
New Results on Abstract Voronoi
Diagrams

Dissertation

Zur
Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Cecilia Bohler

aus Leonberg

Bonn, 2015

Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Rolf Klein, Universität Bonn
2. Gutachter: Prof. Dr. Heiko Röglin, Universität Bonn

Tag der Promotion: 10.07.2015
Erscheinungsjahr: 2015

Acknowledgment
This thesis was created during my employment at the Institute of Computer Sci-
ence I at the University of Bonn. Most of my time there, I was funded by the Eu-
ropean Science Foundation (ESF) and the German Research Foundation (DFG)
in the EUROCORES collaborative research project EuroGIGA/VORONOI.

Most of all I want to thank my advisor Prof. Dr. Rolf Klein for offering me
this position in his workgroup, introducing me to the field of computational
geometry, and providing me the possibility to write my thesis about abstract
Voronoi diagrams. I want to thank all my colleagues, co-authors and anony-
mous referees, for helpful discussions, many constructive comments, and fruitful
research collaborations. Also I am thankful to the other members of the com-
mittee, especially Prof. Dr. Heiko Röglin who agreed to be the co-referee of this
thesis. I want to thank Antje Bertram for her friendly nature and her continual
helpfulness regarding all kinds of administrative tasks. Last but not least many
thanks go to my boyfriend Dennis Hansen who always encouraged and helped
me in so many ways.

Abstract

Voronoi diagrams are a fundamental structure used in many areas of science.
For a given set of objects, called sites, the Voronoi diagram separates the plane
into regions, such that points belonging to the same region have got the same
nearest site. This definition clearly depends on the type of given objects, they
may be points, line segments, polygons, etc. and the distance measure used.
To free oneself from these geometric notions, Klein introduced abstract Voronoi
diagrams as a general construct covering many concrete Voronoi diagrams. Ab-
stract Voronoi diagrams are based on a system of bisecting curves, one for each
pair of abstract sites, separating the plane into two dominance regions, belonging
to one site each. The intersection of all dominance regions belonging to one site
p defines its Voronoi region. The system of bisecting curves is required to fulfill
only some simple combinatorial properties, like Voronoi regions to be connected,
the union of their closures cover the whole plane, and the bisecting curves are
unbounded. These assumptions are enough to show that an abstract Voronoi
diagram of n sites is a planar graph of complexity O(n) and can be computed
in expected time O(n log n) by a randomized incremental construction.

In this thesis we widen the notion of abstract Voronoi diagrams in several
senses. One step is to allow disconnected Voronoi regions. We assume that
in a diagram of a subset of three sites each Voronoi region may consist of at
most s connected components, for a constant s, and show that the diagram can
be constructed in expected time O

(
s2n

∑n
j=3

mj

j

)
, where mj is the expected

number of connected components of a Voronoi region over all diagrams of a
subset of j sites. The case that all Voronoi regions are connected is a subcase,
where this algorithm performs in optimal O(n log n) time, because here s =
mj = 1.

The next step is to additionally allow bisecting curves to be closed. We
present an algorithm constructing such diagrams which runs in expected time
O
(
s2n log(max{s, n}) ∑n

j=2
mj

j

)
. This algorithm is slower by a log n-factor

compared to the one for disconnected regions and unbounded bisectors. The
extra time is necessary to be able to handle special phenomenons like islands,
where a Voronoi region is completely surrounded by another region, something
that can occur only when bisectors are closed. However, this algorithm solves
many open problems and improves the running time of some existing algorithms,
for example for the farthest Voronoi diagram of n simple polygons of constant
complexity.

Another challenge was to study higher order abstract Voronoi diagrams. In
the concrete sense of an order-k Voronoi diagram points are collected in the same
Voronoi region, if they have the same k nearest sites. By suitably intersecting
the dominance regions this can be defined also for abstract Voronoi diagrams.
The question arising is about the complexity of an order-k Voronoi diagram.
There are

(
n
k

)
subsets of size k but fortunately many of them have an empty

order-k region. For point sites it has already been shown that there can be
at most O(k(n − k)) many regions and even though order-k regions may be
disconnected when considering line segments, still the complexity of the order-k
diagram remainsO(k(n−k)). The proofs used to show this strongly depended on
the geometry of the sites and the distance measure, and were thus not applicable
for our abstract higher order Voronoi diagrams. Nevertheless, we were able to

5

come up with proofs of purely topological and combinatorial nature of Jordan
curves and certain permutation sequences, and hence we could show that also
the order-k abstract Voronoi diagram has complexity O(k(n − k)), assuming
that bisectors are unbounded, and the order-1 regions are connected.

Finally, we discuss Voronoi diagrams having the shape of a tree or forest.
Aggarwal et. al. showed that if points are in convex position, then given their
ordering along the convex hull, their Voronoi diagram, which is a tree, can
be computed in linear time. Klein and Lingas have generalized this idea to
Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each
Voronoi region with respect to any subset of sites exactly once. If the ordering
of the regions along the curve is known in advance, all Voronoi regions are
connected, and all bisectors are unbounded, then the abstract Voronoi diagram
can be computed in linear time. This algorithm also applies to diagrams which
are trees for all subsets of sites and the ordering of the unbounded regions
around the diagram is known. In this thesis we go one step further and allow
the diagram to be a forest for subsets of sites as long as the complete diagram
is a tree. We show that also these diagrams can be computed in linear time.

6

CONTENTS

Contents

1 Introduction 9

2 From Concrete to Abstract Voronoi Diagrams 15
2.1 Euclidean Voronoi Diagrams . 15

2.1.1 Basic Algorithms . 17
2.1.2 Applications . 20

2.2 Variations . 22
2.2.1 General Lp-Metrics . 22
2.2.2 Weighted Voronoi diagrams 24
2.2.3 Voronoi Diagram of Line Segments 26
2.2.4 Voronoi Diagram of Polygons 27
2.2.5 More Voronoi Diagrams 28
2.2.6 Farthest Voronoi Diagrams 31
2.2.7 Higher Order Voronoi Diagrams 32

2.3 Abstract Voronoi Diagrams . 33

3 Disconnected Regions 39
3.1 Motivation . 39
3.2 Basic Facts . 42
3.3 Complexity of V (S) . 44
3.4 Towards an Algorithm . 47

3.4.1 Some Technical Issues . 48
3.5 Trapezoidal Decomposition . 50

3.5.1 Computation of Et . 54
3.5.2 Construction of V ∗(R ∪ {t}) and H(R ∪ {t}) 55

3.6 Analysis . 58
3.7 Discussion . 60

4 Closed Bisectors 63
4.1 Introduction . 63
4.2 Preliminaries . 65
4.3 Searching for Intersections . 68
4.4 Analysis . 72
4.5 Pseudo-circles: an Application 75
4.6 Conclusion . 78

7

CONTENTS

5 Higher Order 79
5.1 Introduction . 79
5.2 Preliminaries . 83
5.3 Bounding the number of unbounded edges of V ≤k(S) 88
5.4 Bounding the number of faces of V k(S) 92
5.5 Generalizations . 94
5.6 Concluding remarks . 95

6 Forest-Like 97
6.1 Introduction . 98
6.2 NP-completeness . 100
6.3 Normalizing a Bisector System 101
6.4 The Algorithm . 106

6.4.1 Red-Blue-Coloring Scheme 108
6.4.2 Choosing Crimson Sites 111
6.4.3 Insertion of Crimson Sites 114

6.5 Discussion . 115

7 Conclusion and Open Problems 117

List of Figures 119

8

Chapter 1

Introduction

During the 16th century the french philosopher and mathematician René Des-
cartes was watching the clear sky. He saw stars and planets each surrounded by
a cloud of matter in circular formations. He explained this phenomenon by a
vortex-theory in his book "Principia Philosophia" [32] which was published in
Amsterdam in 1644. He could not imagine space to be empty, thus there must
be some substance, which he called Aether, filling it up. Because the Aether is
packed so tight it can not move freely, but only in circular or vortex formations.
This results in centrifugal forces, where light matter moves to the outside of
a vortex and heavy matter, like a star or planet, stays in the middle. Where
two vortices meet there appears a straight line separating them and where three
vortices meet there appears a vertex, see Figure 1.1. What Descartes did not
know at this time is that even though his vortex theory turned out to be wrong,
the figure he drew is the first known Voronoi diagram.

These diagrams received further attention and a more precise mathematical
definition and analysis 200 years later, first by the German mathematician Pe-
ter Gustav Lejeune Dirichlet [34], and the American meteorologist Alfred Henry
Thiessen [70], and later by the Ukrainian mathematician Georgi Feodosjewitsch
Voronoi [71, 72]. Dirichlet and Voronoi used the structure of the diagram to
study quadratic forms, and Thiessen used it to compute the precipitation aver-
age over large areas. That is why in the literature the diagrams are also called
Dirichlet tesselation or Thiessen polygons. Here some point shaped sites are
given in the space, which is partitioned into regions, where points belonging to
the same region have got the same nearest site, and distance is measured by the
Euclidean metric.

In 1975 Michael Shamos and Dan Hoey published a paper at the FOCS
conference entitled "Closest-point problems". They presented six challenging
geometric problems for which no algorithm with optimal run time existed and
showed that they can be solved much faster using a single structure, the Voronoi
diagram. For example the computation of all nearest neighbors of a set of n
points in the plane can be solved in linear time once the Voronoi diagram is
given. The preprocessing time to compute the Voronoi diagram is O(n log n),
which results in an optimal running time for the All-Nearest-Neighbor-Problem.
More of these problems will be discussed in Section 2.1.2.

What nobody could foresee at this time was that a new area of computer
science was born, called Computational Geometry. Voronoi diagrams turned

9

CHAPTER 1. INTRODUCTION

Figure 1.1: Explaining his vortex theorie, René Descartes drew the first known
Voronoi diagram [32].

out to be a fundamental structure in this area and can be used to solve many
geometric problems.

Geometric problems and hence also Voronoi diagrams have applications in
a wide range of scientific areas, reaching from physiology, biology, geology, ge-
ography, meteorology, physics, crystallography, and mathematics to computer
science. Voronoi diagrams can represent cell structures, the distribution of light
around stars, the cracks of drying mud, land conquered by different kings, and
a good approximation for 3-dimensional surfaces.

The requests of the applications can vary in many ways. If you look at your
skin, then you will see that not all cells have the same size, also the stars whose
size influences on their luminosity can vary, the mud may not have been equal
wet at all places, the kings may have different strengths, and start with different
advances, and of course surfaces can be as diverse as you wish.

To meet all these conditions many different Voronoi diagrams have been in-
troduced. They vary in their given set of sites, they need not be point shaped but
may resemble line segments, polygons, or even more complex two-dimensional
sets, and the distance function to measure the distance from an arbitrary point
to a site can be anything from Lp-metrics to convex distance functions.

Because there are so many different ways to define a Voronoi diagram the
effort put into analyzing them and finding efficient algorithms was enormous.
That is why the temptation was high to come up with a unifying concept cov-
ering as many Voronoi diagrams as possible.

One elegant approach was taken by Edelsbrunner and Seidel [39], who did
not explicitly name any concrete sites and distance measures, but defined n

10

surfaces in R3, one for each indexed site p, q, The corresponding Voronoi
diagram was now defined as the lower envelope of the surfaces projected to the
plane, also called the minimization diagram of the surfaces. In the euclidean
case each surface would represent a cone with an interior angle of 90◦ rising
vertically from the point-site p.

Independently, Klein [48] took a different approach and came up with ab-
stract Voronoi diagrams, AVD’s for short. Again the idea was to develop a
theory and an algorithm computing Voronoi diagrams, independently of which
types of sites and distance functions it represents. He succeeded by detecting
that most Voronoi diagrams have one feature in common, that is for each pair
of sites there exists a bisecting curve consisting of all points having the same
distance to both sites, and these curves bear enough information to construct
the complete Voronoi diagram. Thus, instead of having sites and distance mea-
sures as input, Klein used a set of bisecting curves, one curve for each pair of
sites. Of course, these curves have to fulfill some properties, e. g., they should
be homeomorphic to a line, and each pair of them may intersect in only a finite
number of points. Also for each triple of sites the Voronoi regions should be
connected and their closures should cover the whole plane, that is, each point
of the plane either lies on the Voronoi diagram or is contained in the interior of
a Voronoi region.

With these assumptions Klein [48] was able to show that the abstract Voronoi
diagram can be represented as a planar graph in a natural way, with O(n) faces
(Voronoi regions), edges (Voronoi edges), and vertices (Voronoi vertices).

Later Klein, Mehlhorn, and Meiser [53] were able to show that the abstract
Voronoi digram can be computed in expected time O(n log n) and expected
space O(n). This was great progress, because many concrete Voronoi diagrams
are covered by these assumptions, and need no longer a separate analysis. For
example, the first optimal algorithm for constructing nearest Voronoi diagrams
of disjoint convex objects, and of line segments under the Hausdorff metric was
provided by the abstract concept.

The aim of this thesis is to widen the notion of abstract Voronoi diagrams.
In Chapter 2 we start with discussing the state of the art. How it all began with
euclidean Voronoi diagrams, how they can be computed and which applications
they have. Then we continue with some variations of the type of sites and
distance measures and finally we define abstract Voronoi diagrams like in [53]
and [49], and discuss their important properties.

However, still there are interesting concrete Voronoi diagrams not covered by
the current AVD concept. For example when point shaped sites exert influence
on their surrounding space, but this influence is not monotonically decreasing
when increasing the distance to the site, then Voronoi regions may become
disconnected, a phenomenon not covered by Klein’s initial AVD concept. In
Chapter 3 we show that when in each diagram of a subset of three sites of the
given site-set, each Voronoi region has at most s connected components, for
a constant s, then the corresponding AVD can be computed in expected time
O
(
s2n

∑n
j=3

mj

j

)
and space O(

∑n
j=4mj). The variable mj is the expected

number of connected components of a Voronoi region over all Voronoi diagrams
of a subset of j sites. For the former case where only connected Voronoi regions
were allowed and thus s = 1, this resulted in the optimal run time O(n log n)

11

CHAPTER 1. INTRODUCTION

because here mj = 1.
But what if the bisecting curves are not necessarily unbounded any longer.

This may happen, e. g., for non convex polygons, or when the influence of
some site is stronger than the influence of another one. Then bisecting curves
may be closed, and the Voronoi region of a site with low influence may be
completely surrounded by the region of a site with high influence, and again
Voronoi regions may be disconnected. This has been an open problem for
many years, because these Voronoi diagrams turned out to carry devastatingly
different features and are much more complicated to handle than the previ-
ously introduced AVD’s. Nevertheless, we address this wider type of AVD’s in
Chapter 4 and are able to present an algorithm which runs in expected time
O
(
s2n log(max{s, n}) ∑n

j=2
mj

j

)
and space O(

∑n
j=3mi). Again s is the max-

imum number of connected components of a Voronoi region in any diagram of
3 sites and mj is the expected number of connected components of a Voronoi
region in any diagram of j sites of the given site-set. For the known cases where
regions are connected (s = mj = 1) and all bisecting curves are unbounded this
algorithm takes a log n-factor longer. However, it improves the running time for,
e. g., the farthest Voronoi diagram of n simple polygons of constant complexity.
Here s is constant and the Voronoi diagram is of linear size, thus our algorithm
requires time O(n log2 n), whereas the previously best known algorithm needed
time O(n log3 n).

Another Voronoi diagram which was not even yet defined for the abstract
setting is the higher order Voronoi diagram. Here, each Voronoi region collects
points having the same k nearest neighbors among a given set of sites. So far
higher order Voronoi diagrams have been considered for points and line seg-
ments in Lp metrics only. In the former case Voronoi regions are still connected
whereas already for line segments they may be disconnected. The first impor-
tant question is how many Voronoi regions are nonempty in an order-k Voronoi
diagram. There are

(
n
k

)
many subsets of size k but fortunately many of them

are empty. Lee [57] showed that for point sites at most O(k(n − k)) regions
are nonempty. The same holds for line segments, as Papadopoulou and Zaver-
shynskyi [63] were able to show, and even though here a single region may have
Ω(n) connected components, the total number of connected components still
remains O(k(n− k)). In Chapter 5 we introduce higher order abstract Voronoi
diagrams and show that also their complexity remains O(k(n − k)). To prove
this we had to come up with purely topological and combinatorial arguments.
Most proofs in the previous papers depended on geometric arguments which are
not applicable for our abstract setting. Instead we use the topological nature of
Jordan curves and combinatorial properties of certain permutation sequences.

Finally, there are Voronoi diagrams having a certain simpler structure. For
example the nearest Voronoi diagram of points in convex position is always a
tree. The same holds for line segments bounding a convex polygon and for the
farthest Voronoi diagram of point sites (the diagram where points belonging to
the same region have got the same farthest site). For points in convex position
Aggarwal, Guibas, Saxe, and Shor [5] proposed a divide&conquer algorithm
computing the Voronoi diagram in linear time, assuming that the ordering of the
points along their convex hull is known in advance. The same algorithm applies
to the diagram of line segments bounding a convex polygon, which equals the
medial axis in the interior of the polygon. Klein and Lingas [50] took a first step

12

towards abstracting the algorithm. They introduced the Hamiltonian abstract
Voronoi diagram, where an unbounded curve is given intersecting each Voronoi
region with respect to any subset of sites exactly once. In addition Voronoi
regions were assumed to be connected and bisecting curves unbounded. Given
such a Hamiltonian curve together with the ordering of the Voronoi regions
along it, they presented an algorithm, free of geometric arguments, computing
the Voronoi diagram in linear time. This algorithm also applies to the previous
cases. But what if the Voronoi diagram is a forest rather than a tree? In
Chapter 6 we consider Voronoi diagrams, where the final diagram is a tree but
for subsets of sites it may be a forest. Given the ordering of the unbounded
regions of the final diagram we show that it can be computed in linear time.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

From Concrete to Abstract
Voronoi Diagrams

Lets pretend it is election day. The votes can be given at different election offices
all over the country, and each resident gets a ballot paper saying in which office
he is supposed to give his vote. The set of all residents can thus be divided into
groups all voting in the same office. To do this in a convenient way it is assumed
that each person votes at the office nearest to his place of residence. If the term
"nearest" is interpreted as nearest by beeline, then the resulting division looks
like the graph in Figure 2.1, the euclidean Voronoi diagram.

But what if you live near a river and there is no bridge nearby. Then all
offices on the other side of the river are very "far" away from you, in the sense
that the travel distance and travel time to get there are very long. That is why it
is not always reasonable to consider the beeline, but perhaps the travel distance
or travel time instead. The "nearest" office can be considered by, e. g., the city
metric, where a graph of streets is given, and you are allowed to move on the
streets only. Then the resulting division of the residents may look completely
different, the city Voronoi diagram.

Of course one can think of many more variations to define a distance measure
and solve the so called post office problem in the corresponding Voronoi diagram.

In this chapter, we first give a formal definition of the euclidean Voronoi
diagram, we explain some nice properties, show how to compute the diagram
in optimal time, and name some applications. Then we present some variations
with other types of sites and other distance measures, and finally, to get a
general construct, we introduce abstract Voronoi diagrams.

2.1 Euclidean Voronoi Diagrams

Given a set S of n point-sites in the plane, the (euclidean) Voronoi region of a
site p ∈ S is defined to be the set of all points in the plane, which are closer to
p than to any other site from S, i. e.,

VR(p, S) := {x ∈ R : |p− x| < |q − x| ∀q ∈ S \ {p}},

15

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

where |x− y| denotes the euclidean distance from x to y. The Voronoi Diagram
of S is then defined by

V (S) := R2 \
⋃
p∈S

VR(p, S),

see Figure 2.1 for an example of a Voronoi Diagram.

Figure 2.1: The euclidean Voronoi Diagram of a set of point-sites in the plane,
the shaded area is a Voronoi region.

The diagram consists of Voronoi edges, where exactly two Voronoi regions
meet, and Voronoi vertices, where three or more regions meet. By this observa-
tion, the diagram can be seen as a geometric graph with vertices and edges.

In order to get a better understanding of Voronoi diagrams it is helpful to
introduce the notion of bisectors. For each pair of sites p and q in S, their
bisector is defined by

B(p, q) := {x ∈ R : |p− x| = |q − x|},

which is the set of points having the same distance to both p and q. This
corresponds to an unbounded straight line separating the plane into two open
unbounded domains D(p, q) and D(q, p). The first one is the set of all points
which are nearer to p than to q, and the latter one is the set of all points which
are nearer to q than to p, see Figure 2.2.

p

q

D(p, q)
D(q, p)

B(p, q)

Figure 2.2: The bisector B(p, q) of two point-sites p and q.

Now it is clear that the Voronoi region of a point-site p is the intersection
of n − 1 open halfplanes. Thus, it is connected and convex. Furthermore, it
contains its site p and is hence not empty.

16

2.1. EUCLIDEAN VORONOI DIAGRAMS

Using the Euler formula and the fact that each Voronoi vertex is of degree
≥ 3 (by definition) the following lemma can be proven.

Lemma 1. The euclidean Voronoi diagram of a set of n sites consists of O(n)
edges, vertices, and faces.

The next question is how to compute the diagram. Let us first observe the
following lemma, see Lemma 2.2 in [14] for a proof.

Lemma 2. The Voronoi region of a site p ∈ S is unbounded iff p lies on the
convex hull of S.

Now the Voronoi diagram is connected, iff the points in S do not all lie on a
single straight line. Otherwise there would be a site p ∈ S whose region discon-
nects V (S) and thus the boundary of its region consists of at least two disjunct
unbounded polygonal chains. Because all regions are convex, the boundary must
consist of exactly two straight lines, and because the region is the intersection
of n − 1 open halfplanes, defined by the bisectors, all bisectors between p and
any other site q ∈ S must be parallel. This implies that all sites lie on a single
straight line. On the other hand, if all points are in such position, the diagram
consists of n− 1 parallel straight lines, see Figure 2.3.

Figure 2.3: If all n sites are collinear, the corresponding Voronoi diagram con-
sists of n− 1 parallel straight lines.

To prevent disconnectedness one can consider a large curve Γ enclosing the
"interesting" part of the diagram, i. e., Γ intersects each bisector exactly twice
and encloses all bisector intersections.

To store the Voronoi diagram it makes sense to use a doubly connected edge
list (DCEL) or even a quad edge data structure (QEDS), see Guibas and Stolfi
[43]. Here, one can efficiently output the adjacent Voronoi edges in sorted order
around each given vertex. Similar, one can output all Voronoi edges in sorted
order along the boundary of each given region.

So, if we have the large curve Γ around the diagram one can easily output all
unbounded regions in sorted order around the diagram. Each unbounded region
belongs to a site on the convex hull of S, see Lemma 2, thus given the diagram,
we can in linear time compute the convex hull of S. This directly implies that
the construction of the Voronoi diagram is in Ω(n log n).

2.1.1 Basic Algorithms
The first worst-case optimal algorithm for computing the Voronoi diagram
was presented by Shamos and Hoey [67]. Their algorithm is based on a Di-
vide&Conquer approach, where the set of sites is first ordered according to

17

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

their x- (and y)-coordinates, and then split into two subsets L (points to the
left) and R (points to the right) of about the same size. Then the Voronoi dia-
grams of L and R are computed recursively. The crucial part is how to merge
V (R) and V (L) in linear time. For this purpose a so called merge chain B(L,R)
is computed, which contains all edges of V (S) separating a region belonging to a
site in L and a region belonging to a site in R. This merge chain is y-monotone
and all regions of sites in L are to the left of it and all regions of sites in R to
the right of it. Thus, V (S) can be obtained by glueing together B(L,R) with
the parts of V (L) to the left of it and the parts of V (R) to the right of it.

It remains to construct B(L,R), compare Figure 2.4. Based on a method
by Chew and Drysdale [26], an unbounded starting edge is found by simulta-
neously walking around the unbounded regions of V (R) and V (L) and finding
two regions VR(l, L) belonging to V (L) and VR(r,R) belonging to V (R), whose
intersection contains an unbounded piece of B(l, r). Such an endpiece of B(l, r)
must belong to the merge chain B(L,R). Once we know where to start, we
can trace B(L,R) through the diagrams by testing if B(l, r) hits the boundary
of VR(l, L) or VR(r,R) first. Here, the edges of the region of l are scanned
counterclockwise and the edges of the region of r clockwise. Because B(L,R) is
y-monotone, once an edge on the boundary of a region VR(l, L) or VR(r,R) has
been tested unsuccessfully, it never has to be considered again. This guarantees,
that B(L,R) can be constructed in time O(n). For more details see, e. g., [14].

B(L,R)

l1

l2

l3

l4

r1

r2

r3

r4

l1

l2

l3

l4

r1

r2

r3

r4

Figure 2.4: The merge chain B(L,R), where L = {l1, . . . , l4} and R =
{r1, . . . , r4}, is traced through the overlapping of V (L) and V (R), and V (L∪R)
is constructed.

Theorem 1. The Voronoi diagram of n sites can be computed in optimal time
O(n log n) by Divide&Conquer.

Another approach to construct the Voronoi diagram is to use the sweep-line-
method. The first idea was to sort the sites according to their x-coordinates,
sweep the plane from left to right, and compute the Voronoi diagram to the left
of the sweep line L, by incrementally inserting the regions of the sites, when hit
by the sweep line. The problem with this idea is, that it is not clear at all how

18

2.1. EUCLIDEAN VORONOI DIAGRAMS

to perform the insertion process. The new region may reach far to the left and
cause many new Voronoi vertices to the left of the sweep line, which seems to
make it impossible to spend only O(log n) time on the insertion.

Here, Fortune [40] found the clue. He did not compute the Voronoi diagram
of only the sites to the left of the sweep line, but the diagram of these sites
together with the sweep line L itself. By doing this, one makes sure, that the
new Voronoi region of a site hit by the sweep line always is contained in the
current region of L and no Voronoi edge or vertex ever has to be changed once
it has been constructed.

The sweep line is now followed by a "wavefront" while moving to the right,
see Figure 2.5.

Figure 2.5: The sweep line is followed by a wavefront. The waves are separated
by spikes which may intersect to the right of the sweep line.

The wavefront consists of waves separating the regions of a site and the
region of L, and the Voronoi edges incident to the waves can be prolongated to
the right by spikes. We need to store the ordering of the waves and the spikes
along the wavefront, and we have an event order for the following events.

1. The sweep line hits a site s.
Here the wave of s together with its two adjacent spikes has to be inserted
into the wavefront. The intersection point of the upper and lower spikes,
which are no longer adjacent, has to be deleted from the event queue (if it
exists) and the two new spikes have to be tested for intersection with their
neighbors, and if the intersection points are to the right of the wavefront,
they have to be inserted into the event queue.

2. The wavefront hits the intersection of two adjacent spikes.
The wave disappearing at this point together with its two adjacent spikes
has to be deleted from the wavefront and the upper and lower spikes now

19

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

adjacent have to be tested for intersection. If the intersection point lies to
the right of the wavefront, it has to be inserted into the event queue.

If each wave has the name of the site whose region it bounds, then the
ordering of the waves along the wavefront is a Davenport-Schinzel sequence of
order 2.

Davenport-Schinzel-Sequences are defined as follows, see, e. g., [68].

Definition 1. An (n, s)-Davenport-Schinzel sequence, (n, s)-DSS for short, is
a sequence of integers 〈u1, . . . , uk〉, where 1 ≤ ui ≤ n for all 1 ≤ i ≤ k, no two
adjacent integers are equal and there exists no (possibly uncontinuous) subse-
quence 〈ui . . . uj . . . ui . . . 〉, where ui and uj alternate more than s times.

We refer to s as the order of the DSS and n the number of symbols.

Definition 2. The maximum length of an (n, s)-DSS is denoted by λs(n).

We have the following lemma, see again [68].

Lemma 3. For any (n, s)-DSS we have

(i) λ1(n) = n.

(ii) λ2(n) = 2n− 1.

With this lemma it is clear that the length of the wavefront is O(n), thus
using a data structure, like, e. g., a balanced binary tree with linked leaves, the
operations of inserting and deleting waves of the wavefront, and inserting and
deleting spike events of the event queue, can be performed in O(log n) time each.
Because the Voronoi diagram has O(n) vertices there are as many spike events
and of course there are O(n) site events.

Theorem 2. The Voronoi diagram of n sites can be computed in optimal time
O(n log n) using the sweep line method.

2.1.2 Applications
Let us get back to the topic, why Voronoi diagrams are so useful. The following
applications are all mentioned by Shamos and Hoey [67].

One of the most known applications is that Voronoi diagrams can help us to
solve the All-Nearest-Neighbor-Problem. Let S be the set of points given in the
plane and s ∈ S. If we remove s from S, then its region is divided into several
pieces, which are given to some other regions. Because all Voronoi regions are
connected, only those regions having a common border with the region of s can
gain part of its region. If we now reinsert s, then s lies in the region of its
nearest neighbor and this must be one of the sites having a common border
with it. Thus the nearest neighbor of a site always lies in an adjacent region.
Because the diagram has O(n) Voronoi edges, we have to compare only O(n)
pairs of sites to solve the All-Nearest-Neighbor-Problem.

Also very well known is the Post-Office-Problem, named in the introduction
of this chapter. Here n sites (the post-offices) together with a query point q
are given and we want to know which of the post-offices is the nearest one,

20

2.1. EUCLIDEAN VORONOI DIAGRAMS

i. e., we need to know in which Voronoi region q is located. Given the Voronoi
diagram of the n sites, we can build a data structure mentioned in Dobkin and
Lipton [36], called the slab method. It consists of the Voronoi diagram together
with O(n) horizontal straight lines, one through each Voronoi vertex, and the
Voronoi regions in each strip are ordered, compare Figure 2.6. Given a query
point q, we can first search for its vertical location between the horizontal lines,
and then for its horizontal location between the regions. This implies that the
Post-Office-Problem can be solved in time O(log n). Unfortunately we may need
Ω(n2) time and space to build the data structure, because the horizontal lines
altogether may intersect the Voronoi diagram in Ω(n2) many points. This can
though be improved to linear time and space by using the ideas from Edels-
brunner [37] and Seidel [66] instead.

Figure 2.6: A data structure for point location in a Voronoi diagram.

Now, suppose someone wants to build a permanent repository for nuclear
waste within a given area, as far away as possible from all places of residence.
If the places of residence can be represented by a set of n point shaped sites S,
then the repository should be build at the center point of a largest circle within
the area, not containing any sites from S. Such a largest empty circle must
have its center point on a Voronoi vertex of the Voronoi diagram of S; for each
Voronoi vertex v there exists a circle having its center point at v, three sites of
S on its boundary, and no site in its interior. This implies that the problem
of finding a largest empty circle can be solved in time O(n) once the Voronoi
diagram has been constructed.

The dual of the Voronoi diagram is a straight line graph and is defined as
the Delaunay tesselation. If the sites are in general position, i. e., no four sites
lie on a circle and no three points are collinear, then all Voronoi vertices are
of degree 3, and the dual graph is a triangulation, the Delaunay triangulation,
D(S) for short. It is famous for its nice features. For each triangle in D(S) its
circumcircle does not contain any other site, this is because otherwise, the three
vertices of the triangle would not define a vertex in the Voronoi diagram and
thus the triangle would not be part of the dual graph. This observation also
implies that the Delaunay triangulation is a triangulation which maximizes the
smallest angles in the triangles. Let (α1, . . . , αk) be a non decreasing sequence

21

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

of the interior angles of all triangles of D(S). Then for all triangulations of
the same set of sites with non decreasing angle sequence (β1, . . . , βk), let 1 ≤
i ≤ k be the smallest index for which αi 6= βi. Then αi > βi. Because
of this property, Delaunay triangulations are often used for mesh generation
applications in terrain modeling, see, e. g., Lawson [55].

The next observation is that the edges of a minimum spanning tree, MST,
of a given set of sites is a subgraph of the Delaunay triangulation. Because
the triangulation is of linear size, to compute the MST it is enough to consider
O(n) edges instead of all

(
n
2

)
edges. Using Kruskal’s algorithm the MST can be

computed in time O(n log n) given D(S), using Prim’s algorithm improves it to
O(n log log n). Cheriton and Tarjan [25] showed that this bound even can be
decreased to O(n), see also Preparata and Shamos [64].

2.2 Variations

As already mentioned before, the euclidean Voronoi diagram is not always the
most reasonable one when meeting practical needs. There may be instances
requiring other types of sites and other distance measures. Motivated by this
many variations of Voronoi diagrams have been introduced and we will discuss
some of them in this section.

2.2.1 General Lp-Metrics

Suppose you live in Manhattan. The city consists of only horizontal and vertical
streets. If you want to know which distance you have to travel to get from one
point x in the city to another one y, you have to compute the distance along the
grid pattern. This corresponds to the L1-metric, also called Manhattan-metric,
and is defined by

|x− y|1 := |x1 − y1|+ |x2 − y2|,
where x = (x1, x2) and y = (y1, y2) in cartesian coordinates.

Now the bisector of two point shaped sites p and q looks like depicted in
Figure 2.7.

p

q

B(p, q)

p

q

B(p, q)

B(p, q)

Figure 2.7: The shape of the L1-bisector.

If the two sites are in general position, then their corresponding bisector con-
sists of two unbounded either vertical or horizontal line segments connected by
the diagonal of a square. If p and q are diagonal vertices of an axis aligned
square, then the bisector consists of the diagonal separating the sites, and

22

2.2. VARIATIONS

two unbounded squares. This causes a problem, because normally only one-
dimensional bisectors are allowed. To avoid nasty algorithms usually points in
general position are assumed, thus no two sites may be diagonal vertices of an
axis aligned square.

In Figure 2.8 an example of the Voronoi diagram of point sites in the L1-
metric, and is corresponding diagram under the L2-metric is depicted. Inter-
estingly, the graph structures are different; under the L1-metric all regions are
unbounded, but under L2 one region is bounded.

p
q p

q

Figure 2.8: The Voronoi diagram of point sites in the L1-metric (left), and its
corresponding L2-diagram (right), (from [14]).

Another special case is the L∞-metric, defined by

|x− y|∞ = max{|x1 − y1|, |x2 − y2|}.

Here the bisectors look like depicted in Figure 2.9. In general, the bisector
consists of two unbounded diagonals connected by a horizontal or vertical line
segment. The problem is when two sites lie on a vertical or horizontal line.
Then again we have a 2-dimensional bisector and a general position assumption
is necessary to avoid complications.

p

q

B(p, q)

qp

B(p, q)

B(p, q)

Figure 2.9: The shape of the L∞-bisector.

