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Abstract

We consider conditional facility location problems with unreliable facilities that

can fail with known probabilities. The demand is uniformly distributed over a convex

polygon in the rectilinear plane where a number of facilities are already present, and

it is required to optimally locate another facility. We analyze properties of the expo-

nential family of incremental Voronoi diagrams associated with possible realizations

of the set of operational facilities, and, based on this analysis, present polynomial

algorithms for three conditional location problems. The approach can be extended to

various other conditional location problems with continuous demand and unreliable

facilities, under different probabilistic models including ones with correlated facility

failures.

Key words: Reliable facility location, continuous location, Voronoi diagram, polyno-

mial algorithm

1 Introduction

In this paper we present a methodology for developing polynomial algorithms for a class

of reliability location models with continuous customer demand and continuous decision

space.
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1 Introduction 2

Location of facilities is one of the most important and strategic decisions an organi-

zation must make. For service-providing facilities, locations determine travel time, ease

of access and primary service areas, which, in turn, influence customer usage, satisfaction

and demand. For facilities providing logistic support within a supply chain, well-planned

locations enable the efficient flow of materials leading to decreased costs and to improved

customer service. An ever increasing body of literature is devoted to facility location, see,

e.g., the recent book of Laporte et al. [27].

In many cases, organizations do not operate a single facility, but rather a network of

facilities; the overall demand is distributed among different facilities. In case of service

facilities, a common assumption is that customers tend to patronize the closest facility. In

multi-facility settings, failure of a single facility may have reverberating effects throughout

the network, causing customers to travel longer distances to obtain service, reducing service

levels and losing potential demand. “Reliability location models” (also known as “location

models with unreliable facilities”) seek to design the multi-facility network so that it

continues to function efficiently in the event of failure of one or more facilities. These

models have been receiving increasing amount of attention in recent years, see Snyder et.

al. [39] for a recent review.

Location models, whether they consider the possibility of facility failure or not, can

be classified on two key dimensions: the representation of customer demand, and of the

decision space. In both cases, the two main choices are “discrete” or “continuous”.

Discrete customer demand models assume customer demand originates from a known

set of discrete locations (“customer nodes”), while continuous models assume the demand

is continuously distributed over a planar region according to a some spatial distribution.

While discrete models are analytically simpler (in fact, most location models assume dis-

crete demand), to maintain tractability, the number of customer nodes cannot be too

large, since it strongly affects the computational complexity of the model. Since the num-

ber of individual customer locations to be served is often very large, in practice “customer

nodes” in such cases are usually aggregations of customer demand (e.g., to centroids of

the regions partitioning the planar region, such as census tracts), which, of course, leads

to aggregation errors cf. Francis and Lowe [25]. Under the continuous demand framework,

adopted in the current paper, the number of customers does not affect the computational

complexity.

A similar dichotomy in modeling approaches appears with respect to the decision

space, i.e., the set of potential locations for new facilities. While discrete set models

restrict facility locations to a pre-determined, typically finite, set of potential locations

(often coinciding with the set of customer nodes), the continuous location models allow

for locations anywhere in a certain planar region. Continuity of the decision space has a

number of advantages: insights of what region may be most promising for new facilities can
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be identified, parametric analysis of changes in optimal location(s) with respect to model

parameters is possible due to continuity, the assumption that potential locations have

been pre-identified may not be appropriate at the initial facility planning stage. However,

continuity also comes at a price: the uncountable number of potential locations leads to

serious analytical challenges.

When continuous demand distribution is coupled with continuous location space, the

development of polynomial-time algorithms for the resulting models is quite challenging,

even in case of perfectly reliable facilities. Recent advances in [23] and [5] focus on de-

riving polynomial-time algorithms for finding an optimal location of one new facility in

this setting. In [23], it is assumed that only the new facility is present, and in [5] the

“conditional problem” is considered: adding a single new facility to a set of pre-existing

facilities.

The current paper continues this line of research by developing polynomial-time algo-

rithms for the case where facilities may fail; to the best of our knowledge this is the first

attempt to consider planar facility reliability problems in the continuous location space

and continuous demand setting. We present our approach in the context of three location

problems. The conditional median problem seeks to find an optimal location for a new

facility in the presence of n existing facilities so that the total expected customer travel

distance is minimized. This model is relevant when it is desirable to have facilities close

to customers. The conditional anti-median problem seeks to maximize the expected dis-

tance; this objective arises when customers consider being near a facility to be undesirable

(examples of such facilities range from landfills to busy night clubs). The final problem

we consider assumes that the new facility will compete with some pre-existing facilities

for customer demand, with market share “captured” by each facility consisting of all cus-

tomers for whom this facility is the closest operating facility. The conditional market share

problem is to maximize the expected customer demand “captured” by locating the new

facility. The framework we develop is also applicable to a variety of other conditional

location problems with unreliable facilities.

The basic mathematical construct underlying our analysis is the Voronoi diagram - the

partition of the demand space that arises when the locations of all facilities are specified,

reliability issues are ignored, and each customer is assumed to travel to the closest facility;

each element of this partition, corresponding to a specific facility, is called a Voronoi cell.

The approach developed in [5] for the case of perfectly reliable facilities is based on the

analysis of the structural changes of the Voronoi diagram when the location of one of the

facilities (the newly added one) varies. This leads to a partitioning of the solution space

into a polynomial number of subregions such that the structure of the Voronoi diagram

(and therefore the parametric representation of the objective function as a function of

the coordinates of the new facility) does not change when the location of the new facility
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varies within a subregion. The problem restricted to any such subregion is much simpler

and an optimal location over a subregion can often be found using standard continuous

optimization techniques.

However, application of this approach to the case of unreliable facilities immediately

runs into several difficulties. First, even computing the probability that a given customer

will obtain service from a specific facility can take time exponential in the number of

facilities for a general joint probability distribution of facility failures. We thus limit

ourselves to probability models where some basic computations can be done in linear

time. Such models, described in Section 3.1 below, include the case where failure events

are independent, but also encompass certain inter-dependence patterns, thus allowing for

correlated failures.

