125 research outputs found

    PRECISE YET SCALABLE RESOURCE ANALYSIS VIA SYMBOLIC EXECUTION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF

    TIME-PREDICTABLE EXECUTION OF EMBEDDED SOFTWARE ON MULTI-CORE PLATFORMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Hardware/Software Codesign of Embedded Systems with Reconfigurable and Heterogeneous Platforms

    Full text link

    Deployment and Debugging of Real-Time Applications on Multicore Architectures

    Get PDF
    It is essential to enable information extraction from software. Program tracing techniques are an example of information extraction. Program tracing extracts information from the program during execution. Tracing helps with the testing and validation of software to ensure that the software under test is correct. Information extraction is done by instrumenting the program. Logged information can be stored in dedicated logging memories or can be buffered and streamed off-chip to an external monitor. The designer inspects the trace after execution to identify potentially erroneous state information. In addition, the trace can provide the state information that serves as input to generate the erroneous output for reproducibility. Information extraction can be difficult and expensive due to the increase in size and complexity of modern software systems. For the sub-class of software systems known as real-time systems, these issues are further aggravated. This is because real-time systems demand timing guarantees in addition to functional correctness. Consequently, any instrumentation to the original program code for the purpose of information extraction may affect the temporal behaviors of the program. This perturbation of temporal behaviors can lead to the violation of timing constraints, which may bias the program execution and/or cause the program to miss its deadline. As a result, there is considerable interest in devising techniques to allow for information extraction without missing a program’s deadline that is known as time-aware instrumentation. This thesis investigates time-aware instrumentation mechanisms to instrument programs while respecting their timing constraints and functional behavior. Knowledge of the underlying hardware on which the software runs, enables the extraction of more information via the instrumentation process. Chip-multiprocessors offer a solution to the performance bottleneck on uni-processors. Providing timing guarantees for hard real-time systems, however, on chip-multiprocessors is difficult. This is because conventional communication interconnects are designed to optimize the average-case performance. Therefore, researchers propose interconnects such as the priority-aware networks to satisfy the requirements of hard real-time systems. The priority-aware interconnects, however, lack the proper analysis techniques to facilitate the deployment of real-time systems. This thesis also investigates latency and buffer space analysis techniques for pipelined communication resource models, as well as algorithms for the proper deployment of real-time applications to these platforms. The analysis techniques proposed in this thesis provide guarantees on the schedulability of real-time systems on chip-multiprocessors. These guarantees are based on reducing contention in the interconnect while simultaneously accurately computing the worst-case communication latencies. While these worst-case latencies provide bounds for computing the overall worst-case execution time of applications on chip-multiprocessors, they also provide means to assigning instrumentation budgets required by time-aware instrumentation. Leveraging these platform-specific analysis techniques for the assignment of instrumentation budgets, allows for extracting more information from the instrumentation process

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems
    corecore