Of course one can also define the Voronoi diagram according to general Lp-

23

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

metrics
|x− y|p := p

√
(x1 − y1)p + (x2 − y2)p.

Here all bisectors are one-dimensional and thus easier to handle.

2.2.2 Weighted Voronoi diagrams
All the Voronoi diagrams discussed so far can be represented as follows. Suppose
some kings are positioned at the point-shaped sites and they send out their
troops at the same time with the same speed in all directions, i. e., in circular
formations. Where different troops meet, they have to stop (a Voronoi edge
emerges), where three or more different troops meet we get a Voronoi vertex.
Now each king has conquered the area, where his troops reached first, his Voronoi
region. In the L1-metric, the "unit circle" is a unit square with sides oriented at
a 45◦ angle to the coordinate axes. Here, the troops of the kings would spread
out in this square formation. For the L∞-metric the "unit circle" is an axes
aligned unit square.

But what happens if the troops start moving at different times, e. g., if one
king declares war and it takes some time before the others realize it. Or if they
move with different speeds, because they are equipped with different vehicles.
Such resulting plane divisions are called weighted Voronoi diagrams. In the first
case they are additively weighted ; formally the distance from a point x ∈ R2 to
a site p is

dp(x) := |x− p| − wp,
where wp ≥ 0 is the weight of p. It can be interpreted as the advance of the
expansion of the "circle" around p. Thus a site with high weight gains a greater
Voronoi region than a site with low weight.

The bisectors B(p, q) now have the shape of hyperbolas and are unbounded,
unless |p − q| ≤ |wp − wq|. Then, assuming wp < wq, the region of p would be
empty. Also it is easy to show that all nonempty Voronoi regions are star shaped
seen from their defining site and thus connected. An example of an additively
weighted diagram, also called power diagram, is depicted in Figure 2.10; here
the weights correspond to the radii of the circles.

For multiplicatively weighted Voronoi diagrams the circles all start expanding
at the same time, but with different speeds. The distance from x to site p is
then defined by

dp(x) :=
1

wp
|x− p|.

Again a site with high weight gains a greater region than a site with low weight.
Interestingly, if wp 6= wq, then the bisector B(p, q) is a circle enclosing the site
with lower weight (but with center point different from the site). So, different
from the Voronoi diagrams discussed so far, in this case we have to deal with
closed bisecting curves. Also the Voronoi diagram may now contain "islands",
Voronoi regions completely enclosed by just one other region and thus being
bounded by an edge without vertex, see Figure 2.11.

Another new phenomenon is that Voronoi regions need no longer be con-
nected. The whole Voronoi diagram may even consist of Θ(n2) many faces,
but each Voronoi region consists of O(n), see Figure 2.12. Half of the sites
p1, . . . , pn

2
are positioned on a horizontal line, and have low weights. The other

24

2.2. VARIATIONS

Figure 2.10: An additively weighted Voronoi diagram.

p q

Figure 2.11: Two sites p and q with multiplicative weights.

half q1, . . . , qn
2
are positioned on a vertical line, and have high weights. Then

the region of each qi, i 6= 1, n2 , is split into Θ(n) faces, and the size of the whole
diagram is Θ(n2).

p1 p2 p3 p4

q1
q2
q3
q4
q5

Figure 2.12: The size of a multiplicatively weighted Voronoi diagram may be
Θ(n2).

Aurenhammer and Edelsbrunner proved the properties from above in [12]
and made use of them to present an algorithm computing the diagram in optimal
worst case time Θ(n2). For each bisector they defined a sphere, which they
mapped to a halfplane by inversion at a point I. Now each Voronoi region
corresponds to the intersection of halfspaces, a polyhedron, which is connected
and hence much simpler to compute. By transforming the polyhedrons back to
the plane one obtains the Voronoi diagram.

25

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

2.2.3 Voronoi Diagram of Line Segments

In areas like biology, geography, pattern recognition, computer graphics, and
motion planning, applications making use of Voronoi diagrams of line segments
can be found, see, e. g., the book by Siddiqi and Pizer [69].

Let a set S of n line segments be given, and assume that they are pairwise
disjoint except for their endpoints, i. e., they may touch only at their endpoints.
Such a set of line segments defines a planar straight line graph.

Now the Voronoi region of a line segment l ∈ S is the set of all points x ∈ R2

which are nearer to l than to any other line segment from S. The distance from
a point x to a line segment l is defined as the distance from x to a nearest point
on l.

Let us take a look at the bisector B(l, s) for two line segments l, s ∈ S. If l
and s are both single points, then the bisector equals the euclidean one, defined
in Section 2.1. If l is a line segment with endpoints a and b, where a 6= b, but
s is still a single point, then the bisector B(l, s) consists of three components,
a segment of the bisector between a and s, a segment of the bisector between b
and s and an arc of the parabola bisecting l and s in between, see Figure 2.13a
for an example. If both l and s are line segments with endpoints a and b, and
c and d respectively, where a 6= b and c 6= d, then the bisector consists of four
components, segments of the bisectors B(c, a) and B(d, b) in the beginning and
end, and in between first an arc of the parabola bisecting c and l (or a and s),
then a segment of the angular bisector between l and s, followed by an arc of
the parabola bisecting d and l (or b and s), see Figure 2.13b.

a

b

l

s

B(a, s)

B(b, s)

B(s, l)

B(a, c)

a

b

c
d

B(b, d)

B(d, l)

l

s

B(c, l)

B(l, s)

(a) (b)

Figure 2.13: The bisector of line segments.

The Voronoi diagram of line segments is a geometric graph, whose edges are
arcs of straight lines and parabolas. It is easy to see that the whole region of a
line segment l is visible from it, thus all regions are simply connected, i. e., they
are connected and they have no holes. Using the Euler formula like in Section
2.1, we obtain the following lemma.

Lemma 4. The Voronoi diagram of a set of n line segments is of size O(n),
i. e., it consists of O(n) edges, vertices, and faces.

There are several algorithms computing the Voronoi diagram in optimal
time. Kirkpatrick [46], Lee [56], and Yap [73] developed divide&conquer algo-
rithms running in time O(n log n) and space O(n). Fortune [40] showed how
to compute the Voronoi diagram by plane sweep method, and Boissonat et. al.

26

2.2. VARIATIONS

[21] and Klein et. al. [53] by randomized incremental construction, all in time
O(n log n).

z(t)

z(s)
l(t)

t' t

ss'

Figure 2.14: The Voronoi diagram of line segments and a possible path for a
disk to be moved from s to t, (from [47]).

A nice application of these Voronoi diagrams can be found in the area of
motion planning, see [14]. Suppose you have a disk-shaped robot and you want
it to move from a starting point s to a termination point t. The problem is that
there are obstacles having the shape of line segments in its way. The question
is, if there is a possible path from s to t, such that the robot never touches an
obstacle. Because each point on the Voronoi diagram of the obstacles maximizes
its minimum distance to any line segment, it is enough to find out if there is a
collision free path on the diagram, see Figure 2.14. Each edge of the diagram is
an arc of a bisector defined by two line segments and we can in constant time
compute the minimum distance from a point on the edge to its nearest line
segment. If this distance is less than the radius r of the robot, the edge can be
removed from the diagram, because the robot would not be able to move along
it. After testing all edges, a graph remains, where all edges can be traversed by
the robot. We can now by breadth-first-search test whether t is still reachable
from s and if yes, we will find a path connecting s and t.

Lemma 5. Once the Voronoi diagram of n noncrossing line segments is con-
structed, we can for a disk-shaped robot of radius r, in time O(n) compute a
collision free path from a starting point s to a termination point t, or decide
that no such path exists.

2.2.4 Voronoi Diagram of Polygons
An interesting special case of the Voronoi diagram of line segments is the dia-
gram of a convex polygon, i. e., the diagram of line segments forming a convex
polygon. Because all line segments are in convex position, each Voronoi region is
unbounded, analogously to point-sites in convex position, see Section 2.1. This
implies that the Voronoi diagram has a tree structure and it is easy to see that
it is even a tree with straight edges. It equals the medial axis in the interior of
the polygon, see Figure 2.15.

Such a diagram can be computed in time O(n), see Aggarwal et. al. [5]. The
same technique also works for the euclidean Voronoi diagram of points in convex

27

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

Figure 2.15: The Voronoi diagram of line segments forming a convex polygon.

position, which also has a tree structure, because all Voronoi regions of points
on the convex hull are unbounded, compare Section 2.1.

The details of this algorithm though are quite involved. They have been both
simplified and generalized by Klein and Lingas [50] to an algorithm working for
Hamiltonian abstract Voronoi diagrams1, where a curve is given intersecting
each Voronoi region exactly once. If the ordering of the regions along the curve
is given, the abstract Voronoi diagram can be computed in linear time. This
applies to diagrams having the shape of a tree and where the ordering of the
unbounded regions around the diagram is known. More about this will be dis-
cussed in Section 6.

Next, let us shortly consider the Voronoi diagram of k polygonal sites and let
the sum of all edges over the k polygons be O(n). Then the Voronoi diagram can
be constructed in time O(n log n) by first computing the line segment diagram
of the polygon edges, and then joining those regions belonging to a line segment
of the same polygon.

2.2.5 More Voronoi Diagrams
Of course there are many more variations of Voronoi diagrams, see also [10, 22,
41, 62], and it is impossible to name them all. We will just mention some more,
which can be used as nice examples later on.

First, let us introduce convex distance functions, compare [14]. Let C be a
compact convex set in the plane containing the origin in its interior. To measure
the distance from a point p to a point q, translate the set C by the vector p.
Then the halfline from p to q intersects C at a unique point q′. Now we define
the distance from p to q with respect to the set C as

dC(p, q) =
d(p, q)

d(p, q′)
,

compare Figure 2.16.
It can be shown that the triangle inequality dC(p, q) ≤ dC(p, r) + dC(r, q) is

fulfilled, with equality when the three points p, q, r are collinear. The symmetry
1Abstract Voronoi diagrams will be introduced in Section 2.3.

28

2.2. VARIATIONS

O p

q

q′

C C

Figure 2.16: The definition of the convex distance from p to q with respect to a
convex set C.

is holding only when C is point symmetric to the origin. In this case dC is a
metric. Further, the convex set C corresponds to the unit-circle, because the
distance from p to any point on C is 1. For Lp-metrics the unit circles are
all symmetric about their centerpoint, and they all define a convex distance
function, which is even a metric.

As already seen in Section 2.2.1, the bisector of points in the L1- and L∞-
metric can be two-dimensional. This is because the unit-circle is not strictly
convex, i. e., it contains line segments on its boundary. If C ist strictly convex,
then the bisectors are all one-dimensional, unbounded, and even homeomorphic
to a line. The bisector of two points p and q can be constructed by drawing
lines parallel to the upper and lower tangent of the two copies Cp and Cq of
C, translated by the vectors p and q. Where these lines intersect Cp and Cq in
4 points, two of them, p′ on Cp and q′ on Cq, are facing each other. The two
lines through p and p′, and q and q′ intersect in a point x which, because of the
intercept theorem, lies on the bisector B(p, q), compare Figure 2.17.

p q

C C

p′ q′x

B(p, q)

Figure 2.17: The bisector B(p, q) with respect to a convex distance function dC .

Next, let us consider the Karlsruhe-metric, sometimes also called Moscow-
metric. Here, an origin O is given, and the shortest distance from a point p to
a point q is measured as the shortest path from p to q running along radii from
O and circles around O, see Figure 2.18.

If points are not in general position, e. g., they are positioned on the same
circle around the origin, then the following problem depicted in Figure 2.19

29

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

O

p

q1

q2

q3

p

q1

q2

0

114,59

(i) (ii)

0

Figure 2.18: The Karlsruhe metric and its Voronoi diagram, (from [14]).

can occur. In the left drawing the bisector of the two points p and q is two-
dimensional. This is because all shortest paths from p or q to a point in the
shaded area runs through the origin. Simple geometry show that a shortest
path from a point p to a point x runs through the origin, if an only if the angle
between |Op| and |Ox| exceeds 114, 59◦.

In the right drawing of Figure 2.19 the bisectors are one-dimensional, but the
region of the site p has a cut-point at the origin and is thus not connected seen as
an open set. Again it spares you a lot of case analysis to assume general position.

p q

O

p q

r

O

VR(r, S)B(p, q)
p qr r

p q

Figure 2.19: The bisector and Voronoi region according to the Karlsruhe-metric
of points not in general position.

Another example is the anisotropic Voronoi diagram, a generalization of
multiplicatively weighted Voronoi diagrams, see Labelle and Shewchuk [54]. In
the "expanding circle view" of Voronoi diagrams, here we do not have expand-
ing circles, instead we have an expanding ellipse from each site. The bisectors
are quadratic curves and the size of the diagram is Ω(n2) and O(n2+ε). It can
be constructed in time O(n2+ε) by an algorithm of Agarwal, Schwarzkopf, and
Sharir [4, 68] for minimization diagrams. Anisotropic Voronoi diagrams are
suitable, e. g., in mesh generation, especially for domains where long and skinny
triangles are required.

30

2.2. VARIATIONS

2.2.6 Farthest Voronoi Diagrams

Up to now we have discussed many Voronoi diagrams, dividing the plane into
regions, such that all points from one region have got the same nearest site.
But what if we instead want to consolidate in regions all points having the same
farthest site. This defines the farthest Voronoi diagram V −1(S). Formally, let
dp(x) be the distance from a point x ∈ R2 to a site p ∈ S, then the farthest
Voronoi region of p is

VR−1(p, S) := {x ∈ R2| dp(x) > dq(x)∀q ∈ S \ {p}}.

Such a diagram would, e. g., solve the problem of finding a smallest disk
intersecting all sites. Such a disk has its centerpoint on either a vertex or an
edge of the farthest Voronoi diagram.

In the euclidean case, the farthest Voronoi diagram V −1(S) is always a tree.
This is because only the sites lying on the convex hull of S have got a nonempty
region, and these regions are all unbounded and connected, see Figure 2.20 for
an example.

Figure 2.20: The euclidean farthest Voronoi diagram of a set of points.

The bisectors of the farthest diagram are the same as the bisectors from the
nearest diagram by just switching their labels, i. e., if in the nearest diagram the
dominance region of p lies to the left of the curve and the dominance region of
q to the right, then it is the other way around in the farthest Voronoi diagram.

There are several methods to construct the diagram in O(n log n) time, see
[14]. One is by lifting the diagram into three-dimensional space, where the bisec-
tors are represented by hyperplanes. The lower envelope of these hyperplanes
then corresponds to the farthest Voronoi diagram. Another possibility is to
construct the farthest Delaunay triangulation, the dual of the Voronoi diagram,
which in the farthest case is a convex polygon. This can be done with a simple
ear-clipping algorithm.

Interestingly, the farthest Voronoi diagram of line segments has also got a
tree structure, but the Voronoi regions need no longer be connected, as depicted
in Figure 2.21. Nevertheless, the size of the diagram is linear in n and it can

31

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

be constructed in O(n log n) time, as shown by Aurenhammer, Drysdale, and
Krasser [11].

s1

s2

s3

s2

s2

s3 s1

Figure 2.21: The farthest Voronoi diagram of line segments. The region of s2
consists of two disjoint faces.

2.2.7 Higher Order Voronoi Diagrams

We have already discussed the notion of nearest and farthest Voronoi diagrams.
The extension of these are called higher order Voronoi diagrams. The first order
diagram V 1(S) is the nearest one. In the order-k diagram, for 1 ≤ k ≤ n − 1,
points belonging to the same Voronoi region are having the same k-nearest sites.
Obviously, the order n− 1 diagram is the farthest Voronoi diagram.

Let H be a subset of S of size k. The Voronoi region of H, i. e., the set of
points having the sites in H as their k nearest neighbors, is

VRk(H,S) = {x ∈ R2|d(x, h) < d(x, p),∀h ∈ H ∧ p ∈ S \H}
=

⋂
h∈H,p∈S\H

D(h, p),

where D(h, p) is the dominance region of h with respect to p, i. e., the set of
points which are nearer to h than to p.

A Voronoi region of order-k may be empty and it need not contain its defining
sites, but because it is the intersection of halfplanes it is always connected, see
Figure 2.22 for an example.

There are
(
n
k

)
subsets of S of size k, and the question is, how many of these

do have a nonempty region in the diagram of order-k. D. T. Lee [57] showed that
V k(S) has O(k(n− k)) nonempty regions and is thus of the same size. He also
developed an algorithm to construct the order-k diagram in time O(k2n log n)
and space O(k2(n − k)), which is efficient for small k but not for large ones.
Also, this algorithm actually computes all orders from 1 to k. It is still an open
problem to compute only the order-k diagram, in output sensitive time.

For line segments, as already discussed in the previous section for the case of
the farthest diagram, the higher order Voronoi regions need not be connected,
see also Figure 2.23. Still, Papadopoulou and Zavershynskyi [63] could show,

32

2.3. ABSTRACT VORONOI DIAGRAMS

102 CHAPTER 6. HIGHER DIMENSIONS

p

q

Figure 6.8: Region of {p, q} in the order-2 Voronoi diagram V2(S)

words, the singleton site {p} = S \ M has to be furthest from x. For this
reason, the diagram Vn−1(S) is commonly called the furthest-site Voronoi
diagram of S. It contains, for each site p ∈ S, the region of all points x for
which p is the furthest site in S.

This diagram has special structural properties. For example, only sites
lying on the boundary of the convex hull of S, and exactly those, have non-
empty regions in Vn−1(S). This is because a site interior to the convex hull
can never be the furthest from any point x in Rd. Moreover, all regions are
unbounded, as each of them contains some unbounded ray emanating from
the defining site and pointing ‘away’ from S. In the plane, this implies that
the edge graph of Vn−1(S) is a tree. It consists of exactly 2h − 3 edges and
h − 2 vertices, when h denotes the number of extreme points in S (if S is
in general position; the size of Vn−1(S) is less, otherwise); cf. Figure 6.9.
Exact upper bounds on the size of furthest-site Voronoi diagrams in Rd for
d ≥ 3 are derived in Seidel [597].

Several methods of construction apply to Vn−1(S). Let us first consider
the lifting approach taken in Subsection 6.2.2, where distances to the sites
pi ∈ S are described by hyperplanes π(pi) in Rd+1. Clearly, the weights
w(pi) have all to be put to 0 now, as we deal with Euclidean distances
rather than with power functions.

As furthest distances are to be used, the lower envelope of the hyper-
planes π(p1), . . . , π(pn) will vertically project to Vn−1(S). Consequently, by

Figure 2.22: The euclidean order-2 diagram of point-sites, (from [14]).

by extensively using the geometry of the sites, that the order-k diagram of line
segments has O(k(n− k)) faces.

Very recently it has been shown, that the order-k Voronoi diagram of line
segments can be constructed in time O(kn1+ε), by a general algorithm com-
puting the order-k abstract higher order Voronoi diagram, [20], which will be
introduced in Chapter 5.

s1 s2

F1 ⊂ VR2({s1, s2}, S)

F2 ⊂ VR2({s1, s2}, S)

Figure 2.23: The order-2 Voronoi diagram of line segments, (from [63]).

2.3 Abstract Voronoi Diagrams
As we have seen, there are extremely many different kinds of Voronoi diagrams,
based on different types of sites and distance measures. Every time a new
Voronoi diagram was defined, one had to go through its properties and develop
a new algorithm to compute it. This is why the temptation was high to come up
with a unifying concept covering as many Voronoi diagrams as possible. That
was when Klein [48, 14] introduced abstract Voronoi diagrams, AVD’s for short.

He realized that most concrete Voronoi diagrams have one feature in com-
mon. For each pair of sites p and q, there is a set of points having the same

33

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

distance to both sites. This set is often a one-dimensional curve separating the
plane into two domains, one consists of all points that are nearer to p than to
q, and the other one is the set of points that are nearer to q than to p, see the
previous sections for examples.

The discovery was that the dominance regions are actually enough to know
how to construct the Voronoi diagram. Thus the idea was to assume that a set
S of n non-physical abstract sites, indexed by {p, q, r, . . .} are given, and for
each pair of sites p and q there is a bisecting curve J(p, q) separating the plane
into the two dominance regions, D(p, q) on one side of J(p, q), and D(q, p) on
the other side.

Now the abstract Voronoi region of a site p is defined by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q),

and the abstract Voronoi diagram by

V (S) := R2 \
⋃
p∈S

VR(p, S).

It is clear that this definition coincides with the definitions used to define
concrete Voronoi diagrams, where D(p, q) was the set of points that are nearer
to p than to q. Now, the first question arising is which assumptions are needed
to make the set of bisectors J = {J(p, q) : p, q ∈ S} admissible.

Definition 3. A set of bisecting curves J = {J(p, q) : p, q ∈ S} is called
admissible if for each subset S′ ⊆ S of size at least 3 the following axioms are
fulfilled.
(A1) By stereographic projection to the sphere, each curve J(p, q), p, q ∈ S, can
be completed to a closed Jordan curve through the northpole.
(A2) Each Voronoi region V (p, S′) is path-connected.
(A3) Each point of the plane belongs to the closure of a Voronoi region VR(p, S′).

Each curve J(p, q) fulfilling axiom (A1) separates the plane into two un-
bounded open domains D(p, q) and D(q, p). By the Jordan-Schönflies theorem,
each point x on J(p, q) can be accessed from D(p, q) (and D(q, p)) by an arc
that runs entirely in D(p, q) (or D(q, p)) except for its endpoint x.

Because of the Jordan curve property and axiom (A3) the following lemma
can be shown, see, e. g., [49, Lemma 3].

Lemma 6. Let J be an admissible curve system for a set of sites S. Then,

V (S) =
⋃

p 6=q∈S
VR(p, S) ∩ J(p, q) =

⋃
p 6=q∈S

VR(p, S) ∩VR(q, S).

A Voronoi edge e of V (S) can now be defined as a maximal connected subset
of V (S) such that all points x on e lie on the boundary of exactly two different
Voronoi regions of sites p and q. Edge e separates the Voronoi regions of p and
q, and is an arc of the bisector J(p, q). A Voronoi vertex v is a point x of V (S)
which lies on the boundary of the regions of at least three sites p, q, and r of S.

For physical sites p, q, r and a distance measure, we have a transitivity prop-
erty, saying that if a point x is nearer to p than to q, and nearer to q than to
r, then x is nearer to p than to r. Surprisingly, a similar fact can be shown for
abstract Voronoi diagrams, see [49, Lemma 5].

34

2.3. ABSTRACT VORONOI DIAGRAMS

Lemma 7. Let J be an admissible curve system and p, q, r ∈ S. Then

D(p, q) ∩D(q, r) ⊆ D(p, r).

Observe that to prove this lemma axioms (A1) and (A3) are enough. The
transitivity turned out to be a very strong and useful property.

For example it helps us to show that the abstract Voronoi diagram has a
graph structure. At first this was proven using an additional assumption stating
that two arbitrary bisectors have only a finite number of intersections, [48]. This
property seemed to be fulfilled in most applications, but some years later Cor-
balan et. al. [31] came up with an example of a smoth convex distance function
whose bisectors could intersect in an infinite number of components. Motivated
by this, Klein, Langetepe, and Nilforoushan [49] showed that abstract Voronoi
diagrams can be handled the same way even without the finite-intersection-
property. They showed that the crucial piece-of-pie Lemma is still valid, com-
pare [49, Lemma 11] and Figure 2.24.

Lemma 8 (piece-of-pie). Let S′ be a subset of S. We have the following.

(i) All but finitely many points of V (S′) belong to an edge of V (S′).

Let v be a point of V (S′), and U(v) an arbitrarily small neighborhood of v,
whose boundary is a simple closed curve, such that the following holds.

(ii) Either v is interior point of some Voronoi edge e ⊆ J(p, q) of V (S′). Then
U(v) is divided by e into exactly two domains, one contained in VR(p, S′),
the other one in VR(q, S′).

(iii) Or v is a Voronoi vertex of V (S′) of degree k ≥ 3. After suitably renumber-
ing S′, the Voronoi edges ei adjacent to v belong to J(pi, pi+1) in clockwise
order, where 1 ≤ i ≤ k and ek+1 = e1. The edges ei and ei+1 together
with ∂U bound a piece of pie contained in VR(pi, S

′). These pieces are do-
mains with Jordan curve boundaries and the sites p1, . . . , pk are pairwise
different.

v

U(v) U(v)

v

p

q

e

e1

e2e3

e4
p4

p1

p2

p3

Figure 2.24: In the left drawing v is a point of a Voronoi edge separating the
Voronoi regions of p and q. In the right drawing v is a Voronoi vertex of degree 4
lying on the boundary of the regions of p1, . . . , p4.

Because all bisectors are unbounded, all Voronoi regions (and also the clo-
sures of the Voronoi regions) must be simply connected. Otherwise there would
be a site q whose region is completely enclosed by the region of a site p, but

35

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

then the bisector J(p, q) would also have to be enclosed by the region of p and
thus it would be bounded (or not simple), a contradiction to axiom (A1).

Furthermore, each Voronoi region is connected and there are n sites in S,
thus by the Euler formula we obtain the following lemma.

Lemma 9. The graph V (S) is of size O(n).

For many purposes it is helpful to consider only the bounded part of V (S),
which can be achieved by adding a large curve Γ around the diagram and cutting
off all bisectors outside of it. The curve Γ should intersect each bisector exactly
twice and outside of Γ each pair of bisectors is either equal or disjunct. The
existence of such a curve can be proven similarly to Lemma 8, compare also [48,
Lemma 2.3.1], which is proven by [65, 40.20].

If one now wants to apply the concept of abstract Voronoi diagrams to a
concrete case, one needs to verify whether the axioms from Definition 3 are
fulfilled. Fortunately, the following lemma shows that it is not necessary to
verify the axioms for all subsets of S; it is enough to consider all subsets of size
three.

Lemma 10. A curve system J is admissible if it fulfills the axioms stated in
Definition 3 for all subsets S′ ⊆ S of size 3.

The Voronoi diagrams of 3 sites can be categorized into four cases, see Figure
2.25. In the first one, all three bisectors intersect in exactly one point. This
would, e. g., be the case in the euclidean diagram of point-sites in general posi-
tion. In the second case the bisectors intersect in exactly two points. This can
occur in the diagram of line segments, where a short line segment p is in the
middle, and two longer ones q and r to the right and left of it. In the third case
the bisectors are disjoint and all regions are nonempty, something that happens
for three collinear points. In the fourth case the bisectors are again disjoint,
but now the region of r is empty, this happens in the farthest diagram of three
collinear points.

p
q

p
r

q r

pq p r

q r q p

q r

p r r q

p q

p r

p

q r pq r q p r p q

Figure 2.25: The four cases of an abstract Voronoi diagram of 3 sites p, q,
and r. The upper drawings show the bisector system and the lower ones the
corresponding Voronoi diagrams.

Another very useful fact is that we can define a total ordering on the set of
sites. For p, q ∈ S and x ∈ R2 we define

p <x q ⇐⇒ x ∈ D(p, q).

36

2.3. ABSTRACT VORONOI DIAGRAMS

In a concrete setting this would mean that x is closer to the site p than to
q. For each x ∈ R2 not lying on any bisecting curve, we can sort the set
S = {p1, . . . , pn} according to the ordering. Let p1 <x p2 <x . . . <x pn, then
this gives us a sorted order of the distances from x to the sites. Most of all we
will need this in Chapter 5 to consider higher order abstract Voronoi diagrams.
But let us first get back to order-1 diagrams.

Klein, Mehlhorn, Meiser, and Ó’Dúnlaing [60, 53] have developed a random-
ized incremental algorithm to compute abstract Voronoi diagrams in expected
time O(n log n). They start with the diagram of three sites and then incre-
mentally add the sites region by region, assuming that the insertion order is
randomized. Each time a new region shall be inserted, the edges of the old
diagram intersected by the new region have to be detected. We say that these
edges are in conflict with the new site. This is facilitated by a history graph,
storing all edges ever constructed in a DAG. New edges arising, when inserting a
new region, are made a successor of those nodes of the history graph represent-
ing edges of the current diagram intersected by the new edge. This makes sure
that the edges of the current diagram always are leaves of the graph, and those
which are in conflict with the new region can be found in expected time O(log n),
by walking through the history graph, starting from its root, along its vertices
in conflict with the new site. Altogether, the diagram can be constructed in
expected time O(n log n) and expected space O(n).

The algorithm and its construction time is valid for all concrete Voronoi di-
agrams, whose bisector systems are admissible in the sense of Definition 3. This
condition is met by the diagram of point sites in all Lp-metrics under a gen-
eral position assumption (Section 2.2.1), additively weighted Voronoi diagrams
(Section 2.2.2), the diagram of non-crossing line segments (Section 2.2.3), and
convex polygons of constant size (Section 2.2.4).

Furthermore, for point sites, a metric d can be defined, satisfying that points
in general position have unbounded bisecting curves, d-circles are of constant
algebraic complexity, each d-circle contains an L2-circle and vice versa, and
for any two points a 6= c there is a third point b 6= a, c such that d(a, c) =
d(a, b) + d(b, c) holds. Such a metric d is called nice metric and its bisector
system with respect to a given set of point sites is admissible. This includes all
convex distance functions of constant complexity, and also the Karlsruhe metric
(Section 2.2.5).

Another example are disjoint compact, convex objects under the L2- or
Hausdorff-metric, where the distance from a point x in the plane to a com-
pact, convex set A is measured by the minimum distance d(x, a) from x to any
point a ∈ A with respect to a metric d. More applications of abstract Voronoi
diagrams can be found in [1, 6, 7, 13, 15, 45, 60].

Not covered by the current approach are bisector systems resulting in dis-
connected Voronoi regions, or closed bisecting curves, as can occur for mul-
tiplicatively weighted Voronoi diagrams (Sections 2.2.2), anisotropic Voronoi
diagrams (Section 2.2.5), and the farthest Voronoi diagram of line segments
(Section 2.2.6). Such Voronoi diagrams will be addressed in the following two
chapters.

37

CHAPTER 2. FROM CONCRETE TO ABSTRACT VORONOI
DIAGRAMS

38

Chapter 3

Disconnected Regions

In Section 2.3 the first setting of abstract Voronoi diagrams introduced by Klein
in [48, 14] has been discussed. A crucial point was axiom (A2), stating that all
Voronoi regions are path-connected. Yet, there are concrete Voronoi diagrams
where this axiom fails to hold. In this chapter we allow Voronoi regions to be
disconnected and explain how to compute them. By combining the randomized
incremental construction technique [60] with trapezoidal decompositions [66] we
obtain an algorithm that runs in expected time O(s2n

∑n
j=3mj/j) and space

O(
∑n
j=4mj), where s is the maximum number of faces a Voronoi region in a

subdiagram of three sites can have, and wheremj denotes the average number of
faces per region in any subdiagram of j sites. In the connected case, where s =
1 = mj , this results in the known optimal bound O(n

∑n
j=3 1/j) = O(n log n).

A preliminary version of this chapter has been presented at ISAAC’13 [17].

3.1 Motivation

One example of Voronoi diagrams, where Voronoi regions can be disconnected,
arises from the expanding-circle-view, presented in Section 2.2.2. Here, we have
point-shaped sites from which circles expand. Where two circles meet we get
a Voronoi edge and where three or more circles meet, we get a Voronoi vertex,
see the left drawing of Figure 3.2. If the circles start to expand at different
times, we obtain additively weighted Voronoi diagrams, and if the circles expand
with different speeds, we obtain multiplicatively weighted Voronoi diagrams.
In the latter case, Voronoi regions can be disconnected, but also axiom (A1)
is violated, because in general all bisectors are closed curves. Such diagrams
will be discussed later in Chapter 4. In this chapter we deal with unbounded
bisecting curves only.

Lets keep the expanding-circle-view for a while and suppose that the circles
may vary their expansion-speeds. For simplicity, assume that each circle either
expands with very high, nearly infinite, speed, or its speed is nearly zero. Each
circle may change its speed up to some constant s times. This means that the
radius of each circle increases by a step function, with O(s) steps, as depicted in
Figure 3.1. At segments drawn vertically, the radius functions p(t), q(t), and r(t)
increase very quickly, while being constant in between. The rightmost horizontal
edges have an identical, gently increasing, slope. If, at time t, |p(t) − q(t)| <

39

CHAPTER 3. DISCONNECTED REGIONS

time

radius

q(t)

p(t)

r(t)

Figure 3.1: Expanding circles leading to the Voronoi diagram shown in Fig-
ure 3.2.

|p− q] < p(t) + q(t) holds then the two circles of radii p(t) (resp. q(t)) centered
at p (resp. at q) intersect twice and thus define two points on the bisector of p
and q. When q(t) stays constant while p(t) increases, these two bisector points
move along the circle of radius q(t) around q, writing out circular bisector arcs
(an extreme case of a multiplicatively weighted Voronoi diagram). Clearly, such
arcs can be shared by the bisectors J(p, q) and J(q, r). The slightly increasing
tails of the radius functions lead to circular bisector segments, as in additively
weighted Voronoi diagrams.

The complexity of the Voronoi diagram of three sites can be bounded as
follows.

Lemma 11. Let ε > 0 be an arbitrarily small number and let the radius func-
tions p(t), q(t), and r(t) be piecewise linear, with graphs consisting of ≤ s line
segments each, with slopes either < ε or > 1

ε . Furthermore, any two radius
functions intersect in at most s− 1 points. Then ε can be chosen such that the
Voronoi diagram V ({p, q, r}) has at most 3s Voronoi vertices.

Proof. If x is a Voronoi vertex, then all three circles of p, q, and r intersect at
this point at the same time. We can choose ε > 0 such that an intersection
of all three circles occurs only while one of the circles is expanding with high
slope > 1

ε . Each time a circle is expanding with high slope, it can overrun the
two intersection points of the other two circles. Thus during each expansion
phase there can arise at most 2 vertices. Because each circle expands with high
slope at most s

2 times, and there are 3 circles, V (S) can get at most 3s Voronoi
vertices.

This means that each Voronoi region in V ({p, q, r}) has at most O(s) con-
nected components. The diagram of 3 sites p, q, r may then look like depicted
in the right drawing of Figure 3.2.