Second, in case of unreliable facilities, we no longer have a single Voronoi diagram, but

rather an exponential family of Voronoi diagrams, depending on which facilities are oper-

ational and which have failed. To be able to derive a decomposition of the solution space

into subregions with the required structural properties, we have to extend the analysis to

the structural changes of all possible Voronoi diagrams, while avoiding the enumeration

of the exponentially many Voronoi diagrams that may arise. Our polynomial algorithms

are based on such an analysis, and are an illustration of its power.

Third, our decomposition of the solution space should not have cardinality that is too

large if we want to obtain polynomial algorithms with complexity orders that are not

prohibitively large for potential practical use. Given the complexity of the problem, this

is a significant challenge. For example, as will be discussed later, more direct attempts to

apply the approach of [5] would result in algorithms with complexity orders much higher

than those in the paper.

The key element of our methodology in this paper is the introduction and analysis of

two sets of polynomial cardinality – the set of corner-points and the set of sub-segments –

that capture the minimum necessary information about the exponential family of Voronoi

diagrams that is required for development of solution algorithms for the considered prob-

lems. Analysis of the structural changes in these sets and some associated entities when

the location of the new facility varies results in a partition of the solution space into a poly-

nomial number of subregions such that the problem decomposes into simpler subproblems

over the subregions.

While computational complexity bounds for our algorithms involve relatively high

powers of the number of existing facilities n (n6 in case of independent facility failures,

or n7 under more general assumptions about the probability model), one should keep in

mind that in many practical settings n tends to be fairly small: a network of 50 facilities

is already moderately large. With modern computational speeds (300, 000 MIPS and

400 GFLOPS are not uncommon), the solution based on an O(n6) algorithm for n = 50
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can be expected in just seconds or minutes, and the computational power of computers

keeps growing. As discussed earlier, the driving force behind long computational times in

discrete models is typically the size of the customer set and/or the size of the potential

location set, neither of which is a factor in the continuous demand / continuous location

space setting we analyze. We also note that facility location decisions are strategic in

nature, and in practice significant time can usually be allocated to finding good locational

decisions.

The rest of the paper is organized as follows. In the next section we give an overview

of the related literature. In Section 3 we define our probability model, formulate the three

conditional location problem, introduce basic definitions and notations and derive a num-

ber of useful properties. In Section 4 we analyze and characterize the structural changes

to all possible Voronoi diagrams and their cells that result from adding one additional

location. In Section 5 we show how to utilize this analysis to derive polynomial exact

algorithms for our problems. Possibilities of extensions of the results to other problems

and probabilistic models are discussed in the concluding Section 6.

2 Literature Review

Our paper lies at the confluence of two bodies of literature: location models with contin-

uous demand and solution space, and location reliability models.

With regards to the former, we direct the reader to the literature review section in

Averbakh et al. [5]; only the most relevant aspects are reviewed below. In a seminal paper,

Erlenkotter [22] derives closed-form expressions for the optimal supply area size and the

optimal average cost for the uniform demand case and an unbounded market. He considers

facility as well as transportation costs, different distance norms, and allows different shapes

of supply areas for the facilities. Applications and extensions of this model can be found in

[14, 15, 16, 21, 26, 36, 37]. Fekete et al. [23] consider the single facility median problem with

rectilinear distances and continuous demand; the market region is not necessarily convex

and may even contain holes. They develop exact polynomial algorithms for straight-line

rectilinear and, in case of non-convex regions, geodesic rectilinear distances. Murat et al.

[31] derive optimality conditions for the two-facility problem for Euclidean and rectilinear

distances. Based on a reformulation as a two-dimensional boundary value problem, they

solve the problem using a two-dimensional shooting algorithm. For a convex polygonal

market region with uniform demand and rectilinear distances, Averbakh et al. [5] develop

polynomial exact algorithms for five different conditional location problems: the (anti-

)median, market share, maximum covering, and center problem. The solution approach

is based on an analysis of structural properties of incremental Voronoi diagrams and
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is applicable to a variety of other facility location problems with continuous demand.

The current paper further develops this approach, extending it to the unreliable facilities

setting.

The research on reliability location models apparently started with Drezner [18], who

introduces the reliable p-median (RMP) and p-center problems on the plane with non-

uniform and not necessarily independent failure probabilities. He presents a mathemat-

ical formulation for each problem and a heuristic based on Cooper’s location-allocation

method; a similar framework is employed by Lee [28] for the RMP .

The majority of the literature for location reliability problems focuses on the discrete

demand case. This line of research originated with Snyder and Daskin [40]. They consider

the RMP and the reliable uncapacitated facility location problem. For both problems they

derived integer linear programming formulations for the case of uniform failure probabil-

ities and Lagrangean relaxation based heuristics to solve larger instances. Berman et al.

[9] discuss the RMP on networks with facility dependent failure probabilities, deriving a

number of structural results and developing integer programming and heuristic algorithms.

The formulations and solution approaches for the discrete case have been extended and

improved in Cui et al. [13], O’Hanley et al. [33], Shen et al. [38], and Aboolian et al. [1].

All of the papers discussed above lead to models that can be quite difficult to solve, es-

pecially in the presence on non-uniform or correlated failure probabilities. An alternative

approach is that of Continuous Approximation (CA), where the main idea is to derive an

analytical model by converting discrete data into a continuous scale. The CA approach

was first discussed in Newell [32], and recently extended in Cui et al. [13]. Following the

works [22, 32], among others, they represent customer demand, facility setup costs, and

failure probabilities through continuous functions. Assuming an infinite market and using

a hexagonal facility pattern, which was shown to be optimal for the (reliable) median

problem with Euclidean distances on a plane, they derive analytic expressions that esti-

mate the optimal size of the primary service area of a facility. Based on this analysis,

they propose some guidelines to obtain a set of discrete facility locations. Li and Ouang

[29] consider spatial correlation of the disruptions; they express the disruptions using the

CA approach. To capture the correlated probabilities they used conditional probabilities

and the beta-binomial distribution. Lim et al. [30] also study the problem with correlated

disruptions, focusing on finding the impact of mis-estimating the disruption probabilities.

