371 research outputs found

    Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions

    Full text link
    Let PP be a set of nn points and QQ a convex kk-gon in R2{\mathbb R}^2. We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of PP, under the convex distance function defined by QQ, as the points of PP move along prespecified continuous trajectories. Assuming that each point of PP moves along an algebraic trajectory of bounded degree, we establish an upper bound of O(k4nλr(n))O(k^4n\lambda_r(n)) on the number of topological changes experienced by the diagrams throughout the motion; here λr(n)\lambda_r(n) is the maximum length of an (n,r)(n,r)-Davenport-Schinzel sequence, and rr is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework

    Constrained Construction of Planar Delaunay Triangulations without Flipping

    Get PDF
    The construction of Voronoi diagrams and Delaunay triangulations finds wide application in many branches of science. Delaunay triangulations have properties which make them more desirable than other triangulations for the same node set. Delaunay has characterized his triangulations by the empty circle property. The partitioning and flipping methods which have been developed for digital construction of Voronoi diagrams and Delaunay triangulations only make indirect use of this property. A novel method of construction is proposed, which is based directly on the empty circle property of Delaunay. The geometry of the steps of the algorithm is simple and can be grasped intuitively. The method can be applied to constrained triangulations, in which a triangulation domain and some of the edges are prescribed. A data structure for triangulations of concave and multiply-connected domains is presented which permits convenient specification of the constraints and the triangulation. The method is readily implemented, efficient and robust

    Algorithms for Closest Point Problems: Practice and Theory

    Get PDF
    This paper describes and evaluates know sequential algorithms for constructing planar Voronoi diagrams and Delaunay triangulations. In addition, it describes a new incremental algorithm which is simple to understand and implement, but whose performance is competitive with all known methods. The experiments in this paper are more than just simple benchmarks, they evaluate the expected performance of the algorithms in a precise and machine independent fashion. Thus, the paper also illustrates how to use experimental tools to both understand the behaviour of different algorithms and to guide the algorithm design process

    Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires

    Get PDF
    In the context of nanowire heterostructures we perform a discrete to continuum limit of the corresponding free energy by means of Γ-convergence techniques. Nearest neighbours are identified by employing the notions of Voronoi diagrams and Delaunay triangulations. The scaling of the nanowire is done in such a way that we perform not only a continuum limit but a dimension reduction simultaneously. The main part of the proof is a discrete geometric rigidity result that we announced in an earlier work and show here in detail for a variety of three-dimensional lattices. We perform the passage from discrete to continuum twice: once for a system that compensates a lattice mismatch between two parts of the heterogeneous nanowire without defects and once for a system that creates dislocations. It turns out that we can verify the experimentally observed fact that the nanowires show dislocations when the radius of the specimen is large

    Optimality of Delaunay Triangulations

    Get PDF
    In this paper, we begin by defining and examining the properties of a Voronoi diagram and extend it to its dual, the Delaunay triangulations. We explore the algorithms that construct such structures. Furthermore, we define several optimal functionals and criterions on the set of all triangulations of points in Rd that achieve their minimum on the Delaunay triangulation. We found a new result and proved that Delaunay triangulation has lexicographically the least circumradii sequence. We discuss the CircumRadii-Area (CRA) conjecture that the circumradii raised to the power of alpha times the area of the triangulation holds true for all α ≄ 1. We took it upon ourselves to prove that CRA conjecture is true for α =1, FRV quadrilaterals, and TRV quadrilaterals. Lastly, we demonstrate counterexamples for alpha\u3c1

    Voronoi diagrams on piecewise flat surfaces and an application to biological growth

    Get PDF
    This paper introduces the notion of Voronoi diagrams and Delaunay triangulations generated by the vertices of a piecewise flat, triangulated surface. Based on properties of such structures, a generalized flip algorithm to construct the Delaunay triangulation and Voronoi diagram is presented. An application to biological membrane growth modeling is then given. A Voronoi partition of the membrane into cells is maintained during the growth process, which is driven by the creation of new cells and by restitutive forces of the elastic membrane

    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations

    Get PDF
    Some basic mathematical tools such as convex sets, polytopes and combinatorial topology are used quite heavily in applied fields such as geometric modeling, meshing, computer vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincare formula(Poincare, 1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a correct account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space. It turns out that in order to achieve (even partially) the above goals, I found that it was necessary to include quite a bit of background material on convex sets, polytopes, polyhedra and projective spaces. I have included a rather thorough treatment of the equivalence of V-polytopes and H-polytopes and also of the equivalence of V-polyhedra and H-polyhedra, which is a bit harder. In particular, the Fourier-Motzkin elimination method (a version of Gaussian elimination for inequalities) is discussed in some detail. I also had to include some material on projective spaces, projective maps and polar duality w.r.t. a nondegenerate quadric in order to define a suitable notion of \projective polyhedron based on cones. To the best of our knowledge, this notion of projective polyhedron is new. We also believe that some of our proofs establishing the equivalence of V-polyhedra and H-polyhedra are new

    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations

    Get PDF
    Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, computer vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. I have included a rather thorough treatment of the equivalence of V-polytopes and H-polytopes and also of the equivalence of V-polyhedra and H-polyhedra, which is a bit harder. In particular, the Fourier-Motzkin elimination method (a version of Gaussian elimination for inequalities) is discussed in some detail. I also included some material on projective spaces, projective maps and polar duality w.r.t. a nondegenerate quadric in order to define a suitable notion of ``projective polyhedron'' based on cones. To the best of our knowledge, this notion of projective polyhedron is new. We also believe that some of our proofs establishing the equivalence of V-polyhedra and H-polyhedra are new.Comment: 183 page

    Nature of the learning algorithms for feedforward neural networks

    Get PDF
    The neural network model (NN) comprised of relatively simple computing elements, operating in parallel, offers an attractive and versatile framework for exploring a variety of learning structures and processes for intelligent systems. Due to the amount of research developed in the area many types of networks have been defined. The one of interest here is the multi-layer perceptron as it is one of the simplest and it is considered a powerful representation tool whose complete potential has not been adequately exploited and whose limitations need yet to be specified in a formal and coherent framework. This dissertation addresses the theory of generalisation performance and architecture selection for the multi-layer perceptron; a subsidiary aim is to compare and integrate this model with existing data analysis techniques and exploit its potential by combining it with certain constructs from computational geometry creating a reliable, coherent network design process which conforms to the characteristics of a generative learning algorithm, ie. one including mechanisms for manipulating the connections and/or units that comprise the architecture in addition to the procedure for updating the weights of the connections. This means that it is unnecessary to provide an initial network as input to the complete training process.After discussing in general terms the motivation for this study, the multi-layer perceptron model is introduced and reviewed, along with the relevant supervised training algorithm, ie. backpropagation. More particularly, it is argued that a network developed employing this model can in general be trained and designed in a much better way by extracting more information about the domains of interest through the application of certain geometric constructs in a preprocessing stage, specifically by generating the Voronoi Diagram and Delaunav Triangulation [Okabe et al. 92] of the set of points comprising the training set and once a final architecture which performs appropriately on it has been obtained, Principal Component Analysis [Jolliffe 86] is applied to the outputs produced by the units in the network's hidden layer to eliminate the redundant dimensions of this space
    • 

    corecore