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Abstract
Approximate nearest-neighbor search is a fundamental algorithmic problem that continues to inspire
study due its essential role in numerous contexts. In contrast to most prior work, which has focused
on point sets, we consider nearest-neighbor queries against a set of line segments in Rd, for constant
dimension d. Given a set S of n disjoint line segments in Rd and an error parameter ε > 0, the
objective is to build a data structure such that for any query point q, it is possible to return a line
segment whose Euclidean distance from q is at most (1 + ε) times the distance from q to its nearest
line segment. We present a data structure for this problem with storage O((n2/εd) log(∆/ε)) and
query time O(log(max(n, ∆)/ε)), where ∆ is the spread of the set of segments S. Our approach
is based on a covering of space by anisotropic elements, which align themselves according to the
orientations of nearby segments.
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1 Introduction

Proximity queries are essential building blocks in many important algorithms with numerous
applications [21–25, 28–30]. A primary example is nearest-neighbor searching, where a
given set of n points P in Rd is preprocessed into a data structure so that queries can
be answered efficiently. As the complexity bounds for such query problems grow very
rapidly as the dimension increases, either in terms of query time or space, most research
has focused on approximate solutions. There has been a great deal of work on approximate
proximity searching in spaces of very high dimension [5, 19, 32, 34] and in general metric
spaces [5,33,39,40]. Nonetheless, there are many important applications that naturally reside
in real spaces of relatively low dimensions.

In this paper, we consider approximate nearest-neighbor searching for a query point
against a discrete set of line segments in Rd, where d is a fixed constant. We are given a
set S of n disjoint line segments in Rd. The distance from any point q ∈ Rd to a segment s,
denoted dist(q, s), is the minimum Euclidean distance between q and any point of s. For
ε > 0, a segment s′ ∈ S is an ε-approximate nearest neighbor (ε-ANN ) of q if dist(q, s′) is
within a factor of 1 + ε of the distance to q’s closest segment in S. Given S and ε > 0, the
objective is to construct a data structure so that given any q ∈ Rd, it is possible to compute
an ε-ANN of q efficiently. We refer to this problem as segment-ANN.
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4:2 Approximate Nearest-Neighbor Search for Line Segments

Clearly, nearest-neighbor searching with respect to segments is at least as hard as for
point sets, and there are quadratic worst-case lower bounds in the exact and approximate
settings [6,31]. The difficulty of the problem can be appreciated by considering the increased
complexity of the Voronoi diagram of a set of lines or line segments, which is not fully
understood to date [14,16]. Recall that such Voronoi diagrams consist of cells bounded by
hyperplanes and algebraic surfaces of constant degree, and hence are generally nonconvex;
see [36,49] for the computation of Voronoi diagrams of line segments in R2. A set of just three
straight lines in R3 suffices to induce a highly intricate Voronoi diagram [27]. Better bounds
are known in restricted scenarios, for example, by bounding the number of orientations [26,37]
or working with a polyhedral distance function [20,38].

Our work follows in this tradition with the main motivation of developing a better
understanding of proximity searching among more complex objects than discrete sets of
points. We are particularly interested in distance functions whose rate of change is much
larger in some directions compared to others. This sort of behavior is characterized by the
notion of anisotropy, which can be defined for smooth convex functions as the ratio of the
largest to the smallest eigenvalues of the Hessian matrix at the point in question. Line
segments are perhaps the simplest objects inducing such distance functions. This type of
proximity searching against linear and affine subspaces has recently been applied to problems
in pattern recognition [17,51] and active learning [50]. A notion of direction-sensitive distances
in the plane has been studied in [3].

In this paper we present a new data structure for segment-ANN. Our data structure is
an AVD-style data structure [9,12,13,31]. By this we mean that it employs a hierarchical
subdivision of space (a covering in our case) by elements of constant complexity (ellipsoids in
our case). At the leaf level of the hierarchy, each element stores a representative segment of
S that is an ε-ANN for any query point lying within the element. Queries are answered by a
simple descent through the hierarchy, reporting the representative of the leaf-level element.
Up to now, AVD structures have relied on quadtree-based subdivisions. A novel feature of
our approach is that the elements are anisotropic, where their shapes are sensitive to the
local distribution of segments. The advantages of such an approach are illustrated intuitively
in Figure 1. Our approach is inspired by recent progress on the use of anisotropic covering
elements based on Macbeath regions [15,42] used in convex approximation [1, 7, 8, 10,11].

Figure 1 Approximation using isotropic (quadtree) elements compared to anisotropic elements.

Our input consists of a set S of n pairwise disjoint line segments in Rd. Define the
spread, denoted ∆(S) to be diam(S)/δmin(S), where diam(S) is the diameter of the set S

(the maximum distance between any two points lying on these segments), and δmin is the
minimum distance between any two segments. Since S will be fixed throughout, we will just
refer to this as ∆. Here is our main result.

