate quantum potential. The coordinate part represents a complex“population” amplitude, which in case of localized coupling can be solved for quantum mechanically in an efficient manner. In the high-energy regime this is accomplished by using a small basis determined by the coupling between surfaces. An illustration is given for a typical curve-crossing problem. The energy-resolved probabilities obtained from the time evolution of two wave packets for a wide range of energies are in excellent agreement with exact results for energies above the threshold of the diabatic reaction, including the case of total nonadiabatic transition

    Geometric Integrators for Schrödinger Equations

    Full text link
    The celebrated Schrödinger equation is the key to understanding the dynamics of quantum mechanical particles and comes in a variety of forms. Its numerical solution poses numerous challenges, some of which are addressed in this work. Arguably the most important problem in quantum mechanics is the so-called harmonic oscillator due to its good approximation properties for trapping potentials. In Chapter 2, an algebraic correspondence-technique is introduced and applied to construct efficient splitting algorithms, based solely on fast Fourier transforms, which solve quadratic potentials in any number of dimensions exactly - including the important case of rotating particles and non-autonomous trappings after averaging by Magnus expansions. The results are shown to transfer smoothly to the Gross-Pitaevskii equation in Chapter 3. Additionally, the notion of modified nonlinear potentials is introduced and it is shown how to efficiently compute them using Fourier transforms. It is shown how to apply complex coefficient splittings to this nonlinear equation and numerical results corroborate the findings. In the semiclassical limit, the evolution operator becomes highly oscillatory and standard splitting methods suffer from exponentially increasing complexity when raising the order of the method. Algorithms with only quadratic order-dependence of the computational cost are found using the Zassenhaus algorithm. In contrast to classical splittings, special commutators are allowed to appear in the exponents. By construction, they are rapidly decreasing in size with the semiclassical parameter and can be exponentiated using only a few Lanczos iterations. For completeness, an alternative technique based on Hagedorn wavepackets is revisited and interpreted in the light of Magnus expansions and minor improvements are suggested. In the presence of explicit time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algorithm requires a special initiation step. Distinguishing the case of smooth and fast frequencies, it is shown how to adapt the mechanism to obtain an efficiently computable decomposition of an effective Hamiltonian that has been obtained after Magnus expansion, without having to resolve the oscillations by taking a prohibitively small time-step. Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as an initial value problem after a Wick-rotating the Schrödinger equation to imaginary time. The elliptic nature of the evolution operator restricts standard splittings to low order, ¿ < 3, because of the unavoidable appearance of negative fractional timesteps that correspond to the ill-posed integration backwards in time. The inclusion of modified potentials lifts the order barrier up to ¿ < 5. Both restrictions can be circumvented using complex fractional time-steps with positive real part and sixthorder methods optimized for near-integrable Hamiltonians are presented. Conclusions and pointers to further research are detailed in Chapter 6, with a special focus on optimal quantum control.Bader, PK. (2014). Geometric Integrators for Schrödinger Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/38716TESISPremios Extraordinarios de tesis doctorale

    The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series

    Full text link
    Singular perturbation methods, such as the method of multiple scales and the method of matched asymptotic expansions, give series in a small parameter ε which are asymptotic but (usually) divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and explain how this knowledge can be exploited to generate a 'hyperasymptotic' approximation. This adds a second asymptotic expansion, with different scaling assumptions about the size of various terms in the problem, to achieve a minimum error much smaller than the best possible with the original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal solitary waves are used as an illustration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pd

    RĂ©flexion quantique sur le potentiel de Casimir-Polder

    Get PDF
    Collisions between ultracold atoms and material surfaces are characterized by the reflection of the atomic matter wave from the attractive Casimir-Polder potential. This quantum reflection is particularly relevant to experiments such as GBAR, which will determine the gravitational acceleration of a cold antihydrogen atom by timing its fall onto a detection plate. In this thesis, the Casimir-Polder potential is computed from the electromagnetic scattering properties of the atom and surface and it is found to depend notably on the dielectric response, thickness and density of the medium. We show that reflection on this potential is associated with a breakdown of the semiclassical approximation and that it is enhanced for slow atoms and weak potentials. Liouville transformations relate Schrödinger equations with different potential landscapes but identical scattering properties. We gain new insights on the problem of quantum reflection on a potential well by mapping it onto an equivalent problem of tunneling through a wall. We also discuss the effect of gravity on the atomic wavepacket and its implications for free fall experiments with atoms. When combined with quantum reflection from a horizontal mirror, gravity can be used to trap particles in long lived states with promising applications for metrology. In particular, we suggest a scheme to improve the precision of the GBAR experiment by reducing the velocity dispersion of the falling atoms.Les collisions entre atomes ultrafroids et surfaces matérielles sont caractérisées par la réflexion de l'onde de matière atomique sur le potentiel attractif de Casimir-Polder. Cette réflexion quantique est déterminante pour des expériences telles que GBAR, qui mesurera l'accélération d'un atome d'antihydrogène froid chutant vers une plaque de détection. Dans cette thèse, le potentiel de Casimir-Polder est calculé à partir des propriétés de diffusion électromagnétique de l'atome et de la surface. Il s'avère dépendre de la réponse diélectrique, de l'épaisseur et de la densité du milieu. Nous montrons que la réflexion sur ce potentiel est associée à une rupture de l'approximation semiclassique et qu'elle augmente pour des atomes lents et des potentiels faibles. Les transformations de Liouville relient des équations de Schrödinger avec des potentiels différents mais les mêmes amplitudes de diffusion. L'équivalence entre la réflexion quantique sur un puits de potentiel et l'effet tunnel à travers une barrière offre de nouvelles perspectives sur le problème. Nous discutons aussi des effets de la gravité sur le paquet d'onde atomique et de ses conséquences pour les expériences avec des atomes en chute libre. Associée à la réflexion quantique sur un miroir horizontal, la gravité permet de maintenir des particules dans des états à longue durée de vie aux applications prometteuses pour la métrologie. En particulier, nous proposons un système pour améliorer la précision de GBAR en réduisant la dispersion en vitesse des atomes d'antihydrogène

