9 research outputs found

    The Heptane Static Worst-Case Execution Time Estimation Tool

    Get PDF
    Estimation of worst-case execution times (WCETs) is required to validate the temporal behavior of hard real time systems. Heptane is an open-source software program that estimates upper bounds of execution times on MIPS and ARM v7 architectures, offered to the WCET estimation community to experiment new WCET estimation techniques. The software architecture of Heptane was designed to be as modular and extensible as possible to facilitate the integration of new approaches. This paper is devoted to a description of Heptane, and includes information on the analyses it implements, how to use it and extend it

    WCET Analysis of Multi-Level Set-Associative Data Caches

    Get PDF
    Nowadays, the presence of cache hierarchies tends to be a common trend in processor architectures, even in hardware for real-time embedded systems. Caches are used to fill the gap between the processor and the main memory, reducing access times based on spatial and temporal locality properties of tasks. Cache hierarchies are going even further however at the price of increased complexity. In this paper, we present a safe static data cache analysis method for hierarchies of non-inclusive caches. Using this method, we show that considering the cache hierarchy in the context of data caches allows tighter estimates of the worst case execution time than when considering only the first cache level. We also present considerations about the update policy for data caches

    Exploring average-case and probabilistic worst-case performance of time randomised caches and their associated overheads

    Get PDF
    In this work we focus on the analysis of performance in the context of Probabilistic Timing Analysis (PTA) from different angles. First, we model and evaluate average performance of time-randomised caches used in the context of PTA. Second, we quantify the time overheads of applying some PTA method

    Architecture multi-coeurs et temps d'exécution au pire cas

    Get PDF
    Les tâches critiques en systèmes temps-réel sont soumises à des contraintes temporelles et de correction. La validation d'un tel système repose sur l'estimation du comportement temporel au pire cas de ses tâches. Le partage de ressources, inhérent aux architectures multi-cœurs, entrave le calcul de ces estimations. Le comportement temporel d'une tâche dépend de ses rivales du fait de l'arbitrage de l'accès aux ressources ou de modifications concurrentes de leur état. Cette étude vise à l'estimation de la contribution temporelle de la hiérarchie mémoire au pire temps d'exécution de tâches critiques. Les méthodes existantes, pour caches d'instructions, sont étendues afin de supporter caches de données privés et partagés, et permettre l'analyse de hiérarchies mémoires riches. Le court-circuitage de cache est ensuite utilisé pour réduire la pression sur les caches partagés. Nous proposons à cette fin différentes heuristiques basées sur la capture de la réutilisation de blocs de cache entre différents accès mémoire. Notre seconde proposition est la politique de partitionnement Preti qui permet l'allocation d'un espace sans conflits à une tâche. Preti favorise aussi les performances de tâches non critiques concurrentes aux temps-réel dans les systèmes de criticité hybride.Critical tasks in the context of real-time systems submit to both timing and correctness constraints. Whence, the validation of a real-time system rely on the estimation of its tasks Worst case execution times. Resource sharing, as it occurs on multicore architectures, hinders the computation of such estimates. The timing behaviour of a task is impacted by its concurrents, whether because of resource access arbitration or concurrent modifications of a resource state. This study focuses on estimating the contribution of the memory hierarchy to tasks worst case execution time. Existing analysis methods, defined for instruction caches, are extended to support private and shared data caches, hence allowing for the analysis of rich memory hierarchies. Cache bypass is then used to reduce the pressure laid by concurrent tasks on shared caches levels. We propose different bypass heuristics, based on the capture of cache blocks reuse between memory accesses. Our second proposal is the Preti partitioning scheme which allows for the allocation to tasks of a cache space, free from inter-task conflicts. Preti offers the added benefit of providing for average-case performance to non-critical tasks concurrent to real-time ones on hybrid criticality systems.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Instruction Cache Optimizations in Embedded Real-Time Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cache persistence analysis for embedded real-time systems