▶ Theorem 1. Given a set S of n disjoint line segments in Rd of spread ∆ and ε > 0, there
exists a data structure that can answer ε-ANN queries in time O(log(max(n, ∆)/ε)) using
O((n2/εd) log ∆

ε ) storage.
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Note that because the line segments are disjoint and the dimension is constant, n = O(∆d),
the query time bound can be simplified to O(log ∆

ε ).
The most closely related works to ours are segment-ANN data structures by Mahabadi [43]

and Agarwal, Rubin, and Sharir [2]. Mahabadi’s solution is based on reducing segment-
ANN to point-ANN through a combination of reductions. These reductions produce nO(1)

point-ANN modules, where each module involves O(n/εO(1)) points. The space bounds
obtained are inferior to ours in terms of n and ε, and while individual modules can be solved
within the AVD model, the overall data structure is not in this model. Agarwal, Rubin, and
Sharir [2] consider the more general problem of ANN queries against k-flats in Rd. As in our
case, d is assumed to be constant. They solve the problem by approximating the Euclidean
ball with a polyhedron distance function of complexity 1/εO(1) [18], and they show that it
is possible to compute nearest neighbors exactly among k-flats with respect to the induced
polyhedral distance function through the use of multi-level partition trees. In the case of
line segments, their approach provides polylogarithmic query time with n2(log(n)/ε)O(1)

storage, but the approach makes critical use of the fact that the objects are (infinite) flats.
As with Mahabadi’s result, there is no dependence on the spread. There are also works that
consider the problem in its dual form, where the data set consists of points and the query is
a k-flat [2, 4, 44].

Our data structure has a number of notable features. First, it is in the AVD model (which
partially answers an open problem posed by Agarwal, Rubin, and Sharir [2]. The query
algorithm is almost trivial, involving a descent through a rooted directed acyclic graph (DAG)
of constant degree. The decision of which neighbor to visit next is just a membership test for
an ellipsoid. By abandoning the quadtree-based approaches used in prior AVD solutions, we
demonstrate how to exploit the anisotropic nature of the nearest-neighbor distance function
to obtain a space-efficient hierarchical spatial decomposition.

The remainder of the paper is organized as follows. Section 2 formalizes the notion of
anisotropy by examining the differential properties of the distance to the segments. Section 3
introduces the notion of a capsule, the basic shape upon which our data structure is built
and introduces the relevant properties of these objects. Section 4 presents our ANN search
structure, and finally Section 5 analyzes its storage requirements.

2 Exposing Anisotropy

In this section, we formally characterize how the distance function associated by a set of
line segments naturally induces a Riemannian metric whose metric tensor is anisotropic;
see Figure 2. This characterization underpins the design of our data structure which draw
inspiration from classical constructions in convex optimization. For the sake of efficiency, the
construction of our data structure will be based on a simpler approach, and this section may
be skimmed without hampering the understanding of the material that follows.

a b

x1

x2

x3

Figure 2 Demonstrating the local tensors induced by a segment ab as defined in Equation 5.
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4:4 Approximate Nearest-Neighbor Search for Line Segments

Given a set of pairwise-disjoint segments S = {s1, . . . , sn}, denote by ℓi the line supporting
si = aibi parallel to the unit vector vi. We define the distance functions at any x ∈ Rd as

Di(x) =
{

Dℓ
i (x), if x⊥ ∈ int(si),

D•
i (x), otherwise,

(1)

where Dℓ
i is half the squared distance to the line ℓi, and D•

i (x) = min{Dai(x), Dbi(x)} with
Dai and Dbi being half the squared distance to the endpoints ai and bi, respectively, x⊥ the
projection of x onto ℓi, and int(si) the interior of si. As is common for similar definitions, we
work with squared distances and introduce the 1

2 factor to simplify the resulting derivatives.
For every x ∈ Rd, we seek a definition of a local tensor to effectively consolidate the two

cases in the definition of Di(x) per Equation 1. Using such local tensors, we can define a
local descriptor, e.g., an ellipsoid, whose shape describes the rate of change of the distance
function Di in the neighborhood of x. We achieve this by first examining the Hessian of
the distance functions defining Di(x) for each segment in isolation. Then, we consider the
consolidation of all distance functions as needed for nearest-neighbor searching.

2.1 Distance Hessians
For a fixed point p ∈ Rd, the associated distance takes the form

Dp(x) = 1
2∥x − p∥2 = 1

2

d∑
i=1

(xi − pi)2, for which ∇2Dp = I, (2)

where ∇2 denotes the function’s Hessian and I is the identity matrix. For a fixed line
ℓ = {p + tv | t ∈ R}, with p, v ∈ Rd and ∥v∥ = 1, the distance takes the form

Dℓ(x) = 1
2∥x − x⊥∥2 = 1

2

d∑
i=1

((xi − pi) − ⟨x − p, v⟩vi)2
,

where x⊥ is the projection of x onto ℓ. We proceed to compute the Hessian ∇2Dℓ as follows.

∂Dℓ

∂xk
= (xk − pk) − ⟨x − p, v⟩vk,

∂2Dℓ

∂x2
k

= 1 − v2
k,

∂2Dℓ

∂xk∂xn
= −vkvn,

∇2Dℓ = I − vv⊺. (3)

It is easy to verify that v is an eigenvector of ∇2Dℓ with eigenvalue 0. Letting T be any
rotation matrix such that Tv = [1, 0, . . . , 0]⊺, we obtain

∇2(Dℓ ◦ T ) =


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Noting that ∇2Dℓ = T −1∇2(Dℓ ◦ T )T −1, and that eigenvalues are invariant under change
of basis, the remaining eigenvalues of ∇2Dℓ are all equal to 1, where the corresponding
eigenvectors can be chosen as any basis of the subspace orthogonal to v. This form of the
Hessian reflects the constancy of the distance along trajectories parallel to the line.