    Quantum Cosmology

    Get PDF
    Within the second half of the last century, quantum cosmology concretely became one of the main research lines within gravitational theory and cosmology. Substantial progress has been made. Furthermore, quantum cosmology can become a domain that will gradually develop further over the next handful of decades, perhaps assisted by technological developments. Indications for new physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and then the observable universe would surely be seen from quite a new perspective. This motivates bringing quantum cosmology to more research groups and individuals.This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing observational tests, providing an aggregated set of contributions, covering several lines, some of which are thoroughly explored, some allowing progress, and others much unexplored. The aim of this SI is motivate new researchers to employ and further develop quantum cosmology over the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will assist new interested researchers, in having a single open access online volume, with reviews that can help. In particular, this will help in selecting what to explore, what to read in more detail, where to proceed, and what to investigate further within quantum cosmology

    Modélisation Mathématique et Simulation Numérique de Systèmes Fluides Quantiques

    Get PDF
    The PhD thesis is concerned with the study of a new class of quantum transport models: the quantum fluid models derived from the entropy principle. These models have been derived in two articles published in 2003 and 2005 by Degond, Méhats and Ringhofer in the Journal of Statistical Physics, by adapting to the quantum framework the moment method developed by Levermore in the classical framework. This method consists in taking the moments of the Quantum Liouville equation and closing this system by a local equilibrium (or quantum Maxwellian) defined as the minimizer of a quantum entropy with constraints on some physical quantities such as the mass, current, and energy. The main interest of such macroscopic models is their low cost in terms of numerical implementation compared to microscopic models such as the Schrödinger equation or the Wigner equation. Moreover, such models take implicitly into account collisions which are much more difficult to handle with quantum microscopic models. The goal of this thesis is thus to propose numerical methods to implement these models and to test them on some physical devices.We have started in chapter I by proposing a discretization for the most simple of these models which is the Quantum Drift-Diffusion model on a closed domain. We have then decided in chapter II and III to apply this model to electron transport in semiconductors by choosing as open device the resonant tunneling diode. We have then studied in chapter IV the Isothermal Quantum Euler model, before considering in chapter V the study of non isothermal models such as the Quantum Hydrodynamic and the Quantum Energy Transport models. Finally, chapter VI is concerned with a slightly different problem which is the implementation of an asymptotically stable scheme in the semiclassical limit for the fluid formulation of the Schrödinger equation: the Madelung system.Le sujet de la thèse porte sur l'étude d'une nouvelle classe de modèles de transport quantique: les modèles fluides quantiques issus du principe de minimisation d'entropie. Ces modèles ont été dérivés dans deux articles publiés en 2003 et 2005 par Degond, Méhats et Ringhofer dans Journal of Statistical Physics en adaptant au cadre de la théorie quantique la méthode des moments développée par Levermore dans le cadre classique. Cette méthode consiste à prendre les moments de l'équation de Liouville quantique et à fermer ce système par un équilibre local (ou Maxwellienne quantique) défini comme minimiseur d'une certaine entropie quantique sous contrainte de conservation de certaines quantités physiques comme la masse, le courant, et l'énergie. Le principal intérêt des modèles quantiques ainsi obtenus provient du fait qu'étant macroscopiques, ils sont biens moins coûteux numériquement que des modèles microscopiques comme l'équation de Schrödinger ou l'équation de Wigner, et de plus, ils prennent en compte implicitement des effets de collision bien plus difficiles à modéliser à un niveau microscopique. Le but de cette thèse est donc de proposer des méthodes numériques pour implémenter ces modèles et de les tester sur des dispositifs physiques adéquats.Nous avons donc commencé dans le chapitre I par proposer une discrétisation du plus simple de ces modèles qu'est le modèle de Dérive-Diffusion Quantique sur un domaine fermé. Puis nous avons décidé dans le chapitre II et III d'appliquer ce modèle au transport d'électrons dans les semiconducteurs en choisissant comme dispositif ouvert la diode à effet tunnel résonnant. Ensuite nous nous sommes intéressés au chapitre IV à l'étude et l'implémentation du modèle d'Euler Quantique Isotherme, avant de s'attaquer aux modèles non isothermes dans le chapitre V avec l'étude des modèles d'Hydrodynamique Quantique et de Transport d'Énergie Quantique. Enfin, le chapitre VI s'intéresse à un problème un petit peu différent en proposant un schéma asymptotiquement stable dans la limite semi-classique pour l'équation de Schrödinger écrite dans sa formulation fluide: le système de Madelung
    • …
    corecore