40

3.1. MOTIVATION

p

q

r

p

q

r

Figure 3.2: The Voronoi diagram of three sites, to the left with expanding circles
not variating their speeds, and to the left with variating speeds.

If an expanding circle never completely overruns another one, then all bi-
secting curves are unbounded and consist of O(s) circular arcs each. Formally,
this means that p(t) < q(t) + |p − q| for all sites p and q. In this case our
algorithm, discussed in this chapter, can be adapted. As will be seen later, the
crucial point is to determine the expected number of faces of a Voronoi region
in any diagram of a subset of j sites of the given site-set. This number may
strongly depend on the chosen radius functions.

Now, let us explicitly define which Voronoi diagrams we are considering in
this chapter. We still require the following two axioms, claimed to hold for each
subset S′ of S, compare Definition 3 from Section 2.3.

(A1) By stereographic projection to the sphere, each curve J(p, q) can be com-
pleted to a closed Jordan curve through the northpole.

(A3) Each point of the plane belongs to the closure of a Voronoi region VR(p, S′).

But instead of axiom (A2), we require the following relaxed version,

(A2’) For any p, q, r ∈ S, each Voronoi region in V ({p, q, r}) has at most s
path-connected components.

Also, we assume the finite intersection property, which directly implies that
our AVD has an intuitiv graph structure.

(A4) For any two curves J(p, q) and J(r, t), their intersection has only finitely
many connected components.

Axiom (A2’) implies that two bisecting curves J(p, q) and J(q, r) sharing
a site q can cross at most O(s) times, whereas arbitrary bisectors J(p, q) and
J(r, t) not sharing a site can have any finite number of intersections. While this
axiom bounds the possible number of faces per region in all AVD’s of three sites
of S, in an AVD of n > 3 sites a single region may have as many as Θ(sn2)
faces; see Lemma 18 below. To capture the complexity of the input system of
bisecting curves we denote by mj the average number of faces per region, over
all AVD’s of j sites from S.

Furthermore, to make use of trapezoidal decompositions [66] we will in Sec-
tion 3.5 require one additional assumption to bound the number of trapezoids
in the decomposition.

(A5) Each bisector J(p, q) has constantly many points of vertical tangency.

41

CHAPTER 3. DISCONNECTED REGIONS

This holds, e. g., for algebraic functions of constant algebraic degree. More-
over, given a direction of J(p, q) and two points x and y on it, we assume that
one can in constant time decide which point is visited first. Furthermore, for
simplicity we assume general position in the sense that no two distinct points of
vertical tangency lie on the same vertical line. These are assumptions commonly
made in the design of algorithms for computing arrangements of curves, [68].

In this chapter we are proving the following result.

Theorem 3. Given a system of bisecting curves that satisfies Axioms A1, A2’,
A3, A4, and A5. Then its abstract Voronoi diagram V (S) can be constructed
in expected time

O

s2n n∑
j=3

mj

j

 .

Theorem 3 can be seen as a generalization of the optimal bound obtained
in [60] for AVD’s with connected regions, because in this case s = 1 = mj holds
and

∑n
j=3 1/j ∈ O(log n). However, it seems that the standard randomized

incremental construction method does not generalize to the disconnected case
in a straightforward way. One difficulty is that more conflict information must
be stored, in order to locate all faces of the region of a new site. But then
one cannot easily bound the outdegree of the history graph. We overcome this
difficulty by maintaining a trapezoidal decomposition [66] of the current AVD
during the incremental construction.

The rest of this chapter is organized as follows. In Section 3.2 we present
some basic facts and in Section 3.3 complexity results about AVD’s with discon-
nected regions. In Section 3.4 we discuss preliminary observations with respect
to an algorithm. We proceed to studying it in Section 3.5 and carry out the
analysis in Section 3.6.

3.2 Basic Facts
In this section we present some basic facts about abstract Voronoi diagrams
with disconnected regions, which are akin to facts about the old AVD’s with
connected regions, and can be proven similarly, compare Section 2.3. Let our
given system of bisecting curves satisfy axioms A1, A2’, A3, and A4, and let
s denote the maximum number of connected components of a Voronoi region
VR(p, S′), where p ∈ S′ ⊆ S, |S′| = 3, |S| = n.

Lemma 12. Let p, q, r ∈ S. Then D(p, q) ∩D(q, r) ⊆ D(p, r).

Proof. The same as the proof of Lemma 5 in [49], since it only uses axiom
(A4).

Lemma 13. The faces of a Voronoi region and their closures are simply con-
nected.

Proof. Lemma 2.2.4 in [48] applied on a connected component of a Voronoi
region and its closure.

Because of axiom (A3), the following "piece of pie" lemma can be shown,
which compares with Lemma 11 in [49], see also Figure 3.3. One of the main

42

3.2. BASIC FACTS

differences is, that several faces of the same region may be adjacent to the same
vertex, like depicted in Figure 3.6c.

Lemma 14. Let S′ be a subset of S. For each point v ∈ V (S′) there exists an
arbitrarily small neighborhood U of v, whose boundary is a simple closed curve,
such that the following holds.

(i) Either v is an interior point of some Voronoi edge e of V (S′) separating
the Voronoi regions of p and q. Then p 6= q and U is divided by e in
exactly two domains, one contained in VR(p, S′), the other in VR(q, S′).

(ii) Or v is a Voronoi vertex of V (S′), of degree k ≥ 3. After suitably renum-
bering S′, the Voronoi edges ei incident to v separate the Voronoi regions
of pi and pi+1 in clockwise order, where 0 ≤ i ≤ k − 1 is counted mod k.
The edges ei−1 and ei together with ∂U , bound a piece of pie contained in
VR(pi, S

′); these pieces are domains with Jordan curve boundaries. The
sites p0, . . . , pk−1 do not have to be pairwise different, but p0p1 . . . pk−1 is
a Davenport-Schinzel-Sequence of order 2, and if pi = pj for i 6= j, then
the pieces of pie of pi and pj belong to different faces of the Voronoi region
of pi = pj.

Proof. We will prove only the last part of (ii) saying that p0p1 . . . pk−1 is a
Davenport-Schinzel-Sequence of order 2, and if pi = pj for i 6= j, then the
pieces of pie of pi and pj belong to different faces of the Voronoi region of
pi = pj . For the rest see Lemma 11 in [49].

For the sake of a contradiction, let p 6= q, and assume that the faces around
v belong to the sites . . . p . . . q . . . p . . . q . . . in this order. These faces have to
be separated by the bisector J(p, q). But then for any ε > 0, the bisector
J(p, q) has to appear 4 times in U , implying that it can not be a simple curve,
a contradiction.

Next, suppose that pi = pj and the pieces of pie of pi and pj belong to
the same face. Then the closure of this face would not be simply connected, a
contradiction to Lemma 13.

p
q

v v

p0 p1

pk−1

e0

e1

ek−1

Figure 3.3: Piece of Pie Lemma

The Piece-Of-Pie-Lemma also shows that each point of the plane either
belongs to a Voronoi region, or a Voronoi edge, or is a Voronoi vertex. An edge
e is defined by two sites p and q, whose regions are separated by e. Voronoi
vertices v are defined by at least three sites p, q, r, whose regions meet in v.

Theorem 4. V (S) is a finite planar graph with O(#faces of V (S)) vertices and
edges.

43

CHAPTER 3. DISCONNECTED REGIONS

Proof. By Lemma 14, V (S) is a finite planar graph. From the Euler formula it
follows, that V (S) has O(#faces of V (S)) vertices and edges.

3.3 Complexity of V(S)
To estimate the running time of our algorithm computing abstract Voronoi
diagrams, it is important to know their complexity. For connected regions it
is known, that the size of V (S) is O(n), because it is a planar graph with
O(n) faces. But what happens if regions are allowed to consist of several faces?
Surprisingly, already when a region in a diagram of 3 sites may have up to 2
faces, the total diagram V (S) can have a complexity of Θ(n2), as will be seen
below.

In the sequel it will sometimes be helpful to restrict attention to the "finite
part" of V (S). For this purpose define Γ to be a large simple closed curve,
intersecting each bisecting curve J(p, q), p, q ∈ S exactly twice, such that in
the outer domain of Γ any two bisectors J(p, q) and J(r, t) are either equal or
disjunct. If we add Γ to V (S) and cut off all parts contained in the outer domain
of Γ, we obtain a connected graph without unbounded edges.

In the next two lemmata we want to connect the number of faces of a Voronoi
region with the number of intersection points of the corresponding bisectors. It
may not surprise that these numbers are of the same order.

Lemma 15. V ({p, q, r}) has at most 6s− 4 Voronoi vertices, i. e., J(p, q) and
J(p, r) can intersect in at most 6s− 4 points that result in a Voronoi vertex in
V ({p, q, r}). Further, this bound is tight.

Proof. Let S = {p, q, r} and consider V (S) ∪ Γ. Cut off all edges outside of Γ
and define this as the graph G. Then G is a connected finite planar graph with
at least two more vertices and exactly one more face than V (S). Now the Euler
formula tells us v− e+ f = c+ 1. Because of our assumption, f ≤ 3s+ 1, c = 1,
and because each Voronoi vertex is of degree ≥ 3, we have 3v ≤ 2e. Substituting
this into the Euler formula we obtain v ≤ 6s− 2 for G and v ≤ 6s− 4 for V (S).
Figure 3.4 shows an example where the bound is tight. It can be extended to
all s ≥ 1.

Let x be a connected component of the intersection of two bisectors J(p, q)∩
J(r, t). We say that J(p, q) and J(r, t) intersect transversally in x, if J(r, t) ⊂
D(p, q) right before x, and ⊂ D(q, p) right after x, or vice versa. For computing
Voronoi diagrams only points resulting in Voronoi vertices are of interest. Thus,
because of the previous lemma, we can in the following assume, that each pair of
p-bisectors, bisectors J(p, q) and J(p, r) sharing site p, intersects transversally
in at most 6s− 4 points, and each intersection point results in a Voronoi vertex
of V ({p, q, r}).
Lemma 16. Let S = {p, q, r}. If J(p, q) and J(p, r) intersect in at most s− 1
points, then VR(p, S) has at most s connected components.

Proof. There are at most s− 1 p-vertices (vertices bordering the Voronoi region
of p) in V (S). Each p-vertex borders at most two different faces of the p-region.
Further, the p-region can have at most two unbounded faces. Thus, all other
faces must have at least two p-vertices on their boundary. Altogether, p can
have at most s connected components.

44

3.3. COMPLEXITY OF V (S)

a1

a2

a15

q
p

r p

rrrr

p p p
p

p
r

rr

pp

q

q q

q q q

σ
σ

σ σ

ρ ρ

ρ

ρ

π π π π

qq
q

σ

q r

Figure 3.4: An example where J(p, q) and J(p, r) intersect in 6s−4 = 14, s = 3,
points resulting in as many Voronoi vertices in V ({p, q, r}). Each π is a path
⊂ VR(p, S), σ ⊂ VR(q, S), and ρ ⊂ VR(r, S).

In the next lemma we use the notation λs(n), which stands for the maximum
length of a (n, s) Davenport-Schinzel sequence, see [68] and Definition 1, 2, and
Lemma 3 in Section 2.1.1. The idea of how to prove the lower bound in the
following lemma is from Agarwal [2].

Lemma 17. Let F be a face of V (S). Then F has a complexity of O(λ6s−4(n−
1)). For s ≥ 4, there exists an AVD having a face of complexity Ω(λs−1(n−1)).

Proof. There are (n − 1) p-bisectors of which each pair is allowed to intersect
transversally at most 6s − 4 times, see Lemma 15. The upper bound follows
from the results for arbitrary arrangements of Jordan curves, see [68].

To show the lower bound, choose an arrangement of unbounded Jordan
curves J(p1, p2), . . . , J(p1, pn), where each pair of them has at most s − 1
intersections, such that there is a face F having complexity Ω(λs−1(n − 1)).
Now the Jordan curves are our bisecting curves, and by suitably labeling them
we can claim F ⊆ D(p1, pi) for all 2 ≤ i ≤ n. Thus, F is a face of the Voronoi
region of p1. To show how this curve arrangement can be turned into an AVD,
we define J(pi, pj), i < j equal to J(p1, pj), and D(pi, pj) = D(p1, pj). It is easy
to see that if x ∈ R2 \ V (S), then either x ∈ VR(p1, S) or x ∈ VR(pi, S), where
i is maximal such that x ∈ D(pi, p1). By our definition each pair of bisectors
intersects in at most s − 1 points, hence, because of Lemma 16, each Voronoi
region has at most s connected components.

We observe that this lemma does not imply the same complexity bound for
a whole region of a site p, quite in contrary a region with several faces can have
complexity Θ(sn2), see also Figure 3.5 (for s = 2).

Lemma 18. The number of faces and the complexity of a region of V (S) is
O(sn2). This bound can be attained.

Proof. There are O(n) many p-bisectors of which each pair intersects in at most
O(s) points, implying that there are O(sn2) p-vertices in V (S). Two edges of
V (S) having the same endpoints must belong to different bisectors, otherwise the
bisector would be closed. That means, that two vertices having several parallel

45

CHAPTER 3. DISCONNECTED REGIONS

p1

p2

p1

p3

p1

p4

p1

p5

p2

p2
p3

p2
p3
p4

Figure 3.5: Here s = 2 and the Voronoi region of p1 has Θ(sn2) many faces, all
faces outside the sticks.

edges count as an intersection for each pair of bisectors contributing to these
edges. This implies the upper bound O(sn2) for the complexity of the p-region,
which again is an upper bound for the number of connected components.

To show the lower bound, choose an arrangement of unbounded Jordan
curves J ′(p1, p2), . . . , J ′(p1, pn), where each pair of them has at most s−1

4 in-
tersections, such that the arrangement has Ω(sn2) faces. Such an arrangement
exists, see [68] and Figure 3.5 (for s = 2). Let Γ be a circle around the ar-
rangement, large enough such that there are no more intersections outside of
it. Now choose a circle C with sufficiently small radius centered at the origin.
For each Jordan curve J ′(p1, pi) of the arrangement, we cut off one endpiece
outside of Γ and generate the Minkowski sum of the remaining curve with the
circle C. Let this curve be J(p1, pi) and let D(p1, pi) be outside the Minkowski
sum and D(pi, p1) inside it. Now, each intersection point of the previous curves
J ′(p1, pi) and J ′(p1, pj) results in 4 intersection points of the new bisectors
J(p1, pi) and J(p1, pj), which means, that each pair of bisectors in the new ar-
rangement has at most s− 1 intersections. To get an admissible set of bisector
{J(pi, pj)|i 6= j}, choose, like in the previous proof, J(pi, pj), i < j, equal to
J(p1, pj) and D(pi, pj) = D(p1, pj). Now, the Voronoi region of p1 has Ω(sn2)
many faces and so is its complexity.

Lemma 19. The complexity and number of faces of V (S) is O(sn3).

Proof. It follows directly from the fact, that each region has a complexity and
number of connected components in O(sn2), Lemma 18.

Theorem 5. Let J := {J(p, q) : p 6= q ∈ S}, |S| = n, be a curve system
fulfilling axioms A1, A2’, A3, and A4 for all subsets S′ ⊆ S of size 3. Then
J fulfills axioms A1, A3, and A4 for all subsets S′ ⊆ S of size ≥ 3, and each
Voronoi region has O(sn2) faces.

Proof. It remains to show that (A4) is still valid for larger sets of sites. This
follows from the transitivity, Lemma 12, compare the proof of Lemma 13 in
[49].

46

3.4. TOWARDS AN ALGORITHM

3.4 Towards an Algorithm
We present a randomized incremental algorithm, which computes abstract Voronoi
diagrams with disconnected regions. Let R ⊂ S, t a site of S not in R, and
T := VR(t, R ∪ {t}) its new Voronoi region. Allowing Voronoi regions to be
disconnected causes some new technical phenomena, which did not occur in the
connected case [53]. For example, the intersection of a face of the new region T
with the old Voronoi diagram V (R) need not be connected. Or there may be
so-called “touch points” with respect to t where different faces of the region of t
meet (Figure 3.6c).

p

r vq p
q

rp
r

rq
u = up = uq

vw

(a)

p

qr

r
r

(b)

tt t t

q

r

(c)

Figure 3.6: (a) A pqr-vertex v and prqu-edge e with description DR(e) =
{(rq, q, p, rp, (x, y)), (up, p, q, uq, (x

′, y′))}, where v = (x, y) and w = (x′, y′).
(b) There can be s different pqr-vertices in V ({p, q, r}). (c) Touch points with
respect to t on an edge of V (R \ {t}).

All these difficulties can be dealt with, as discussed in Section 3.4.1. For-
tunately, it is still true, that the fate of an edge e of V (R) upon insertion of
site t, can be decided locally. Suppose that in V (R) edge e separates faces of
p and q, and that its endpoints are defined by two more sites r and u. Then
e is intersected by the new region VR(t, R ∪ {t}) of t in V (R), if and only if
e is intersected by the region VR(t, {p, q, r, u, t}) of t in the Voronoi diagram
of the four sites p, q, r, u, see Lemma 4 in [53]. The same holds, if there is a
touch point v with respect to t on e. Then v is still a touch point with respect
to t on e in the diagram of the five sites p, q, r, u, and t, see Lemma 21 below.
Therefore, our algorithm will be built on a basic operation, which is only slightly
more complicated than the one used in [53]. Recall that Voronoi edges e and
Voronoi regions VR(p, S) are defined as open sets, i. e., edges e do not contain
their endpoints, and regions VR(p, S) do not contain their boundaries. With
VR(p, S) we denote the closure of the Voronoi region.

Further, we use the same definitions to describe vertices v and edges e of
V (R) by sites as in [53]. A vertex v of V (R) is called a pqr-vertex, if there
is a p-, q-, and r-region in clockwise order around v and an edge e of V (R) is
called a prqt-edge if e separates a p- and q-region, and its endpoints are prq-
and qtp-vertices, see Figure 3.6a.

Let e be an edge with endpoints v and w separating p- and q-region. Fur-
ther, let rq and rp be the preceding and following regions of q and p in clockwise
order around v, and up and uq the preceding and following regions of p and q in
clockwise order around w. Then the description DR(e) with respect to R ⊆ S is
the set {(rq, q, p, rp, coor(v)), (up, p, q, uq, coor(w))}, where coor(v) and coor(w)
are the coordinates of v and w respectively, see again Figure 3.6a. Because of
Lemma 13, no two edges bounding p- and q-regions can have the same end-
points. Hence, each edge has a unique description. This would not be the case,

47

CHAPTER 3. DISCONNECTED REGIONS

if the description was defined without the coordinates, see Figure 3.6b. More-
over, with set(DR(e)) we denote the set {rp, rq, up, uq, p, q}.

Basic Operation
Input: A 5-tuple (p, r, q, u, t), such that

(1) V ({p, r, q, u}) contains a prqu-edge e, and

(2) t /∈ {p, r, q, u}.

Output: The combinatorial structure of e ∩VR(t, {p, r, q, u, t}) in the form of:

• Number of connected components of e ∩VR(t, {p, r, q, u, t}),

• The placement of the connected components of e∩VR(t, {p, r, q, u, t}) on e,
i. e., the coordinates of the endpoints of e∩VR(t, {p, r, q, u, t}). A special
case is e ⊂ VR(t, {p, r, q, u, t}).

• Touch points with respect to t on e by their coordinates.

Lemma 20 below shows that the intersection e∩VR(t, {p, r, q, u, t}) can have
at most O(s) connected components. Moreover, by Lemma 22 there are O(s)
touch points with respect to t on an edge e of V (R). That is why we charge
O(s) time to each call of the Basic Operation.

However, of much greater concern is that the history graph used in [53]
for finding the edges e of V (R) intersected by the region of the new site, t,
does no longer work. In Figure 3.7a, an example is depicted. Here, the sites
p, r, t are inserted in this order. The edge e emerges after inserting r and is
made a successor of the edges e1, . . . , e5 in the history graph. The region of t
intersects edge e but none of the edges e1, . . . , e5. This can happen, because
T disconnects the region of p, implying that we will not be able to find this
intersection by walking through the history graph along the edges intersected
by T , see Lemma 14 in [53].

Thus, we need a history graph with more information, but still with bounded
outdegrees in order to avoid super-linear cost for walking through it. For this
purpose, we will maintain a trapezoidal decomposition, see [66]. To make sure
that the number of trapezoids is bounded, we will in the following require the
additional axiom (A5) from Section 3.1. Furthermore, for simplicity, we assume
that no two points of vertical tangency lie on the same vertical line.

3.4.1 Some Technical Issues

For an AVD with connected regions V (R) ∩ T , where T := VR(t, R ∪ {t}),
is a connected set [53], whereas for disconnected regions it can split up. The
intersection of T with an edge e of V (R) can consist of up to O(s) connected
components. Note that Voronoi edges e (and Voronoi regions P) are defined as
open sets, i. e., edges e do not contain their endpoints (likewise regions P do

48

3.4. TOWARDS AN ALGORITHM

e4

VR(p,R)

VR(r,R ∪ {r})

VR(t, R ∪ {r, t})

e
e1

e2

e3

e5

f

(a)

B

C

D E

G

H I
J

(b)

Figure 3.7: (a) The sites p, r, t are inserted in this order, the intersection between
the region of t and the edge e is not found in the standard history graph from [53].
(b) Trapezoidal Decomposition of a face.

T T

J(t, q)

J(p, t)p p

p p

p p

p p

(a)

p

q

e

t

t t

(b)

Figure 3.8: (a) Intersection between V (R) and a connected component T of T ,
in the left picture J(p, t) would be closed. (b) Intersection between an edge
e and T . Here s = 3 and the intersection consists of 3s − 1 = 8 connected
components.

not contain their boundaries). Before we can start to describe the algorithm,
we need to discuss some rather technical observations.

To make life easier, in the following, we will make use of the curve Γ defined in
the beginning of Section 3.3. Without explicit notion, from now on V (S) means
V (S) restricted to the bounded domain of Γ together with Γ itself, meaning
that all Voronoi regions are bounded.

Lemma 20. If T 6= ∅ , then for any face T ⊆ T and edge e of V (R):

(i) the intersection V (R) ∩ T is an indiscrete set of points,

(ii) the intersection e ∩ T consists of at most 3s− 1 connected components.

Proof. (i): Suppose V (R) ∩ T consists of only discrete points. Since T is an
open set, this means that T lies within a face of VR(p,R), which is bounded by
definition. Then ∂T \ ∂VR(p,R) ⊆ J(p, t), but since ∂T ∩ ∂VR(p,R) consists
of only discrete points and J(p, t) is continuous, it follows, that ∂T ⊆ J(p, t),
which means that J(p, t) is a closed curve, a contradiction. See also Figure 3.8a.

(ii): Now let e be an edge separating a p- and q-region. Lemma 4 in [53]
shows that e ∩ T = e ∩ VR(t, {p, q, t}), and since e ⊆ J(p, q), the number
of connected components of e ∩ VR(t, {p, q, t}) is less or equal the number of

49

CHAPTER 3. DISCONNECTED REGIONS

connected components of J(p, q) ∩ VR(t, {p, q, t}). By Lemma 15, V ({p, q, t})
can have at most 6s−4 Voronoi vertices. Each bounded connected component of
J(p, q)∩VR(t, {p, q, t}) borders two vertices, and unbounded components border
one vertex; there can be at most two unbounded components. Further, no two
components of J(p, q)∩VR(t, {p, q, t}) can border the same vertex, hence, there
can be at most 3s− 1 components, see also Figure 3.8b.

We use the Basic Operation to efficiently compute the intersection between
T and the current Voronoi diagram V (R). This works, because of the following
lemma. Observe that the boundaries of two or more faces of a region VR(t, S)
can intersect in only vertices. Because of Lemma 13, the boundaries of two
faces can intersect in at most one point. We call such a point a touch point with
respect to t. Because of Lemma 14, the faces of VR(t, R) bordering v have to be
separated by different regions, see Figure 3.6c. This implies the touch point v
to be positioned on the Voronoi diagram of R\{t}, either on an edge separating
q- and r-region, or on a vertex.

Lemma 21. Let e be a prqu-edge of V (R) and let v be a point lying on e. Then
e is also a prqu-edge of V (R′) where {p, r, q, u} ⊆ R′ ⊆ R. Further, for all
t /∈ R it holds

(i) e ∩VR(t, R ∪ {t}) = e ∩VR(t, R′ ∪ {t}).

(ii) v is a touch point with respect to t in V (R ∪ {t}), iff v is a touch point
with respect to t in V ({p, q, t}).

Proof. For a proof of the first part and (i) see the proof of Lemma 4 in [53].
To prove (ii) choose a sufficiently small neighborhood U of v such that U ⊆ e∪
VR(p,R)∪VR(q,R) and show that U∩VR(t, R∪{t}) = U∩VR(t, {p, q, t}). Since
VR(t, R ∪ {t}) ⊆ VR(t, {p, q, t}), "⊆" is clear. Now let x ∈ U ∩VR(t, {p, q, t}).
Then x ∈ D(t, p) ∩D(t, q), and, because of transitivity, x ∈ VR(t, R ∪ {t}).

Lemma 22. Let e be an edge of V (R). In V (R ∪ {t}) there are O(s) touch
points with respect to t on e.

Proof. Let e separate the regions of p and q. By Lemma 21, v is a touch point
with respect to t on e, iff v is a touch point with respect to t on e in V ({p, q, t}),
see also Figure 3.6c. Thus, consider the diagram V ({p, q, t}). Put a vertex in
each connected component of VR(t, {p, q, t}) and for each touch point v on e
draw an edge between two vertices corresponding to adjacent regions. Because
the region of t in V ({p, q, t}) has at most s connected components, and the
closure of the region is simply connected, the resulting graph is a tree with s
vertices. Thus, it has O(s) edges.

3.5 Trapezoidal Decomposition
Let V ∗(R) be the vertical decomposition of V (R), i. e., V ∗(R) decomposes each
face of V (R) into pseudo-trapezoidal cells, for brevity we call them trapezoids,
see Figure 3.7b. Such decompositions have been introduced by Seidel [66],
and they are also used in [68] to compute arrangements. Again edges e and
trapezoids A of V ∗(R) are defined as open sets, i. e., e does not contain its
endpoints, and A does not contain its boundary. Moreover, when we speak of

50

3.5. TRAPEZOIDAL DECOMPOSITION

e1

e2

Aq l
v w

x1
x2

x3 x4

t t

Figure 3.9: The description of the trapezoid A is the set DR(e1) ∪ DR(e2) ∪
{(q, r, coor(v)), (l, l, coor(w)), (coor(x1), coor(x2), coor(x3), coor(x4))}.

an "edge of V ∗(R)" we always mean a Voronoi edge and not a vertical line
segment. Also recall the definition T := VR(t, R ∪ {t}), the region of the new
site t, and remember that we always have the large curve Γ around our Voronoi
diagram making it finite.

Definition 4. We say that a site t ∈ S \ R interferes with an edge e of V (R)
or a trapezoid A of V ∗(R), if T intersects e or A in more than finitely many
points.

There can be edges or trapezoids intersected in only finitely many points by
T and thus not being interfered by t in the sense of our definition. These edges
and trapezoids are taken into account later during the process of inserting T
into V ∗(R).

A general trapezoid A of V ∗(R) is bounded by two Voronoi edges and two
vertical line segments. The vertical line segments have a Voronoi vertex as start-
or endpoint, or they are bounded from the side by a point of vertical tangency,
or by a vertex, whose incident edges all emanate to one side, see Figure 4.5.

By these observations we can define the description DR(A) of a trapezoid
A. It is a set containing four 5-tuples, two 3-tuples, and one 4-tuple. Two of
the 5-tuples each equal the descriptions of the two edges e1 and e2 bounding
A from above and below. The two 3-tuples belong to the points bordering the
vertical line segments of A from left and right. Let A be contained in the region
of p and let v be the point bordering the left line segment of A. Further, the
uppermost edge incident to v separates the regions of p and q and the lowermost
edge incident to v separates the regions of p and r. Then the corresponding 3-
tuple is defined as (q, r, coor(v)). Analogously, we have a 3-tuple for the point
bordering the left line segment of A. Finally, the 4-tuple contains the coordinates
of the four corners of A, making the description unique. Observe that tuples
may contain empty entries, e. g., if a vertical line segment has a vertex as start
or endpoint and no other point bordering it from right or left. For an example
see Figure 4.5.

Again, set(DR(A)) is the set of all sites contained in a tuple of DR(A). In
the following we will not distinguish between a trapezoid A of V ∗(R) and its
description.

Definition 5. We say that a site t ∈ S \ R is in conflict with an edge e of
V (R) or a trapezoid A of V ∗(R), if there is no edge or trapezoid with the same
description in V (R ∪ {t}) resp. V ∗(R ∪ {t}).

51

CHAPTER 3. DISCONNECTED REGIONS

Observe that if an edge or trapezoid interferes with t then it is also in conflict
with t but not necessarily vice versa. This can happen, e. g., when an edge or
trapezoid is intersected in only finitely many points by the region of t, or when
an edge bounding several trapezoids is intersected in a component bordering
only some of them. In the example depicted in Figure 4.7, trapezoid C is in
conflict but does not interfere with t, because only the bottom right corner is
intersected by T . Also, trapezoid A is in conflict with t without being intersected
by T at all, but the right endpoint of its bottom edge is intersected and thus
the edge gets a new description.

Next we define a data structure, called history graph, to determine the trape-
zoids of V ∗(R) interfering with t. Let Ri = {p1, . . . , pi} be a set of sites inserted
in this order and R = Rj . The history graph H(R) is a DAG with a single
source and nodes

{source} ∪
⋃

3≤i≤j
{DRi(A)|A is a trapezoid of V ∗(Ri)}

∪
⋃

4≤i≤j
{DRi

(e)|e is an edge on ∂VR(pi, Ri)},

such that each trapezoid of V ∗(R) is a leaf of H(R).
Let a node of H(R) be called trapezoid-node, if it refers to a trapezoid, and

edge-node, if it refers to an edge. Further, each node is linked to its corresponding
trapezoid or edge in V ∗(Ri) and vice versa.

To construct H(R), we start with the diagram of three sites p1, p2, p3 and
make the trapezoids of V ∗({p1, p2, p3}) the successors of the source.

Now, assume we already have constructed H(R) and let t ∈ S \R, randomly
chosen, be the next site to be inserted. Let e be an edge on the boundary of T ,
meaning that e with its description D(e) has not yet been part of V (R). There
are two cases:

1. Edge e intersects some trapezoids A1, . . . , Al of V ∗(R) in their interior.
By assumption these trapezoids are leaves of H(R). Edge e is now made
a successor of all A1, . . . , Al, compare edges e1, e4 in Figure 4.7.

2. Edge e does not intersect any trapezoids of V ∗(R), meaning that e runs
along edges e1, . . . , el of V (R), i. e., along boundaries of trapezoids of
V ∗(R). Each of these edges ei has some adjacent trapezoids on both
sides. Because e lies on the boundary of T , only one side of ei can be
intersected by T in an ε-neighborhood around ei. Let A1, . . . , Al be the
trapezoids adjacent to ei on this side. Again, they are leaves of H(R) and
e is now made successor of them. Compare edges e2, e3 in Figure 4.7.

Next let A be a trapezoid of V ∗(R ∪ {t}), which has not yet been part of
V ∗(R). Again, there are two cases:

1. Trapezoid A is contained in a p-region for an old site p ∈ R. Then
A is made a successor of all trapezoids A′ of V ∗(R) intersected by A.
Note, that the trapezoids are defined as open sets, hence, two trapezoids
do not intersect if just their boundaries intersect. Compare trapezoids
A1, C1, D1, F1, F2, F3, G1, H1 in Figure 4.7.

52

3.5. TRAPEZOIDAL DECOMPOSITION

A1

B

C1

E
F1

G1

H1

T

e2

e3

e4

e1
C F G H

D1

F2

F3
C1 D1 F1 F2 F3 G1 H1

e2 e3 e4e1I

J
K L

M

N
I J K L M N

History Graph

DA

A1

Figure 3.10: Face T ⊆ T is inserted in the trapezoidal decomposition of Figure
3.7b and the history graph is updated.

2. Trapezoid A is contained in T . Then A is made a successor of the edges
on the boundary of T bordering A. Compare Trapezoids I, J,K,L,M,N
in Figure 4.7.

It follows directly from the constructions, that the trapezoids of V ∗(R) are
indeed leaves of H(R).

For our further discussion we define the following two sets of trapezoids,
compare Definitions 4 and 5.

Et := {A | A is a trapezoid of V ∗(R) interfering with t}
and Et := {A | A is a trapezoid of V ∗(R) in conflict with t}.

We have Et ⊆ Et, but not necessarily vice versa. This is, e. g., because
there can be an edge bounding A, which is intersected by the region of t in
a component not bordering A. Then there is a trapezoid A′ in V ∗(R ∪ {t})
that has the same coordinates as A, but a different description. Thus, A is in
conflict with t, but not interfering with it. For an example see the trapezoids A
and A1 in Figures 3.7b and 4.7, and observe that the description of the bottom
edge has changed after inserting t. In this example Et = {D,F,G,H} and
Et = {A,C,D, F,G,H}.

However, all parts of V ∗(R) intersected by T are contained in
⋃
A∈Et

A.
Thus, to compute the intersections between the current diagram V ∗(R) and T ,
it is enough to compute the set Et. Given this set we can then insert T into V (R)
and obtain the superset Et, which is needed to update all trapezoid-descriptions,
during the process.

Further, to be able to analyse the algorithm we define

c :=

j∑
i=3

trapezoids of V ∗(Ri) in conflict with t.

For each edge of V (Ri) in conflict with t, there is at least one trapezoid of
V ∗(Ri) in conflict with t. On the other hand, each trapezoid is bounded by at
most two edges, thus for each trapezoid in conflict with t, there are at most two
edges in conflict with t. This implies:

53

CHAPTER 3. DISCONNECTED REGIONS

edge-nodes of H(R) in conflict with t
≤ 2 # trapezoid-nodes of H(R) in conflict with t
≤ 2 c.

Thus we have
nodes of H(R) in conflict with t ≤ 3c.