The continuous approximation models cannot, of course, guarantee optimality; the goal

is to provide high-quality approximations for the discrete case. Exact solutions for the

RMP in the continuous demand/continuous solution space case on a line are developed

in Berman and Krass [8], who also discuss some optimal location patterns for larger

numbers of facilities. Their approach (which also works for correlated failures) is based

on reformulating the RMP as a linear combination of deterministic median problems. We
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are not aware of any literature on the reliable market share problem.

It is relevant to note that facility failure events considered in location reliability models

are assumed to be due to random exogenous factors (ranging from power outages and

machine breakdowns to catastrophic events such as earthquakes and fire), rather than

failures due to attacks from an intelligent adversary; the latter are addressed by facility

interdiction models - please see Laporte et al. [27] for a discussion.

The approach in this paper is based on decomposition of the solution space into sub-

regions that are in some sense easier to handle. Approaches of this type have been used

in other sub-areas of planar facility location, e.g. in robust planar location problems [4].

3 Problem Formulation and Properties

We represent the market area by a convex compact polygon P ⊂ IR2 with vertices

P1, . . . , Pm numbered in clockwise order. We assume that the demand is continuously

and uniformly distributed in P. By A = {A1, . . . , An} we represent the locations of the

n already existing facilities and we assume that A1, . . . , An ∈ P. To avoid trivial cases,

we assume n ≥ 2 (all results can be adapted to the case of just one existing facility with

minor changes.)

For any integers i, j, i ≤ j, we use [i : j] to denote the set {i, i + 1, . . . , j}. For

two distinct points P = (px, py), Q = (qx, qy) ∈ P, the rectilinear (Manhattan) distance is

defined as l1(P,Q) = |px−qx|+|py−qy|. We will assume the rectilinear distance throughout

the paper, commenting on the extension of our results to the Euclidean distance case in

Section 6.

3.1 Facility Failures: Probabilistic Model

As described in the introduction, a central feature of our model is that facilities may fail.

If the facility fails (is unavailable for service), we say that it is non-operating; otherwise,

it is said to be operating. We assume that each customer travels to the closest operating

facility to obtain service and that the customer has a priori information about which

facilities have failed; this setting is called “Complete Information” in Berman et al. [9].

When all facilities have failed, a fixed penalty of β > 0 is charged (per customer call).

We regard each facility i for i ∈ [1 : n] as a Bernoulli(pi) random variable, where

0 ≤ pi ≤ 1 is the probability of failure for this facility. We will use A+
i (A−i ) to represent

the event that facility i is operating (is non-operating). Note that pr(A+
i ) = 1− pi.

Failure events at facilities may be correlated. Consider a partition of the facility set

A into three subsets: A+ ∪ A− ∪ AU = A, where all facilities in A+ are operating, all
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facilities in A− have failed, and the status of facilities in AU is not specified. Since AU is

completely determined once A+,A− are specified, we will usually omit it from all notation.

We assume that a joint probability pr(A+,A−) is specified. That is, pr(A+,A−) is the

probability that the facilities from A+ are operating and facilities from A− have failed,

and the facilities from AU can have any status. Note that for A+ = {i}, A− = ∅, where

i ∈ [1 : n], we have pr(A+,A−) = pr(A+
i ) = 1− pi. If A+ includes all operating facilities,

i.e., A− = A \ A+ and AU = ∅, we will refer to A+ as an operational set and use the

shorthand pr(A+) = pr(A+,A\A+). In this case, the partition of A into the operational

set A+ and the non-operational set A− = A\A+ is called a constellation (with a somewhat

poetic parallel between operational facilities and stars).

For a general joint distribution of n Bernulli random variables the computation of

probability pr(A+,A−) may take time exponential in n if AU 6= ∅. Since we are inter-

ested in polynomial algorithms in this paper, for the purpose of evaluating complexity of

algorithms we make the following simplifying assumption about the distribution:

Assumption A. For any specified partitionA+,A−,AU of setA the probability pr(A+,A−)

can be computed in O(n) time.

A simple example of the probability distribution that satisfies the above assumption

is the uniform independent probability model where the failure events are assumed to be

independent and pi = p for all i ∈ [1 : n]. In this case we have

pr(A+,A−) = (1− p)|A+|p|A
−|, (1)

This probability model has been used in a number of papers, including [40] and [33].

If we drop the assumption that all failure probabilities pi are identical, we obtain the

independent probability model, also satisfying Assumption A above:

pr(A+,A−) =
∏
i∈A+

(1− pi)
∏
j∈A−

pj (2)

A natural extension of the independent probability model is to assume that failure

events are conditionally independent, where conditioning is with respect to some back-

ground discrete random variable V with a fixed number of values and a known distribu-

tion. E.g., it may be reasonable to assume that failure probabilities vary by time of day,

but failures are independent within each of several time intervals which partition the day,

while V represents the interval during which a customer’s call occurs. It is not hard to

see that this model also satisfies Assumption A.

More generally, as discussed in Qaqish [35], specifying a complete joint distribution

of n Bernoulli variables for n ≥ 15 is impractical. For this reason, structured correlation

matrices are often assumed. One useful example discussed by Qaqish is the exchangeable
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correlation case where the correlation matrix is assumed to have all off-diagonal elements

equal to some specified ρ ∈ (−1, 1). Using the formulas provided in [35], the probability

pr(A+,A−) can be computed in O(n) time, once again satisfying Assumption A. Other

examples provided by Qaqish (and also satisfying Assumption A) include AR(1) and

MA(1) patterns of correlations [35]. Thus, while Assumption A may look restrictive,

it actually allows for a fair degree of flexibility in representing probabilities of facility

failures.