    Get PDF
    To compute a worst-case execution time (WCET) estimate for a program running on a safety-critical hard real-time system, the effects of the architecture of the underlying hardware have to be modeled. The classical cache analysis distinguishes three categories for memory references to cached memory: always-hit, always-miss and not-classified. The cache persistence analysis tries to classify memory references as persistent thereby improving the classical cache analysis by limiting the number of misses for not-classified memory references. We present several new abstract interpretation based cache persistence analyses. Two are based on the concept of conflict counting, one on the may cache analysis, and one combines both concepts. All analyses also fix a correctness issue of the original cache persistence analysis by Ferdinand and Wilhelm. For non-fully-timing-compositional architectures using the persistence information is not straightforward. A novel path analysis enables the use of persistence information also for state-of-the-art architectures that exhibit timing anomalies / domino effects. The new analyses are practically evaluated within the industrially used WCET analyzer aiT on a series of standard benchmark programs and a series of real avionic examples.Um eine obere Schranke für die Laufzeit eines Programms (WCET) auf einem sicherheitskritischen harten Echtzeit-System zu berechnen, müssen die Effekte der Architektur der zugrunde liegenden Hardware modelliert werden. Die klassische Cache-Analyse unterscheidet drei Kategorien für Speicherreferenzen: always-hit, always-miss und not-classified. Die Cache-Persistenz-Analyse versucht, die klassische Cache-Analyse zu verbessern, in dem sie not-classified Speicherreferenzen als persistent klassifiziert und damit die Zahl der möglichen Cache-Fehlzugriffe beschränkt. Wir stellen mehrere neuartige auf abstrakter Interpretation basierende Cache-Persistenz-Analysen vor. Zwei basieren auf dem Konzept des Zählens von Konflikten, eine auf der May-Cache Analyse und die letzte kombiniert beide Ansätze miteinander. Alle Analysen korrigieren auch einen Fehler in der ursprünglichen Cache-Persistenz-Analyse von Ferdinand und Wilhelm. Für non-fully-timing-compositional Architekturen ist die Persistenz nicht einfach zu benutzen. Eine neue Pfadanalyse erlaubt die Benutzung der Persistenz auch für aktuelle Architekturen, bei denen sowohl Timing-Anomalien als auch Domino-Effekte auftreten können. Die vorgestellten Analysen werden innerhalb des industriell verwendeten WCET-Analysators aiT auf einer Reihe von Standard-Benchmark-Programmen und realen Avionic-Anwendungen evaluiert