A. Abdelkader and D. M. Mount 4:5

2.2 Local Tensors and Ellipsoids
Per the previous subsection, the Hessian ∇2Dℓ

i , of the distance to a line ℓi, is rank-deficient
with vi an eigenvector with eigenvalue 0 and all remaining eigenvalues equal to 1. We remedy
this deficiency by defining the local tensor as

Hi(x) = 1
Di(x)∇2Dℓ

i + 1
D•

i (x)viv
⊺
i . (4)

By construction, the local tensor Hi(x) has a single eigenvalue equal to 1/D•
i (x) with all

remaining d − 1 eigenvalues equal to 1/Di(x). The anisotropy of the distance function Di

reflected by this local tensor at x is equal to the ratio of the maximum of D•
i (x) and Di(x) to

their minimum. As x moves along any smooth trajectory, this anisotropy varies continuously
between of 1 and ∞. We use the tensor Hi(x) to define the ellipsoid

Ei(x) =
{

y ∈ Rd

∣∣∣∣ 1
2(y − x)⊺Hi(x)(y − x) ≤ 1

}
. (5)

(See Figure 2 for examples.) Observe that as D•
i becomes larger, the eigenvalue associated

with vi becomes smaller, and the ellipsoid Ei(x) extends further in the direction of vi. On
the other hand, as Dℓ

i (x) approaches D•
i (x), Hi(x) approaches a scaled identity matrix, and

the ellipsoid Ei(x) becomes more spherical.
One approach to account for the influence of all n segments is to define a blended tensor

at every x ∈ Rd, H(x) =
∑n

i=1 Hi(x) along with an induced local norm1 and a corresponding
local ellipsoid acting as a metric ball at x

Ẽ(x) =
{

y ∈ Rd | ∥y − x∥2
x ≤ 1

}
, where ∥y − x∥2

x = 1
2(y − x)⊺H(x)(y − x). (6)

Alternatively, we may directly bound the relative change of all distance functions in the
neighborhood of x by restricting attention to the cell 2

Ê(x) =
n⋂

i=1
Ei(x). (7)

The next lemma formalizes the relationship between the ellipsoids Ẽ(x) and the cells Ê(x).3

▶ Lemma 2. For any set of n segments and any point x ∈ Rd, we have the inclusions

Ẽ(x) ⊆ Ê(x) ⊆ Ẽ
√

n(x), where the superscript denotes the central scaling about x.

Proof. The first inclusion is immediate. For the second inclusion, observe that any y ∈ Ê(x)
satisfies maxi

1
2 (y − x)⊺Hi(x)(y − x) ≤ 1. Hence, ∥y − x∥2

x ≤ n, implying y ∈ Ẽ
√

n(x). ◀

Unfortunately, each of those two approaches has its own drawbacks. While the blended
tensors H(x) are easier to compute, the corresponding ellipsoids Ẽ(x) are unnecessarily small.
On the other hand, the cells Ê(x) can retain a suitable size but are difficult to construct. This
motivates an alternative, and more geometric, definition of a more efficient shape primitive.

1 See [45,47] for related derivations of Riemannian metrics from local tensors.
2 This can be seen by recognizing Hi(x) as the Hessian of a closely related function derived from Di, and

writing its Taylor expansion about x for points within Ẽ(x).
3 Readers familiar with the Dikin ellipsoid from convex optimization will recognize the similarities with

the local ellipsoids Ẽ(x). It is well-known that Macbeath regions and Dikin ellipsoids are related by a
similar inclusion as in Lemma 2: for a polytope K defined as the intersection of m halfspaces and a
point x ∈ K, the Macbeath region K ∩ (2x − K) contains the Dikin ellipsoid at x and is contained in
its

√
m expansion; see, e.g., [41,48]. While Dikin ellipsoids are derived from barrier functions [46,52],

we derive our ellipsoids from the Euclidean distance functions.

SoCG 2021



4:6 Approximate Nearest-Neighbor Search for Line Segments

3 Anisotropic Space Covers

Building upon the derivations in the previous section, we propose a simple primitive shape
for constructing a hierarchical space covering, which will be amenable to computation and
analysis. Recall that S is a set of n disjoint line segments in Rd, each defined by its two
endpoints. Fix a segment s = ab ∈ S, and let r > 0 be a given distance parameter, to be
defined later. Recall that for any x ∈ Rd, its distance to segment s is denoted by dist(x, s).

For any point x ∈ Rd, we define a convex and centrally-symmetric subregion centered
about x, called a capsule and denote by Cs(x, r). If the closest point to x on s is an endpoint,
then Cs(x, r) is simply the ball centered at x with radius max(r, dist(x, s)). Otherwise,
Cs(x, r) is defined as follows. First, construct the infinite cylinder of radius max(r, dist(x, s))
with axis parallel to s and passing through x. Consider a ball centered at x whose radius
is max(r, min(∥x − a∥, ∥x − b∥), where a and b are the endpoints of s. The capsule is the
intersection of this cylinder and ball (see Figure 3(a) and (b)).

s

x

s

x

(a) (b)

Cs(x, r) Cs(x, r)

C1/2s (x, r)s

x

Cs(x, r)

dist(x, s)

r ≤ dist(x, s) r > dist(x, s)

(c)

r

r ≤ dist(x, s)

Figure 3 (a) The capsule Cs(x, r) at x for segment s for r ≤ dist(x, s), (b) for r > dist(x, s), and
(c) the shrunken capsule C1/2

s (x, r) for r ≤ dist(x, s).