3.5.1 Computation of Et

As mentioned before, we will first compute the set Et. Given Et we will then
be able to efficiently insert T into V ∗(R) and determine the full set Et during
the process. To test if a trapezoid A ⊆ VR(p,R) interferes with t, we use the
Basic Operation to determine if T intersects the edges bounding A in more
than finitely many points. To check if the vertical line segments bounding A
are intersected by T , it is enough to check if the bisector J(p, t) intersects the
vertical line segment, and if not, whether it lies in D(p, t) or D(t, p). Because
of our assumption, a vertical line test takes constant time.

Now we compute Et by walking through H(R) by breadth-first-search along
the nodes interfering with t. Let A be a trapezoid-node created during the
insertion of ri. If t interferes with A, then we also test recursively the at most
4 trapezoids of V ∗(Ri), which are adjacent to A by a vertical line segment (we
find them via V ∗(Ri)), for interference with t.

Lemma 23. By walking through H(R) as described above, we will reach all
leaves of H(R) interfering with t.

Proof. Let A ∈ V ∗(R) be a leaf of H(R) interfering with t. W.l.o.g., we assume
that A has not been a trapezoid of V ∗(R \ {pj}). If A is contained in a q-region
for a q ∈ R \ {pj}, then A ⊆ ⋃

A′ predecessor of AA
′, and hence, at least one

predecessor A′ of A interferes with t. Otherwise A is a trapezoid contained in a
face F of the region of pj . Each face of T intersecting A in more than finitely
many points also intersects an edge e on the boundary of F and a trapezoid
A′ ⊆ F bounded by e in a nonfinite set. If e bounds A, then e is a predecessor
edge-node of A interfering with t, otherwise we find A by testing the neighbors
of A′ recursively for interference with t.

The next question is how much time we need to compute Et. Of course we
need at least as much time as there are nodes in H(R) interfering with t. But
additionally for all these nodes, we need to test all their successor-nodes for
interference with t. Fortunately, for each edge-node e interfering with t, all its
successors are in conflict with t. This holds, because all successors are trapezoids
bounded by e. Thus, it suffices to bound the outdegree of trapezoid-nodes.

Lemma 24. The outdegree of each trapezoid-node of H(R) is O(s).

Proof. Each trapezoid A ⊆ VR(p,R) of V ∗(R) has at most 2 edges and 2 vertical
line segments on its boundary. An edge e on the boundary of A is part of V (R)
and can be intersected in at most O(s) many components by the region of a
new site t, see Lemma 20 and 22. Further, at most constantly many points of
the boundary of the region of t with vertical tangency can appear in A, because

54

3.5. TRAPEZOIDAL DECOMPOSITION

J(p, t) has constantly many points of vertical tangency. Altogether there can be
at most O(s) many edges of the boundary of T intersecting A and O(s) many
trapezoids of V ∗(R ∪ {t}) contained in the same region as A and intersecting
A. Thus, at most O(s) edges and trapezoids of V ∗(R ∪ {t}) can have A as a
predecessor in the history graph.

Lemma 25. The set Et can be computed in time O(s2c).

Proof. To test if a site t interferes with a trapezoid A, we have to test if t
interferes with an edge or a vertical line segment on the boundary of A. Since
an edge- or vertical-line-test takes time O(s) using the Basic Operation, and
each trapezoid has at most 4 edges and vertical lines on its boundary, this takes
time O(s). If an edge-node of H(Ri), for minimal i, interferes with t, all of
its successors are in conflict with t, at least their descriptions do not appear in
V (Ri ∪ {t}). Together with the fact that the outdegree of each trapezoid-node
of H(R) is O(s), the set Et can be computed in time O(s2c).

3.5.2 Construction of V ∗(R ∪ {t}) and H(R ∪ {t})
Now that the set Et of all trapezoids of V ∗(R) interfering with t is known, it
remains to compute V ∗(R ∪ {t}) and H(R ∪ {t}) from V ∗(R) and H(R). Like
Section 3.4.1, this is a rather technical issue with few unexpected insights. How-
ever, it can not be avoided if we want to show the correctness of our algorithm.
We follow [53] in most cases, only the new phenomena of touch points needs a
special treatment.

At first, we discuss the vertices that have to be updated to construct V (R∪
{t}) from V (R) and use the notation from Definition 3 in [53], which says that
t clips an edge e at its endpoint v, iff e ∩ T contains a component incident to
v. There are new vertices Vnew that need to be added to V (R), vertices Vchang
already existing in V (R) but getting a new adjacency list in V (R ∪ {t}), and
vertices Vdel that have to be deleted from V (R). We can define these vertices as
follows and show that they indeed form a partition of all vertices of V (R∪{t}).

• The set of vertices which remain unchanged Vunch, are the vertices v of
V (R) such that v /∈ T .

• The set of vertices already existing in V (R) but getting a new adjacency
list in V (R ∪ {t}), Vchang, are the vertices v of V (R) such that v ∈ ∂T
and not all edges incident to v are clipped at v by t, or v is a touch point.

• The set of vertices which have to be deleted Vdel, are the vertices v of
V (R), where all edges incident to v are clipped at v by t, and v is not a
touch point.

• The set of vertices which are new Vnew, are the endpoints of e− T for an
edge e ∈ V (R) intersected by T (no endpoints of e, because e is open), or
touch points with respect to t on e.

Lemma 26. The set of vertices of V (R∪{t}) is equal to Vunch∪Vchang ∪Vnew.

Proof. Let v be a vertex of V (R ∪ {t}). If v was not yet a vertex of V (R), it
must lie on the boundary of T , and on an edge e bounding a trapezoid A ∈ Et.

55

CHAPTER 3. DISCONNECTED REGIONS

If a part of e is still incident to v in V (R∪{t}), then v is the endpoint of e−T .
Otherwise v is a touch point with respect to t. In both cases v lies in Vnew.

If v was already a vertex of V (R), it is either not intersected by T , and
hence, it lies in Vunch, or v lies on the boundary of T . In that case, if a part of
an edge e of V (R) is still incident to v in V (R∪{t}), then not all edges incident
to v are clipped at v by t, otherwise v is a touch point. In both cases v lies in
Vchang.

If a vertex v of V (R) is not part of V (R ∪ {t}) any more, then it lies in the
interior of T , and hence, all edges incident to v are clipped at v by t, and v lies
in Vdel.

The vertices in Vchang are assigned new adjacency lists in V (R∪{t}). Let in
a clockwise order the vertex v of V (R) be incident to the edges e1, . . . , ek. To
update the incident edges of v in V (R ∪ {t}), all edges ei clipped at v by t are
removed. If ei is clipped but not ej , where j ∈ {i − 1, i + 1}, and ei, ej border
a p-region, then an edge ⊆ J(p, t) separating t and p region is inserted instead
of ei. For all adjacent faces P ⊆ VR(p,R), for which J(p, t) intersects v and is
contained in P in an ε-neighborhood around v, two edges separating p and t,
and t and p region are inserted between the two edges incident to v bordering
P , see Figure 3.11a,b.

v

e1 e2 e3
t

t

(a)

v

t

t

t

(b)

p
q

tt

(c)

q

t

q

p

(d)

Figure 3.11: In (a) and (b) v ∈ Vchang, but in (a) not all edges are clipped at
v by t and in (b) all edges are clipped at v by t and v is a touch point. In
(c) and (d) v ∈ Vnew and v is of degree 4, but in (c) it borders two connected
components of the new region VR(t, R∪{t}) and in (d) it borders two connected
components of an old region VR(q,R ∪ {t}).

To handle the vertices in Vnew, we have the following lemma, which follows
directly from Lemma 14, see also Figure 3.11c and 3.11d.

Lemma 27. Let v ∈ Vnew and let v lie on an edge e of V (R), which is separating
a p- and q-region. Then v is a vertex of degree 3 or 4 of V (R ∪ {t}).

If v is of degree 3, the adjacent edges are separating the p- and q-, q- and t-
and t- and p-region.

If v is of degree 4, then v is a touch point with respect to the new site t, or
an old site q ∈ R. In the first case, the adjacent edges are separating the p- and
t-, t- and q-, q- and t-, and t- and p-region. In the second case, the adjacent
edges separate p- and q-, q- and t-, t- and q-, and q- and p-region.

Now that we know which structural changes are necessary, we will discuss
how to implement them. For each face of T we need to traverse its boundary
through the trapezoidal decomposition of V (R). Clearly, these trapezoids inter-
fere with the new site, t, but there may be other interfered trapezoids through

56

3.5. TRAPEZOIDAL DECOMPOSITION

p
t

p
t

A

Figure 3.12: A trapezoid A ⊆ VR(p,R) is visited several times by the bisector
J(p, t). Bold segments correspond to A ∩ J(p, t).

which the boundary of T does not pass, because they are contained in the
interior of a face of T .

Starting from an arbitrary interfered trapezoid we go through the set Et and
test each trapezoid A ∈ Et if it is traversed by ∂T , using the Basic Operation.
If so, and if A is contained in a face of VR(p,R), we compute ∂A ∩ J(p, t),
which may consist of O(s) components. By our assumptions we can now in
time O(s log s) sort these components according to their occurrence on J(p, t)
and obtain a list LA of all segments of A∩J(p, t) with their start- and endpoints
on ∂A, see Figure 3.12.

After these preparations we have a list L of all trapezoids of V ∗(R) that
are intersected by the boundary of the new region T , and for each trapezoid
A ⊆ VR(p,R) in L, the list LA containing the segments of A ∩ J(p, t). While
list L is not empty we proceed in the following way. We pick some A of list L
and, assuming A ⊆ VR(p,R), a segment z of the list LA. Segment z bounds a
face F of T . Starting from z we trace ∂F through the trapezoids of list L, using
the structure of V ∗(R). On the way, we update the Voronoi diagram according
to our previous structural analysis. Also, we delete all segments of t-bisectors
encountered in their trapezoids from the list LA. Upon completion of the cycle
∂F at z we remove from L all trapezoids A having an empty list LA. This way
we can be sure that no face of T will be ignored.

Some care has to be taken, when a segment z ∈ LA lies on the boundary of
A bordering another trapezoid B. Then z may be contained in both LA and LB
and it must be deleted from both lists when encountered during the traversal.

After updating the Voronoi diagram we can update the trapezoidal decom-
position in a natural way; compare [68].

The following lemma account for the cost of this incremental step.

Lemma 28. If Et is known, then V ∗(R∪{t}) and H(R∪{t}) can be constructed
from V ∗(R) and H(R) in time O(s2|Et|).

Proof. See the discussion above. To test all interfered trapezoids for intersection
with ∂T takes time O(s|Et|). From this it takes time O(s log s |Et|) to compute
the lists LA for all A traversed by ∂T . During the traversal of the boundaries
of all faces F of T one determines the sets Vdel, Vchang, Vnew and update their
cyclic adjacency lists. Further, each time a new segment z from A ∩ J(p, t) is
reached, one has to find it in the corresponding list LA, which can be done in
time O(s). (By sorting the lists in advance one may also be able to find it in

57

CHAPTER 3. DISCONNECTED REGIONS

time O(log s), but the computation of the set Et already took time O(s2c) and
c ≥ |Et|, so we would not gain anything from it.)

Finally, the trapezoids of V ∗(R ∪ {t}) have to be updated. All trapezoids
whose closure (minus the corners) is intersected by T have to be deleted and
new trapezoids along the boundary of T have to be inserted, which compares
with, e. g., [68]. Further, for all these trapezoids we have to test recursively,
if the at most four adjacent trapezoids get a new description, because an edge
bounding them may have been changed. This can be done in time O(s|Et|). In
the same time H(R ∪ {t}) can be updated. Because |Et| ≤ |Et|, altogether the
whole procedure takes time O(s2|Et|).

3.6 Analysis

Finally, we can analyse the running time and space consumption of the algo-
rithm. The sets Et for all t ∈ S can be computed in time O(s2c), Lemma 25,
and V ∗(R ∪ {t}) and H(R ∪ {t}) in time O(s2|Et|), Lemma 28. Further, the
space consumption corresponds to the size of H(S).

Thus we need to upper bound the following variables:

• c :=
∑i
j=3 # trapezoids of V ∗(Ri) not in V ∗(Ri−1) in conflict with t;

• Size of Et := {A | A is a trapezoid of V ∗(R) in conflict with t} ⊇ Et;

• Size of H(S) to estimate the space of the algorithm.

Because worst cases may be very inefficient for AVD’s, we randomize the
insertion order of the sites, and compute an expected running time and space
consumption. For this purpose we use the analysis for randomized incremental
constructions by Clarkson, Mehlhorn, Seidel [29] and apply it to our history
graph based on trapezoids. Unlike AVD’s with connected regions, where the
size of the diagram is linear in the number of sites, for disconnected regions the
size may vary a lot depending on the instance. To take this dependency into
account we make the following definition.

Definition 6. Let mj denote the average number of faces per region, over all
AVD’s of j sites from S.

Now let us start with an easy but important observation.

Lemma 29. The complexity of V ∗(R) is in O(|V (R)|).

Proof. In V ∗(R) the number of trapezoids a face F of V (R) is decomposed into
is upper bounded by the number of vertices plus two times the number of points
of vertical tangency on the boundary of F . This implies:

|V ∗(R)| ≤
∑

F face of V(R)

|F |+ 2 #points of vertical tangency of V (R)

Since at most O(|V (R)|) many bisectors contribute to V(R), and the number of
points of vertical tangency is constant for each bisector, this sum is O(|V (R)|).

58

3.6. ANALYSIS

Now we can start with the run time analysis. Remember that the insertion
order of the sites is randomized.

Lemma 30. For R = {r1, . . . , ri}, the expectation of c is O(
∑i
j=3

mj

j).

Proof. Let A be a trapezoid-node of the history graph H(r1, . . . , ri), where
the sites r1, . . . , ri are inserted in this order. Now let t ∈ S \ R randomly
chosen. If A is in conflict with t, then A with its description DR(A) would
never have been constructed, if t would have been inserted as the first site, i. e.,
A /∈ H(t, r1, . . . , ri). By elementary set calculus, it follows:

|H(r1, . . . , ri) \ H(t, r1, . . . , ri)|
=|H(r1, . . . , ri)| − |H(t, r1, . . . , ri)|+ |H(t, r1, . . . , ri) \ H(r1, . . . , ri)|.

The expectation of |H(r1, . . . , ri)|−|H(t, r1, . . . , ri)| is ≤ 0, because |{r1, . . . , ri}|
< |{t, r1, . . . , ri}| implies for randomized inputs the expectation |H(r1, . . . , ri)| ≤
|H(t, r1, . . . , ri)|. Thus the equation above has an expected value

≤ E(|H(t, r1, . . . , ri) \ H(r1, . . . , ri)|︸ ︷︷ ︸
=:X

).

If A ∈ |H(t, r1, . . . , ri) \ H(r1, . . . , ri)|, then t ∈ set(DR∪{t}(A)). Let j be
minimal with A ∈ V ∗(t, r1, . . . , rj) and thus rj ∈ set(DR∪{t}(A)).
Then the size of X is upper bounded by

≤
i∑

j=2

|{A ∈ V ∗(t, r1, . . . , rj)|t, rj ∈ set(DRj∪{t}(A))}|︸ ︷︷ ︸
=:Y

,

where Rj = {r1, . . . , rj}. By choosing t and rj randomly from {t, r1, . . . , rj} we
can estimate the expectation of Y by

≤ 1

(j + 1)j

∑
(x,y)∈{t,r1,...,rj}2,x 6=y

|{A ∈ V ∗(t, r1, . . . , rj)|x, y ∈ set(DRj∪{t}(A))}|

and since set(DR(A)) consists of at most 16 different sites it follows

≤ 1

(j + 1)j
· 16 · 15 · |V ∗(t, r1, . . . , rj)|︸ ︷︷ ︸

≤C|V(t,r1,...,rj)|≤Cmj+1(j+1)

≤ Cmj+1

j

for a constant C. Thus the expectation of X is

≤
i∑

j=3

C
mj+1

j
∈ O

 i∑
j=3

mj

j

 .

This implies c ∈ O(
∑i
j=3

mj

j).

Lemma 31. The expected size of the history graph H(S) is O(
∑n
j=4mj).

Proof. Let Rj = {r1, . . . , rj} be the set of the first j sites inserted in this order.
The size of H(S) equals

∑n
j=4H(Rj) \H(Rj−1). If x ∈ H(Rj) \H(Rj−1), then

by the definition of the history graph, either x is an edge on the boundary of

59

CHAPTER 3. DISCONNECTED REGIONS

VR(rj , Rj) or x is a trapezoid of V ∗(Rj)\V ∗(Rj−1). In both cases rj ∈ DRj
(x).

This implies:

E(H(Rj) \ H(Rj−1))

=
1

j

∑
r∈Rj

∑
e∈edges(V (Rj))

δ(e, r) +
1

j

∑
r∈Rj

∑
A∈trapezoids(V ∗(Rj))

δ(A, r),

where δ(x, r) =

{
1, if r ∈ set(DRj

(x))

0, else.

≤1

j
(6|V (Rj)|+ 16|V ∗(Rj)|) ∈ O(mj).

Summing up over all j from j = 4 to n, we get E(|H(S)|) ∈ O(
∑n
j=4mj).

Lemma 32. The expected size of Et is O(mj).

Proof. The set Et equals the set of all trapezoids of V ∗(R) \V ∗(R∪{t}). With
the same arguments as in the two previous proofs one can show that the expected
size of this set is O(mj).

Finally, we obtain our main theorem.

Theorem 6. V (S) can be computed in expected time O(s2n
∑n
j=3

mj

j) and ex-
pected space O(

∑n
j=4mj).

Proof. The sets Et for all t ∈ S can be computed in expected timeO(s2n
∑n
j=3

mj

j),
see Lemma 25 and 30. H(S) and V ∗(S) can be computed in time

O(s2
∑
t∈S
|Et|)

and because the expectation of |Et| is O(mj), the expected value is in

O(s2
n∑
j=3

mj) ∈ O(s2n

n∑
j=3

mj

j
).

Lemma 31 shows the expected size of H(S).

3.7 Discussion
One question is how mj affects the performance of our algorithm. For Voronoi
diagrams, where mj = j, |V (S)| ∈ O(n2), and s is constant, the algorithm is
output sensitive.

If though there is one more site p, such that V (S) ⊂ D(p, q) for all q ∈ S,
then the expected running time is still the same, but the size of V (S ∪ {p}) is
constant. For such examples randomization does not help.

Also, axiom (A5) and our general position assumption are crucial in this
chapter. But how to deal with applications where these fail to hold?

Another still open problem is to find a tight upper bound for the size of
V (S). Because of the transitivity, Lemma 12, we can define a total order on

60

3.7. DISCUSSION

S for all x ∈ R2 by p ≤x q iff x ∈ D(p, q). This leads to the conjecture that
the complexity of V (S) equals the complexity of the lower envelope of surfaces.
If each pair of bisectors J(p, q) and J(r, t) intersect in at most s components,
and s is constant, this is O(n2+ε), [68]. But axiom (A2’) implies the at most
s intersections only for bisectors sharing a site, whereas other bisectors can
intersect in any finite number of components.

61

CHAPTER 3. DISCONNECTED REGIONS

62

Chapter 4

Closed Bisectors

In the previous chapter we showed how to handle abstract Voronoi diagrams
with disconnected regions, but with unbounded bisecting curves. Unbounded
bisectors were strongly required to be able to locate the trapezoids of the current
diagram intersected by the new region to be inserted. Otherwise the new region
could be an island completely contained in the interior of a single region of the
current diagram, without intersecting any edges, and the history graph from the
previous chapter would fail to detect the intersected trapezoids.

In this chapter we overcome this problem and allow bisectors to be closed
Jordan curves, a phenomenon occurring in many applications. We show some
new facts about this wider type of abstract Voronoi diagrams and present the
first algorithm for constructing them. It runs in expected

O
(
s2n log(max{s, n})

n∑
j=2

mj/j
)

many steps and O(
∑n
j=3mj) space, where mj denotes the average number of

faces per Voronoi region in any diagram of a subset of j sites and s is the
maximum number of intersections between any two related bisectors J(p, q)
and J(p, r).

4.1 Introduction

So far, only abstract Voronoi diagrams with unbounded bisecting curves were
studied, leaving many interesting Voronoi diagrams uncovered. In this chapter
we consider, for the first time, abstract Voronoi diagrams built from arbitrary
Jordan curves, unbounded or closed.

The difficulty with closed bisecting curves is that Voronoi regions are no
longer simply-connected. That is, the Voronoi region of an abstract site p can
be an island inside the region of q if J(p, q) is a closed curve. But how to
detect islands, in constructing Voronoi diagrams, is not obvious. For example,
the classical divide&conquer algorithm by Shamos and Hoey [67] relies heavily
on the fact that endpoints of the polygonal chain bisecting two sub-diagrams
can be picked up at infinity; compare [48]. Also, the randomized incremental
construction method by Clarkson and Shor [30], as applied to AVDs in [53, 49],

63

CHAPTER 4. CLOSED BISECTORS

makes use of the fact that a Voronoi region to be newly inserted must intersect
an edge of the Voronoi diagram so far constructed, and that such an edge can be
found efficiently by means of a suitable history graph. None of these facts holds
in the presence of islands. It seems unavoidable to search the existing Voronoi
regions for the occurrence of an island. The difficulty is in doing this efficiently.

Throughout this chapter we require the following properties. Bisecting
curves intersect vertical lines only constantly often. Any two bisecting curves
intersect finitely often, and at most s times if both bisectors are related to the
same site. The closures of the Voronoi regions of any Voronoi diagram of three
sites cover the plane. Under these assumptions we can construct the abstract
Voronoi diagram in expected

O
(
s2n log(max{s, n})

n∑
j=2

mj

j

)
(4.1)

many steps and in O(
∑n
j=3mj) space, where mj denotes the average number

of faces per Voronoi region in any diagram of a subset of j sites. Let us look at
some applications.

If the bisecting curves are pseudo-circles, Voronoi regions are of linear com-
plexity, as we will see in Section 4.5. Thus, mj ≤ j, and (4.1) yields the first
O(n2 log n) randomized algorithm for this class of Voronoi diagrams, which is
nearly optimal since their size can be quadratic.

An important special case are points with multiplicative weights; here bisec-
tors are lines or Euclidean circles. The deterministic algorithm by Aurenham-
mer and Edelsbrunner [12] runs in time Θ(n2) which is optimal in the worst-case
where the diagram is of quadratic size. In this case, our algorithm takes a log n
factor longer. But if, e.g., points are fixed, and weights drawn independently
from some distribution (or just permuted at random) then the multiplicatively
weighted Voronoi diagram has expected size only O(n log2 n), as was recently
shown by Har-Peled and Raichel [44], and it can be constructed in this time.
Our algorithm is sensitive to the smaller output size: Sincemj ∈ O(log2 j) holds
in this case, it runs in expected time O(n log4 n).

For the farthest Voronoi diagram of n simple polygons of constant com-
plexity, formula (4.1) yields a randomized O(n log2 n) algorithm. Indeed, s is
constant, and the Voronoi diagram is of linear size, as was shown by Cheong
et al. [24]; thus, the average number of faces per Voronoi region is constant.
In comparison, the algorithm in [24] runs on polygons of total complexity n in
deterministic time O(n log3 n).

Our algorithm for abstract Voronoi diagrams is fairly general. It uses a
randomized incremental construction [30, 29] based on a new history graph
and search procedure that is quite different from the one used in Chapter 3,
and [53, 49], and [17]. Furthermore, it uses an application of Chazelle’s linear
triangulation algorithm [23] to compute the trapezoidal decomposition of a given
face. At a later stage this may be replaced by a simpler randomized method,
e. g., by Amato et. al. [9], which though would require a new randomized
analysis.

We will discuss the new history graph and search procedure in Section 4.3,
and upper bound the expected number of conflicts, and the effort invested in
finding them in Section 4.4.

64

4.2. PRELIMINARIES

4.2 Preliminaries

For completeness let us explicitly name the axioms used in this chapter. They
are claimed to hold for each subset S′ of S.

(A1’) By stereographic projection to the sphere, each curve J(p, q) is a closed
Jordan curve on the sphere.

Curve J(p, q) is unbounded iff its projection runs (in the limit) through the
north pole of the sphere; otherwise, J(p, q) is a closed Jordan curve in the plane.
One of the dominance regionsD(p, q) or D(q, p) may now be bounded by J(p, q).

Compared to the previous chapter we will use a different version of axiom
(A2’). Lemmata 15 and 16 from Section 3.3 show that they are equivalent in
the sense that if any two related bisectors intersect in O(s) components, then
any Voronoi region in a diagram of a subset of 3 sites consists of O(s) many
faces.

(A2”) The intersection of any two bisecting curves J(p, q) and J(p, r) related to
the same site p has at most s connected components.

(A3) Each point of the plane belongs to the closure of a Voronoi region VR(p, S′).

(A4) For any two curves J(p, q) and J(r, t), their intersection has only finitely
many connected components.

Because of (A3) the useful Transitivity Lemma [49] is still valid.

Lemma 33. For any p, q, r in S we have D(p, q) ∩D(q, r) ⊆ D(p, r).

Like in the previous chapter property (A4) allows us to zoom in on any point v
situated on one or more bisecting curves, and find a neighborhood U of v where
the curves passing through v either stay disjoint or coincide, on either side of v.
As a consequence one obtains a “piece-of-pie” Lemma, compare Lemma 14 from
Section 3.2, stating that each point v of V (S) is either an interior point of a
Voronoi edge, if v lies on the common boundary of exactly two Voronoi regions
of different sites, or neighborhood U contains pieces of Voronoi regions of three
different sites or more, making v a Voronoi vertex.

An example of an abstract Voronoi diagram based on (A1’), (A2”), (A3),
and (A4) is shown in Figure 4.1. The main differences to the abstract Voronoi
diagrams introduced so far are as follows. There can be islands inside a Voronoi
region. The boundary of an island need not contain a Voronoi vertex and it
equals a closed bisector J(p, q). In the neighborhood of a Voronoi vertex, the
same face of a Voronoi region can be represented several times.

Property (A2”) implies that, in a Voronoi diagram of three sites, the number
of vertices and faces of a Voronoi region is in O(s). For the overall complexity of
the Voronoi diagram, one obtains from (A2”) the following, compare Lemmata
18 and 19 from Section 3.3.

Lemma 34. A single Voronoi region is of complexity O(s n2), and this bound
can be attained. The whole Voronoi diagram V (S) is of size O(s n3) [17].

65

CHAPTER 4. CLOSED BISECTORS

p

q r
l

l

m

t t t

Figure 4.1: An abstract Voronoi diagram based on axioms (A1’), (A2”), and
(A3).

pq
q

p

Figure 4.2: The Voronoi region of q is confined to the island by the dashed
bisector J(q, p).

The proof is by vertex counting. We observe that islands can be nested, but
their total number is in O(n). Namely, if an island is situated in a face of the
Voronoi region of p, and contains points of the region of some site q 6= p, then
the whole Voronoi region of q is confined to this island by the bisector J(q, p);
see Figure 4.2.

Since we are going to subdivide Voronoi regions into trapezoids [66] we re-
quire one last property which is quite common in arrangement theory [68].

(A5) Each bisector has constantly many points of vertical tangency. All such
points have pairwise different x-coordinates.

Property (A5) implies that each bisecting curve has at most a constant number
of points of vertical tangency. The trapezoidal decomposition V ∗(R), for a
subset R of S, results from shooting vertical rays from all vertices and points of
vertical tangency in both directions, until they hit another point of V (R); see
Figure 4.3b. Note that V ∗(R) is still of the same size as V (R).

Voronoi edges and trapezoids of V ∗(R) are referred to by unique descrip-
tions. A general edge description is shown in the leftmost drawing of Figure 4.4.
Associated with vertex v is a 5-tuple containing the names of the two sites p, q
separated by edge e, the names of the sites of the adjacent regions, rq and rp,
and a tuple containing the coordinates of v. The sites are listed in clockwise
order around v. A similar 5-tuple is associated with w.

Figure 4.5 depicts a general trapezoid. Its description consists of the de-
scriptions of the upper and lower Voronoi edges, and of the vertical segments
bounding the trapezoid on either side.

66

4.2. PRELIMINARIES

p

q r
l

l

m
v

(a)

p

q r
l

l

m

(b)

Figure 4.3: (a) An example of a Voronoi diagram with closed bisectors. (b) The
trapezoidal decomposition of the same diagram.

e
p

q

rt v

rq

rpup

uq

e

p

q v
rq = rp

e
p

qw

Figure 4.4: Edges e with descriptions DR(e) = {(rq, q, p, rp, coor(v)),
(up, p, q, uq, coor(w))}, DR(e) = {(rq, p, q, rp), coor(v)} and DR(e) = {(p, q)}.

Similar like in Chapter 3, as a basic operation we assume that the inter-
sections of two related bisectors can be computed in time O(s), two related
bisectors can intersect in at most O(s) components, see (A2”). The intersection
between a Voronoi edge of V (R) and the region of a new site VR(t, R∪ {t}) for
t ∈ S \R can also be computed in time O(s), because this can be decided in the
diagram of 7 sites, the site t and the sites contained in the description of e, and
e can be intersected in at most O(s) components. The intersection of a vertical
line and a bisector can be computed in constant time, there can be at most a
constant number of intersection points, see (A5), and hence, the intersection of
a trapezoid and a new region can be computed in time O(s). Furthermore, we
assume that for a bisector J(p, q) and a point x in the plane, we can in con-
stant time compute the points of vertical tangency of J(p, q), decide if x is on

e1

e2

Aq l
v w

x1
x2

x3 x4

t t

Figure 4.5: The description of trapezoid A contained in the Voronoi region of t
is given by the descriptions of its upper and lower Voronoi edges, e1 and e2, the
sites q and l whose bisectors J(q, t) and J(l, t) determine the tangency points v
and w, and the coordinates of x1 to x4.

67

CHAPTER 4. CLOSED BISECTORS

J(p, q), or in D(p, q), or D(q, p). Also, for two points x and y on J(p, q), given
a direction of J(p, q), we can decide in constant time if x or y comes first.

4.3 Searching for Intersections
For the algorithm we restrict our attention to the finite part of the Voronoi
diagram and assume that a large closed curve Γ is given, encircling the diagram
such that it encloses all closed bisectors, it intersects each unbounded bisecting
curve exactly twice, and outside of Γ each pair of bisecting curves is either equal
or disjunct.

Our algorithm is a randomized incremental construction, where the insertion
order {r1, . . . , rn} = S of the sites is given randomized, and we insert the Voronoi
regions successively to the current Voronoi diagram. Let R = {r1, . . . , ri},
V ∗(R) the trapezoidal decomposition of the current diagram V (R), and t ∈
S \ R the next site to be inserted. In order to incrementally construct the
augmented Voronoi diagram V ∗(R∪{t}) from V ∗(R) we need to determine which
parts of V ∗(R)—edges or trapezoids—are intersected by the Voronoi region
VR(t, R ∪ {t}) of the new site t (if this region is a small island it could well
be contained in the interior of a single trapezoid of V ∗(R), without intersecting
any edges).

We define edges, trapezoids, and Voronoi regions to be open, i.e., an edge
does not contain its endpoints, and trapezoids and regions do not contain their
boundaries. Thus, all intersections are “proper”, in that they contain a subset
of full dimension. If r were the last site inserted to the Voronoi diagram shown
in Figure 4.3a, its region would not intersect the previous Voronoi diagram, but
one of its trapezoids, and Voronoi vertex v would be found at a later stage,
when tracing the boundary of the Voronoi region of r through the trapezoidal
decomposition.

Definition 7. We say that a trapezoid A or an edge e of V ∗(R) is

(i) intersected by t, if VR(t, R ∪ {t}) intersects A or e respectively;

(ii) in conflict with t, if A or e with their descriptions DR(A) and DR(e) do
not appear in V ∗(R ∪ {t}).

Observe that if a trapezoid or an edge is intersected by t, then it is also in
conflict with t but not necessarily vice versa, see Figure 4.6. Recall also the very
important fact that if R′ ⊆ R, then VR(t, R ∪ {t}) ⊆ VR(t, R′ ∪ {t}), which
follows quite directly from the definition of Voronoi regions.

Finding all proper intersections of VR(t, R ∪ {t}) with V ∗(R) is facilitated
by a history graph H(R), a DAG with a single source, a node for each face of
the inserted regions, and a node for each trapezoid ever constructed during the
incremental process. More precisely, let R = Ri = {r1, . . . , ri} be the insertion
order, then the node set of H(R) equals

{source} ∪ {DRj
(A) | A is a trapezoid of V ∗(Rj) for j ∈ {2, . . . , i}}

∪ {F | F is a face of VR(rj , Rj) for j ∈ {3, . . . , i}}.

Note that a trapezoid that exists in a sequence of Voronoi diagrams V ∗(Rj) is
represented in H(R) by a single node. Faces are represented by a node only

68

4.3. SEARCHING FOR INTERSECTIONS

e

A
B

C

D

t

E

F

Figure 4.6: All trapezoids A to F are in conflict with t, because t intersects edge
e, but only the trapezoids B to E are intersected by t.

when contained in a new region, thus, in contradistinction to trapezoids, not all
faces ever constructed are represented by a node inH(R). Let a node ofH(R) be
called face-node if it refers to a face and trapezoid-node if it refers to a trapezoid.
The edges of H(R) are defined incrementally, maintaining the invariant that the
leaves of H(R) correspond to the trapezoids of V ∗(R). Also each trapezoid and
face of the current diagram V ∗(R) is linked to its corresponding trapezoid- and
face-node of H(R) and vice versa.

The top of the history graph is an artificial source and its children are the
trapezoids of the diagram of the first two sites r1 and r2 of the insertion order.
Now let t ∈ S \R be the next site to be inserted. The history graph H(R∪{t})
is obtained by updating H(R) as follows.

If F is a face of VR(t, R ∪ {t}), then F is made a successor of all trapezoids
A′ of V ∗(R) (these trapezoids are leaves of H(R)) intersected by F , compare
face F in Figure 4.7.

If A is a trapezoid of V ∗(R ∪ {t}), which was not yet part of V ∗(R), then
there are two cases:

1. Trapezoid A is contained in the region of an old site r ∈ R. Then A is
made a successor of all trapezoids A′ of V ∗(R) intersected by A. Compare
trapezoids B1, D1, E1, H1, H2, H3, I1, J1 in Figure 4.7.