    Enabling caches in probabilistic timing analysis

    Get PDF
    Hardware and software complexity of future critical real-time systems challenges the scalability of traditional timing analysis methods. Measurement-Based Probabilistic Timing Analysis (MBPTA) has recently emerged as an industrially-viable alternative technique to deal with complex hardware/software. Yet, MBPTA requires certain timing properties in the system under analysis that are not satisfied in conventional systems. In this thesis, we introduce, for the first time, hardware and software solutions to satisfy those requirements as well as to improve MBPTA applicability. We focus on one of the hardware resources with highest impact on both average performance and Worst-Case Execution Time (WCET) in current real-time platforms, the cache. In this line, the contributions of this thesis follow three different axes: hardware solutions and software solutions to enable MBPTA, and MBPTA analysis enhancements in systems featuring caches. At hardware level, we set the foundations of MBPTA-compliant processor designs, and define efficient time-randomised cache designs for single- and multi-level hierarchies of arbitrary complexity, including unified caches, which can be time-analysed for the first time. We propose three new software randomisation approaches (one dynamic and two static variants) to control, in an MBPTA-compliant manner, the cache jitter in Commercial off-the-shelf (COTS) processors in real-time systems. To that end, all variants randomly vary the location of programs' code and data in memory across runs, to achieve probabilistic timing properties similar to those achieved with customised hardware cache designs. We propose a novel method to estimate the WCET of a program using MBPTA, without requiring the end-user to identify worst-case paths and inputs, improving its applicability in industry. We also introduce Probabilistic Timing Composability, which allows Integrated Systems to reduce their WCET in the presence of time-randomised caches. With the above contributions, this thesis pushes the limits in the use of complex real-time embedded processor designs equipped with caches and paves the way towards the industrialisation of MBPTA technology.La complejidad de hardware y software de los sistemas críticos del futuro desafía la escalabilidad de los métodos tradicionales de análisis temporal. El análisis temporal probabilístico basado en medidas (MBPTA) ha aparecido últimamente como una solución viable alternativa para la industria, para manejar hardware/software complejo. Sin embargo, MBPTA requiere ciertas propiedades de tiempo en el sistema bajo análisis que no satisfacen los sistemas convencionales. En esta tesis introducimos, por primera vez, soluciones hardware y software para satisfacer estos requisitos como también mejorar la aplicabilidad de MBPTA. Nos centramos en uno de los recursos hardware con el máximo impacto en el rendimiento medio y el peor caso del tiempo de ejecución (WCET) en plataformas actuales de tiempo real, la cache. En esta línea, las contribuciones de esta tesis siguen 3 ejes distintos: soluciones hardware y soluciones software para habilitar MBPTA, y mejoras de el análisis MBPTA en sistemas usado caches. A nivel de hardware, creamos las bases del diseño de un procesador compatible con MBPTA, y definimos diseños de cache con tiempo aleatorio para jerarquías de memoria con uno y múltiples niveles de cualquier complejidad, incluso caches unificadas, las cuales pueden ser analizadas temporalmente por primera vez. Proponemos tres nuevos enfoques de aleatorización de software (uno dinámico y dos variedades estáticas) para manejar, en una manera compatible con MBPTA, la variabilidad del tiempo (jitter) de la cache en procesadores comerciales comunes en el mercado (COTS) en sistemas de tiempo real. Por eso, todas nuestras propuestas varían aleatoriamente la posición del código y de los datos del programa en la memoria entre ejecuciones del mismo, para conseguir propiedades de tiempo aleatorias, similares a las logradas con diseños hardware personalizados. Proponemos un nuevo método para estimar el WCET de un programa usando MBPTA, sin requerir que el usuario dentifique los caminos y las entradas de programa del peor caso, mejorando así la aplicabilidad de MBPTA en la industria. Además, introducimos la composabilidad de tiempo probabilística, que permite a los sistemas integrados reducir su WCET cuando usan caches de tiempo aleatorio. Con estas contribuciones, esta tesis empuja los limites en el uso de diseños complejos de procesadores empotrados en sistemas de tiempo real equipados con caches y prepara el terreno para la industrialización de la tecnología MBPTA

    Modular Avionics Software Integration on Multi-Core COTS : certification-Compliant Methodology and Timing Analysis Metrics for Legacy Software Reuse in Modern Aerospace Systems

    Get PDF
    Interference in multicores is undesirable for hard real-time systems and especially in the aerospace industry, for which it is mandatory to ensure beforehand timing predictability and deadlines enforcement in a system runtime behavior, in order to be granted acceptance by certification authorities. The goal of this thesis is to propose an approach for multi-core integration of legacy IMA software, without any hardware nor software modification, and which complies as much as possible to current, incremental certification and IMA key concepts such as robust time and space partitioning. The motivations of this thesis are to stick as much as possible to the current IMA software integration process in order to maximize the chances of acceptation by avionics industries of the contributions of this thesis, but also because the current process has long been proven efficient on aerospace systems currently in usage. Another motivation is to minimize the extra effort needed to provide certification authorities with timing-related verification information required when seeking approval. As a secondary goal depending on the possibilities, the contributions should offer design optimization features, and help reduce the time-to-market by automating some steps of the design and verification process. This thesis proposes two complete methodologies for IMA integration on multi-core COTS. Each of them offers different advantages and has different drawbacks, and therefore each of them may correspond to its own, complementary situations. One fits all avionics and certification requirements of incremental verification and robust partitioning and therefore fits up to DAL A applications, while the other offers maximum Size, Weight and Power (SWaP) optimization and fits either up to DAL C applications, multipartition applications or non-IMA applications. The methodologies are said to be "complete" because this thesis provides all necessary metrics to go through all steps of the software integration process. More specifically, this includes, for each strategy: - a static timing analysis for safely upper-bounding inter-core interference, and deriving the corresponding WCET upper-bounds for each task. - a Constraint Programming (CP) formulation for automated software/hardware allocation; the resulting allocation is correct by construction since the CP process embraces the proposed timing analysis mentioned earlier. - a CP formulation for automated schedule generation; the resulting schedule is correct by construction since the CP process embraces the proposed timing analysis mentioned earlier
    corecore