We define the capsule associated with x for the set S of all segments as CS(x, r) =⋂
s∈S Cs(x, r). Since S will be fixed throughout, we will omit this subscript henceforth.

Clearly, C(x, r) is also convex and centrally symmetric about x. We start by showing that
capsules are closely related to the Hessian-based ellipsoids defined in Eq. (5).

▶ Lemma 3. For all x ∈ Rd and any r ≤ mini dist(x, si),

Ê(x) ⊆ C(x, r) ⊆ Ê
√

2(x). (8)

Proof. By the definition of the local tensor per Equation 4, we may express the capsule as

Csi
(x, r) =

{
y ∈ Rd

∣∣∣∣ max
i

(
(y − x)⊺∇2Dℓ

i (y − x)
max{r2, 2 · Di(x)} ,

(y − x)⊺(y − x)
max{r2, 2 · D•

i (x)}

)
≤ 1

}
, (9)

where, in contrast to Equation 4, we replaced viv
⊺
i in the second term by just the identity

matrix to make the shape nicer. Recognizing the definition of both Ê and the capsule C as
the intersection of n subsets, it suffices to establish the following claim: for all segments si,
and any r ≤ dist(x, si), we have that

Ei(x) ⊆ Csi
(x, r) ⊆ E

√
2

i (x). (10)
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Observing that Di(x) = dist2(x, si)/2 and Di(x) ≤ D•
i (x), we see that r2 cannot dominate

in either of the denominators in Equation 9. In addition, for any y ∈ Rd we may write
y − x = αv + βu, where u is a unit vector orthogonal to v. We obtain

y ∈ Ei(x) =⇒ 1
2(y − x)⊺Hi(x)(y − x) = 1

2

(
β2

Di(x) + α2

D•
i (x)

)
≤ 1.

From the above, the first term in Equation 9 is at most 1. For the second term, observe
that β2/D•

i (x) ≤ β2/Di(x). By making this substitution, we find that 1
2 (β2 + α2)/D•

i (x) =
1
2 ∥y − x∥2/D•

i (x) ≤ 1, implying the second term in Equation 9 is at most 1 as well. It follows
that y ∈ Csi

(x, r), establishing the first inclusion. For the second inclusion, observe that
for all y ∈ Csi

(x, r) we have that 1
2 (y − x)⊺Hi(q)(y − x) ≤ 2. This holds as both terms in

Equation 9 are at most 1, and we have (y − x)⊺vv⊺(y − x) ≤ (y − x)⊺(y − x) for all unit
vectors v. Using Equation 10, the proof follows by intersection over all i ∈ [n]. ◀

For the purposes of distance approximation, we work with a scaled version of these
capsules which we denote by the superscript Cλ for a scale factor λ. The scaled version of
each region is the central scaling around x by λ. When λ < 1, we say that the regions are
shrunken (see Figure 3(c)).

Capsules enjoy a number of useful properties, similar to the Macbeath regions in the
context of convex bodies; see [1, 15]. In particular, capsules satisfy the following expansion-
containment property, which states that whenever two shrunken capsules overlap, a constant
factor expansion of one contains the other.

▶ Lemma 4. Let S be a set of disjoint line segments and λ ∈ (0, 1) be a scale factor. For
any x, y ∈ Rd, if Cλ(x, r) ∩ Cλ(y, r) ̸= ∅ then Cλ(y, r) ⊆ Cαλ(x, r), where α = 3+λ

1−λ .

3.1 Local Feature Size
In order to use capsules for space covering, we need a principled way to select the distance
parameter r. We define the local feature size (LFS) at x ∈ Rd as the distance from x to the
second-nearest segment:

ϕ(x) = min
i,j∈(n

2)
max{dist(x, si), dist(x, sj)}, (11)

where we assume n ≥ 2. It is easy to see that ϕ is 1-Lipschitz, and the following lemma
further quantifies the sensitivity of capsules to the distances to the set of line segments. In
particular, all points within a shrunken capsule have comparable local feature size.

▶ Lemma 5. For all z ∈ Cλ(x, ϕ(x)), where 0 < λ < 1, ϕ(z) ∈ [1 − λ, 1 + λ] · ϕ(x).

Proof. Let r = ϕ(x), and denote by s1 and s2 the nearest and second-nearest segments
to x, respectively. Observing that r = dist(x, s2), the interior of C(x, r) cannot intersect
any segment except for s1. To obtain the lower bound, we bound the distance from any
z ∈ Cλ(x, r) to ∂ C(x, r).

Recalling the construction of capsules, for any segment s, as an infinite cylinder restricted
within a ball, we define the spine of the capsule at x with respect to s as the projection of s

onto the axis of the cylinder intersected with the capsule, or just x if the capsule is a ball;
see Figure 4.