2. Trapezoid A is contained in a face F of VR(t, R ∪ {t}). Then A is made
a successor of F , compare trapezoids K,L,M,N,O, P in Figure 4.7.

In addition to the history graph which contains only the descriptions of the
trapezoids ever constructed and the "names" of the new faces, for each face-
node F of H(R) we store its geometric structure. More specifically, let F be
a face of VR(t, R ∪ {t}). We store its trapezoidal decomposition F ∗ together
with a search-structure SS(F) that allows us to perform fast point location for
a given query point x of the plane. We link the face-node F of H(R) to its
geometric structures F ∗ and SS(F), and the trapezoids of F ∗ and SS(F) to
their corresponding trapezoid-nodes, which are successors of F . Furthermore,
for each trapezoid A of V ∗(R ∪ {t}) not contained in F but bordering from
the outside on an edge e of the boundary of F (this trapezoid must have been
constructed while inserting F to V ∗(R)), we link the trapezoid-node A to the
edge e in F ∗, and vice versa, compare trapezoids E1, H1, H2, H3, I1, J1 in Fig-
ure 4.7. Note that trapezoid A may border on up to two different edges of the
boundary of F , compare Figure 4.8. If this is the case, we link A to both of them.

69

CHAPTER 4. CLOSED BISECTORS

B

C

D E

G

H I
J

B1

C

D1

G
H1

I1

J1

F

D H I J

H2

H3

E1 H1 H2 H3 I1 J1

K

L

M N
O

K L MN O

History Graph

EB

B1

F

P
P

F ∗

SS(F)

E1

D1

Figure 4.7: Face Ft ⊆ VR(t, R∪{t}) is inserted in the trapezoidal decomposition
of the upper diagram and the history graph is updated.

F
p

q B

Figure 4.8: Trapezoid B borders on two different edges of F .

Now let us discuss how to compute the geometric structures of F from
scratch. Each edge on the boundary of F can be split up into a constant number
of x-monotone arcs, by putting an additional vertex on each point of vertical
tangency (A5). By doing this, in time O(|F |), we obtain a simple polygon with
monotone curved edges whose trapezoidal decomposition can be computed in
time O(|F |), see [23]. Observe that we consider F without the rest of the di-
agram and we compute the trapezoidal decomposition both in the inside and
outside of F . The trapezoids in the outside are needed to obtain a monotone
subdivision F ∗ of the whole plane. For this subdivision we can now build a
search-structure SS(F), based on the structure for monotone subdivisions in-
troduced by Edelsbrunner et. al. in [38], which again takes time and storage
O(|F |), and it allows us to perform point location for a given query point x of
the plane in time O(log |F |).

Both in [23] and [38] the edges are straight lines, but the same ideas can
be adapted to instances where edges are monotone curves, and the intersection
between an edge and a vertical line can be computed in constant time.

Next, we describe how to find all trapezoids intersected by the new site t.
We walk through the history graph along its trapezoid-nodes intersected by the
region of t as follows, starting with the successors of the source. If a trapezoid-
node A of V ∗(Rj) is intersected by VR(t, Rj ∪ {t}), then we test recursively all

70

4.3. SEARCHING FOR INTERSECTIONS

e1

A

F ∗

F1

F2B
e2

F3

F ∗

t

x

Figure 4.9: The region of t (faces with normal boundary) is traced through the
trapezoidal decomposition F ∗ (face with fat boundary), in the left figure from
two starting points – one from A trough e1, and one from B through e2, and in
the right figure from a point x found using SS(F).

its succeeding trapezoid-nodes for intersection with t; for the succeeding face-
nodes we discuss later how to proceed. First, if A is additionally linked to an
edge e of the trapezoidal decomposition F ∗ of a face-node F (by construction
this means that A borders on e from the outside of F), we test if e is intersected
by t and if yes, we test all trapezoids bordering on e from the inside of F for
intersection with t; these trapezoids are found in F ∗. Afterwards we set a flag
on e saying that e already has been tested for intersection with t, thus if e is
reached from another trapezoid, we do not test it and its adjacent trapezoid in
F ∗ for intersection with t again. For the running time analysis later on we note
already now that if edge e is intersected by t, then all trapezoids bordering on
e (there may be many!) are in conflict with t.

For each trapezoid bordering on e from the inside of F , having been success-
fully tested for intersection with t, we recursively test also its at most 4 neighbors
in F for intersection with t. Doing this we trace the region of t through F . Of
course the region of t may intersect F and other faces of the same region in sev-
eral disconnected components, but we will later see that we will find a starting
point for tracing each component. Again we set a flag with respect to t on each
tested trapezoid to prevent it from having to be tested again.

In the left drawing of Figure 4.9, the region of t intersects F ∗ in 3 compo-
nents, F1, F2, and F3. If we enter F ∗ from A through e1, then all trapezoids of
F ∗ intersected by F1 and F2 are found. To detect the trapezoids intersected by
F3, we need another starting point, e. g., from B through e2.

We may now have detected additional trapezoids in the interior of F that are
intersected by t, they are linked to their corresponding trapezoid (succeeding F)
in the history graph and we recursively test also their successors for intersection
with t.

For a face-node Frj ⊆ VR(rj , Rj) reached in the history graph, we choose
an arbitrary point x of the bisector J(t, rj) and use SS(Frj) to determine if x is
contained in Frj and if yes, in which trapezoid. If no trapezoid of Frj containing
x is detected, i. e., x lies outside of Frj , then nothing has to be done, as will
become clear later. Otherwise a trapezoid A ⊆ Frj is detected with x ∈ A. Then
we know that A is intersected by t, and like before we can trace the region of t
through Frj and mark the tested trapezoids with flags with respect to t (unless

71

CHAPTER 4. CLOSED BISECTORS

they already have a flag with respect to t, then we are done), compare the
right drawing of Figure 4.9. Again we may have detected additional trapezoids
intersected by t and we recursively test also their successors in the history graph
for intersection.

Lemma 35. By walking through the history graph H(R) as described above, we
reach all trapezoids of V ∗(R) that are intersected by VR(t, R ∪ {t}).
Proof. We prove that if a trapezoid A of H(R) is intersected by t, then either
a predecessor of A in H(R) is intersected by t, or A is detected in the search
structure SS(F) of a face F , or found while tracing the region of t through a
face F . In all these cases, we will detect A in the history graph.

So, assume that A is a trapezoid which was constructed during the insertion
of a site rj ∈ R, i. e., A is in V ∗(Rj) but not in V ∗(Rj \ {rj}). Now there are
two cases.

Case 1: A ⊆ VR(r,Rj) and r 6= rj .
Let A1, . . . , Ak be the predecessors of A in H(Rj). Then A ⊆

⋃
j∈{1,...,k}Aj .

Thus if A is intersected by t, then also at least one of its predecessors must be
intersected by t.

Case 2: A ⊆ VR(rj , Rj).
Let F be the face of VR(rj , Rj) containing A.
If the region of t is not completely contained in F , then no face of the region

of t may be an island in F . Thus, there is a corridor contained in the region
of t starting in A , crossing an edge e on the boundary of F and reaching into
an adjacent trapezoid B. The trapezoid B must have been constructed during
the insertion of rj , thus, the intersection of t and B is detected like in Case 1.
Because the boundaries of B and F share a common edge e which is intersected
by t, the region of t is traced through F ∗ and A is detected.

Now let the region of t be completely contained in F . Lets first observe
that F is a face-node in H(Rj) and if A1, . . . , Ak are its predecessors, then F
is contained in

⋃
j∈{1,...,k}Aj . Thus, at least one of the predecessors of F is

intersected by t and we reach F together with its search structure SS(F) while
walking through H(R). Furthermore, because the region of t is contained in F
the whole bisector J(rj , t) must be contained in F , thus, for any point x on the
bisector we will detect a trapezoid B contained in F , which is intersected by t.
From there we start to trace the boundary of the region of t and reach A.

Let Et be the set of all trapezoids of V ∗(R) intersected by t. Once this
set has been computed, we can update V ∗(R) like described in Section 3.5.2
and H(R) like described above. This takes time O(s2|Et|), see Section 3.5.2
and [17].

4.4 Analysis
To organize the discussion of the running time of our algorithm we define the
following variables. Let R = Ri = {r1, . . . , ri} ⊂ S, the sites are inserted in this
order, and t ∈ S \R is the next site to be inserted. Furthermore,

Et := {A | A is a trapezoid of V ∗(R) intersected by t},

72

4.4. ANALYSIS

and

c :=

i∑
j=2

trapezoids of V ∗(Rj) not in V ∗(Rj−1) in conflict with t.

We start our discussion with the following lemma.

Lemma 36. The set Et can be computed in time O(s2c log(max{s, n})).

Proof. To test if a trapezoid A or edge e is intersected by t takes time O(s),
using our basic operations. Each trapezoid-node of H(R) has an outdegree of
O(s), because each trapezoid can be intersected in at most O(s) components by
a new Voronoi region. Thus, for each intersected trapezoid-node at most O(s)
succeeding trapezoids are unsuccessfully tested for intersection with t. This
takes time O(s2) per intersected trapezoid-node.

Further, each trapezoid-node is linked to at most two edges e of the trape-
zoidal decomposition F ∗ for a face-node F . To test them for intersection with t
or to detect that they already have a flag with respect to t takes time O(s) per
intersected trapezoid-node.

If such an edge e has been successfully tested for intersection with t, we have
to test all trapezoids bordering on e from inside of F for intersection with t.
There may be many such trapezoids, but fortunately, if e is intersected by t,
then all trapezoids bordering on e are in conflict with t and thus their number
can be upper bounded by c. Within the face F , each trapezoid has at most 4
neighbors, thus, while continuing the tracing within the face F , for each inter-
sected trapezoid at most four adjacent trapezoids may be tested unsuccessfully
for intersection with t. The flags prevent us from testing edges and trapezoids
several times for intersection with t. Thus altogether this process takes time
O(sc).

For each face-node F of H(R) reached, we have to perform a point loca-
tion searching in SS(F) which takes time O(log(F)). A very rough (but suffi-
cient for O-notations) estimation of |F | is O(sn2), which gives us O(log(F)) ∈
O(log(max{s, n})). If the searching was successful, we trace the region of t
and again for each intersected trapezoid we test at most 4 additional trapezoids
unsuccessfully.

Each trapezoid intersected by t is also in conflict with t, thus, the overall
running time to compute Et is in O(s2c log(max{s, n})).

Similar to the previous chapter, we have a randomized analysis which uses
the techniques by Clarkson, Mehlhorn, and Seidel [29]. The proofs are quite
similar to the ones in Section 3.6.

To upper bound the number of conflicts during the insertion process in the
algorithm, we define mj as the average number of faces per region, over all
diagrams of j sites from S. Furthermore, with set(DR(A)) we denote the set
of all sites contributing to the description DR(A) of a trapezoid A, i. e., if
r ∈ set(DR(A)), then either r ∈ DR(A), or r ∈ DR(e) for an edge e with
DR(e) ∈ DR(A).

Lemma 37. For R = {r1, . . . , ri}, the expectation of c is O(
∑i
j=2

mj

j).

Proof. See the proof of Lemma 30 in Section 3.6.

73

CHAPTER 4. CLOSED BISECTORS

Lemma 38. The expected size of the history graph H(S) is O(
∑n
j=3mj).

Proof. Let Ri = {r1, . . . , ri} be the set of the first i sites inserted in this order.
The size of H(S) equals

∑n
j=3H(Rj) \H(Rj−1). If x ∈ H(Rj) \H(Rj−1), then

by the definition of the history graph, either x is a face of VR(rj , Rj) or x is
a trapezoid of V ∗(Rj) \ V ∗(Rj−1). Because the number of faces in the history
graph is less than the number of trapezoids (each face-node has at least one
unique succeeding trapezoid-node), the number of all vertices of the history
graph is ≤ two times the number of trapezoid-nodes. Now similar to the proof
of Lemma 31 in Section 3.6 we have the following. If x is a trapezoid-node, then
rj ∈ DRj (x) which implies:

E(H(Rj) \ H(Rj−1)) ≤2

j

∑
r∈Rj

∑
A∈{trapezoids of V ∗(Rj)}

δ(A, r),

where δ(A, r) =

{
1, if r ∈ set(DRj

(A))

0, else.

≤2

j
(16|V ∗(Rj)|) ∈ O(mj).

Summing up over all j from j = 3 to n, we get E(|H(S)|) ∈ O(
∑n
j=3mj).

Lemma 39. The expected size of Et is O(mj).

Proof. See the proof of Lemma 32 in Section 3.6.

Finally, we obtain our main theorem.

Theorem 7. Let {J(p, q) : p 6= q ∈ S} be a bisecting curve system fulfilling
axioms (A1’), (A2”), (A3), (A4) and (A5). Then V (S) can be computed in
expected time

O
(
s2n log(max{s, n})

n∑
j=2

mj

j

)
,

and expected space O(
∑n
j=3mj).

Proof. The sets Et for all t ∈ S can be computed in expected timeO(s2c log(max{s, n})),
see Lemma 36, which is in

O
(
s2n log(max{s, n})

n∑
j=2

mj

j

)
,

see Lemma 37. Afterwards H(S) and V ∗(S) can be computed in time

O(s2
∑
t∈S
|Et|),

see the end of the previous section, and because the expectation of |Et| is O(mj),
Lemma 39, the expected value is in

O(s2
n∑
j=2

mj) ∈ O
(
s2n log(max{s, n})

n∑
j=2

mj

j

)
.

Lemma 38 shows the expected size of H(S), and the size of the trapezoidal
decomposition and the search structures for the faces F is linear in the size of
F , see [38], which gives us the expected space.

74

4.5. PSEUDO-CIRCLES: AN APPLICATION

4.5 Pseudo-circles: an Application

Let S be a set of n sites and let the set of bisectors J := {J(p, q) : p 6= q ∈ S}
be a set of pseudocircles. This means that each bisector is a simply closed curve
and for each pair of bisectors J(p, q) and J(r, t) there are four cases to describe
their intersection, see Figure 4.10:

1. J(p, q) and J(r, t) do not intersect at all;

2. J(p, q) and J(r, t) intersect in exactly one point and this intersection is
nontransversal;

3. J(p, q) and J(r, t) intersect in exactly two points and both intersection
points are transversal;

4. J(p, q) and J(r, t) are equal.

Pseudocircles

June 11, 2014

Let S be a set of n sites and let the set of bisectors J := {J(p, q) : p 6= q 2 S}
be a set of pseudocircles. This means that each bisector is a simply closed curve
and for each pair of bisectors J(p, q) and J(r, t) there are four cases to describe
their intersection, see Figure 1:

1. J(p, q) and J(r, t) do not intersect at all;

2. J(p, q) and J(r, t) intersect in exactly one point and this intersection is
nontransversal;

3. J(p, q) and J(r, t) intersect in exactly two points and both intersection
points are transversal;

4. J(p, q) and J(r, t) are equal.

Case 1 Case 2 Case 3 Case 4

p
q rt q q qp p pt

t

t
r

r

r

Figure 1: Pseudocircles

Further we assume that each point of the plane belongs to the closure of a
Voronoi region.

Remark: Because all bisectors are bounded, there is exactly one unbounded
region in V (S).

Lemma 1. If |S| = 3, then all Voronoi regions are connected.

Proof. Let S = {p, q, r}. Then the region of p equals the intersection of the
two dominance regions D(p, q) \D(p, r). A dominance region is either an open
pseudodisc or the open complement of a pseudodisc. It is easy to see that the
intersection of two dominance regions is always connected.

For unbounded bisecting curves we have the property that if for all subsets
S0 of S of size 3 the Voronoi regions in V (S0) are connected, then all Voronoi
regions in V (S) are connected. This is something which is not true if bisectors
may be closed curves, as has been shown already for multiplicatively weighted

1

Figure 4.10: Pseudocircles.

This curve system fulfills axiom (A1’), (A2”), and (A4). In addition we
assume that also (A3) and (A5) are fulfilled. Because all bisectors are bounded,
there is exactly one unbounded region in V (S).

Lemma 40. If |S| = 3, then all Voronoi regions are connected.

Proof. Let S = {p, q, r}. Then the region of p equals the intersection of the
two dominance regions D(p, q) ∩D(p, r). A dominance region is either an open
pseudodisc or the open complement of a pseudodisc. It is easy to see that the
intersection of two dominance regions is always connected.

For unbounded bisecting curves we have the property that if for all subsets
S′ of S of size 3 the Voronoi regions in V (S′) are connected, then all Voronoi
regions in V (S) are connected, see [49, Lemma 14]. This is something which is
no longer true, if bisectors may be closed curves, as has been shown already for
multiplicatively weighted Voronoi diagrams [12]. Here one region may consist
of O(n) faces and the total complexity of V (S) is O(n2). Interestingly there is
no connection at all between the property that for all subsets S′ of S of size
k, 1 ≤ k ≤ n − 1, all regions in V (S′) are connected and the property that all
regions in V (S) are connected.

Lemma 41. Let S be a set of n sites. We can choose a set of bisecting curves
such that for all proper subsets S′ (S all Voronoi regions in V (S′) are connected
but there is a region in V (S) which is disconnected.

75

CHAPTER 4. CLOSED BISECTORS

Proof. An example for such a system of bisecting curves is depicted in Fig-
ure 4.11. Let S = {p1, . . . , pn}. The uppermost circle is the bisector J(p1, p2),
J(p2, p3), . . . , J(p2, pn), where D(p1, p2), D(p3, p2) . . . , D(pn, p2) equal the outer
face of the circle. The circle to the right of the uppermost one is the bisec-
tor J(p1, p3), J(p3, p4), . . . , J(p3, pn), where D(p1, p3), D(p4, p3), . . . , D(pn, p3)
equal the outer face of it. Finally, the circle to the left of the uppermost one is
the bisector J(p1, pn), where D(p1, pn) is the outer face.

Now the region of p1 equals the plane minus the union of the circles. The
uppermost disc is the region of p2, the disc to the right minus its left one is the
region of p3 and so on. Thus, in V (S), where all circles are present, the region
of p1 is disconnected into two faces. But as soon as one circle is missing, i. e.,
when we have a subset S′ not containing one of the sites p2, . . . , pn, then the
region of p1 grows together through this circle and becomes connected in V (S′).
All other regions are connected in all V (S′), where S′ is a subset of S.

. . .
p2
p3 pn

p2p2
p1

p1

p1

p1

p3

p4

pn

. . .p3
p4

pnp3

p4 p5

pnp4
...VR(p1, S)

VR(p1, S)

VR(p2, S)

VR(p3, S)

VR(pn, S)

Figure 4.11: An example where the region of p1 is disconnected in V (S), but
for proper subsets S′ (S all regions in V (S′) are connected.

Nevertheless, we have the following complexity bound on the size of the
Voronoi diagram. Agarwal et. al. [3] showed that the boundary of the union of
n pseudodiscs, for n ≥ 3, consist of at most 6n − 12 elementary arcs. In our
case we are interested in the complexity of the intersection of pseudodiscs and
complements of pseudodiscs, thus the result by Agarwal et. al. is not directly
applicable, but the technique used in the last part of our proof is similar.

Theorem 8. Let S be a set of n sites together with a set of bisecting curves
fulfilling our axioms. Then each Voronoi region in V (S) is of size O(n) and
V (S) is of size O(n2). These bounds are tight in the worst case.

Proof. Let p be a site in S. Its Voronoi region is the intersection of open pseu-
dodiscs and complements of pseudodiscs.

Claim 1. The intersection of n open pseudodiscs is simply connected1 (or
empty).

1We call a set simply connected if it is both connected and has no holes.

76

4.5. PSEUDO-CIRCLES: AN APPLICATION

Proof. It is clear that the intersection has no holes, otherwise one of the pseu-
dodiscs would have a hole. Thus, it remains to show that it is connected, which
follows from [49, Lemma 14], because if all Voronoi regions in any diagram of
three sites are connected, then related unbounded bisectors may intersect in at
most two points, and these intersections are transversal. Thus, the bisectors
can be connected to closed ones at infinity giving us a system of pseudocircles.
Now the claim follows from the lemma.

Because of Claim 1, the boundary of the intersection of n pseudodiscs is a
closed curve consisting of pseudocircle segments. We call these segments edges.

Claim 2. If each edge has the name of the pseudocircle which it is part of,
then the edges along the boundary of the intersection of n pseudodiscs is a
Davenport-Schinzel-Sequence of order 2.

Proof. Let an edge have the name q if it belongs to the pseudocircle J(p, q).
Now suppose there are edges q and r alternating three times in the sequence,
i. e., q . . . r . . . q . . . r. Then the two bisectors J(p, q) and J(p, r) must intersect
in more than two points, a contradiction.

This claim shows that there can be at most 2n − 1 edges on the boundary
of the intersection of n pseudodiscs.

Now recall that VR(p, S) is the intersection of both open pseudodiscs and
complements of pseudodiscs. Let F be the intersection of all D(p, q), where
q ∈ S \ {p} and D(p, q) is a pseudodiscs. By Claim 2, F is connected and has
O(n) edges on its boundary. It is clear that VR(p, S) is contained in F . Place
a vertex on each edge on the boundary of F and for each pseudodisc D(q, p),
q ∈ S \ {p}, (whose complement is a dominance region of p) intersecting F ,
place a vertex q in D(q, p)∩F ; observe that each pseudodisc can intersect F in
at most one connected component.

Connect two vertices q and r belonging to D(q, p) and D(r, p) by an edge
iff ∂D(q, p) and ∂D(r, p) intersect in a point in F not contained in any other
D(s, p), i. e., J(q, p) and J(r, p) intersect in a vertex on the boundary of the
region of p. Further, connected a vertex q belonging to D(q, p) and a vertex v
belonging to an edge e on the boundary of F iff ∂D(q, p) intersects e in a point
not contained in any other D(r, p). Finally, connect two vertices belonging to
edges e and e′ on the boundary of F , if e and e′ are incident.

Now consider the resulting graph G, see Figure 4.12. Because two pseudo-
circles can intersect in at most two points, G is a planar graph without parallel
edges. Further, we can draw the edges e between two vertices q ∈ D(q, p) and
r ∈ D(r, p) such that e ⊆ D(q, p)∪D(r, p), which is possible, because by defini-
tion e exists only if D(q, p) ∩D(r, p) 6= ∅. Then it is clear that each connected
component of VR(p, S) corresponds to a unique face of G (but G may have more
faces than VR(p, S)). Because G has O(n) vertices it also has O(n) faces and
edges, which proves the upper bound of the Theorem.

An example, where the bounds are tight is the Voronoi diagram of multi-
plicatively weighted points, see [12].

Because the size of each Voronoi region is O(n), we have the following the-
orem.

77

CHAPTER 4. CLOSED BISECTORS

F

q

r

s

t

u

p p

p

p

pp

v

w

Figure 4.12: Proof of the last part of Theorem 8. Fat curves depict the boundary
of F , normal curves the boundaries of the pseudodiscs D(q, p) and dashed curves
edges of the graph G.

Theorem 9. The Voronoi diagram based on a bisector system of pseudocircles
fulfilling axioms (A3) and (A5) can be computed in expected time

O(n2 log n).

The size of the Voronoi diagram is Θ(n2), thus in this case the algorithm is
nearly optimal.

4.6 Conclusion
Our algorithm covers many concrete Voronoi diagrams, named in the introduc-
tion, for which yet no efficient algorithm existed. The run time strongly depends
on the size of mj , the average number of components of a Voronoi region in a
diagram of j sites. As we have seen, for pseudocircles this works very nicely and
we obtain a nearly optimal run time, but there are examples were mj is higher
than the total complexity of the final diagram, thus in these cases our algorithm
would be less efficient.

Also, if one wants to implement the algorithm one may not want to use
Chazelle’s linear triangulation algorithm [23], but an easier approach, e. g., a
randomized one [9]. This may be possible but it would require a new randomized
analysis of the run time.

78

Chapter 5

Higher Order

In this Chapter we study abstract Voronoi diagrams of arbitrary order k. In
a concrete order-k Voronoi diagram, all points are placed into the same region
that have the same k nearest neighbors among the given sites, compare Section
2.2.7. Like for standard nearest Voronoi diagrams, this notion can be defined
also for the abstract setting.

We prove that their complexity in the plane is upper bounded by 2k(n− k).
So far, an O(k(n−k)) bound has been shown only for point sites in the Euclidean
and Lp plane [57, 59], and, recently, for line segments, in the Lp metric [63].
These proofs made extensive use of the geometry of the sites.

Our result on AVD’s implies a 2k(n − k) upper bound for a wide range of
cases for which only trivial upper complexity bounds were previously known,
and a slightly sharper bound for the known cases. Also, our proof shows that
the reasons for this bound are combinatorial properties of certain permutation
sequences.

A preliminary version of this chapter has been published at ICALP’13 [16].

5.1 Introduction
Let S be a set of n sites. For an integer k between 1 and n − 1, the order-k
Voronoi diagram is defined to consist of Voronoi regions, where points belonging
to the same region have got the same k nearest sites. For k = 1 the standard
nearest Voronoi diagram results, while for k = n−1 the farthest Voronoi diagram
is obtained, where all points of M having the same farthest site belong in the
same Voronoi region. Observe that the order of the Voronoi diagram has nothing
to do with the dimension of the space of its embedding. We consider Voronoi
diagrams in the 2-dimensional plane only.

Recall that in abstract Voronoi diagrams for each pair of sites p and q a curve
is given, separating the plane into the two dominance regions D(p, q) on one side
and D(q, p) on the other side. Nearest (Order-1) abstract Voronoi regions are
then defined by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q).

To define higher order abstract Voronoi regions let P ⊂ S be a set of k sites.
Then the order-k region of P is defined by

79

CHAPTER 5. HIGHER ORDER

VRk(P, S) :=
⋂

p∈P, q∈S\P
D(p, q),

The order-k abstract Voronoi diagram V k(S) is defined to be the complement
of all order-k Voronoi regions in the plane; it equals the collection of all edges
that separate order-k Voronoi regions (Lemma 44).

If D(p, q) is the set of all points that are nearer to p than to q with respect
to a distance measure, VR(P, S) equals the set of points having P has their
k-nearest sites, thus our definition makes completely sense.

Farthest abstract Voronoi diagrams consist of regions

VR−1(p, S) :=
⋂

q∈S\{p}
D(q, p).

They have been shown to be trees of complexity O(n), computable in expected
O(n log n) many steps [61].

Of course we still have to require some properties about the abstract Voronoi
diagrams. Because it is the first time to consider higher order AVD’s and we
want to keep our proofs simple, we restrict to the basic axiomatic system. We
require axioms (A1) to (A3), compare Definition 3 in Section 2.3, saying that
for each nonempty subset S′ of S we have the following.

(A1) By stereographic projection to the sphere, each curve J(p, q) can be com-
pleted to a closed Jordan curve through the northpole.

(A2) Each nearest Voronoi region V (p, S′) is path-connected.

(A3) Each point of the plane belongs to the closure of a nearest Voronoi region
VR(p, S′).

In addition we shall assume the following for each nonempty subset S′ of S.

(A4) Any two curves J(p, q) and J(r, t) have only finitely many intersection
points, and these intersections are transversal.

(A5) No nearest Voronoi region VR(p, S′) is empty.

Observe that our axioms are claimed to hold only for the nearest-, i. e., for
the order-1 Voronoi diagram. In Lemma 42 we prove that property (A5) need
only be tested for all subsets S′ of size four. Clearly, (A5) holds in all concrete
cases where each nearest region contains its site.

Figure 5.1 shows two concrete order-2 diagrams of points and line segments
under the Euclidean metric. We observe that the order-2 Voronoi region of line
segments s1, s2 is disconnected, whereas for points the higher-order regions are
still connected. In general, a Voronoi region in V 2(S) can have n− 1 connected
components [63]. Figure 5.2 depicts a curve system fulfilling all properties re-
quired, and the resulting abstract Voronoi diagrams of orders 1 to 4. An index
p placed next to a curve indicates the side of the curve where D(p, q) lies. The
dashed curves represent arcs of the bisectors that do not appear as Voronoi
edges in the diagram. The order-2 region of p1 and p2 consists of four connected
components.

In this chapter we are proving the following result on the number of 2-dimen-
sional faces of order-k abstract Voronoi diagrams.

80

5.1. INTRODUCTION

102 CHAPTER 6. HIGHER DIMENSIONS

p

q

Figure 6.8: Region of {p, q} in the order-2 Voronoi diagram V2(S)

words, the singleton site {p} = S \ M has to be furthest from x. For this
reason, the diagram Vn−1(S) is commonly called the furthest-site Voronoi
diagram of S. It contains, for each site p ∈ S, the region of all points x for
which p is the furthest site in S.

This diagram has special structural properties. For example, only sites
lying on the boundary of the convex hull of S, and exactly those, have non-
empty regions in Vn−1(S). This is because a site interior to the convex hull
can never be the furthest from any point x in Rd. Moreover, all regions are
unbounded, as each of them contains some unbounded ray emanating from
the defining site and pointing ‘away’ from S. In the plane, this implies that
the edge graph of Vn−1(S) is a tree. It consists of exactly 2h − 3 edges and
h − 2 vertices, when h denotes the number of extreme points in S (if S is
in general position; the size of Vn−1(S) is less, otherwise); cf. Figure 6.9.
Exact upper bounds on the size of furthest-site Voronoi diagrams in Rd for
d ≥ 3 are derived in Seidel [597].

Several methods of construction apply to Vn−1(S). Let us first consider
the lifting approach taken in Subsection 6.2.2, where distances to the sites
pi ∈ S are described by hyperplanes π(pi) in Rd+1. Clearly, the weights
w(pi) have all to be put to 0 now, as we deal with Euclidean distances
rather than with power functions.

As furthest distances are to be used, the lower envelope of the hyper-
planes π(p1), . . . , π(pn) will vertically project to Vn−1(S). Consequently, by

s1 s2

F1 ⊂ VR2({s1, s2}, S)

F2 ⊂ VR2({s1, s2}, S)

Figure 5.1: Order-2 diagrams of points and line segments. The shadowed re-
gion in the left picture belongs to the sites p and q and is connected, in the
right picture the shadowed faces belong to the region of s1 and s2 which is
disconnected.

Theorem 10. The abstract order-k Voronoi diagram V k(S) has at most 2k(n−
k) many faces.

So far, an O(k(n − k)) bound has been shown only for points [57], and
recently for line-segments [63], in the Lp metric.1 The structural properties of
the diagram for line segments turned out surprisingly different from those for
points, including disconnected Voronoi regions and a lack of symmetry between
the number of unbounded regions in the order-k and order-(n−k) diagrams.
The differences clearly propagate in the abstract setting. The proofs of these
results are based on geometric arguments, including results on k-sets2, point-
line duality and ≤ k-levels in arrangements. None of these arguments applies
to abstract Voronoi diagrams.

However, the upper bound on k-sets established in [8] had a combinatorial
proof; it was obtained by analyzing the cyclic permutation sequences that result
when projecting n point sites onto a rotating line. In such a sequence, consecu-
tive permutations differ by a switch of adjacent elements, and permutations at
distance

(
n
2

)
are inverse to each other.

In this chapter we prove Theorem 10 using combinatorial arguments. We
traverse the unbounded edges of higher order AVD’s, and obtain a strictly larger
class of cyclic permutation sequences, where consecutive permutations differ by
switches and any two elements switch exactly twice. Our proof is based on a
tight upper bound to the number of switches that can occur among the first
k+1 elements; see Lemma 49. It is interesting to observe that in our class, each
permutation sequence can be realised by an AVD (Lemma 50), while this is not
the case for the sequences obtained by point projection [42].

It is tempting to think that one could easily use the techniques from Clarkson
and Shor [30] to prove these bounds. But for abstract Voronoi diagrams there
appear some special phenomena which complicate this task, as will be discussed
in the conclusion of this chapter, Section 5.6.

1In the L1 and L∞ metrics, the bound is slightly tighter, i.e., O((n−k)2) for k > n/2 [63].
2We call a subset of size k of n points a k-set if it can be separated by a line passing

through two other points. Such k-sets correspond to unbounded order-(k+ 1) Voronoi edges.

81

CHAPTER 5. HIGHER ORDER

p3

p4

p5

p1 p2

p2
p3 p3

p2p1

p4

p5

p2
p4
p1

p5p2
p1

p1

An admissible curve system, and its order-
1 AVD

p1, p2

p3, p1 p2, p3

p1, p2

p1, p2

p1, p4 p2, p4

p1, p5 p2, p5

p1, p2

p2
p3 p1

p3

p1 p2

p2
p3

p1
p3

Order 2

p1, p2, p3

p1, p2, p5

p1, p2, p4
p3
p5

p3
p5

p3p4

p4p5

Order 3

p1, p2, p3, p4

p1, p2, p4, p5

p1, p2, p3, p5

p5
p4

p3
p5

p4 p5

p3p4p4p3

p1, p2, p3, p5

Order 4

Figure 5.2: AVD of 5 sites in all orders.

To avoid technical complications we are assuming, in the first 4 sections
of this chapter, that any two input curves J(p, q) intersect in a finite number
of points, these intersections are transversal, and that Voronoi vertices are of
degree 3. How to get rid of the first assumption has been shown for the case of
nearest AVD’s in [49]. In Section 5.5 we show that also vertices of higher degree
than 3 can be allowed.

Theorem 10 implies a 2k(n − k) upper complexity bound on a wide range
of order-k Voronoi diagrams for which no good bounds were previously known.
For example, sites may be disjoint convex objects of constant complexity in L2

or under the Hausdorff metric. For point sites, distance can be measured by
any metric d satisfying the following conditions: points in general position have
unbounded bisector curves; d-circles are of constant algebraic complexity; each
d-circle contains an L2-circle and vice versa; for any two points a 6= c there is a
third point b 6= a, c such that d(a, c) = d(a, b) + d(b, c) holds. This includes all
convex distance functions of constant complexity, but also the Karlsruhe metric
where motions are constrained to radial or circular segments with respect to a
fixed center point. A third example are point sites with additive weights ap, aq
that satisfy |ap − aq| < |p− q|, for any two sites p 6= q; see [13] for a discussion
of these examples.

Using Theorem 10, the first algorithm computing the abstract order-k Voronoi
diagram has been presented in [20]. It runs in expected time O(kn1+ε).