We also note that there is no technical difficulty in extending all results in the paper

to the case where Assumption A is generalized to the probability being computable in

polynomial time O(nk) for some specified k ≥ 1 (though the polynomial complexity of the

algorithms presented in the following will, of course, increase accordingly).

In the next section we formally introduce three conditional facility location problems

we study in this paper to illustrate our approach.

3.2 Formulations of Three Location Problems

All problems formulated below are conditional in the sense that the locations of the n

facilities in A are assumed to be known and fixed and the objective is to find the best

location for a single new facility. We denote by Z = (x, y) ∈ P the location of the new

facility and by AZ = A∪{Z} the augmented facility set. For the ease of notation, we will

also use An+1 = Z.

Let Q ∈ P be a customer location. Following [9], we denote by π(·, Q) the permutation

of the index set [1 :n+1] that sorts all facilities A1, . . . , An+1 in the order of non-decreasing

distances from Q, i.e., l1(Q,Aπ(k,Q)) ≤ l1(Q,Aπ(k+1,Q)), 1 ≤ k < n. To make sure that

the permutation π(·, Q) is defined uniquely, we assume that there is a certain tie-breaking

preference order of the facilities, according to which ties are broken if there are two or more

facilities at the same distance from the customer. Also, we assume that the tie-breaking

preference order is the same for all customers. These assumptions are made for convenience

of presentation and to avoid ambiguity; they do not influence any results, because the set

of customers for whom ties may occur (i.e., for whom there are equidistant facilities)

clearly has measure 0 due to the continuous distribution of customers, and therefore does

not affect the objective function for any of our problems.

For k ∈ [1 : n + 1] let A[k,Q] = {Aπ(1,Q), . . . , Aπ(k,Q)} be the set of the k closest

facilities to Q, and let A[k,Q]− denote the event that all facilities in that set have failed.

The expected travel distance for a customer at Q is then given by

h(Q,AZ) =

n+1∑
k=1

pr
(
A+
π(k,Q),A[k − 1, Q]−

)
l1(Q,Aπ(k,Q)) + β pr(A[n+ 1, Q]−) , (3)
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where the first probability term represents the probability that the customer at Q will have

to travel to the k-th closest facility to obtain service, and the second probability term is

the probability that all facilities have failed. As the last term is a constant and does not

affect the choice of the optimal location, we will generally omit it from further discussion.

We note that for the case of uniform independent probability model, the expression above

simplifies to:

h(Q,AZ) =
n+1∑
k=1

(1− p) pk−1 l1(Q,Aπ(k,Q)) + β pn+1 .

If it does not lead to confusion, we usually drop the reference to AZ from the expected

distance, i.e., h(Q) = h(Q,AZ). Let π(Q) := (π(1, Q), . . . , π(n+ 1, Q)).

The problem of finding the location of the new facility Z ∈ P that minimizes the total

expected travel distance

FM (AZ) =

∫ ∫
Q=(u,v)∈P

h(Q) du dv , (4)

is called the Conditional Median Problem with Unreliable Facilities (CMPUF)

(this follows the terminology introduced in [9]; the “conditional” part refers to the fact

that the locations of facilities [1 : n] are assumed to be given). The median objective

arises when it is desirable to minimize travel distance between customers and facilities.

This occurs in a wide variety of settings, ranging from delivered service, where facility is

delivering products to customers, to location of public service facilities, such as libraries

or medical clinics, to retail settings where customer demand is sensitive to travel distance.

The rectilinear distance we use is particularly applicable to facilities located in the city

core. We assume that facilities may “fail”, i.e., become inaccessible to customers due

to some exogenous events (power failures, work stoppages, etc.). As discussed [9], in

contrast to the classical median problem, for a solution Z∗ minimizing FM (AZ) we may

have Z ∈ A. This situation is called co-location and is often observed in problems with

unreliable facilities.

The median problem assumes that customers regard proximity to facilities as desirable.

However, there are many facilities which serve an important societal role, but whose

proximity is considered undesirable by most residential customers. While the classical

examples of these so-called obnoxious facilities, such as landfills and incineration plants,

are not well suited for our rectilinear norm assumption, there are many others for which

this assumption is quite natural. These may include court houses, addiction treatment

clinics, half-way houses, night clubs, etc. - all of these generate traffic, congesting the

streets, and are perceived to negatively impact neighborhood safety. In fact, Babawale
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[6] found that even churches may fall into this category (they showed that proximity to

churches had negative impact on real estate prices). This leads to the problem of finding

the location Z ∈ P of the new facility that maximizes the total expected travel distance

FM (AZ); we refer to it as the Conditional Anti-Median Problem with Unreliable

Facilities (CAMPUF). This problem is also known as the obnoxious median problem

([11]). We require that the distance between the new facility and each existing facility is at

least D > 0; this requirement is often used when locating obnoxious facilities (cf. Berman

and Huang [7]).

In our final problem we consider the situation where some of the existing facilities

belong to one or more competitors, while the new facility and perhaps some subset of the

existing facilities belong to the decision-maker (DM). In case of competition, companies

are often more concerned about their market share than about travel distances. Without

loss of generality, let the first l ∈ [1 : n] facilities belong to the competitors and the

remaining facilities belong to the DM. We assume that the market share of a given facility

is the proportion of customers for whom this is the closest operating facility (in case of

equidistant facilities we assume the customer prefers DM’s facilities over competitive ones).

The problem of finding a location of an (n+ 1)-st facility An+1 = Z ∈ P belonging to the

DM that maximizes the total market share of DM’s facilities is specified as follows:

FMS(AZ) =

∫ ∫
Q=(u,v)∈P

n+1∑
k=1

pr
(
A+
π(k,Q),A[k − 1, Q]−

)
I{π(k,Q)≥l+1} du dv , (5)

where I{·} is the indicator function, and is called the Conditional Reliable Market

Share Problem (CRMSP)), cf. [20]. The term pr
(
A+
π(k,Q),A[k − 1, Q]−

)
has the same

interpretation as in (3) above.