For any z ∈ Cs2(x, r), define z′ as the projection of z onto the spine. By construction,
dist(z, z′) ≤ r and dist(z′, s2) = r, for all z ∈ Cs2(x, r) and z′ on the spine. Upon shrinking,
we obtain dist(z, z′) ≤ λr. In addition, dist(z, ∂ C(x, r)) ≥ (1 − λ)r. This lower bound is

SoCG 2021



4:8 Approximate Nearest-Neighbor Search for Line Segments

x

s

z′ z

Figure 4 The spine construction used in Lemma 5.

obvious for the shrunken cylindrical shell. For the spherical caps, we note that they are at
least as far from x as the cylindrical shell, so the spherical caps of the shrunken capsule are
displaced by at least the same amount as the shrunken cylindrical shell. Since only s1 may
be closer to z than ∂ C(x, r), we have ϕ(z) ≥ (1 − λ)r.

For the upper bound, we consider Cs1(x, r) in addition to Cs2(x, r). For any z ∈ Cs1(x, r)∩
Cs2(x, r), let z′ and z′′ denote the projections of z onto the spines of Cs1(x, r) and Cs2(x, r),
respectively. By the above derivations dist(z, s2) ≤ dist(z, z′′) + dist(z′′, s2) ≤ (1 + λ)r. We
also have dist(z′, s1) = dist(x, s1) ≤ ϕ(x) = r, implying dist(z, s1) ≤ dist(z, z′)+dist(z′, s1) ≤
(1 + λ)r. It follows that,

ϕ(z) ≤ max{dist(z, s1), dist(z, s2)} ≤ (1 + λ)r,

as desired. ◀

From the above lemma, it is easy to obtain an approximation of nearest-neighbor distances
using the segment closest to the center point of the capsule as a representative. This
qualifies capsules to serve as cells for a type of approximate Voronoi diagram (AVD) data
structure [13,31].

▶ Lemma 6. For any z ∈ Cλ(x, ϕ(x)) with 0 < λ < 1, dist(z, sx) ≤ 1+λ
1−λ dist(z, sz), where sx

is the closest segment to x and sz is the closest segment to z.

Proof. Assume sz is distinct from sx, for the assertion holds trivially otherwise. In the same
notation we used to prove Lemma 5, let r = ϕ(x), and denote by sx and s′

x the nearest and
second-nearest segments to x, respectively. Observing that r = dist(x, s′

x), the interior of
C(x, r) cannot intersect any segment except for sx. As seen in the proof of Lemma 5, we
have that dist(z, sz) ≥ dist(z, ∂ C(x, r)) ≥ (1 − λ)r while dist(z, sx) ≤ (1 + λ)r. ◀

As an immediate corollary, we have the following.

▶ Corollary 7. For 0 < ε ≤ 1 and any z ∈ Cλ(x, ϕ(x)) with 0 < λ ≤ ε
3 , the nearest neighbor

of x is a (1 + ε)-approximate nearest neighbor of z.

Capsules enjoy a number of properties (described later in this section) that make them
suitable for forming hierarchical covers of space. However, as the intersection of n cylinders
and/or balls, capsules can have high combinatorial complexity. For this reason, we use their
John ellipsoids in our data structure instead, as in related data structures based on Macbeath
regions [1,10]. For x ∈ Rd and positive scalars λ and r, define Eλ(x, r) as the maximum volume
ellipsoid enclosed within Cλ(x, r). By John’s Theorem [35], Eλ(x, r) ⊆ Cλ(x, r) ⊆ Eλ

√
d(x, r).

Hence, up to constant factors, these capsule ellipsoids can serve as low-complexity proxies for
capsule. Our construction makes use of two particular constant scale factors independent of
ε, 0 < λ′′ < λ′ < 1. For any x and r, define E′′(x, r) = Eλ′′(x, r) and E′(x, r) = Eλ′(x, r).
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3.2 Net-Like Properties for Capsules
In this section, present a number of properties of capsules, demonstrating that they possess
similar properties to nets, which arise in the study of metric spaces [33, 39, 40]. While we
prove these results for capsules, they all hold for capsule ellipsoids, subject to an adjustment
of constant factors.

Our first result is a utility that relates two methods for growing capsules, first by expanding
the distance parameter and second by applying a scale factor.

▶ Lemma 8. For any γ ≥ 1, C(x, γr) ⊆ Cγ(x, r), and for 0 < λ ≤ 1, Cλ(x, r) ⊆ C(x, λr).

Proof. For each segment s, the radii used in Cs(x, r) are of the form max(r, dist(x, s)).
Clearly, max(γr, dist(x, s)) ≤ γ · max(r, dist(x, s)). The other inequality is similar. ◀

The next lemma bounds the growth in the volume of capsules upon scaling. The first
part follows directly from the fact that capsules are full dimensional and convex, and the
second part follows from this in combination with Lemma 8.

▶ Lemma 9. For any set of disjoint line segments S ⊆ Rd and an arbitrary x ∈ Rd:
(i) For λ > 0, vol(Cλ(x, r)) = λd · vol(C(x, r)).
(ii) For β ≥ 1, vol(C(x, βr)) ≤ βd · vol(C(x, r)).

Next, we derive a packing bound on the number of pairwise interior-disjoint capsules that
may fit within a larger capsule.