The rest of this chapter is organized as follows. In Section 5.2 we present

82

5.2. PRELIMINARIES

some basic facts about AVD’s. Then, in Section 5.3, permutation sequences will
be studied, in order to establish an upper bound to the number of unbounded
Voronoi edges of order at most k. This will lead, in Section 5.4, to a tight upper
bound for the number of faces of order k. Finally, in Section 5.5 we show how
to get rid of the general position assumption and maintain the same result for
the number of order-k faces.

5.2 Preliminaries

In this section we present some basic facts on abstract Voronoi diagrams of
various orders.

Each transversal intersection v between two related bisectors J(p, q) and
J(p, r) is a Voronoi vertex in the order-1 diagram of {p, q, r}, and J(q, r) runs
also through v, compare [48]. Together with the Euler formula and our axioms
we obtain that any two related bisectors J(p, q) and J(p, r) may intersect in at
most two points.

Fortunately, verification of our axioms can be based on constant size exam-
ples. Pairs and quadruples of sites are clearly sufficient to verify axioms (A1)
and (A4). Axioms (A2) and (A3) can be verified by checking all subsets of S of
size 3, see [49, Section 4.3]. For axiom (A5) we need subsets of size 4 as shown
in the following lemma, to check all subsets of size 3 would not be enough, as
shown in Figure 5.3.

p p

p

q

q

q

r

r

r
s

s

s

Figure 5.3: An AVD of 4 sites p, q, r, s. In each diagram of three of these sites
no Voronoi region is empty (the regions of p are shaded) but in the diagram of
all 4 sites the region of p is empty.

Lemma 42. To verify axiom (A5), assuming that axioms (A2) and (A3) hold,
it is sufficient to check all subsets S′ of S of size 4.

Proof. If all bisecting curves are straight lines, (A5) follows from Helly’s theorem
on convex sets, stating that for a finite collection of convex sets in the plane,
if each intersection of 3 of these sets is nonempty, then the intersection of the
whole collection is nonempty.

Our bisecting curves J(p, q) do not necessarily define convex domains D(p, q)
from which the Voronoi region VR(p, S) =

⋂
q∈S\{p}D(p, q) is constructed. This

is why a new proof is needed.
So, assume that VR(p, S′) is nonempty for all subsets S′ of size 4. Let

|S| > 4 and for the sake of a contradiction assume that VR(p, S) = ∅. Let
q1, q2, q3 ∈ S \ {p} be pairwise different. By induction on the size of S, there

83

CHAPTER 5. HIGHER ORDER

exist points xi ∈ VR(p, S \ {qi}), i ∈ {1, 2, 3}. Since no point lies in VR(p, S),
we have xi ∈ D(qi, p). By (A2), there are paths Pij connecting xi and xj in
VR(p, S \ {qi, qj}) ⊆ D(p, qk), where {i, j, k} = {1, 2, 3}. Because VR(p, S)
may not be empty, Pij has to be contained in D(qi, p) ∪ D(qj , p), thus when
traversing Pij from xi to xj one must cross J(p, qj) first, before one crosses
J(p, qi). W.l.o.g. we can assume that Pij intersects J(p, qi) and J(p, qj) exactly
once each.

Let x′1 be the first point of P13 one meets, when traversing P12 from its
intersection with J(p, q2) in the direction of x1, let x′2 be the first point on
P23 one meets, when traversing P12 from its intersection with J(p, q1) in the
direction of x2, and let x′3 be the first point on P23 one meets, when traversing
P13 from its intersection with J(p, q1) in the direction of x3. Because P23 can not
intersect P12 in D(q1, p), P13 can not intersect P12 in D(q2, p), and P12 can not
intersect P23 in D(q3, p), the points x′1, x′2 and x′2 together with the segments of
P12, P23, and P13 in between form a simple closed curve which bounds a domain
D.

We have x′i in D(qi, p) and in D(p, q) for all q ∈ S \{qi} and J(p, qi) may not
intersect Pjk for {i, j, k} = {1, 2, 3}. Further, because P12 ⊆ D(q1, p) ∪D(q2, p)
the two bisectors J(p, q1) and J(p, q2) must intersect transversally in a point
w contained in the domain D; see Figure 5.4. The two bisectors J(p, q1) and
J(p, q2) divide the domain D into four subdomains around w, A ⊆ D(q1, p) ∩
D(q2, p), B ⊆ D(p, q1) ∩D(q2, p), C ⊆ D(p, q2) ∩D(p, q1), and E ⊆ D(p, q2) ∩
D(q1, p).

The bisector J(p, q3) enters D through P13 and E such that the segment of
P13 in the direction of x′1 is in D(p, q3) and the segment in the direction of x′3
is in D(q3, p). J(p, q3) leaves D through B and P23 such that the segment of
P23 in the direction of x′2 is in D(p, q3) and the segment in the direction of x′3 is
in D(q3, p). Because J(p, q3) may intersect J(p, q1) and J(p, q2) in at most two
points, if it traverses A then it can not traverse C and vice versa, and it can
traverse A and C in at most one segment.

Now there are three cases, see Figure 5.5.

Case1: J(p, q3) traverses A. Then it forms a bounded domain of the farthest re-
gion VR−1(p, {p, q1, q2, q3}) inA incident to w. This contradicts Lemma 47
(given later) whose proof is independent from this lemma.

Case2: J(p, q3) traverses C. Then it bounds VR(p, {p, q1, q2, q3}) in C incident
to w. Let x ∈ VR(p, {p, q1, q2, q3}). Because VR(p, S) = ∅ there must
be q ∈ S \ {p, q1, q2, q3} such that x ∈ D(q, p). But the boundary of
the domain D is contained in D(p, q), implying that J(p, q) is closed—a
contradiction to (A5).

Case3: J(p, q3) traverses neither A nor C and must hence run through w. Since
VR(p, {p, q1, q2, q3}) must not be empty, by (A3), J(p, q3) has to tra-
verse through D(p, q1) ∩ D(p, q2), but then it must intersect J(p, q1) or
J(p, q2) in another point, resulting in a disconnection of VR(p, {p, q1, q3})
or VR(p, {p, q2, q3}) that contradicts (A2).

Remember also the very useful fact that for all p, q, r in S, D(p, q)∩D(q, r) ⊆
D(p, r) holds, compare Lemma 7 in Section 2.3.

84

5.2. PRELIMINARIES

D

w

x1
x2

x3

D(q1, p)

D(q2, p)

D(q3, p)

P12

P13 P23

p q2 pq1

x′
1

x′
2

x′
3

A

B

C

E

Figure 5.4: In the proof of Lemma 42, curves J(p, q1) and J(p, q2) meet at point
w.

w

pq2

p
q1

p
q3p∗

Case1

A
w

p q2

pq1

p
q3

p

Case 2

C

q2

q1

q3

Case 3

p

p

p

w
p p

pp

Figure 5.5: Discussion of three cases.

Consequently, a total ordering of the set S is possible for x /∈ ⋃p,q∈S J(p, q),
where

p <x q :⇐⇒ x ∈ D(p, q).

Informally, one can interpret p <x q as “x is closer to p than to q“. We will
write p < q if it is clear which x ∈ R2 we are referring to.

As a direct consequence we show that property (A3) holds also for abstract
order-k Voronoi regions.

Lemma 43. Let J = {J(p, q) : p 6= q ∈ S} be an admissible curve system.
Then for each k ∈ {1, . . . , n− 1}

R2 =
⋃

P⊆S,|P |=k
VRk(P, S).

Proof. Let x ∈ R2. If x is not contained in any bisecting curve J(p, q) then
it belongs to the order-k region VRk(P, S), where P = {p1, . . . , pk} are the k
smallest elements of S with respect to the ordering <x. Otherwise, x lies on
the boundary of a domain D ⊂ R2 \⋃p 6=q∈S J(p, q), and D fully belongs to an
order-k region.

The proofs of the following Lemmata 44 and 45 are similar to the proof of
Lemma 43. Lemma 45 indicates that two neighboring regions differ in exactly
one site.

85

CHAPTER 5. HIGHER ORDER

Lemma 44.
V k(S) =

⋃
P 6=P ′⊂S
|P |=|P ′|=k

VRk(P, S) ∩VRk(P ′, S)

Lemma 45. If the intersection E := VRk(P, S) ∩ VRk(P ′, S) is not empty,
there are sites p ∈ P and p′ ∈ P ′ such that P \{p} = P ′ \{p′}, and E ⊆ J(p, p′)
holds. For each point x ∈ VRk(P, S) near E, index p is the k-th with respect to
<x, while for points x′ in VRk(P ′, S) index p′ appears at position k.

In particular, D(p, p′) is on the same side of J(p, p′) as VRk(P, S).
If F, F ′ are connected components (faces) of VRk(P, S) and VRk(P ′, S),

respectively, the intersection F∩F ′ can be empty, or otherwise be of dimension 0
(Voronoi vertices) or 1 (Voronoi edges).

For the next lemma we assume that all vertices are of degree 3. Recall that if
two related bisectors J(p, q) and J(p, r) intersect in a point v, then J(q, r) runs
also through v, [48], and v is a Voronoi vertex of the order-1 Voronoi diagram
of {p, q, r}. Thus, when assuming that all Voronoi vertices are of degree 3, no
other bisector related to one of the sites p, q, r can run through v.

Let P1, P2, P3 ⊂ S be the sets defining the adjacent to v order-k Voronoi re-
gions in clockwise order, see Figure 5.6. As with the concrete order-k Voronoi di-
agrams, vertex v can be of two types, depending on the nature of sets P1, P2, P3 [57].
There are two cases. In the first case, there exists a set H ⊂ S of size k− 1 and
three more sites p, q, r ∈ S satisfying

P1 = H ∪ {p}, P2 = H ∪ {q}, P3 = H ∪ {r}.

Then vertex v is called new in V k(S), or of nearest type. In the second case,
there is a subset K ⊂ S of size k − 2 and three more sites p, q, r ∈ S such that

P1 = K ∪ {p, r}, P2 = K ∪ {q, r}, P3 = K ∪ {p, q}.

Then vertex v is called old in V k(S), or of farthest type.
To see that these are indeed the only two cases, we walk around v in clockwise

order along the boundary of an ε-neighborhood, see Figure 5.6. Let the edge
between P1 and P2 belong to the bisector J(p, q), such that P1 ⊆ D(p, q) and
P2 ⊆ D(q, p). If q is still last in the ordering of the sites when we reach the
edge between P2 and P3, then this edge must belong to the bisector J(q, r) for
an r ∈ S \ {p, q}. Thus, bisector J(r, p) must run through v, and because no
other bisector related to r may contain v, a segment of J(r, p) defines the edge
between P2 and P3. Thus, we have the first case.

If q is no longer last in this ordering, then we must have crossed a bisector
J(q, r) related to q while traversing P2. Again, J(p, r) must contain v, and
thus, no other bisector related to r may run through v. Thus, r is in last
position when we reach the edge between P2 and P3 and the edge must belong
to J(r, p). Next, because all bisector intersections are transversal (A4), we cross
the bisector J(p, q), and p changes its position in the ordering with q, which
is now in last position. The next bisector is J(q, r), and because q is in last
position, this defines the edge between P2 and P3. This implies the second case
and no other configuration is possible.

The proof of the following lemma follows quite directly from these definitions.

86

5.2. PRELIMINARIES

P1

P2P3

p
q

qr

r
p

P1

P2P3

p
q

q r

r

p rq
p

q
p r

v v

Figure 5.6: A new vertex v to the left and an old vertex to the right. Solid curves
indicate the Voronoi edges and dashed ones the prolongations of the bisectors.

Lemma 46. Let v be a new vertex in V k(S). Then v is an old vertex of
V k+1(S), and v lies in the interior of a face of V k+2(S), i. e., v is not a vertex
of V k+2(S). Furthermore, every edge of V k(S) is enclosed by a face of V k+1(S).

Already in [61] it has been shown that farthest abstract Voronoi diagrams are
trees, under a slightly different definition of admissible curves. In this chapter
we give a short alternative proof of this fact based on our axioms (A1)–(A5).

Lemma 47. The farthest abstract Voronoi diagram V −1(S) is a tree.

Proof. Let |S| = n. Suppose some farthest region VR−1(p, S) has a face F that
is bounded. Let its boundary consist of edges e1, . . . , ei in this order, such that
each edge ej is a segment of a bisector J(p, qj). The sites qj need not be pairwise
different, but consecutive edges belong to different bisecting curves. Let xj be
the intersection point between ej and ej+1 on the boundary of F , and xi the
intersection point between ei and e1 on F , see Figure 5.7.

If n = 1, then there exists no bounded Voronoi region. If n = 2, there can
be at most one edge e1 on the boundary of V −1(p, S), implying that e1 and
J(p, q1) would be closed a contradiction to (A1).

Now let n > 2, and let i ≥ 2. By induction on n, VR−1(p, S \ {qi}) is
unbounded (it still contains F and is thus not empty). Let z be a point in
F , then there exists an unbounded arc L ⊆ V R−1(p, S \ {qi}) emanating from
z to infinity. L may not intersect any J(p, q1), . . . , J(p, qi) except for J(p, qi),
thus it must leave F through J(p, qi), w.l.o.g. let its last intersection with the
boundary of F be on ei.

Because of (A4), there is a point x in the ε-neighborhood of xi−1 contained
in D(p, qi−1) ∩D(p, qi) and a point y in the ε-neighborhood of xi contained in
D(p, q1) ∩ D(p, qi). We claim that any path πxy from x to y intersect J(p, qi)
or L. This is immediate, because by construction x and y are on the same side
of the unbounded curve J(p, qi), but on opposite sides of L.

Because of (A5), there exists a point w ∈ VR(p, {p, q1, qi−1, qi}) (q1 may
be equal to qi). The point w is also contained in both VR(p, {p, q1, qi}) and
VR(p, {p, qi−1, qi}). The point y is contained in VR(p, {p, q1, qi}) and because
of (A1) there exists a path πyw from y to w in VR(p, {p, q1, qi}) and thus inter-
secting neither L nor J(p, qi). The point x is contained in VR(p, {p, qi−1, qi})
and thus there exists a path πxw from x to w in VR(p, {p, qi−1, qi}) also inter-
secting neither L nor J(p, qi). But then the concatenation of πxw and πyw is a
path connecting x and y without intersecting L and J(p, qi), a contradiction.

87

CHAPTER 5. HIGHER ORDER

F

xi

x1

xi−1

ei

e1

e2

ei−1

p
q1

q2
p

p

p

qi

qi−1

z

p

p

p

p

qi

q1

qi−1

qi

L

y

x

Figure 5.7: Farthest AVD’s cannot contain bounded regions.

It remains to show that V −1(S) is connected. Suppose there is a curve C
separating parts of V −1(S). Then C ⊂ VR−1(p, S) for a p ∈ S, C ∩D(p, q) = ∅
for all q ∈ S \ {p} and there are q 6= r ∈ S such that D(p, q) lies on one side of
C and D(p, r) on the other side. But then VR(p, {p, q, r}) would be empty.

5.3 Bounding the number of unbounded edges of
V ≤k(S)

Let Γ be a closed Jordan curve in R2 large enough such that no pair of bisectors
cross on or outside of Γ (axiom (A4)), each bisector crosses Γ exactly twice and
these intersections are transversal (axiom (A1)).
If we traverse Γ around the Voronoi diagram, the ordering <x on S changes
whenever we cross a bisector J(p, q). Here indices p and q change their relation
according to <x.

Lemma 48. When we cross a bisector J(p, q), then p and q change their places
in the ordering <x along Γ. Further, they are adjacent to each other just before
and after the crossing.

Proof. Let pi < pj , and assume that we cross J(pi, pj), which means that pi < pj
changes to pj < pi. Let pk < pi, pj before we cross J(pi, pj). Because of the
construction of Γ no other bisector has been crossed at the same time, thus
pk < pi, pj remains. The same happens for a pk > pi, pj . Now let pi < pk < pj
before we cross J(pi, pj). Then we still have pi < pk < pj afterwards, but now
pj < pi, a contradiction to the transitivity. Thus pi and pj must have been
adjacent right before and after we cross J(pi, pj) and hence they change their
places in the ordering.

We call such a change in the ordering of S a switch between the two sites p
and q, which are adjacent. There can be only one switch at a time and each pair
of sites switches exactly two times while walking one round around Γ, resulting
in n(n− 1) switches altogether.

88

5.3. BOUNDING THE NUMBER OF UNBOUNDED EDGES OF V ≤K(S)

Every time a switch among the first k + 1 elements of the ordering occurs,
there is an unbounded edge of a Voronoi diagram of order ≤ k. This means
that the maximum number of unbounded edges of all diagrams of order ≤ k is
equal to the maximum number of switches among the first k+ 1 elements in the
ordering.

Permutation sequences and estimates for the maximum number of switches
among the first k elements have been used in [8] to bound the number of k-sets
of n points in the plane. These sequences resulted from projecting n points in
general position onto a rotating line. Hence, they were of length 2N , where
N =

(
n
2

)
, and they had the following properties. Adjacent permutations differ

by a transposition of adjacent elements, and any two permutations a distance
N apart are inverse to each other. It has been shown in [42] that not every
permutation of this type can be realized by a point set.

In the following lemma we introduce a larger class of permutation sequences
that fits the AVD framework.

Lemma 49. Let P (S) be a cyclic sequence of permutations P0, . . . , PN = P0

such that

(i) Pi+1 differs from Pi by a (adjacent) switch;

(ii) each pair of sites p, q ∈ S switches exactly two times in P (S).

Then the number of switches occuring in P (S) among the first k + 1 sites is
upper bounded by k(2n− k − 1). Furthermore, this bound is tight.

Proof. Call a switch good if it involves at least one of the k first sites of a permu-
tation; otherwise call it bad. Let S = {p1, . . . , pn} and the initial ordering of the
sites in the first permutation be p1 < . . . < pn. For i ∈ {k+ 2, . . . , n}, define Bi
as the set of bad switches where pi is switching with a site in {p1, . . . , pi−1}. We
remark that the sets Bi, for i ∈ {k+ 2, . . . , n}, are pairwise disjoint. If pi is not
involved in a good switch, then all its 2i−2 switches with sites in {p1, . . . , pi−1}
are bad. Otherwise, for pi to be involved in a good switch, it must first be
involved in at least i− k − 1 bad switches with sites in {p1, . . . , pi−1}, in order
to reach the first k + 1 positions, and since P0 = PN , pi has to be involved in
as many bad switches in order to return to its original place in the ordering. In
both cases, |Bi| ≥ 2(i− k − 1). Because of (ii), the total number of switches is
N = 2

(
n
2

)
. Therefore the number of good switches is at most

2

(
n

2

)
−

n∑
i=k+2

|Bi| ≤ 2

(
n

2

)
− 2

n−k−1∑
j=1

j = k(2n− k − 1),

where j = i− k − 1.
To show that the bound is tight, let again the initial ordering of the first

permutation be p1 < . . . < pn. We switch each pi with pi−1, . . . , p1 in decreasing
index order such that pi now is the first element and then in inverse order back
to its original position. Start with i = 2 and continue until i = n. Then the
number of switches among the first k+ 1 sites is exactly 2

(
n
2

)
−2

∑n−k−1
j=1 j.

In contradistinction to the result in [42], each such permutation sequence
can be realized by an AVD. The following Lemma 50 will be used for proving
that the upper bound shown in Lemma 51 is tight.

89

CHAPTER 5. HIGHER ORDER

Lemma 50. Let P (S) be a sequence of permutations as in Lemma 49. There ex-
ists an abstract Voronoi diagram where the ordering of the sites along Γ changes
according to P (S).

Proof. We show that for |S| = 3 each P (S) fulfilling the above properties can be
realized by an AVD. If |S| ≥ 3, we can consider V (S) such that each triple p, q, r
of sites changes its ordering on Γ according to P (S). This is possible because
if the curve system of each triple of sites is admissible then the curve system
of S is admissible, too; see [49]. Now if there are two bisectors J(p, q) and
J(r, t) having a different order on Γ than p, q, r, t have in P (S), then p, q, r, t are
pairwise different, and neither of the bisectors J(p, r), J(p, t), J(q, r) or J(q, t)
can occur between the two bisectors J(p, q) and J(r, t) on Γ. Otherwise, suppose
w. l. o. g. that J(p, r) occurs between J(p, q) and J(r, t); then {p, q, r} would
not have the same ordering on Γ as in P (S), a contradiction to our assumption.
Thus the bisectors J(p, q) and J(r, t) can be deformed such that their ordering
on Γ changes, but the structure of V (S) remains the same.

Now let S = {p, q, r}. Then there are three different cases:

(1) Each site switches into the first position exactly once.

(2) One site switches into the first position exactly twice; it cannot do so
more often because then it would have to switch with one of the other
sites more often than twice. Further, it implies that all other sites must
switch themselves into first position exactly once.

(3) One site never moves to first position. This implies that both the other
sites switch to first position exactly once; otherwise, either one site would
remain in first position during the whole permutation, but then it would
never switch with any other site, or the two other sites would have to
switch more than twice.

Let P0 = (p, q, r). Then there are two possibilities for P1 in case (1): Either
P1 = (q, p, r), which leads to the sequence
P0 = (p, q, r)
P1 = (q, p, r)
P2 = (q, r, p), otherwise r never switches into first position or p switches into
first position twice
P3 = (r, q, p), otherwise r never switches into first position
P4 = (r, p, q), otherwise q switches into first position a second time
P5 = (p, r, q), otherwise p and q switch more than twice
P6 = (p, q, r), otherwise P0 6= P6;
or P1 = (p, r, q), which leads to the same permutation sequence in inverse order.

Assume that p is the site that switches into first position twice in case (2). Then
we get the following permutation sequence:
P0 = (p, q, r)
P1 = (q, p, r), then
P2 = (p, q, r), otherwise P2 = (q, r, p) which leads to the permutation sequence
as in case (1)
P3 = (p, r, q), otherwise p and q switch more than twice
P4 = (r, p, q), otherwise r never switches into first position
P5 = (p, r, q), otherwise p and q switch more than twice

90

5.3. BOUNDING THE NUMBER OF UNBOUNDED EDGES OF V ≤K(S)

p q

q
r

p r

q

r

p

p
q p rq r

q p r

p q

r
q

r
p

p r q

(1) (2)

(3)

(1)

p q

q
r

p r

q

r

p

p
q p rq r

q p r

p q

r
q

r
p

p r q

(1) (2)

(3)

(2)

p q

q
r

p r

q

r

p

p
q p rq r

q p r

p q

r
q

r
p

p r q

(1) (2)

(3)

(3)

Figure 5.8: Illustrations of cases (1) to (3) in the proof of Lemma 50.

P6 = (p, q, r), otherwise P0 6= P6;
or in inverse order.

Assume that r is the site that never switches into first position in case (3). Then
we get the following permutation sequence:
P0 = (p, q, r)
P1 = (q, p, r), then
P2 = (q, r, p), otherwise p switches into first position twice
P3 = (q, p, r), otherwise r switches into first position
P4 = (p, q, r), otherwise p and r switch more than twice
P5 = (p, r, q), otherwise p and q switch more than twice
P6 = (p, q, r), otherwise P0 6= P6;
or in inverse order.

These permutation sequences can be realized by the AVD’s depicted in Fig-
ure 5.8.

Let Si be the number of unbounded edges in V i(S). If an edge e has got
two unbounded endpieces, i. e., edge e bounding a p- and q-region is the whole
bisector J(p, q), then e is counted twice as an unbounded edge.

Lemma 51. Let k ∈ {1, . . . , n− 1}. Then,

k(k + 1) ≤
k∑
i=1

Si ≤ k(2n− k − 1).

Both bounds can be attained.

Proof. The second bound follows directly from Lemma 49. The first bound
follows from the fact that the minimum number of switches among the first
(k+ 1) sites is greater or equal to the total number of switches, n(n− 1), minus
the maximum number of switches among the last (n − k) sites, which again is
equal to the maximum number of switches among the first (n− k) sites. Using
Lemma 49 this implies

k∑
i=1

Si ≥ n(n− 1)− (n− k − 1)(2n− (n− k − 1)− 1) = k(k + 1).

91

CHAPTER 5. HIGHER ORDER

The tightness of the bounds follows from Lemma 50.

5.4 Bounding the number of faces of V k(S)

In the following, we assume that each Voronoi vertex is of degree 3. The follow-
ing two lemmata give combinatorial proofs for facts that were previously shown
by geometric arguments [57, 63].

Lemma 52. Let H be a subset of S of size k+ 1 and F a face of VRk+1(H,S).
The portion of V k(S) enclosed in F is exactly the farthest Voronoi diagram
V −1(H) intersected with F .

Proof. "⇒": Let x ∈ F and suppose x ∈ VRk(H ′, S) for H ′ ⊂ S of size k.
Since F ⊆ VRk+1(H,S) it follows that x ∈ D(p, q) for all p ∈ H and q ∈ S \H,
implying H ′ ⊂ H. Let H \H ′ = {r}, then x ∈ D(p, r) for all p ∈ H ′ and hence
x ∈ VR−1(r,H).
"⇐": Let x ∈ F and x ∈ VR−1(r,H). Then x ∈ D(p, q) for all p ∈ H and q ∈
S \H and x ∈ D(p, r) for all p ∈ H \{r}. This implies x ∈ VRk(H \{r}, S).

Lemma 53. Let F be a face of VRk(H,S), H ⊆ S, |H| = k ≥ 2. Then
V −1(H) ∩ F is a nonempty tree.

Proof. First we show that V −1(H)∩ F is not empty by assuming the opposite.
Then there is a p ∈ H such that F ⊆ VR−1(p,H). Let F ′ ⊆ VRk(H ′, S)
be a face of V k(S) adjacent to F along an edge e. By Lemma 45, we have
H = U ∪ {q} and H ′ = U ∪ {q′}, where q, q′ are different and not contained in
U . Also, e ⊆ J(q, q′) holds. If p were in U , we would obtain F ′ ⊆ D(p, q) and
F ⊆ V R−1(p,H) ⊆ D(q, p), hence e ⊆ J(p, q)—a contradiction to axiom (A4).
Thus, p /∈ U , which means p = q. Now Lemma 45 implies that each edge on the
boundary of F has to be a segment of a curve J(p, qj) such that D(p, qj) lies
on the F -side. Let q1, . . . , qi be the sites for which there is such an edge e on
the boundary of F . Then VR1(p, {p, q1, . . . , qi}) = F , because nearest Voronoi
regions are connected thanks to axiom (A1). But from F ⊆ V R−1(p,H) it
follows that VR1(p,H) ⊆ R2 \ F , and hence, VR1(p, S) ⊆ F ∩ R2 \ F = ∅, a
contradiction to axiom (A5).

Next we show that V −1(H) ∩ F is a tree. Because of Lemma 47 it is clear
that it is a forest. So it remains to prove that it is connected. Otherwise, there
would be a domain D ⊂ F , bounded by two paths P1, P2 ⊂ F of V −1(H) and
two disconnected segments e1 and e2 of the boundary of F . There is an index
p ∈ H such that D ⊆ VR−1(p,H). Since V −1(H) is a tree, by Lemma 47, the
upper (or: the lower) two endpoints of P1 and P2 must be connected by a path
P in V −1(H) that belongs to the boundary of VR−1(p,H); see Figure 5.9. Here
path P connects the endpoints of e1; both curves together encircle a domain
D′, which is part of VR−1(p,H). By definition of the farthest Voronoi diagram
and because e1 is on the boundary of F and contained in VR−1(p,H), there
are q1, . . . , qi, such that e1 ∪ P consists of segments of J(p, q1), . . . , J(p, qi),
and all D(p, qj) are situated outside of D′; compare Lemma 45. But then
VR−1(p, {p, q1, . . . , qi}) would be bounded, a contradiction to Lemma 47.

92

5.4. BOUNDING THE NUMBER OF FACES OF V K(S)

F

P2
P1

e2

e1

D

D′

p
qi

p q1

q2
p

pqi−1

P
V ∗(H)

Figure 5.9: The intersection of an order-k face F and the farthest Voronoi
diagram of its defining sites must be a tree.

Lemma 54. Let F be a face of VRk+1(H,S) and m the number of Voronoi
vertices of V k(S) enclosed in its interior. Then F encloses 2m + 1 Voronoi
edges of V k(S).

Proof. See Lemmata 52 and 53.

The formulae in the next two lemmata originate in [57]. Below we include
their proofs from [63] for completeness.

Lemma 55. Let Fk, Ek, Vk and Sk denote, respectively, the number of faces,
edges, vertices, and unbounded edges in V k(S). Then,

Ek = 3(Fk − 1)− Sk (5.1)

Vk = 2(Fk − 1)− Sk. (5.2)

Proof. Consider V k(S) ∪ Γ, cut off all edges outside of Γ, and let G be the
resulting graph. Then G is a connected planar graph and for its number of faces,
f , of vertices, v, and edges, e, we have f = Fk + 1, v = Vk + Sk, e = Ek + Sk.
Because of the general position assumption each vertex is of degree 3 and hence
2e = 3v. Now the Euler formula v − e+ f = c+ 1 implies the lemma.

Lemma 56. The number of faces in an AVD of order k is

Fk = 2kn− k2 − n+ 1−
k−1∑
i=1

Si.

Proof. Let Vk, V ′k and V ′′k be the number of Voronoi vertices, new Voronoi ver-
tices and old Voronoi vertices in V k(S), respectively. Then because of Lemma 46
we have Vk = V ′k + V ′′k = V ′k + V ′k−1.

Claim 1: Fk+2 = Ek+1 − 2V ′k.
Because of Lemma 46, every old vertex of V k+1(S) lies in the interior of a

face of V k+2(S). Consider a face Fi of V k+2(S). Let mi be the number of old
vertices of V k+1(S) enclosed in its interior. Then Fi encloses ei = 2mi+1 edges

93

CHAPTER 5. HIGHER ORDER

of V k+1(S); see Lemma 54. If we sum up through all the faces in V k+2(S), we
obtain

Fk+2∑
i=1

ei = 2

Fk+2∑
i=1

mi + Fk+2.

Note that
∑Fk+2

j=1 mj = V ′′k+1 = V ′k and
∑Fk+2

j=1 ej = Ek+1, hence Fk+2 =
Ek+1 − 2V ′k.

Claim 2: The number of faces in V 1(S) is F1 = n and the number of faces in
V 2(S) is F2 = 3(n− 1)− S1.

The first part follows from axioms (A2) and (A5). To prove the second part,
consider a face of V 2(S). There are no old vertices in V 1(S), therefore the face
encloses exactly one edge of V 1(S) and hence F2 = E1. Equation (5.1) implies
F2 = 3(n− 1)− S1.

Now we sum up Fk+2 and Fk+3 to obtain

Fk+3 = Ek+2 + Ek+1 − Fk+2 − 2V ′k+1 − 2V ′k = Ek+2 + Ek+1 − Fk+2 − 2Vk+1;

(see Claim 1). Substituting (5.1) and (5.2) of Lemma 55 into it results in

Fk+3 = 2Fk+2 − Fk+1 − 2− Sk+2 + Sk+1.

Using the iterative formula, the base cases F1 = n and F2 = 3(n− 1)− S1, we
derive the lemma by strong induction.

Theorem 11. The number of faces Fk in an AVD of order k is bounded as
follows

n− k + 1 ≤ Fk ≤ 2k(n− k) + k + 1− n
≤ 2k(n− k)

∈ O(k(n− k)).

Both the upper bound 2k(n− k) + k + 1− n and the lower bound n− k + 1 can
be attained.

Proof. Lemma 51 implies tight bounds k(k − 1) ≤∑k−1
i=1 Si ≤ (k − 1)(2n− k).

Together with Lemma 56 this proves the theorem.

5.5 Generalizations
In [49] it has been shown, with some technical effort, that it is not necessary
to require only finitely many intersection points between each pair of bisecting
curves J(p, q) and J(r, t). The abstract Voronoi diagram is still a finite planar
graph with finitely many vertices even if bisectors intersect in infinitely many
points. With the same proofs one can show that this is also true for higher
order AVD’s. Observe that bisector intersections have to be considered only
when resulting in a Voronoi vertex of some order. Thus in axiom (A4) it would
suffice to require only transversal intersections.

Another natural question is, whether the general position assumption, where
each Voronoi vertex is of degree 3, is really necessary. We can show that it is

94

5.6. CONCLUDING REMARKS

not and the number of faces of an order k AVD can only decrease if vertices
have higher degree than 3 and all bisectors intersect transversally. First we
prove that all "pieces of pie" around an order k vertex are from different order
k Voronoi regions.

Lemma 57. Let v be a vertex of V k(S). All faces adjacent to v are from
pairwise different Voronoi regions and if we walk around v, no face appears
more than once.

Proof. The proof that no face appears more than once is analogous to the proof
of the simple connectivity of order-1 Voronoi regions, see [49].

Suppose there are two different faces F1 and F2 incident to v, both belonging
to the same order k Voronoi region of H ⊆ S. For k = 1 the regions are
connected and we have a contradiction.

So let k ≥ 2. Let the left border-edge of F1 incident to v belong to the
bisector J(p1, q1) and the right one to J(p2, q2) such that p1, p2 ∈ H and q1, q2 /∈
H, in other words VRk(H,S) ⊆ D(p1, q1) and ⊆ D(p2, q2), see Figure 5.10.
Because F2 is also a face of the region of H, the bisector J(p1, q1) has to pass
on the left side between F1 and F2 and J(p2, q2) has to pass on the right side
between F1 and F2. But then {p1, q1} 6= {p2, q2} and the two bisectors J(p1, q1)
and J(p2, q2) intersect non-transversally in v contradicting axiom (A4).

v

p1
q1

p2 q2
F1

F2

p2
q2

p1
q1

Figure 5.10: Proof of Lemma 57.

Now we can prove a more relaxed version of Theorem 11.

Theorem 12. Let V k(S) be an AVD of order k, satisfying axioms (A1) to
(A5), with vertex degree ≥ 3 for all Voronoi vertices. Then the number of faces
of V k(S) is bounded from above by 2k(n− k).

Proof. For each vertex v of V k(S) with degree ≥ 4 consider a sufficiently small ε-
neighborhood Uε(v) around v, such that no other intersection between bisectors
lies in Uε(v). Use the perturbation technique of [48] to obtain degree 3 vertices
in Uε(v). Because of Lemma 57 the modified Voronoi diagram V k(S) has got
at least as many faces as V k(S). Now Theorem 11 implies that V k(S) has got
at most 2k(n− k) many faces.