We note than none of the objective functions defined above is, in general, convex or

concave over P.

3.3 Geometric Terminology and Notation

As we will be making extensive use of geometric concepts such as “bisector”, “Voronoi

Diagram”, etc., let us briefly review them.

A bisector B(P,Q) = {Z ∈ P | l1(P,Z) = l1(Q,Z)} is the set of all points that are

at the same distance from distinct points P = (px, py) and Q = (qx, qy) from P. Let

B≤(P,Q) := {Z ∈ IR2 | l1(P,Z) ≤ l1(Q,Z)} be the set of all points that are no farther

from P than from Q.

While the bisector for the Euclidean distance is always a straight line, the shape of

the rectilinear bisector depends on the position of P and Q relative to each other. If P
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and Q lie on the same vertical or horizontal line, then B(P,Q) is a horizontal or vertical

line, respectively. In most other other cases, the bisector between P and Q is piecewise

linear with exactly three pieces: two vertical or horizontal half lines that are connected

by a diagonal segment (i.e., segment with slope of 1 or −1), cf. Aurenhammer et al. [3].

We denote the two breakpoints of such a bisector by B1 and B2. Their coordinates are

linear in the coordinates of P and Q. The case where the bisector does not consist of line

segments occurs if |px − qx| = |py − qy|, i.e., P and Q are on the same diagonal line. In

this case B(P,Q) consists of two quarter planes connected by a diagonal line segment. We

call such bisectors degenerate.

Since bisectors between the facilities play a central role in our analysis, to avoid the

inconvenience of degenerate bisectors we make the following assumption:

Assumption B. No two points of the set A lie on the same diagonal line.

We can make this assumption without loss of generality, because the coordinates of the

corresponding facilities can always be slightly perturbed.

For a fixed point P , the vertical, horizontal, and diagonal lines through P are called

configuration lines for P ; they partition IR2 into eight open subsets. We call the closure

of such a subset a configuration cone rooted at P . Starting from the cone defined by

|px − qx| ≤ |py − qy|, px ≤ qx, and py ≤ qy, we label them in counter-clockwise order as

CC1(P ), . . . , CC8(P ) ([5]). Configuration lines for facilities Ai, i ∈ [1 : n], will be called

simply configuration lines.

For a set A = {A1, . . . , An} ⊂ P of n ≥ 2 distinct points, the Voronoi cell V(Ai) of Ai

is the set of all points in P that are at least as close to Ai as to any other point Aj , i 6= j,

V(Ai) := {P ∈ IR2 | l1(P,Ai) ≤ l1(P,Aj) ∀j ∈ [1 : n]} .

Ai is called the generator of V(Ai). V(Ai) is a polygon that is not necessarily convex,

but is always star-shaped with respect to Ai, i.e., each line segment connecting a vertex

of the polygon with Ai is entirely in the polygon. We call the vertices and edges of the

boundary of a Voronoi cell Voronoi vertices and Voronoi edges, respectively. The Voronoi

diagram of A is then the set of all Voronoi cells VD(A) := {V(A1), . . . ,V(An)}. If two

Voronoi cells V(Ai) and V(Aj), i 6= j, are not disjoint, we call the set V(Ai) ∩ V(Aj)

the Voronoi link of Ai and Aj . Note that V(Ai) ∩ V(Aj) ⊆ B(Ai, Aj); we abbreviate the

bisector B(Ai, Aj) by Bij . The end point of a Voronoi link is called a Voronoi node. We

refer the reader to [3, 17, 34] for more details on Voronoi diagrams and their properties.

We denote by int(·), bd(·), and µ(·) the interior, boundary, and area of a planar polygo-

nal set, respectively. For a point Q ∈ IR2, we denote by K(Q, r) = {P ∈ IR2 | l1(Q,P ) = r}
and K≤(Q, r) = {P ∈ IR2 | l1(Q,P ) ≤ r} the l1-sphere and l1-disc, respectively, centered

at Q with radius r ∈ IR+. We define the total l1-distance from Q to all points in a
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polygonal set U ⊂ IR2 as

d(Q,U) =

∫ ∫
(u,v)∈U

l1(Q, (u, v)) dv du .

3.4 Computing the Objective Functions

In this subsection, we focus on computing the objective function values for the three

location models defined above for a given fixed set of facilities. While this is typically a

straightforward step in most location problems, this not the case here: it is not immediately

clear how to compute the integrals in the median and market share objectives, especially

in view of the permutation π(Q) that varies with Q.

If all facilities are reliable, we can reformulate the median and market share objectives

using the Voronoi diagram and centroid triangulations of Voronoi cells to make them com-

putable in polynomial time ([5]). In case of unreliable facilities, however, we no longer

have THE Voronoi diagram, but rather an exponential number of different Voronoi dia-

grams that arise depending on which facilities are operational and which have failed. In

the following, we show how to compute the objectives for all three problems formulated

above in polynomial time. Our approach also naturally extends to the case where the

location of the new facility is variable (not fixed).

Recall that a constellation is a partition of A into an operational set A+ and non-

operational set A−, with AU = ∅ and pr(A+) = pr(A+,A−) the probability of this

constellation occurring. For a given operational set A+, the Voronoi cell of Ai ∈ A+ in

the Voronoi diagram VD(A+) of the operational facilities is denoted by V(Ai,A+). If the

context is clear, we usually abbreviate V(Ai,A+) by V+(Ai) or V+
i .

3.4.1 The Conditional Median and Anti-Median Problems with Unreliable

Facilities

We start with the objective function FM (A) of CMPUF and CAMPUF. First, we convert

the customer-based representation of the objective function into a facility-based represen-

tation that avoids explicit ordering of facilities for each customer.

Lemma 1 Let A = {A1, . . . , An} be a set of n ≥ 2 facilities satisfying Assumption B.