▶ Lemma 10. Given a set of disjoint line segments S ⊆ Rd, r ≥ 0, and two constant scale
factors 0 < λp < λc < 1, let Y ⊂ Rd denote a set of points such that the associated regions
Cλp(y, r), with y ∈ Y , are disjoint. Then, for any x ∈ Rd and β ≥ 1, the number of regions
in RY = {Cλc(y, r) | y ∈ Y } that intersect Cλc(x, βr) is O(βd).

Proof. Fix a y ∈ Y such that Cλc(x, βr) ∩ Cλc(y, r) ̸= ∅. As Cλc(y, r) ⊆ Cλc(y, βr), we
also have that Cλc(x, βr) ∩ Cλc(y, βr) ̸= ∅. Applying Lemma 4 (with the roles of x and y

swapped), we obtain Cλc(x, βr) ⊆ Cαλc(y, βr), where α = 3+λc

1−λc
> 1. Lemma 9 yields

vol(Cλp(y, r)) =
(

λp

λc

)d

vol(Cλc(y, r)) ≥
(

λp

λcβ

)d

vol(Cλc(y, βr))

=
(

λp

λcαβ

)d

vol(Cαλc(y, βr)) ≥
(

λp

λcαβ

)d

vol(Cλc(x, βr)).

By packing, the number of regions of RY intersecting Cλc(x, βr) is O
((

λcαβ
λp

)d)
. The result

follows since λc, λp, and α are all constants. ◀

Turning our attention to radius assignment through the local feature size ϕ, we show that
expansion-containment still holds.

▶ Lemma 11. Given two points x, y ∈ Rd and 0 < λ < 1, if Cλ(x, ϕ(x)) ∩ Cλ(y, ϕ(y)) ̸= ∅,
then Cλ(y, ϕ(y)) ⊆ Cβλ(x, ϕ(x)) for a constant β = (3+λ)(1+λ)

(1−λ)2 .

Proof. Assuming first that ϕ(y) ≤ ϕ(x), Cλ(y, ϕ(y)) ⊆ Cλ(y, ϕ(x)) and thus

Cλ(x, ϕ(x)) ∩ Cλ(y, ϕ(y)) ̸= ∅ =⇒ Cλ(x, ϕ(x)) ∩ Cλ(y, ϕ(x)) ̸= ∅.

Applying Lemma 4 with r = ϕ(x), implies that Cλ(y, ϕ(y)) ⊆ Cαλ(x, ϕ(x)).
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4:10 Approximate Nearest-Neighbor Search for Line Segments

Otherwise, ϕ(x) ≤ ϕ(y), and by applying Lemma 5 twice with any z ∈ Cλ(x, ϕ(x)) ∩
Cλ(y, ϕ(y)), we obtain

ϕ(y) ≤ 1
1 − λ

ϕ(z) ≤ 1 + λ

1 − λ
ϕ(x).

By Lemma 8, Cλ(x, γ ϕ(x)) ⊆ Cγλ(x, ϕ(x)), where γ = 1+λ
1−λ > 1. Therefore

Cλ(x, ϕ(x)) ∩ Cλ(y, ϕ(y)) ̸= ∅ =⇒ Cλ(x, γ · ϕ(x)) ∩ Cλ(y, γ · ϕ(x)) ̸= ∅.

Applying Lemma 4 with r = γ ϕ(x), implies that Cλ(y, ϕ(y)) ⊆ Cαγλ(x, ϕ(x)). ◀

4 The ANN Data Structure

In this section, we apply the results of the previous section to present our data structure
for answering ε-ANN queries. Again, S = {s1, . . . , sn} is a set of n disjoint line segments in
Rd, and ε > 0 is the approximation parameter. Let B(S) be a minimum volume Euclidean
ball that contains S, and let B+(S) denote a concentric expansion of B(S) about its center
by a factor of 1 + 2/ε. It is easy to see that if the query point q lies outside of B+(S), any
segment may be reported as an ε-ANN of q. Thus, for the rest of the construction, we focus
on query points lying within B+(S). Let x0 and r+ denote the center and radius of this ball,
respectively. Clearly, r+ = Θ(diam(S)/ε). Let δ(S) denote the minimum distance between
any two segments of S. Observe that for every point x ∈ B+(S), its local feature size, ϕ(x),
is at least δ(S)/2.

Here is a high-level overview of the data structure. It consists of a rooted directed acyclic
graph (DAG), which is based on covering B+(S) with a hierarchy of capsule ellipsoids of
exponentially diminishing scales. The DAG is organized in levels, with a single root node
at level zero whose associated capsule ellipsoid contains B+(S). For i ≥ 0, the capsule
ellipsoids associated with the nodes of level i employ the scale parameter ri = r+/2i, and thus
successive levels are more refined. Each level of the DAG will be associated with a collection
of capsule ellipsoids that cover B+(S). In particular, each node at level i of the DAG stores a
point x ∈ B+(S), and the associated capsule ellipsoid, denoted E′(x), centered at this point
is defined to be the shrunken ellipsoid E′(x, ri) with respect to S. (The shrinking factor 1

2
can be taken to be any constant smaller than 1, subject to an adjustment in the various
constant factors used in our construction.) Each node at level i will either be declared to be
a leaf, or it will be linked to those nodes at level i + 1 whose capsule ellipsoids it overlaps,
which we call its children. (We will show that the out-degree of any node is a constant.)