5.6 Concluding remarks

One may wonder if the Clarkson-Shor technique [30] can be applied to get the
same complexity bound. The Clarkson-Shor technique proves that for point

95

CHAPTER 5. HIGHER ORDER

sites in the Euclidean metric Vk(S) has at most 2k(n − k − 1) new Voronoi
vertices, leading to at most 4kn − 4k2 − 2n Voronoi vertices. However, there
are three problems in applying this technique to the abstract setting. Let Vk,S ,
V ′k,S , and V

′′
k,S be the numbers of Voronoi vertices, new Voronoi vertices, and old

Voronoi vertices of Vk(S), respectively, and let Fk,S and Sk,S be the numbers of
faces and unbounded faces of Vk(S), respectively.

First, it is shown that V ′k,S + V ′n−k,S is 2k(n − k − 1). This proof depends
on the fact that in the Euclidean metric, V ′1,R + V ′r−1,R is 2r − 4 for any r-
element subset R of S. However, the equation V ′1,R + V ′r−1,R = 2r − 4 does
not hold in the abstract version since S1,R is not necessarily Sr−1,R. Actu-
ally, r − 2 ≤ V ′1,R + V ′r−1,R ≤ 2r − 4. It is not clear how to make use of
this inequality and their technique to derive an upper bound. Second, the
Clarkson-Shor technique mainly focuses on the upper bound. No bound for
the minimum number of faces in Vk(S) is derived. Last but not least, if we
assume that V ′1,R + V ′r−1,R = 2r − 4 holds, by the Euler formula, we have an
upper bound of 2k(n − k) + Sk,S/2 + 1 − n, but our derived upper bound is
2k(n−k) +k+ 1−n. In the abstract version, it is trivial to find a case in which
Sk,S/2 > k. Moreover, since we prove the existence of an instance satisfying the
bound 2k(n− k) + k + 1− n, our bound is tight.

Another natural question is whether axioms weaker than (A1)–(A5) can still
imply Theorem 11. In Section 5.5, we showed that axiom (A4) can be simplified,
requiring only transversal intersections, and the general position assumption can
be omitted. However, what about disconnected and empty Voronoi regions?

96

Chapter 6

Forest-Like

It is well known that the construction of Voronoi diagrams requires time Ω(n log n),
already for the euclidean Voronoi diagram of point sites in the plane, see Sec-
tion 2.1. But what if some more information about the Voronoi diagram is given
in beforehand, e. g., if the sites already are sorted in some way. It turned out
to be very difficult to answer this question, because the computation of Voronoi
diagrams is a 2-dimensional problem.

Djidjev and Lingas [35] showed that if a set of point sites is sorted according
to one coordinate, then one still needs time Ω(n log n) to compute the Voronoi
diagram. But if the point sites are vertices of a monotone histogram, given in
sorted order, then it is possible to compute the Voronoi diagram in linear time.

Another way to attack this problem is to assume that the Voronoi diagram
has some special structure, like a tree structure, which occurs, e. g., for points
in convex position. Aggarwal et. al. [5] showed that if the ordering of the points
along the convex hull is given, then their euclidean Voronoi diagram can be
computed in linear time. The same technique applies for computing the Voronoi
diagram of line segments forming a convex polygon, because these diagrams also
have a tree structure. It equals the medial axis in the interior of the polygon,
compare Section 2.2.4.

The natural question ist whether this technique can be generalized to ab-
stract Voronoi diagrams, having a special structure. Klein and Lingas [50]
showed that, given an unbounded Hamiltonian path passing through each Voronoi
region exactly once for all diagrams of a subset S′ of S, together with the order-
ing of the Voronoi regions along the path, the abstract Voronoi diagram can be
computed in linear time. This also applies to Voronoi diagrams having a tree
structure for all subsets S′, and where the ordering of the unbounded regions
at infinity is known.

In this chapter we go one step further and allow the AVD to be disconnected,
thus having a forest structure for real subsets S′ (S. Now, given the ordering
of the unbounded regions in V (S), the diagram can still be computed in linear
time, assuming that bisectors are unbounded and Voronoi regions are connected
and nonempty.

An extended abstract of this chapter appeared at EuroCG’14 [18] and at
CCCG’14 [19].

97

CHAPTER 6. FOREST-LIKE

6.1 Introduction

General abstract Voronoi diagrams can not be computed faster than in Ω(n log n)
time. However, certain practical applications require only a specific substruc-
ture of the entire diagram or a special kind of Voronoi diagram. That is why
it is worthwhile to consider special types of Voronoi diagrams and to come up
with faster algorithms for their computation. Aggarwal et. al. [5] developed a
linear-time algorithm for euclidean Voronoi diagrams of point-sites in convex
position, see Figure 6.1. Their algorithm further allows to delete a site from
euclidean Voronoi diagrams in time linear to the structural changes, and also
speeds up the algorithm for the kth-order Voronoi diagram in [57] by a O(log n)
factor.

Figure 6.1: The euclidean Voronoi diagram of points in convex position is a tree.

Moreover, there are two kinds of Voronoi diagrams of a simple polygon,
both consisting of a tree or forest structure, who have received considerable
attention. First, the medial axis of a simple polygon is the Voronoi diagram of
its polygonal edges. Lee [56] first proposed an O(n log n)-time algorithm for this
medial axis, and Chin et al. [27] later developed a linear-time algorithm. Second,
the constrained Voronoi diagram of a simple polygon is the Voronoi diagram of
its polygonal vertices constrained by its polygonal edges. Lee and Lin [58] first
derived an O(n log n)-time algorithm for these kinds of constrained Voronoi
diagrams, and then Klein and Lingas [51] proposed a linear-time algorithm in
the L1 metric. Furthermore, in the euclidean metric, Klein and Lingas [52] later
developed a randomized linear-time algorithm, and Chin and Wang [28] finally
gave a deterministic linear-time algorithm.

However, for many other geometric objects and distance measures the convex
position is not applicable. Besides, the linear-time algorithms [52, 27, 28] for the
medial axis and the constrained Voronoi diagram of a simple polygon depend on
a decomposition of a simple polygon, which prevents them from being extended
to a more general setting.

The first approach towards abstract Voronoi diagrams was taken by Klein
and Lingas [50] by defining the so called Hamiltonian abstract Voronoi diagram
and proposing a linear-time algorithm. Here an unbounded Hamiltonian path
is given, which for all subsets S′ of S runs through each Voronoi region of V (S′)
exactly once, see Figure 6.2. Furthermore, the usual axioms were required for
each subset S′ ⊆ S.

(A1) By stereographic projection to the sphere, each curve J(p, q) can be com-
pleted to a closed Jordan curve through the northpole.

98

6.1. INTRODUCTION

(A2) Each Voronoi region V (p, S′) is path-connected.

(A3) Each point of the plane belongs to the closure of a Voronoi region VR(p, S′).

(A4) Any two curves J(p, q) and J(r, t) have only finitely many intersection
points, and these intersections are transversal.

(A5) No nearest Voronoi region VR(p, S′) is empty.

p

q

r

s
t

u

v

w
x

H

Figure 6.2: A Hamiltonian abstract Voronoi diagram. The sites are ordered
p, q, r, s, t, u, v, w, x along the Hamiltonian path H.

Axiom (A4) is assumed for technical reasons, it can be overcome as shown
in [49] and axiom (A5) is needed, because otherwise by definition there would
not exist a Hamiltonian path.

Unfortunately, computing a Hamiltonian path for a given AVD is NP-complete,
which will be proven by Theorem 14 in Section 6.2. Therefore, let us now con-
sider the abstract Voronoi diagram restricted to a domain D where its structure
is a forest and each site has exactly one face, see Figure 6.3. Let D ⊆ R2 be
a bounded domain, e. g., a domain bounded by Γ, where Γ is a simple closed
curve intersecting each bisector exactly twice, such that no two bisectors inter-
sect in a connected component entirely enclosed by the outer domain of Γ. In
the following, without explicit indication, V (S′) means V (S′)∩D and VR(p, S′)
means VR(p, S′) ∩D.

To be more specific, instead of requiring a Hamiltonian path, we have the
additional axiom:

(A6) V (S) is a tree and for or all S′ ⊆ S, V (S′) is a forest and each Voronoi
region has exactly one face.

This axiom implies that each bisector traverses D exactly once, any two
related bisectors, J(p, q) and J(p, r) having one site in common, cross at most
once in D and, together with axioms (A2) and (A5), ∂D runs through each
Voronoi region of V (S) exactly once. Based on our axioms we prove the following
result.

Theorem 13. Given a domain D together with the ordering of the Voronoi
regions along ∂D we can compute V (S) in time O(n).

99

CHAPTER 6. FOREST-LIKE

p

q
r

s

t

u

∂D

(a) V (S)

q

s

t

u

∂D

(b) V (S′)

Figure 6.3: (a) Abstract Voronoi diagram V (S) in a domain D, the ordering of
the regions along ∂D is p, q, r, s, t, u.
(b) For a subset S′ ⊂ S, V (S′) may be a forest. Here, the ordering of the regions
along ∂D is t, q, t, s, t, u.

On the other hand, if each bisector crosses D exactly once, no two related
bisectors intersect in more than one point and each Voronoi region of V (S)
intersects the boundary of D, meaning that no region is completely contained
in the interior of D and no region is empty, then we know that V (S′) is a forest
for all subsets S′ of S. V (S) would be a tree only if in addition each Voronoi
region intersects the boundary of D in exactly one component. If we would
know in advance which regions of V (S) are intersected by ∂D more than once,
we would know how to separate V (S) into trees and could adapt the theorem for
each tree. Otherwise this would already be an element-uniqueness-test which
would need time Ω(n log n).

There is also a possibility of normalizing the bisector system in the sense that
afterwards each pair of related bisectors cross exactly once, see Section 6.3. Then
V (S′) would be a tree for all S′ ⊆ S. But there are

(
n
3

)
pairs of related bisectors,

and none of these pairs must cross from the beginning. Thus it takes time Ω(n3)
to normalize them. And even afterwards ∂D may be a curve intersecting each
region of V (S) exactly once but it is unclear whether this is also true for subsets
S′ of S, because only related bisectors are claimed to cross exactly once.

That is why in this chapter we choose a different problem definition than in
[50]. Compared to the algorithm for Hamiltonian abstract Voronoi diagrams our
algorithm has two major differences in the coloring (Section 6.4.1) and selection
(Section 6.4.2). For the coloring, our algorithm needs to consider two more sub-
cases, and two consecutive sites in the sequence can be both colored red, while
no consecutive sites in [50] are colored red. For the selection, our algorithm
needs to modify V (S′) into a tree for applying Aggarwal’s selecting lemma [5].

6.2 NP-completeness

A Hamiltonian path with respect to an AVD is a simple unbounded curve,
homeomorphic to a line, that passes through each Voronoi region exactly once.
We show that it is NP-complete to decide whether such a curve exists or not.

Let V (S) denote an arbitrary AVD. In [48], Theorem 2.7.3, it has been shown

100

6.3. NORMALIZING A BISECTOR SYSTEM

that V (S) together with the large curve Γ around the diagram is a biconnected
planar graph with vertex-degree ≥ 3, the vertices on Γ are of degree 3. Also
the opposite is true, namely each graph fulfilling these properties represents an
AVD. In [48] a slightly different definition of AVD’s was used, but it is easy to
see that the Theorem is still true for our setting based on axioms (A1) to (A5).
This means that the dual of V (S), the dual of the graph structure of V (S) inside
Γ, is a biconnected planar graph and vice versa. Thus a Hamiltonian curve with
respect to V (S) is equivalent to a Hamiltonian path, with its endpoints on the
outer face, in a biconnected planar graph.

To show that it is NP-hard to even decide the existence of such a path, we
reduce the problem of deciding whether a Hamiltonian cycle exits in a Delaunay
triangulation. In [33] it has been shown that this problem is NP-complete.

Lemma 58. Let G be a biconnected planar graph. The problem to determine
whether a Hamiltonian path P with endpoints on the outer face of G exists is
NP-complete.

Proof. It is clear that the problem is in NP. So, let G be a Delaunay trian-
gulation. A Hamiltonian cycle C exists in G iff C visits each vertex v of G
exactly once. Thus, if there exists a Hamiltonian path P with endpoints v and
w such that there is an edge from v to w in G. Let v be an arbitrary vertex of
G. Because G is a triangulation, there are O(n) triangles adjacent to v. The
boundary of each triangle consists of 3 vertices which are pairwise connected by
an edge. If G contains a Hamiltonian cycle, then there must be a Hamiltonian
path having its endpoints on one of the triangles. For each triangle T adjacent
to v turn the graph inside out, such that T becomes the outer face and the
outer face becomes a bounded face. The resulting graph G′ is biconnected and
planar. Now a Hamiltonian cycle exists in G iff for a triangle adjacent to v a
Hamiltonian path, with its endpoints on the outer face, exists in G′. This proves
the lemma.

From this lemma we get our theorem.

Theorem 14. It is NP-complete to determine if for a given abstract Voronoi
diagram there exists an unbounded simple curve visiting each Voronoi region
exactly once.

Corollary 1. For a given system of bisecting curves it is NP-comlete to de-
termine if there exists an unbounded simple curve crossing each bisecting curve
exactly once.

Proof. An unbounded simple curve crossing each bisecting curve exactly once
visits each Voronoi region in V (S) exactly once, see Lemma 3 in [50].

6.3 Normalizing a Bisector System

In this section we show that it is possible to normalize a given bisector system,
where each pair of bisectors cross at most once, such that afterwards each pair
of bisectors cross exactly once and our axioms are still fulfilled.

Let {J(p, q) | p, q ∈ S} be a system of bisecting curves in general position
fulfilling axioms (A1) to (A5) and a relaxed version of (A6):

101

CHAPTER 6. FOREST-LIKE

(A6’) V (S′) is a forest for all S′ ⊆ S.

Axiom (A6’) implies that any two related bisectors cross at most once. Would
all pairs of related bisectors cross exactly once then V (S′) would be a tree for
all subsets S′ of S. Let Γ be a closed curve encircling all intersection points
of bisecting curves, such that each bisecting curve consists of two unbounded
segments outside of Γ and a bounded segment inside.

Notation: We shall write p|q to denote a segment of J(p, q) that has D(p, q)
to its left and D(q, p) to its right, if no confusion can arise.

Theorem 15. By introducing crossings of neighboring bisecting curves outside
of Γ (and afterwards enlarging Γ to include all new intersection points) we can
transform {J(p, q) | p, q ∈ S} into a normal system {J ′(p, q) | p, q ∈ S} of
bisecting curves such that

(i) axioms (A1) to (A5) and (A6’) are fulfilled,

(ii) each pair of related bisectors cross exactly once,

(iii) V (S) = V ′(S) ∩ int(Γ).

Property (ii) is equivalent to saying that the Voronoi diagram of any three
sites contains exactly one Voronoi vertex. Namely, because of general position,
we know that two related bisectors J(q, p), J(p, r) can only cross in a point,
where they intersect, and J(q, r) must pass through this point, too. Such triplet
crossing points correspond to Voronoi vertices in the diagrams of the three sites
involved. From the original bisector system, all of these

(
n
3

)
many crossings may

be missing.

Proof. If the bisector system is not normal there exist three different sites p, q, r
in S where J(q, p), J(q, r), J(p, r) fail to cross but instead run as shown in Fig-
ure 6.4. By axiom (A5’), the Voronoi region of p in V (S) extends to infinity,
w.l.o.g. through the northern part of the strip (the southern part may be blocked
by other sites in V (S)). Let m denote the number of unbounded southern bi-
sector segments between q|p and p|r. Clearly, m ≥ 1 because q|r is situated
between q|p and p|r. We call q|p and p|r a “strip of width m”.

The theorem follows by applying the following lemma repeatedly.

Lemma 59. If there is a strip of width m ≥ 1 we can introduce another triplet
crossing point while maintaining properties (i) to (iii).

(We observe that the crossing point introduced need not be the one of the
strip boundaries!)

Proof. By induction on m. If m = 1 then q|p, q|r, p|r are direct neighbors and
can be “braided” to obtain a triplet crossing point, v. We enlarge Γ to include
v, and have obtained the new ordering p|r, q|r, q|p. Axioms (A1) to (A6’) are
still fulfilled.

Now let m > 1, and let t|u be the right hand side neighbor of q|p, as shown
in Figure 6.4. If t|u = q|r then we are done with moving q|p to the right, and
start to move p|r to the left towards q|r in a symmetric way.

102

6.3. NORMALIZING A BISECTOR SYSTEM

Γ

q p p rq r

V R(p, S)

q p t u

m

Figure 6.4: In principle we want to move q|p and p|r together such that they
cross on q|r. This may require re-ordering the bisector segments in between, as
we must not cause related bisectors to cross more than once.

Γ

q p
t q

t p

q r

Figure 6.5: Illustration of the case t|u = t|q.

If t, u are different from q, p we can simply make q|p cross t|u without diffi-
culty. This reduces m to m− 1, and the claim follows by induction. Otherwise,
we analyze the following cases.
t|u = p|u. Impossible, because q|u must appear between q|p and p|u.
t|u = t|p. Here t|p and p|r form a strip of widthm−1, so that induction applies.
t|u = t|q. We observe that t 6= p because q|p runs to the north. Similarly, we
have t 6= r. Since the region of q is nonempty, q|p and t|q must intersect, as
shown in Figure 6.5. But then t|p must appear in between—a contradiction.
t|u = q|u. This case splits into three subcases, depending on the intersection
behavior of q|u.

First, if q|p and q|u cross we have the situation shown in Figure 6.6. We
observe that q|u cannot cross q|r, too, because it would need to cross it twice
in order to run to q|p. Since the region of p is unbounded to the north, u|p
and p|r cannot cross, so u|r must run between them to the north. If u|r were
situated, on the southern part of Γ, between q|p and q|u, as shown in Figure 6.6,
it could not run to the north because it could not cross q|u (the crossing would
have to lie on q|r, too, which is impossible as q|u and q|r are disjoint). Thus,

103

CHAPTER 6. FOREST-LIKE

Γ
u
p

q p q u q r
pr

u r

Figure 6.6: An impossible situation.

Γ

q p q u q r
pr

p u

u r

Figure 6.7: Bisectors q|u and u|r form a strip of width < m.

u|r appears between q|u and p|r, and q|u and u|r form a strip of width < m.
Induction applies because the region of u is unbounded to the north.

Second, let us assume that q|u intersects neither q|p nor q|r, as shown in
Figure 6.7. In the Voronoi diagram of p, q, u, bisector q|u must run between
q|p and p|u without crossing, because the region of p runs to the north. If, on
the southern boundary of Γ, bisector p|u appears to the left of p|r then q|p and
p|u form a strip of width < m, and induction applies. Otherwise, we have the
situation depicted in Figure 6.7. Since q|u and q|r are disjoint by assumption,
q|r and u|r cannot cross. Thus, q|u and u|r form a strip of width < m, and we
can apply induction since the region of u is unbounded to the north.

Third, we assume that q|u intersects q|r but not q|p; see Figure 6.8. As in
the previous case, bisector q|u must run between q|p and p|u without crossing,
and if p|u appears to the left of p|r we can apply induction to the strip formed
by q|p and p|u. Let us assume that p|u is situated to the right of p|r. If p|r and
p|u were disjoint, either the region of r or of u would be empty in the Voronoi
diagram of p, r, u, because r|u would run to the left of p|r; see Figure 6.9. Thus,
there must be a crossing, as shown in Figure 6.8. But there is no way the two
segments of r|u can be connected, since multiple crossings are not allowed—a

104

6.3. NORMALIZING A BISECTOR SYSTEM

Γ

q p q u q r
pr

p u

u
ru

r

Figure 6.8: An impossible situation, since the two segments of J(r, u) cannot
be connected.

Γ

pr

p u

r
u

Figure 6.9: The Voronoi region of r or of u would be empty.

105

CHAPTER 6. FOREST-LIKE

contradiction. This concludes the proof of the Lemma and of the Theorem.

Unfortunately there are
(
n
3

)
pairs of related bisectors and no pair of them

must cross from the beginning. In this case all pairs have to be considered and
it would take time Ω(n3) to normalize the system.

Thus the algorithm discussed in the following does not require a normalized
bisector system, it needs only axiom (A6).

6.4 The Algorithm
Let us get back to our actual problem. Here a bounded domain D together with
the ordering of the Voronoi regions along its boundary is given and axioms (A1)
to (A6) are required.

Definition 8. For each set of sites S′ ⊆ S let π(S′) be the sequence of regions
of V (S′) along ∂D. Since V (S) partitions ∂D into |π(S)| pieces, each element
of π(S) corresponds to a unique piece. For each element p of π(S), d(p) is a
point on its corresponding piece.

p

q
r

s

t

u

∂D d(q)
d(r)

d(s)

d(t)

d(u)

d(p)

V (S)

q

s

t

u

∂D d(q)

d(s)

d(t)

d(u)

V (S′)

Figure 6.10: Illustration of Definition 8 and 9. Here π(S) = (p, q, r, s, t, u),
π(S′) = (t, q, t, s, t, u), and π′(S′) = (q, s, t, u).

Remark that VR(p, S) ⊆ VR(p, S′), thus d(p) ∈ VR(p, S′) for all subsets
S′ of S, see Figure 6.10. Actually, π(S) depends on the starting point and the
direction of a traversal along ∂D. W. l. o. g. , we assume the starting point is
known and the direction is clockwise. Axiom (A6) implies that each element
in π(S) occurs only once. For subsets S′ of S we have the following observation.

Lemma 60. π(S′) is a Davenport-Schinzel-Sequence of order 2.

Proof. By definition no element of the sequence appears twice without another
site in between. So, suppose there are p 6= q ∈ S′ such that p, q, p, q occur in this
ordering in π(S′). Then either the two p’s or the two q’s can not be connected
in D, a contradiction to axiom (A2).

We want to use a recursive algorithm to compute V (S). To be able to re-
cursively compute V (S′) from V (S) it is important that the input, the sequence

106

6.4. THE ALGORITHM

of sites π(S′), fulfills the same properties as the sequence π(S). But π(S) is a
Davenport-Schinzel-Sequence (DSS) of order 1, whereas π(S′) may be a DSS of
order 2. For this purpose we will use the following definition.

Definition 9. Let π′(S′) be the subsequence of π(S) containing all elements
from S′, i. e., π′(S′) is a DSS of order 1.

In the example drawn in Figure 6.10, π′(S′) would be (q, s, t, u).
In the following we show that it indeed suffices to consider the subsequence

π′(S′) in order to compute V (S′). Now our algorithm can be summarized as
follows.

Algorithm
Input: The order π(S) of the regions of V (S) along the boundary of D.
Output: The Voronoi diagram within the domain D.

S1. Color each element of π(S) either blue or red, i.e., π is partitioned into
π′(B) and π′(R), and S is partitioned into B and R, such that both |B|
and |R| are a constant fraction of |S|, and for each two consecutive red
sites, r1, and r2, in π, VR(r1, B ∪ {r1, r2}) and VR(r2, B ∪ {r1, r2}) are
not adjacent. See Section 6.4.1 for details.

S2. Compute V (B) from π′(B) recursively.

S3. Select a subset C from R such that |C| is a constant fraction of |R|, and
for any two sites, c1 and c2, VR(c1, B ∪ {c1, c2}) and VR(c2, B ∪ {c1, c2})
are not adjacent. See Section 6.4.2 for details.

• Add artificial Voronoi edges to V (B) to obtain a tree structure V ∗(B).
• Apply Aggarwal et al.’s selecting Lemma [5] on V ∗(B).

S4. Compute V (B∪C) by sequentially inserting each element of C into V (B).

S5. Compute V (G) from π′(G) recursively, where G = R \ C and π′(G) is
obtained from π′(R) by removing all elements in C.

S6. Merge V (B ∪ C) and V (G).

Step 1 can be carried out in linear time according to Section 6.4.1, Step 3
and Step 4 can be completed in linear time according to Section 6.4.2 and 6.4.3,
and Step 6 can be implemented in linear time using the general merge method
described in [48]. Since |B| and |G| are both a constant fraction of |S|, the
above claims conclude Theorem 13.

In the following we will make use of two more definitions.

Definition 10. For a set S of sites, a subset S′ of S, and a site p of S′, a
connected intersection between VR(p, S′) and ∂D is redundant if it does not
contain the connected intersection between VR(p, S) and ∂D. From the view-
point of π′(S′), which is a subsequence of π(S), a connected intersection between
VR(p, S′) and ∂D is redundant if it does not contain d(p) for p in π′(S′).

107

CHAPTER 6. FOREST-LIKE

In Figure 6.10 the two intersections of VR(t, S′) with ∂D between the regions
of u and q and between q and s are redundant.

Definition 11. For all S′ ⊆ S, a pqr-vertex of V (S′) is a Voronoi vertex
adjacent to VR(p, S′), VR(q, S′), and VR(r, S′) clockwise. If VR(p, S′) is the
only region bordering on VR(q, S′), VR(p, S′) encloses VR(q, S′), for brevity we
say p encloses q in V (S′), compare Figure 6.11.

∂D

p

q r
s

t
v

Figure 6.11: Vertex v is a pqt-vertex and r encloses s.

6.4.1 Red-Blue-Coloring Scheme
The red-blue-coloring scheme consists of two steps, where a site is blue as long
as it is not colored red. See also Figure 6.12.

1. For every 5 consecutive sites along π(S), (l,m, p, q, r), p is colored red if
one of the following conditions holds. Let T be {l,m, p, q, r}.

(i) There is an mpq-vertex in V (T).
(ii) VR(m,T) encloses VR(p, T).
(iii) VR(q, T) encloses VR(p, T).

2. For every 3 consecutive sites along π(S) that are all blue, the middle one
is colored red.

Let R be the set of red sites, and B be the set of blue sites. Observe that the
final diagram V (S) is a tree, but in the recursion V (S) may be a forest, e. g., if
S = B. Then we use the sequence π′(S) instead of π(S).

Lets first observe that not too many consecutive sites are colored red by our
coloring scheme.

Lemma 61. No 3 consecutive sites in π(S) are all colored red.

Proof. For the sake of a contradiction assume that three consecutive sites r1,
r2, r3 are all red. Let s1 and s2 be the two consecutive sites previous to r1,
and s3 and s4 the two consecutive sites after r3. By definition r1, r2 and r3 can
not be colored red by Step 2. Thus we need to consider only Step 1. There are
three different cases for r1 to be colored red.

Case 1: There is an s2r1r2-vertex in V ({s1, s2, r1, r2, r3}). This vertex
is still an s2r1r2-vertex in V ({s2, r1, r2, r3}) implying that there can not ex-
ist an r1r2r3-vertex in V ({s2, r1, r2, r3}) and hence also no r1r2r3-vertex in
V ({s2, r1, r2, r3, s3}). This means that r2 must be colored red because r1 or r3

108

6.4. THE ALGORITHM

l

m

p

q

r

l

m

p
q

r l

m
p

q

r

Figure 6.12: Three cases where p is colored red.

encloses it in V ({s2, r1, r2, r3, s3}). But then r2 can not be adjacent to a vertex
in V ({s2, r1, r2, r3}), i.e., no s2r1r2 vertex exists, a contradiction.

Case 2: r1 is colored red because s2 encloses r1 in V ({s1, s2, r1, r2, r3}). But
then the regions of r1 and r2 are not adjacent in V ({s2, r1, r2, r3}) and there can
be no r1r2r3-vertex in V ({s2, r1, r2, r3, s3}). Further r1 can not enclose r2. This
means that r2 must be colored red because r3 encloses it in V ({s2, r1, r2, r3, s3}).
But then there can be no r2r3s3-vertex in V ({r1, r2, r3, s3, s4}) and r3 can not
be enclosed by r2 or s3 in V ({r1, r2, r3, s3, s4}). Thus r3 is not colored red, a
contradiction.

Case 3: r1 is enclosed by r2 in V ({s1, s2, r1, r2, r3}) but then because of the
same reasons as in Case 2 r2 is not colored red.

It can happen that two consecutive sites are both colored red, but fortunately
if this happens, their regions can not be adjacent as will be shown in the following
lemma. Compare also Figure 6.13.

Corollary 2. Let s1, s2, r1, r2, s3, s4 be 6 consecutive sites in π(S). If r1 and r2
are both red, then s2 and s3 are both blue. Further s2 encloses r1 in V ({s1, s2,
r1, r2, s3}) and s3 encloses r2 in V ({s2, r1, r2, s3, s4}). In particular s2 encloses
r1 and s3 encloses r2 in V ({s2, r1, r2, s3}).

Proof. Lemma 61 shows that s2 and s3 are both red. Case two in the proof
of Lemma 61 is the only case where two consecutive sites r1 and r2 are both
colored red. Here s2 encloses r1 in V ({s1, s2, r1, r2, s3}) and r3 encloses r2 in
V ({s2, r1, r2, s3, s4}), implying that s2 encloses r1 and s3 enclose r2 in V ({s2,
r1, r2, s3}).

s1

s2

r1
r2

s3
s4

π′(S) = (s1, s2, r1, r2, s3, s4)

π(S) = (s1, s2, r1, s2, s3, r2, s3, s4)

Figure 6.13: Two consecutive sites r1 and r2 in π′(S) are both colored red, but
their regions are not adjacent.

109

CHAPTER 6. FOREST-LIKE

The property from above can be generalized to any two consecutive red sites,
even if there are one or two blue sites in between, as the next lemma will say.

Lemma 62. Let r1 and r2 be two consecutive red sites. Then VR(r1, B ∪
{r1, r2}) and VR(r2, B ∪ {r1, r2}) are not adjacent.

Proof. Let s1 be the site previous to r1 and s2 the site after r2 in π. There are
three cases.

Case 1: There is no blue site between r1 and r2. Because of Corollary 2, s1
and s2 are both blue and s1 encloses r1 and s2 encloses r2 in V (s1, r1, r2, s2).
Thus it follows directly that the regions of r1 and r2 can not be adjacent in
V (B ∪ {r1, r2}).

Case 2: There is exactly one blue site b between r1 and r2. For the sake of a
contradiction suppose VR(r1, B∪{r1, r2}) and VR(r2, B∪{r1, r2}) are adjacent.
Then the regions of r1 and r2 are the only regions that may be adjacent to the
region of b in V (B ∪ {r1, r2}). If they both are adjacent to the region of b, then
there is a r1br2-vertex in V (B ∪ {r1, r2}). If only the region of r1 is adjacent to
the region of b, then r1 encloses b in V (B ∪{r1, r2}) and if only the region of r2
is adjacent to the region of b, then r2 encloses b in V (B ∪ {r1, r2}).

Now if s1 and s2 are both blue, then {s1, r1, b, r2, s2} ⊆ B ∪ {r1, r2} and b
would have been colored red, a contradiction to the assumption that b is blue.

Now assume s1 is red and let s0 be the predecessor of s1. Corollary 2 tells
us that b encloses r1 in V ({s0, s1, r1, b, r2}), but then the regions of r1 and r2
can not be adjacent in V (B ∪ {r1, r2}). The case that s2 is red is symmetric.

Case 3: There are exactly two blue sites b1 and b2 between r1 and r2.
As in case 2, for the sake of a contradiction suppose VR(r1, B ∪ {r1, r2}) and
VR(r2, B ∪ {r1, r2}) are adjacent. Then the regions of r1, r2, b1 and b2 are the
only regions that may be adjacent to the regions of b1 and b2 in V (B∪{r1, r2}).

Now there are two subcases:
Case 3.1. The region of b1 or b2 is not adjacent to any of the regions of r1 or

r2 in V (B ∪ {r1, r2}). Then b1 encloses b2 or b2 encloses b1 in V (B ∪ {r1, r2}).
W.l.o.g. let b1 enclose b2, the other case is symmetric. If s2 is blue, then b1
also encloses b2 in V ({r1, b1, b2, r2, s2}), and b2 must be colored red. But if s2
is red, then by Corollary 2 b2 has to enclose r2 in V ({b1, b2, r2, s2)}), both a
contradiction.

Case 3.2. Both the regions of b1 and b2 are adjacent to the region of r1 or
r2. Because all Voronoi regions are connected the region of b1 or b2 is adjacent
to the region of r1 but not r2 or vice versa. Let b1 be adjacent to the region
of only r1 and b2, the other 3 constellations are symmetric. Then there is a
r1b1b2-vertex v in V (B ∪ {b1, b2}). If s1 is blue, then v is also a r1b1b2-vertex
in V ({s1, r1, b1, b2, r2}) and thus b1 would be red, a contradiction.

If s1 is red, then r1 would be enclosed by b1 in V ({s0, s1, r1, b1, b2}), a con-
tradiction as in Case 2.

The definition of the coloring scheme (Step 2) ensures that the number of
red sites is at least a constant fraction of |S| and Corollary 2 shows that also
the number of blue sites is at least a constant fraction of |S|. Together with the
previous lemma this shows that (S1) of the Algorithm is satisfied.

110

6.4. THE ALGORITHM

6.4.2 Choosing Crimson Sites

The next step is to choose a set of crimson sites out of the set of red sites. To
satisfy (S3) from the algorithm, we want to apply the following combinatorial
lemma from [5], which helps us to obtain a set of crimson sites whose regions
are not adjacent.

Lemma 63. Let T be an unrooted binary tree, embedded in the plane. Assume
that for each leaf l of T a subtree Tl rooted at l is defined, such that

1. given leaf l, one can in constant time decide if its parent node belongs to
Tl,

2. if l, l′ are consecutive leaves in the topological ordering around T , then Tl
and Tl′ are disjoint.

Then it is possible to find, in time O(|T |), at least g|T |, 0 < g < 1, many leaves
whose subtrees have a pairwise edge distance greater than one.

The only concern is that our diagram V (B), generated by the blue sites, is
rather a forest than a tree. But as will be seen we can modify it by adding some
edges and leaves to obtain a tree V ∗(B) fulfilling the claimed properties. We
start with the following observation.

Lemma 64. We can detect all redundant intersections of V (B) in time O(n).

Proof. Because V (B) is already computed, we know the sequence π(B). The
sequence π′(B) is obtained by deleting all sites from R from π(S). This takes
time O(n).