Then

FM (A) =

n∑
i=1

∑
A+⊆A:Ai∈A+

pr(A+) d(Ai,V+
i ) . (6)



3 Problem Formulation and Properties 14

Proof. Straightforward, using the definitions. � �

To compute d(Ai,V+
i ), we use the concept of centroid triangulations introduced in [23].

The idea of this approach is to decompose each Voronoi cell into triangles, where one of the

corners of each triangle is the facility and the other two corners are consecutive vertices on

the boundary of the Voronoi cell, i.e., Voronoi vertices. For each triangle ∆ of this centroid

triangulation, d(Ai,∆) can easily be computed using closed form expressions (see [23],

[5]). Hence, using (6), we are able to evaluate FM (A). However, as we have to consider all

possible operational subsets A+ of A, doing this directly requires an exponential number

of steps. Next, we show how to perform this task in polynomial time.

Definition 1 For Ai ∈ A, i ∈ [1 :n] let the set of corner-points CP i(A) of Ai with respect

to A be the set of all

• extreme points (vertices) of polygon P,

• breakpoints of the bisectors B(Ai, Aj), j = 1, . . . , n, j 6= i,

• intersection points of a bisector B(Ai, Aj) with the boundary of P or with another

bisector B(Ai, Ak), j, k = 1, . . . , n, i 6= j, i 6= k, j 6= k.

If the context is clear, we usually omit the reference to A. Note that any Voronoi vertex

is a corner-point. Concerning the number of corner-points of facility Ai, there are n − 1

bisectors Bij , i 6= j. A bisector Bij intersects bd(P) at most twice and another bisector

Bik, j 6= k, at most once (see [5]). Hence, |CP i(A)| = O(n2 + m) (recall that m is the

number of extreme points of P). Next, we refine the concept of centroid triangulations.

Definition 2 Let A+ ⊆ A and Ai ∈ A+ for some i ∈ [1 : n]. Observe that any vertex

of the Voronoi cell V(Ai,A+) is a corner-point. An elementary centroid triangulation

(ECT) of the Voronoi cell V(Ai,A+) is a triangulation of the cell such that one of the

corners of each triangle is the facility Ai (the facility corner), and the other two corners

are consecutive corner-points on the boundary of the cell (the non-facility corners). The

resulting triangles are called elementary triangles. We denote by T (Ai,A+) the set of

elementary triangles of the ECT of V(Ai,A+) and by T (Ai) =
⋃
A+⊆A:Ai∈A+ T (Ai,A+)

the set of all elementary triangles for Ai (for all possible operational sets A+ that contain

Ai).

We sometimes abbreviate T (Ai,A+) and T (Ai) by T +
i and Ti, respectively.

Example 1 Consider the convex polygon P with vertices P1, . . . , P7 depicted in Figure 1

and the four facilities A1 = (3, 6), A2 = (6, 7), A3 = (7, 3), and A4 = (4, 3). The lines in
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the interior of the polygon depict the bisectors B1j between A1 and the other three facilities

A2, A3, and A4. The figure also shows the set CP1 of corner-points of A1. For a bisector

Bij the (at most) two intersection points with bd(P) are labelled Eij1 and Eij2 and the

intersection point with another bisector Bik is denoted as Eijk.

Figure 1: The set of corner-points CP1 of
A1.

Figure 2: The elementary centroid triangu-
lation of V+

1 = V(A1, {A1, A2}).

Figure 2 depicts the elementary centroid triangulation of V+
1 for the operational set

A+ = {A1, A2} (an empty circle indicates that the facility has failed).

The main idea is as follows. Instead of enumerating all constellations and comput-

ing the respective triangulations which would require an exponential number of steps, we

determine for each elementary triangle for Ai the probability that it appears in an ele-

mentary centroid triangulation of V+
i when Ai ∈ A+. We will show that this probability

can be computed efficiently; since the number of elementary triangles is polynomial, this

will allow us to compute the objective function in polynomial time.

As all Voronoi vertices of V+
i are corner-points, the two non-facility corners of an

elementary triangle ∆ ∈ T +
i are consecutive corner-points either on the same edge of the

boundary of P or on the same segment of a bisector Bij , j 6= i. Vice versa, any two

consecutive corner-points on the same edge of bd(P) or on the same segment of Bij yield

an elementary triangle (e.g., in the former case for A+ = {Ai} and in the latter case for

A+ = {Ai, Aj}).

Observation 1 There is a one-to-one correspondence between elementary triangles for

facility Ai and pairs of consecutive corner-points either on the same edge of the boundary

of P or on the same segment of a bisector Bij, i 6= j. Thus, we obtain the following bound
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on the number of elementary triangles for facility Ai: |Ti| = O(n2 +m).

Next, we turn to the problem of determining the constellations for which a specific ele-

mentary triangle is part of the ECT of V+
i . Recalling Lemma 1, the contribution of Ai to

the objective function can be re-written as∑
A+⊆A:Ai∈A+

pr(A+) d(Ai,V+
i ) =

∑
A+⊆A:Ai∈A+

pr(A+)
∑

∆∈T +
i

d(Ai,∆)

=
∑

∆∈Ti

d(Ai,∆)
∑

A+⊆A:Ai∈A+ and ∆∈T +
i

pr(A+)

︸ ︷︷ ︸
=: pr(∆)

.

Hereby, pr(∆) is the probability that the elementary triangle ∆ ∈ Ti is part of the ele-

mentary centroid triangulation of V+
i . Next, we show how to determine pr(∆) without

enumerating all constellations. Instead of referring to elementary triangles, we refer in the

remainder to the unique segment defined by the two non-facility corners of the triangle.

Definition 3 Let ∆(AiE1E2) ∈ Ti be an elementary triangle for facility Ai where E1, E2 ∈
CP i. We call the closed line segment E1E2 a sub-segment and we denote the set of all

sub-segments of facility Ai with respect to the set A by Si(A), or simply Si if the context

is clear.