We continue this refinement process until ri ≤ ε
3 ϕ(x). The resulting terminal nodes are

called leaves, and each stores the segment of S that is closest to the capsule center as its
representative.

Queries are answered by a simple descent through this DAG. Assuming that the query
point q lies within B+(S), we descend level by level through the DAG. On arriving at a
non-leaf node, we inspect the ellipsoids of its children on level i + 1. Their associated capsules
cover E′(x), and the search continues with any one of these children whose associated ellipsoid
contains q. When the search arrives at a leaf node, the associated representative segment is
returned as the answer to the query.

The DAG is constructed in a top-down manner, starting with the root of the DAG. The
root capsule is E′(x0), where x0 is the center of B+(S). We assert that this covers B+(S).
To see this, observe that by definition, E′(x, r) contains the ball of radius r centered at x, and
hence the same holds for E′(x, r). For i = 1, 2, . . ., let Ui denote the portion of B+(S) that
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is not covered by any of the leaves of the structure from prior levels. For any x ∈ Rd, define
E′′(x) = E′′(x, ri). Let Xi be any maximal set of points x within Ui such that the associated
ellipsoids E′′(x) are pairwise disjoint. It follows from maximality and expansion-containment
that the union of the expanded ellipsoids E′(x) for x ∈ Xi covers Ui. We create a node
at level i of the DAG for each point x ∈ Xi, and we link each such node as a child of any
non-leaf node from the previous level whose E′ capsule ellipsoid (computed with respect to
level i − 1) it overlaps.

In the remainder of this section, we analyze the correctness, query time and storage
requirements of this data structure. Our first two lemmas establish correctness and bound
the depth of the data structure. Correctness follows from Corollary 7.

▶ Lemma 12. Given a set S of line segments, the above search algorithm returns an ε-ANN
among the segments of S for any query point q ∈ B+(S).

Next we analyze the depth of the DAG.

▶ Lemma 13. Given a set S of n disjoint segments in Rd with spread ∆, the ε-AVD structure
described above has O(log(max(n, ∆)/ε)) levels.

Proof. Recall that B(S) is the minimum Euclidean ball containing S and B+(S) is its
expansion by 1 + 2

ε , and r+ is its radius. Clearly, r+ = Θ(diam(S)/ε). Letting δmin denote
the minimum distance between any pair of segments, ∆ = diam(S)/δmin. Clearly, for
any point x, ϕ(x) ≥ δmin. The refinement process terminates when the scale falls below
ε
3 ϕ(x) ≥ ε

3 δmin. Since the scale decreases by a factor of 2 with each level of the data structure,
the total number of levels is

O

(
log r+

εδmin

)
= O

(
log diam(S)

ε2δmin

)
= O

(
log ∆

ε

)
,

as desired. Recall that the spread of a set of segments in Rd grows at least polynomially
with n, therefore log n is O(log ∆). ◀

Our next result bounds the number of children for each node.

▶ Lemma 14. Each non-leaf node of the data structure has O(1) children.

Proof. Consider a node at some level i centered at a point x. Let r = ri+1 = ri/2. This
node’s children consist of the nodes y of level i + 1 whose ellipsoid E′(y, ri+1) overlaps
E′(x, ri). By construction, all such points y come from a set Y whose ellipsoids E′′(y, ri+1)
are disjoint. By applying Lemma 10 in the elliptical setting, the number of such overlapping
ellipsoids is O(2d) = O(1), given our assumption that the dimension d is fixed. ◀

Since each node of the DAG has constant degree, it follows that the overall query time is
proportional to DAG’s height, which is O(log(∆/ε)). Finally, we bound the total space used
by the data structure.

▶ Lemma 15. Given a set S of n line segments in Rd, the total storage required by the
ε-AVD is O((n2/εd) log ∆

ε ).

Proof. We distinguish between two transitions within the DAG structure. When the scale
parameter ri of a node x first falls below ϕ(x), we say that this is a basic leaf, and when it falls
below ε

3 ϕ(x) (the actual termination condition), we say it is a final leaf. Lemma 17 (presented
in Section 5) states that the number of capsules at the basic leaf level that are charged to
any pair of segments is O(log ∆

ε ). Therefore, the total number basic leaves is O(n2 log ∆
ε ).
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4:12 Approximate Nearest-Neighbor Search for Line Segments

Observe that all of the points lying within E′(x, ϕ(x)) share the same local-feature size values
up to constant factors, and therefore, all the descendants of this node lie within the next
O(log 1

ε ) levels of the structure. They are all similarly shaped (up to constant factors), but
their sizes are smaller by a factor of at least ε

3 . By the disjointness of the shrunken E′′

capsule ellipsoids, it follows that the number of descendants is O(1/εd). Therefore, the total
number of nodes in the DAG is O((n2/εd) log ∆

ε ). ◀

By combining the results of the previous lemmas, we obtain Theorem 1.

5 Storage Bounds for Capsules

Recall the definition of capsules from Section 3. The infinite cylindrical component in the
definition of C(x, r) induced by a particular segment si ∈ S will be denoted Cyli(x, r) and
its radius will be denoted by ti(x).

