17 research outputs found

    Voronoi Diagrams for Parallel Halflines and Line Segments in Space

    Get PDF
    We consider the Euclidean Voronoi diagram for a set of nn parallel halflines in 3-space. A relation of this diagram to planar power diagrams is shown, and is used to analyze its geometric and topological properties. Moreover, an easy-to-implement space sweep algorithm is proposed that computes the Voronoi diagram for parallel halflines at logarithmic cost per face. Previously only an approximation algorithm for this problem was known. Our method of construction generalizes to Voronoi diagrams for parallel line segments, and to higher dimensions

    A Sparse Delaunay Filtration

    Get PDF
    We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in ?^d. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size O(n^?d/2?). In contrast, our construction uses only O(n) simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in d+1 dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a (d+1)-dimensional Voronoi construction similar to the standard Delaunay filtration. We also, show how this complex can be efficiently constructed

    Approximate Nearest-Neighbor Search for Line Segments

    Get PDF
    Approximate nearest-neighbor search is a fundamental algorithmic problem that continues to inspire study due its essential role in numerous contexts. In contrast to most prior work, which has focused on point sets, we consider nearest-neighbor queries against a set of line segments in Rd\mathbb{R}^d, for constant dimension dd. Given a set SS of nn disjoint line segments in Rd\mathbb{R}^d and an error parameter ε>0\varepsilon > 0, the objective is to build a data structure such that for any query point qq, it is possible to return a line segment whose Euclidean distance from qq is at most (1+ε)(1+\varepsilon) times the distance from qq to its nearest line segment. We present a data structure for this problem with storage O((n2/εd)log(Δ/ε))O((n^2/\varepsilon^{d}) \log (\Delta/\varepsilon)) and query time O(log(max(n,Δ)/ε))O(\log (\max(n,\Delta)/\varepsilon)), where Δ\Delta is the spread of the set of segments SS. Our approach is based on a covering of space by anisotropic elements, which align themselves according to the orientations of nearby segments.Comment: 20 pages (including appendix), 5 figure

    Efficient Fréchet distance queries for segments

    Get PDF
    We study the problem of constructing a data structure that can store a two-dimensional polygonal curve P, such that for any query segment ab one can efficiently compute the Fréchet distance between P and ab. First we present a data structure of size O(n log n) that can compute the Fréchet distance between P and a horizontal query segment ab in O(log n) time, where n is the number of vertices of P. In comparison to prior work, this significantly reduces the required space. We extend the type of queries allowed, as we allow a query to be a horizontal segment ab together with two points s, t ∈ P (not necessarily vertices), and ask for the Fréchet distance between ab and the curve of P in between s and t. Using O(n log2 n) storage, such queries take O(log3 n) time, simplifying and significantly improving previous results. We then generalize our results to query segments of arbitrary orientation. We present an O(nk3+ϵ + n2) size data structure, where k ∈ [1, n] is a parameter the user can choose, and ϵ > 0 is an arbitrarily small constant, such that given any segment ab and two points s, t ∈ P we can compute the Fréchet distance between ab and the curve of P in between s and t in O((n/k) log2 n + log4 n) time. This is the first result that allows efficient exact Fréchet distance queries for arbitrarily oriented segments. We also present two applications of our data structure. First, we show that our data structure allows us to compute a local δ-simplification (with respect to the Fréchet distance) of a polygonal curve in O(n5/2+ϵ) time, improving a previous O(n3) time algorithm. Second, we show that we can efficiently find a translation of an arbitrary query segment ab that minimizes the Fréchet distance with respect to a subcurve of P

    New Results on Abstract Voronoi Diagrams

    Get PDF
    Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O(s2 n ∑3 ≤ j ≤ n mj / j), where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj =1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O(s2 n log(max{s,n}) ∑2 ≤ j≤ n mj / j). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are many subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k (n-k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remains O(k(n-k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to come up with proofs of purely topological and combinatorial nature of Jordan curves and certain permutation sequences, and hence we could show that also the order-k abstract Voronoi diagram has complexity O(k (n-k)), assuming that bisectors are unbounded, and the order-1 regions are connected. Finally, we discuss Voronoi diagrams having the shape of a tree or forest. Aggarwal et. al. showed that if points are in convex position, then given their ordering along the convex hull, their Voronoi diagram, which is a tree, can be computed in linear time. Klein and Lingas have generalized this idea to Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each Voronoi region with respect to any subset of sites exactly once. If the ordering of the regions along the curve is known in advance, all Voronoi regions are connected, and all bisectors are unbounded, then the abstract Voronoi diagram can be computed in linear time. This algorithm also applies to diagrams which are trees for all subsets of sites and the ordering of the unbounded regions around the diagram is known. In this thesis we go one step further and allow the diagram to be a forest for subsets of sites as long as the complete diagram is a tree. We show that also these diagrams can be computed in linear time

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop
    corecore