For S ∈ Si (∆ ∈ Ti) we denote by ∆(S) (S(∆)) the corresponding elementary triangle

from Ti (sub-segment from Si) induced by S (by ∆). Observation 1 implies that a sub-

segment is either contained in an edge of the boundary of P or in a segment of a bisector

Bij . Moreover, two sub-segments may only intersect at their endpoints, and a sub-segment

is either completely included in bd(V+
i ) or at most one of its endpoints is in bd(V+

i ). We

call a sub-segment S ∈ Si active for a constellation with operational set A+, if S is part

of the boundary of the Voronoi cell V+
i . In this case, the corresponding triangle ∆(S) is

contained in the elementary centroid triangulation of V+
i .

Observation 2 A sub-segment S ∈ Si is active, iff all facilities Aj, j 6= i, for which

S 6⊂ B≤(Ai, Aj) have failed and, in case S ⊂ B(Ai, Ak), if Ak is operational, in addition

to Ai being operational.

Example 1 (cont.) Consider again Figure 1 and facility A1. The sub-segment

E124E123 ⊂ B(A1, A2) is active, iff facility A4 has failed and A2 ∈ A+, in addition to

A1 ∈ A+. Note that the status of facility A3 does not play a role. Similarly, for E13
2 P4 to
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be active, facilities A3 and A4 must have failed, A1 must be active, and the status of A2

does not matter.

To efficiently determine the probability that a sub-segment S ∈ Si is active we define

sets A(S)+,A(S)−,A(S)U of facilities which must be operational, must have failed, and

whose status is immaterial, respectively, in order for S to be active. Slightly abusing

terminology, A(S)+,A(S)−,A(S)U will also denote the sets of indices of these facilities.

Then, AL(S) =
(
A(S)+,A(S)−,A(S)U

)
will be called the active list for the sub-segment

S. Based on Observation 2 we see that

A(S)− = {j : S 6⊂ B≤(Ai, Aj)}, A(S)+ =

{
{i, j} if S ⊂ B(Ai, Aj)

{i} if S ⊂ bd(P)
,

and A(S)U = A−A(S)+ −A(S)−. It follows that the probability

pr(∆(S)) = pr
(
A(S)+,A(S)−

)
(7)

is computable in O(n) time by Assumption A. In case of the uniform independent proba-

bility model, this expression simplifies to

pr(∆(S)) = (1− p)|A(S)+|p|A(S)−| .

Example 1 (cont.)

Figure 3 depicts the active list AL(S) of each sub-segment S ∈ S1 for facility A1. We

represent j ∈ A(S)+ with a “+” sign, and those in A(S)− with a “−” sign, omitting the

index +1 which is automatically present in all active lists.

For a given facility Ai, its set Si(A) of sub-segments can be obtained in O(n2+m) time,

e.g., as follows. First, compute the planar arrangement of all open-ended straight lines

that contain the segments of the bisectors Bij , j ∈ [1 : n] \ {i} (there are at most 3(n− 1)

such lines); this takes O(n2) time, see de Berg et al. [17]. Each edge of the arrangement

will “remember” the line it belongs to and the corresponding bisector. Then, overlay this

arrangement in O(n2 + m) time with the planar partition P (Finke and Hinrichs [24]),

obtaining an arrangement with O(n2 + m) vertices and edges (the two planar partitions

have just O(n) intersection points). Each corner-point corresponds to some vertex of

the overlaid arrangement, and each sub-segment is either an edge or the union of several

contiguous edges of the arrangement that are on the same line. Then, all sub-segments of

Si(A) are obtained by traversing the edges of the arrangement and checking whether they

belong to a bounding edge of P or a segment of the corresponding bisector, which takes

O(n2 +m) time.
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Figure 3: The set of all sub-segments S1 for A1 and the respective active lists.

To construct the active lists for all sub-segments S ∈ Si, we start with sub-segments S

whose elementary triangle ∆(S) is part of the Voronoi cell for the case where all facilities

are operational, i.e., when A+ = A. Then, either S ⊂ Bij for some Bij or S ⊂ bd(P). In

the former case we have A(S)+ = {i, j} and in the latter, A(S)+ = {i}. In both cases,

A(S)− = ∅.
Next, we show that once the active list for some sub-segment S has been constructed,

the active list for any adjacent sub-segment S′ can be obtained in constant time by a small

modification of the active list for S. Suppose that S ⊂ Bij , and suppose first that S′ is

not on the boundary of P and E ∈ CP i is the common corner-point of S and S′. If E is a

breakpoint of Bij and not an intersection point with another bisector Bik, S′ has exactly

the same active set as S, hence AL(S′) = AL(S).

If E is an intersection point of Bij with Bik and belongs to no other bisector Bir
involving Ai, we have to distinguish on which side of Bik the sub-segment S lies and

whether S′ ⊂ Bij or S′ ⊂ Bik. Assume first that S ⊂ B≤ik. If S′ ⊂ Bij , then Aj must

still be operational for S′ to be active. However, as we cross Bik, the sub-segment is

now closer to Ak than to Ai. Hence, in order for it to be active, facility Ak must have

failed. Thus, A(S′)+ = A(S)+, A(S′)− = A(S)− ∪ {k}, and A(S′)U = A(S)U \ {k}. If,

instead, S′ ⊂ Bik, then Ak must be operational. Moreover, if S′ ⊂ B≤ji, then facility Aj

must have failed; hence, A(S′)+ = {i, k} = A(S)+ ∪ {k} \ {j}, A(S′)− = AS− ∪ {j} and

A(S′)U = A(S)U \ {k}. Otherwise, S′ will be active regardless of the status of Aj ; thus

A(S′)+ = {i, k} = A(S)+ ∪ {k} \ {j}, A(S′)− = A(S)− and A(S′)U = A(S)U ∪ {j} \ {k}.
The remaining cases (S ⊂ B≤ki, E is on the boundary of P, and S ⊂ bd(P)) fol-
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low analogously. Note that the changes in the active list only occur for facilities whose

bisectors contain E and are thus limited to at most two facilities moving between the

sets A(S)+,A(S)−,A(S)U (this can be observed in Figure 3). Therefore, AL(S) can be

modified into AL(S′) in a constant time. If E is an intersection point of segments of

several different bisectors Bi·, it is straightforward to adjust the computations so that the

lists AL(S′) are computed for all subsegments S′ adjacent to S in a constant time per

subsegment.