For a given point x ∈ Rd and r > 0, we distinguish two such cylinders. Without loss of
generality, let s1 denote the nearest neighbor of x in S. Letting v1 be a unit vector parallel
to s1 (the direction does not matter by central symmetry). Denote by ℓx the line passing
through x in the direction of v1. Using ℓx, we define the set of points pi as the intersection
of ∂ Cyli(x, r) and ℓx such that ⟨v1, pi − x⟩ > 0. Again, without loss of generality, let p2
denote the closest intersection point to x, such that Cyl2(x, r) is the cylinder generating p2.
We use the two cylinders Cyl1(x, r) and Cyl2(x, r) to sandwich the capsule C(x, r) between
two simple shapes providing lower and upper bounds on its volume. The radii of Cyl1(x, r)
and Cyl2(x, r) will be denoted by t1 and t2, respectively. By definition, t1 = r. When r is
chosen as the local feature size ϕ(x) at x, we also have t2 ≥ r.

The inner bounding volume V −(x, r) is defined as the double cone whose axis is ℓx and
base is the (d − 1)-dimensional disk of radius r centered at x orthogonal to ℓx, with two
apexes at p2 and (symmetrically about x) 2x − p2. The outer bounding volume V +(x, r) is
defined as the cylinder with ℓx as axis whose radius is r and height is equal to the length of
the projection of Cyl1(x, r) ∩ Cyl2(x, r) onto ℓx.

▶ Lemma 16. Fix a point x ∈ Rd and let C(x, r) be the capsule of radius r induced at x by
a set S of n line segments. Then,

V −(x, r) ⊆ C(x, r) ⊆ V +(x, r), and vol(V +(x, r))
vol(V −(x, r)) ≤ 2(d + 1).

Proof. The containment follows by the construction of the bounding volumes. In bounding
the ratio of the two volumes, we use the same notation and assumptions as above, without
loss of generality. Letting θ denote the acute angle between the two lines supporting s1 and
s2, and Vd−1 denote the volume of a unit ball in Rd−1, we have

vol(V +(x, r))
vol(V −(x, r)) ≤ 4Vd−1rd−1t1(x) · csc(θ)

2
d+1Vd−1rd−1t1(x) · csc(θ)

≤ 2 · (d + 1),

where the numerator is the volume of the intersection of two cylinders, and the denominator
is the volume of a cone in Rd. ◀

In order to bound the number of leaf-level capsules within a ball of radius O
( 1

ε · diam(S)
)
,

we use the following charging scheme. Again, we use the simplified notation and assumptions
from before. A capsule C(x, r) will be charged to the two line segments s1 and s2. For a fixed
pair of segments si and sj , acting as respectively as s1 and s2 for the point x in consideration,
we may restrict attention to all center points x lying in the cylinder of radius r with the line
supporting si as axis; denote this cylinder by Cyl(si, r).
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▶ Lemma 17. The number of leaf level capsules charged to any pair of segments is O(log ∆
ε ).

Proof. We cover the points in Cyl(si, r) using a sequence of growing cylindrical intervals
based on their distances to sj . Define Ik(si, r) to be the set of points in Cyl(si, r) such
that for all x ∈ Ik(si, r) we have that 2k−1r ≤ dist(x, sj) ≤ 2kr. In other words, Ik(si, r)
is the intersection of Cyl(si, r) with the cylindrical shell Cyl(sj , 2kr) \ Cyl(sj , 2k−1r). It is
easy to see that the volume of the intersection is maximized when si intersects sj due to
the symmetry of the cylinder Cyl(si, r) about the line supporting si. Similar to the upper
bound on the volume of C(x, r) by that of V +(x, r), we see that vol(Ik(si, r)) is at most
4Vd−12krd · csc(θ), where θ is the acute angle between the two lines supporting si and sj .
For any capsule charged to si and sj with center x ∈ Ik(si, r), we use the inner volume
V −(x, r) ⊆ C(x, r) to obtain a lower bound vol(Cλ(x, r)) ≥ 1

d+1Vd−12krdλd · csc(θ). By
choosing the capsule centers to have global packing-covering properties as a Delone set, it
follows that there can be at most 4(d + 1)/λd = O(1) capsules centered within Ik(si, r).

The desired bound follows by repeating the above argument over all scales r, a total of
log(∆), and all k with 2kr ≤ 1

ε · diam(S), a total of log(1/ε). ◀

6 Conclusions and Future Work

We have presented a new AVD-based approach to answering ε-segment ANN queries based
on a hierarchical covering of space by ellipsoids. By elaborating on the intrinsic geometry
underlying more general distance functions, our work helps pave the way to extend well-
established techniques from data structure design and approximation algorithms in Euclidean
and metric spaces to more general geometries. Specifically, we anticipate further progress in
understanding the metric-like structure defined by the local tensors derived from the Hessians
of distance functions. This should directly benefit the development of more efficient space
covers, e.g., circumventing dependence on the spread and other geometric parameters. In
addition, we expect polytope approximation techniques to enable better ε-dependencies in
the storage requirements. Put together, we leave it to future work to achieve both remaining
tasks of eliminating dependence on the spread and improving low-level query processing
to obtain O(log n/ε) query times with only O(n2/εd/2) storage, by analogy with the best
known corresponding results for ANN against point sets under the Euclidean metric modulo
the quadratic dependence on n needed for storage in the case of segment-ANN.
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