Recall that π(B) is the sequence of sites along ∂D in V (B). This is a
Davenport-Schinzel-Sequence (DSS) of order 2, whereas π′(B) is a DSS of or-
der 1. Let |B| = m ≤ n, π′(B) = (p1, . . . , pm) and π(B) = (q1, . . . , ql), where
q1 = p1 refers to a non redundant intersection. Further l ≤ 2m − 1, because
π(B) is a DSS of order 2.

Let π(x) be the site at position x in π(B), let π(i) = pj refer to the non
redundant intersection of pj and let i′ be the smallest index greater i with
π(i′) = pj+1. We claim that π(i′) refers to the non redundant intersection of
pj+1, implying that all π(k) for i < k < i′ refer to redundant intersections,
compare Figure 6.14.

Suppose π(i′) = pj+1 refers to a redundant intersection. Then there must
be a π(l) = pj+1, l > i′ + 1 referring to the non redundant intersection of pj+1,
which implies that all π(k) with i′ < k < l refer to redundant intersections. Let
π(k) 6= pj+1, i′ < k < l, then there must be k′ < i′ or k′ > l with π(k′) = π(k)
referring to the non redundant intersection of π(k), contradicting that π(B) is
a DSS or order 2.

This shows that by simultaneously walking one time along π(B) and π′(B),
we can detect all non redundant and redundant intersections, which thus takes
time O(l) ∈ O(m) ∈ O(n).

Now we construct the tree V ∗(B) out of the forest V (B) by the following
operations, compare Figure 6.15.

111

CHAPTER 6. FOREST-LIKE

p1

d(p1)

p3

p2

p4

p5

p6p7

p8

d(p2)

d(p3)

d(p4)d(p5)
d(p6)

d(p7)

d(p8)

Figure 6.14: π(B) = (p1, p3, p2, p3, p1, p5, p4, p5, p6, p7, p8, p6) and π′(B) =
(p1, p2, p3, p4, p5, p6, p7, p8). The redundant intersections of V (B) are
π(2), π(5), π(6), and π(12).

(i) For all redundant intersections on ∂D link the two leaves bounding it along
∂D, see the fat edges in Figure 6.15.
If a redundant intersection borders another redundant intersection on its
right (left) end, then let the leaf between them now be a vertex in V ∗(B),
see the vertex between the regions of t and z in Figure 6.15. Observe
that this is a vertex of degree 3. Otherwise link the right (left) end of the
redundant intersection to V (B), deleting the vertex in between.

Next we attach some leaves to V ∗(B) outside of D such that between each
pair of consecutive blue sites bi and bi+1 having one (or two) red site(s) in
between, there is exactly one (or between one and two) leaves in V ∗(B). If
there is no red site between bi and bi+1 there is also no leaf.

(ii) If there are one or two red sites r1 and r2 between two consecutive blue
sites bi and bi+1 but no leaf between them, then there is a connected set of
redundant intersections between bi and bi+1. If d(rj), j = 1, 2 lies within
this sequence we attach a leaf to V ∗(B) at d(rj), otherwise if d(rj) lies to
the left (right) of the sequence we attach a leaf at the leftmost (rightmost)
point of the sequence. If both d(rj), j = 1, 2 are to the left (right) of the
redundant intersection sequence, only one edge and leaf is attached at the
leftmost (rightmost) point, compare d(k), d(w), d(x) in Figure 6.15.

Between two consecutive blue sites in π(S) there are at most two red site.
Thus for every connected sequence of redundant intersections at most two leaves
are attached. Further, between each pair of consecutive blue sites separated by
one or two red sites there is now at least one leaf.

(iii) If there is a leaf in V (B) between two consecutive blue sites bi and bi+1,
which are not separated by a red site, it is contracted out, see the edge
and leaf between the regions of y and z in Figure 6.15. Also all vertices of
degree 2 are deleted and the two adjacent edges are linked to each other.

The following lemma now proves that the constructed graph V ∗(B) fulfills
the desired.

Lemma 65. V ∗(B) is a binary tree and can be constructed in time O(n).

112

6.4. THE ALGORITHM

l p

r
t v

z
y

Step (i)

l p

r
t v

z
y

V (B)

l p

r
t v

z
y

Step (ii)

d(k)

d(w)

d(x)

l p

r
t v

z
Step (iii):

d(k)

d(w)

d(x)

V ∗(B)

Figure 6.15: Illustration of the construction of V ∗(B) out of V (B), where π(S) =
(k, l,m, p, q, r, s, t, u, v, w, x, y, z, . . .), π′(B) = (l, p, r, t, v, y, z, . . .), and π(B) =
(t, l, p, r, t, v, t, z, y, z, . . .). Fat edges indicate redundant intersections and new
leaves.

Proof. It is clear that V ∗(B) is a forest. So assume it is disconnected. Then
there is a site b ∈ B whose Voronoi region in V (B) intersects ∂D in more than
one component. By (i) all these components are non redundant. But then b has
to appear several times in π(S), a contradiction. Definitions (i) to (iii) imply
that all internal nodes of V ∗(B) are of degree 3.

By lemma 64 we can detect all redundant intersections in time O(n). In the
same time operation (i) can be accomplished. For operation (ii) and (iii) we
have to walk once around ∂D and look at consecutive blue sites.

For each pair of consecutive blue sites bi and bi+1 we test if there are zero,
one, or two red sites in between. If there is no red site between bi and bi+1 but
a leaf, we prune the leaf in constant time. If there are one or two red sites r1
and r2 but no leaf between bi and bi+1 we test if d(r1) and d(r2) lie to the left,
within or to the right of the redundant intersection sequence between the two
blue sites and attach one or two leaves like described in (ii). For each redundant
intersection this takes constant time and there are O(n) redundant intersections
altogether.

Now that we know how to obtain a tree V ∗(B) out of V (B), we can explain
how Lemma 63 can be applied in order to choose a fixed fraction of crimson
sites out of the set of red sites, such that no pair of crimson regions are adjacent

113

CHAPTER 6. FOREST-LIKE

in the blue diagram.
If two blue sites bi and bi+1 are separated by a red site r in π(S) but the

leaf between them is not contained in VR(r,B ∪ {r}), then r is enclosed by the
region of bi (or bi+1) in V (B∪{r}). In this case color r crimson with respect to bi
(bi+1) and if the leftmost (rightmost) leaf between bi and bi+1 is not contained
in the region of a consecutive site, associate with r the subtree containing only
this leaf. If two red sites are between bi and bi+1 and both are colored crimson
because of bi (bi+1) associate only one of them with the leftmost (rightmost)
leaf.

Up to now we may already have colored some red sites crimson. To make sure
we obtain a fixed fraction of crimson sites we apply lemma 63 in the following
way. For each leaf l of V ∗(B) contained in a red region VR(r,B ∪ {r}) define
Tl by the subtree spanned by all vertices of V ∗(B) contained in VR(r,B ∪{r}).
The next lemma shows that this is possible.

Lemma 66. Let r be a red site. If VR(r,B ∪ {r}) intersects a leaf of V ∗(B),
then VR(r,B ∪ {r}) ∩ V ∗(B) is connected. Otherwise it is empty.

Proof. Suppose VR(r,B ∪ {r}) intersects a leaf of V ∗(B) and VR(r,B ∪ {r})∩
V ∗(B) is not connected. Then VR(r,B ∪ {r}) would disconnect the region of a
blue site in V (B ∪ {r}), a contradiction.

If VR(r,B ∪ {r}) does not intersect a leaf of V ∗(B) it must be contained
within a single blue region of V (B), thus it can not intersect V ∗(B).

Now Lemma 62 and 63 imply the requested property which shows that (S3)
of the algorithm is satisfied.

Lemma 67. A fixed fraction of sites C are colored crimson and no regions of
two crimson sites are adjacent in V (B ∪ C).

Proof. To test whether the parent node of a leaf is contained in the region of a
red site it is enough to consider the diagram of the three sites adjacent to the
node and the red site. Thus this test can be done in constant time. Further
each leaf of V ∗(B) is associated with the region of a red site. This ensures a
correct application of Lemma 63 and finishes the proof.

6.4.3 Insertion of Crimson Sites

It remains to clarify how to insert the crimson sites into V (B) in order to obtain
V (B ∪ C), (S4). Let c be a crimson site between the two blue sites bi and bi+1

in the sequence. If the region of c does not intersect a leaf of V ∗(B), then we
know that it is enclosed by the region of a blue site bi or bi+1. Let it be bi, then
we just have to insert the part of the bisector J(c, bi) contained in VR(bi, B)
as a new edge in V (B ∪ C). The other crimson sites can be inserted along the
subtrees of V ∗(B) associated with them. Thus also the insertion takes time
O(n).

Altogether we have now proven our theorem.

Theorem 16. Given a domain D together with the ordering of the Voronoi
regions along ∂D we can compute V (S) in time O(n).

114

6.5. DISCUSSION

6.5 Discussion
A natural question is whether it is possible to relax our axioms and still have a
linear time algorithm for computing the Voronoi diagram. There exist applica-
tions where Voronoi regions restricted to the domain D are disconnected. This
is something that can happen for the farthest Voronoi diagram of line segments
or when the domain D corresponds to a Voronoi region which is to be deleted
from a given Voronoi diagram.

115

CHAPTER 6. FOREST-LIKE

116

Chapter 7

Conclusion and Open
Problems

In this thesis we have been able to study wide classes of abstract Voronoi dia-
grams, which have not been considered before. We managed to analyze them
and find efficient algorithms to compute them. But still there are concrete
Voronoi diagrams not covered by our concept. Bisectors may have a more com-
plicated shape, e. g., for crossing line segments bisectors may consist of four
halflines meeting at the crossing point. For special cases of the L1-, L∞-, and
Karlsruhe-metric, bisectors may be even two dimensional, see Section 2.2.1 and
2.2.5. The usual way to overcome these difficulties is to assume general position,
but this may not always be applicable.

And if bisectors are two dimensional, is there a way to modify them by
assigning portions of the two dimensional areas to each dominance region in
a suitable way, such that our axioms are fulfilled afterwards? More precisely,
after modifying the bisectors no Voronoi region should consist of more connected
components than before and the closures of the Voronoi regions should now cover
the whole plane, i. e., the Voronoi diagram should consist of one dimensional
edges and zero dimensional vertices.

Furthermore, let us consider the example described in Section 3.1 once more.
Here each point site sends out an expanding circles and conquers the area where
its circle arrives first. The conquered area becomes its Voronoi region. If no
circle ever overruns another one, then all bisectors are unbounded, otherwise
they are closed and may even consist of several closed curves. This is something
not covered by the setting of Chapter 4. The problem is that now a Voronoi
region may consist of several islands surrounded by different other regions and
the presented algorithm would not always be able to detect all these islands
when inserting a new region to the current diagram. Here a new idea is needed.

Also the example from Section 3.1 itself is in general not very well analyzed
yet. What is the complexity of such Voronoi diagrams? How many intersections
are there between any two bisectors, and can we use our algorithms to compute
them efficiently?

Finally, there remain some implementation issues. Throughout this thesis
we make use of some basic operations, like computing the intersections between
two bisectors, to test if x or y comes first on a bisector for two given points x and

117

CHAPTER 7. CONCLUSION AND OPEN PROBLEMS

y, to decide if x is in D(p, q), J(p, q), or D(q, p), and to compute the diagram
of 5 sites. We claim that these operations can be performed in constant time
(resp. in time O(s) if two bisectors intersect in O(s) points). But how do we
have to provide the bisector system such that this really can be achieved?

118

LIST OF FIGURES

List of Figures

1.1 Explaining his vortex theorie, René Descartes drew the first known
Voronoi diagram [32]. 10

2.1 The euclidean Voronoi Diagram of a set of point-sites in the plane,
the shaded area is a Voronoi region. 16

2.2 The bisector B(p, q) of two point-sites p and q. 16
2.3 If all n sites are collinear, the corresponding Voronoi diagram

consists of n− 1 parallel straight lines. 17
2.4 The merge chainB(L,R) is traced trough the overlapping of V (L)

and V (R) and V (L ∪R) is constructed. 18
2.5 The sweep line is followed by a wavefront. The waves are sep-

arated by spikes which may intersect to the right of the sweep
line. 19

2.6 A data structure for point location in a Voronoi diagram. 21
2.7 The shape of the L1-bisector. 22
2.8 The Voronoi diagram of point sites in the L1-metric (left), and

its corresponding L2-diagram (right), (from [14]). 23
2.9 The shape of the L∞-bisector. 23
2.10 An additively weighted Voronoi diagram. 25
2.11 Two sites p and q with multiplicative weights. 25
2.12 The size of a multiplicatively weighted Voronoi diagram may be

Θ(n2). 25
2.13 The bisector of line segments. 26
2.14 The Voronoi diagram of line segments and a possible path for a

disk to be moved from s to t, (from [47]). 27
2.15 The Voronoi diagram of line segments forming a convex polygon. 28
2.16 The definition of the convex distance from p to q with respect to

a convex set C. 29
2.17 The bisector B(p, q) with respect to a convex distance function dC . 29
2.18 The Karlsruhe metric and its Voronoi diagram, (from [14]). . . . 30
2.19 The bisector and Voronoi region according to the Karlsruhe-

metric of points not in general position. 30
2.20 The euclidean farthest Voronoi diagram of a set of points. 31
2.21 The farthest Voronoi diagram of line segments. The region of s2

consists of two disjoint faces. 32
2.22 The euclidean order-2 diagram of point-sites, (from [14]). 33
2.23 The order-2 Voronoi diagram of line segments, (from [63]). 33

119

LIST OF FIGURES

2.24 In the left drawing v is a point of a Voronoi edge separating the
Voronoi regions of p and q. In the right drawing v is a Voronoi
vertex of degree 4 lying on the boundary of the regions of p1, . . . , p4. 35

2.25 The four cases of an abstract Voronoi diagram of 3 sites p, q,
and r. The upper drawings show the bisector system and the
lower ones the corresponding Voronoi diagrams. 36

3.1 Expanding circles leading to the Voronoi diagram shown in Fig-
ure 3.2. 40

3.2 The Voronoi diagram of three sites, to the left with expanding
circles not variating their speeds, and to the left with variating
speeds. 41

3.3 Piece of Pie Lemma . 43
3.4 An example where J(p, q) and J(p, r) intersect in 6s − 4 = 14,

s = 3, points resulting in as many Voronoi vertices in V ({p, q, r}).
Each π is a path ⊂ VR(p, S), σ ⊂ VR(q, S), and ρ ⊂ VR(r, S). . 45

3.5 Here s = 2 and the Voronoi region of p1 has Θ(sn2) many faces,
all faces outside the sticks. 46

3.6 (a) A pqr-vertex v and prqu-edge e with description DR(e) =
{(rq, q, p, rp, (x, y)), (up, p, q, uq, (x

′, y′))}, where v = (x, y) and
w = (x′, y′). (b) There can be s different pqr-vertices in V ({p, q, r}).
(c) Touch points with respect to t on an edge of V (R \ {t}). . . . 47

3.7 (a) The sites p, r, t are inserted in this order, the intersection
between the region of t and the edge e is not found in the standard
history graph from [53]. (b) Trapezoidal Decomposition of a face. 49

3.8 (a) Intersection between V (R) and a connected component T
of T , in the left picture J(p, t) would be closed. (b) Intersection
between an edge e and T . Here s = 3 and the intersection consists
of 3s− 1 = 8 connected components. 49

3.9 The description of the trapezoid A. 51
3.10 Face T ⊆ T is inserted in the trapezoidal decomposition of Figure

3.7b and the history graph is updated. 53
3.11 In (a) and (b) v ∈ Vchang, but in (a) not all edges are clipped

at v by t and in (b) all edges are clipped at v by t and v is a
touch point. In (c) and (d) v ∈ Vnew and v is of degree 4, but
in (c) it borders two connected components of the new region
VR(t, R ∪ {t}) and in (d) it borders two connected components
of an old region VR(q,R ∪ {t}). 56

3.12 A trapezoid A ⊆ VR(p,R) is visited several times by the bisector
J(p, t). Bold segments correspond to A ∩ J(p, t). 57

4.1 An abstract Voronoi diagram based on axioms (A1’), (A2”), and
(A3). 66

4.2 The Voronoi region of q is confined to the island by the dashed
bisector J(q, p). 66

4.3 (a) An example of a Voronoi diagram with closed bisectors. (b)
The trapezoidal decomposition of the same diagram. 67

4.4 Edges e with descriptions. 67

120

LIST OF FIGURES

4.5 The description of trapezoid A contained in the Voronoi region of
t is given by the descriptions of its upper and lower Voronoi edges,
e1 and e2, the sites q and l whose bisectors J(q, t) and J(l, t)
determine the tangency points v and w, and the coordinates of
x1 to x4. 67

4.6 All trapezoids A to F are in conflict with t, because t intersects
edge e, but only the trapezoids B to E are intersected by t. . . . 69

4.7 Face Ft ⊆ VR(t, R∪ {t}) is inserted in the trapezoidal decompo-
sition of the upper diagram and the history graph is updated. . . 70

4.8 Trapezoid B borders on two different edges of F 70
4.9 The region of t (faces with normal boundary) is traced through

the trapezoidal decomposition F ∗ (face with fat boundary), in
the left figure from two starting points – one from A trough e1,
and one from B through e2, and in the right figure from a point
x found using SS(F). 71

4.10 Pseudocircles. 75
4.11 An example where the region of p1 is disconnected in V (S), but

for proper subsets S′ (S all regions in V (S′) are connected. . . 76
4.12 Proof of the last part of Theorem 8. Fat curves depict the bound-

ary of F , normal curves the boundaries of the pseudodiscs D(q, p)
and dashed curves edges of the graph G. 78

5.1 Order-2 diagrams of points and line segments. The shadowed
region in the left picture belongs to the sites p and q and is
connected, in the right picture the shadowed faces belong to the
region of s1 and s2 which is disconnected. 81

5.2 AVD of 5 sites in all orders. 82
5.3 An AVD of 4 sites p, q, r, s. In each diagram of three of these sites

no Voronoi region is empty (the regions of p are shaded) but in
the diagram of all 4 sites the region of p is empty. 83

5.4 In the proof of Lemma 42, curves J(p, q1) and J(p, q2) meet at
point w. 85

5.5 Discussion of three cases. 85
5.6 A new vertex v to the left and an old vertex to the right. 87
5.7 Farthest AVD’s cannot contain bounded regions. 88
5.8 Illustrations of cases (1) to (3) in the proof of Lemma 50. 91
5.9 The intersection of an order-k face F and the farthest Voronoi

diagram of its defining sites must be a tree. 93
5.10 Proof of Lemma 57. 95

6.1 The euclidean Voronoi diagram of points in convex position is a
tree. 98

6.2 A Hamiltonian abstract Voronoi diagram. 99
6.4 In principle we want to move q|p and p|r together such that they

cross on q|r. This may require re-ordering the bisector segments
in between, as we must not cause related bisectors to cross more
than once. 103

6.5 Illustration of the case t|u = t|q. 103
6.6 An impossible situation. 104
6.7 Bisectors q|u and u|r form a strip of width < m. 104

121

LIST OF FIGURES

6.8 An impossible situation, since the two segments of J(r, u) cannot
be connected. 105

6.9 The Voronoi region of r or of u would be empty. 105
6.10 Illustration of Definition 8 and 9. 106
6.11 Vertex v is a pqt-vertex and r encloses s. 108
6.12 Three cases where p is colored red. 109
6.13 Two consecutive sites r1 and r2 in π′(S) are both colored red, but

their regions are not adjacent. 109
6.14 The sequences π(B), π′(B), and redundant intersections. 112
6.15 Illustration of the construction of V ∗(B) out of V (B). 113

122

BIBLIOGRAPHY

Bibliography

[1] M. Abellanas, F. Hurtado, and B. Palop. Transportation Networks and
Voronoi Diagrams. Proceedings International Symposium on Voronoi Dia-
grams in Science and Engineering, 2004.

[2] P. Agarwal. Personal Communication, 2012.

[3] P.K. Agarwal, J. Pach and M. Sharir. State of the union, of geometric ob-
jects. Proc. Joint Summer Research Conf. on Discrete and Computational
Geometry: 20 Years Later. Contemp. Math. 452, AMS, pp. 9–48, 2008.

[4] P. Agarwal, O. Schwarzkopf, and M. Sharir. Overlay of Lower Envelopes
and its Applications. Report CS-1994-18, Department of Computer Science,
Duke University, 1994.

[5] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm
for computing the Voronoi diagram of a convex polygon. Discrete and
Computational Geometry 4, pp. 591–603, 1989.

[6] H.-K. Ahn, O. Cheong, and R. v. Oostrum. Casting a Polyhedron with Di-
rectional Uncertainty. Computational Geometry: Theory and Applications
26(2), pp. 129–141, 2003.

[7] O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest Paths, Straight
Skeletons, and the City Voronoi Diagram. Discrete and Computational
Geometry 31(7), pp. 17–35, 2004.

[8] N. Alon and E. Györi. The number of Small Semispaces of a Finite Set
of Points in the Plane. Journal of Combinatorial Theory, Ser. A 41(1),
pp. 154–157, 1986.

[9] N.M. Amato, M.T. Goodrich and E.A. Ramos. A Randomized Algorithm
for Triangulating a Simple Polygon in Linear Time. Discrete & Computa-
tional Geometry, pp. 245–265, 2001.

[10] F. Aurenhammer. Voronoi Diagrams: A Survey of a Fundamental Geomet-
ric Data Structure. ACM Computing Surveys 23(3), pp. 345–405, 1991.

[11] F. Aurenhammer, R.L.S. Drysdale, and H. Krasser. Farthest Line Segment
Voronoi Diagrams. Information Processing Letters 100, pp. 220–225, 2006.

[12] F. Aurenhammer and H. Edelsbrunner. An Optimal Algorithm for Con-
structing the Weighted Voronoi Diagram in the Plane. Pattern Recognition,
Vol. 17, No. 2, pp. 251–257, 1983.

123

BIBLIOGRAPHY

[13] F. Aurenhammer and R. Klein. Voronoi Diagrams. In: J.R. Sack and G.
Urrutia (Eds.), Handbook on Computational Geometry, Elsevier, pp. 201–
290, 1999.

[14] F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific Publishing Company, 2013.

[15] S. W. Bae and K.-Y. Chwa. Voronoi Diagrams for a Transportation Net-
work on the Euclidean Plane. International Journal on Computational
Geometry and Applications 16, pp. 117-144, 2006.

[16] C. Bohler, P. Cheilaris, R. Klein, C.H. Liu, E. Papadopoulou, and M. Za-
vershynskyi. On the Complexity of Higher Order Abstract Voronoi Dia-
grams. Proc. International Colloquium on Automata Languages and Pro-
gramming, pp. 208-219, 2013. To appear in: Computational Geometry:
Theory and Applications.

[17] C. Bohler, and R. Klein. Abstract Voronoi Diagrams with Disconnected
Regions. Proc. 24th International Symposium on Algorithms and Compu-
tation, pp. 306-316, 2013. To appear in: International Journal of Compu-
tational Geometry & Applications, special issue on ISAAC 2013.

[18] C. Bohler, R. Klein, and C.-H. Liu. Forest-Like Abstract Voronoi Dia-
grams in Linear Time. Proc. 30th European Workshop on Computational
Geometry, Ein-Gedi, Israel, 2014.

[19] C. Bohler, R. Klein, and C.-H. Liu. Forest-Like Abstract Voronoi Dia-
grams in Linear Time. Proc. 26th Canadian Conference on Computational
Geometry, Halifax, Canada, 2014.

[20] C. Bohler, C.H. Liu, E. Papadopoulou, and M. Zavershynskyi. A Random-
ized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi
Diagrams. Proc. of the 25th International Symposium on Algorithms and
Computations, pp. 27–37, Jeonju, Korea, 2014.

[21] J. D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec.
Applications of Random Sampling to On-line Algorithms in Computational
Geometry. Discrete & Computational Geometry 8, 1992, 51-71.

[22] J. D. Boissonnat, C. Wormser, and M. Yvinec. Curved Voronoi Diagrams.
In: J. D. Boissonnat and M. Teillaud (Eds.), Effective Computational Ge-
ometry for Curves and Surfaces. Springer, Mathematics and Visualization,
2006.

[23] B. Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete and
Computational Geometry, 6, pp. 485–524, 1991.

[24] O. Cheong, H. Everett, M. Glisse, J. Gudmundsson, S. Hornus, S. Lazard,
M. Lee, and H-S. Na. Farthest-Polygon Voronoi Diagrams. Computational
Geometry: Theory and Applications, 44 (4), pp. 234–247, 2011.

[25] D. Cheriton, and R.E. Tarjan. Finding Minimum Spanning Trees. SIAM
Journal on Computing 5:724-742, 1976.

124

BIBLIOGRAPHY

[26] L.P. Chew, and R.L.S. Drysdale. Voronoi Diagrams Based on Convex Dis-
tance Functions. Proc. 1st Ann. ACM Symposium on Computational Ge-
ometry, pp. 235-244, 1985.

[27] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple
polygon in linear time. Discrete Computational Geometry 21, pp. 405–420,
1999.

[28] F. Chin and C. A. Wang. Finding the constrained Delaunay triangulation
and constrained Voronoi diagram of a simple polygon in linear time. SIAM
Journal on Computing 28(2), pp. 471–486, 1998.

[29] K. Clarkson, K. Mehlhorn and R. Seidel. Four Results on Randomized
Incremental Constructions. Computational Geometry: Theory and Appli-
cations 3, pp 185-212, 1993.

[30] K. Clarkson and P. Shor. Applications of Random Sampling in Computa-
tional Geometry, II. Discrete and Computational Geometry 4, pp. 387-421,
1989.

[31] A.G. Corbalan, M. Mazon and T. Recio. Geometry of Bisectors for Strictly
Convex Distance Functions. International Journal of Computational Ge-
ometry and Applications 6 (1), pp 45-58, 1996.

[32] R. Descartes. Principia Philosophiae. Ludovicus Elzevirius, Amsterdam,
1644.

[33] M. Dillencourt. Finding Hamiltonian Cycles in Delaunay triangulations is
NP-complete. Discrete Applied Mathematics 64, pp. 207-217, 1996.

[34] P.G.L. Dirichlet. Über die Reduction der positiven quadratischen Formen
mit drei unbestimmten ganzen Zahlen. Journal für die reine und ange-
wandte Mathematik 40, 209–227, 1850.

[35] H.N. Djidjev and A. Lingas. On Computing Voronoi Diagrams for Sorted
Point Sets. International Journal of Computational Geometry and Appli-
cations, Volume 05, 327, 1995.

[36] D.P. Dobkin, and R.J. Lipton. Multidimensional Searching Problems.
SIAM Journal on Computing 5, pp 181-186, 1976.

[37] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Heidelberg, West Germany, 1987.

[38] H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal Point Location in
a Monotone Subdivision. SIAM Journal on Computing 15, pp. 317-340,
1986.

[39] H. Edelsbrunner, and R. Seidel. Voronoi Diagrams and Arrangements.
Discrete and Computational Geometry 1, pp. 25-44, 1986.

[40] S. Fortune. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica,
2:153-174, 1987.

125

BIBLIOGRAPHY

[41] S. Fortune. Voronoi Diagrams and Delaunay Triangulations. In: J.E. Good-
man and J. O’Rourke (Eds.), Handbook of Discrete and Computational
Geometry, Chapter 20, CRC Press LLC, pp. 377–388, 1997.

[42] J.E. Goodman and R. Pollack. On the Combinatorial Classification of Non-
Degenerate Configurations in the Plane. Journal of Combinatorial Theory,
Ser. A 29, pp. 220–235, 1980.

[43] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi Diagrams. ACM Trans. Graph.,
4(2):74-123, Apr. 1985.

[44] S. Har-Peled and B. Raichel. On the Complexity of Randomly Weighted
Multiplicative Voronoi Diagrams. Proc. 29th Annual Symposium on Com-
putational Geometry (SoCG ’13), 2013.

[45] M. I. Karavelas and M. Yvinec. The Voronoi Diagram of Planar Convex
Objects. 11th European Symposium on Algorithms (ESA’03). LNCS 2832,
pp. 337–348, 2003.

[46] D. G. Kirkpatrick. Efficient Computation of Continuous Skeletons. Proc.
20th Ann. IEEE Symposium on Foundations of Computer Science, 1979,
18-27.

[47] R. Klein. Algorithmische Geometrie. Springer Berlin Heidelberg New York,
2. Auflage, 2005.

[48] R. Klein. Concrete and Abstract Voronoi Diagrams. Lecture Notes in
Computer Science 400, Springer-Verlag, 1989.

[49] R. Klein, E. Langetepe, and Z. Nilforoushan. Abstract Voronoi Diagrams
Revisited. Computational Geometry: Theory and Applications 42(9), pp.
885-902, 2009.

[50] R. Klein and A. Lingas. Hamiltonian abstract Voronoi diagrams in lin-
ear time. 1994 International Symposium on Algorithms and Computation
(ISAAC’94), pp. 11–19, 1994.

[51] R. Klein and A. Lingas. Manhattonian proximity in a simple polygon.
International Journal of Computational Geometry and Applications 5, pp.
53–74, 1995.

[52] R. Klein and A. Lingas. A linear-time randomized algorithm for the
bounded Voronoi diagram of a simple polygon. International Journal of
Computational Geometry and Applications 6(3), pp. 263–278, 1996.

[53] R. Klein, K. Mehlhorn, and S. Meiser. Randomized Incremental Construc-
tion of Abstract Voronoi Diagrams. Computational Geometry: Theory and
Applications 3, pp. 157–184, 1993.

[54] F. Labelle and J.R. Shewchuk. Anisotropic Voronoi Diagrams and
Guaranteed-Quality Mesh Generation. Proc. of the nineteenth annual sym-
posium on Computational geometry, SoCG pp. 191-200, 2013.

126

BIBLIOGRAPHY

[55] C.L. Lawson. Software for C1 surface interpolation. In: J.R. Rice (ed.)
Mathematical Software III, Academic Press, New York, pp. 161-194, 1977.

[56] D.T. Lee. Medial Axis Transformation of a Planar Shape. IEEE Transac-
tion on Pattern Analysis and Machine Intelligence 4, 1982, 363-369.

[57] D.T. Lee. On k-Nearest Neighbor Voronoi Diagrams in the Plane. IEEE
Trans. Computers 31(6), pp. 478-487, 1982.

[58] D. T. Lee and A. Lin, Generalized Delaunay triangulations for planar
graphs, Discrete Computational Geometry 1, pp. 201–217, 1986.

[59] C.-H. Liu, E. Papadopoulou, and D.-T. Lee. An output-sensitive approach
for the L1/L∞ k-Nearest-Neighbor Voronoi diagram. 19th European Sym-
posium on Algorithms, ESA ’11, LNCS 6942, pp. 70–81, 2011.

[60] K. Mehlhorn, St. Meiser, and C. Ó’Dúnlaing. On the Construction of
Abstract Voronoi Diagrams. Discrete and Computational Geometry 6,
pp. 211–224, 1991.

[61] K. Mehlhorn, S. Meiser, and R. Rasch. Furthest Site Abstract Voronoi Dia-
grams. International Journal of Computational Geometry and Applications
11(6), pp. 583–616, 2001.

[62] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley Series in Probabil-
ity and Statistics, 2000.

[63] E. Papadopoulou and M. Zavershynskyi. The Higher Order Voronoi Di-
agram of Line Segments. Algorithmica, DOI 10.1007/s00453-014-9950-0,
2014.

[64] F.P. Preparata, and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, New York, NY, 1985.

[65] W. Rinow. Topologie. VEB Deutscher Verlag der Wissenschaften, Leipzig,
1975.

[66] R. Seidel. A Simple and Fast Algorithm for Computing Trapezoidal De-
compositions and for Triangulating Polygons. Computational Geometry:
Theory and Applications 1, pp. 51–64, 1991.

[67] M. I. Shamos and D. Hoey. Closest-point problems. Proc. 16th Ann. IEEE
Symposium on Foundations of Computer Science, 151-162, 1975.

[68] M. Sharir and P. Agarwal. Davenport-Schinzel Sequences and Their Geo-
metric Applications. Cambridge University Press, 1995.

[69] K. Siddiqi and S.M. Pizer. Medial Representations. Mathematics, Algo-
rithms, and Applications. Springer Series on Computational Imaging and
Vision 37, 2008.

[70] A.H. Thiessen. Precipitation average for large area. Monthly Weather
Review 39, 1082–1084, 1911.

127

BIBLIOGRAPHY

[71] G.F. Voronoi. Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. Deuxième Mémoire: Recherches sur les parallél-
loèdres primitifs. Journal für die reine und angewandte Mathematik 134,
198–287, 1908.

[72] G.F. Voronoi. Deuxième Mémoire: Recherches sur les parallélloèdres prim-
itifs. Journal für die reine und angewandte Mathematik 136, 67–181, 1909.

[73] C.K. Yap. An O(n log n) Algorithm for the Voronoi Diagram of a Set of
Simple Curve Segments. Discrete & Computational Geometry 2, 1987,
365-393.

128

	Introduction
	From Concrete to Abstract Voronoi Diagrams
	Euclidean Voronoi Diagrams
	Basic Algorithms
	Applications

	Variations
	General Lp-Metrics
	Weighted Voronoi diagrams
	Voronoi Diagram of Line Segments
	Voronoi Diagram of Polygons
	More Voronoi Diagrams
	Farthest Voronoi Diagrams
	Higher Order Voronoi Diagrams

	Abstract Voronoi Diagrams

	Disconnected Regions
	Motivation
	Basic Facts
	Complexity of V(S)
	Towards an Algorithm
	Some Technical Issues

	Trapezoidal Decomposition
	Computation of Et
	Construction of V*(R{t}) and H(R {t})

	Analysis
	Discussion

	Closed Bisectors
	Introduction
	Preliminaries
	Searching for Intersections
	Analysis
	Pseudo-circles: an Application
	Conclusion

	Higher Order
	Introduction
	Preliminaries
	Bounding the number of unbounded edges of Vk(S)
	Bounding the number of faces of Vk(S)
	Generalizations
	Concluding remarks

	Forest-Like
	Introduction
	NP-completeness
	Normalizing a Bisector System
	The Algorithm
	Red-Blue-Coloring Scheme
	Choosing Crimson Sites
	Insertion of Crimson Sites

	Discussion

	Conclusion and Open Problems
	List of Figures