Thus, we can compute AL(S) for all sub-segments by going from already considered

sub-segments to adjacent sub-segments until all sub-segments are considered. We do not

need to store the active lists since they are needed only for computing the probabilities

pr(∆(S). Given AL(S), pr(∆(S) can be computed in O(n) time by Assumption A. In the

case of independent facility failures pr(∆(S)) can be obtained in constant time from that

of an adjacent sub-segment, as follows from the discussion above about the active lists.

By repeating this procedure for all facilities Ai, we evaluate the objective function without

having to enumerate all constellations. Since the number of sub-segments for a facility Ai

is O(n2 +m), there are n facilities, and for an elementary triangle ∆ ∈ T +
i value d(Ai,∆)

can be computed in a constant time [5, 23], we obtain the following result.

Proposition 1 Let A = {A1, . . . , An} be a set of n ≥ 2 facilities satisfying Assumption B.

Then we can re-write the objective function of the CMPUF and CAMPUF problems as

FM (A) =
n∑
i=1

∑
∆∈Ti

pr(∆) d(Ai,∆) .

Moreover, assuming that Assumption A holds, FM (A) can be evaluated in O(n2 (n2 +m))

time. In the case of independent facility failures (and in any other case where pr(∆(S))

can be obtained in constant time from that of an adjacent sub-segment), the complexity

reduces to O(n (n2 +m)).

3.4.2 Conditional Reliable Market Share Problem

Next, we turn to the objective function of the CRMSP, given by (5). We start by a

facility-focused re-statement of the objective. Similar to Lemma 1, we have the following

result.

Lemma 2 Let A = {A1, . . . , An} be a set of n ≥ 2 facilities satisfying Assumption B.

Then

FMS(A) =

n∑
i=l+1

∑
A+⊆A:Ai∈A+

pr(A+)µ(V+
i ) . (8)
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Proof. Straightforward, using the definitions. � �

Using the elementary centroid triangulation introduced in Section 3.4.1, similarly to Propo-

sition 1 we obtain:

Proposition 2 Let A = {A1, . . . , An} be a set of n ≥ 2 facilities satisfying Assumption

B. Then we can re-write the objective function of the CRMSP as

FMS(A) =

n∑
i=l+1

∑
∆∈Ti

pr(∆)µ(∆) ;

moreover, under Assumption A, FMS(A) can be evaluated in O(n2 (n2 +m)) time, which

reduces to O(n (n2 +m)) time in the case of independent facility failures.

4 Parametric Representation and Structure-Preserving Par-

tition of the Polygon

Having introduced the sets of corner-points and sub-segments for a fixed set of facility

locations, we next characterize the changes to these sets after adding one new facility. Our

goal is to extend the approach developed in [5] for problems with reliable facilities (based

on decomposition of the solution space into areas over which the problem is simple) to

our problems CMPUF, CAMPUF, and CRMSP. Some general difficulties were mentioned

in Section 1; more specific challenges and issues posed by unreliable facilities will become

clear as we present our approach.

Before delving into details, we first map out some key ideas. The objective functions

of the median and market share problems are given by

FM (AZ) =
n+1∑
i=1

∑
∆∈T (AZ)i

pr(∆) d(Ai,∆) and FMS(AZ) =
n+1∑
i=l+1

∑
∆∈T (AZ)i

pr(∆)µ(∆) ,

where we use notation T (AZ)i instead of Ti to emphasize that we are dealing with the

extended set AZ rather than A. Each elementary triangle ∆ ∈ T (AZ)i has a facility

corner at Ai and non-facility corners E1, E2 which are two consecutive corner-points in

set CP i(AZ) for i ∈ [1 : n + 1]. Since the corner-points are induced by the bisectors

Bij (as well as the vertices and edges of P), and since the parameters of each bisector

B(Ai, Z), i ∈ [1 : n], are linear functions of the coordinates of the new facility Z = (x, y),

the non-facility corners E1, E2 have either constant or linear representation in x, y. In

[5, 23], closed-form expressions to calculate d(Ai,∆) and µ(∆) are derived; locally they

are (at most) cubic and quadratic functions of x, y, respectively. Moreover, as discussed
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in the previous section, the expression for pr(∆) depends only on the active list for S(∆).

It follows that both FM (AZ) and FMS(AZ) can be written (locally) as, respectively, cubic

and quadratic functions of x, y.

Suppose that F (x, y) is the (compact) explicit representation of the objective function

(FM (AZ) or FMS(AZ)) near Z = (x, y) as a cubic or quadratic function of x, y. Then,

F (x, y) can be optimized efficiently over any polygonal area using the same methodology

as in [5] (see Section 5 for further discussion). Consider another point Z ′ = (x′, y′) ∈
P, and suppose that value F (x′, y′) is better than F (x, y). Can we assert that Z ′ is

a better location than Z? In general, the answer is “no” - function F (x′, y′) may no

longer be a correct representation of the objective function at Z ′, because the geometry

of Voronoi partitions depends on the location of the new facility, and thus all elements of

the expressions above (the elementary triangulation, the active lists, the representation of

contributions of elementary triangles) may be different at Z ′. Thus, the answer is “yes” if

the following conditions hold:

• Structural Equivalence (SE) For every i ∈ [1 : n + 1], each triangle ∆ ∈ T (AZ)i

must be in one-to-one correspondence with a triangle ∆′ ∈ T (AZ′)i. Moreover, the

parametric representation of the corners of ∆ in terms of x, y must be valid for ∆′.

• Active List Equivalence (ALE) For any such corresponding triangles ∆ and ∆′, the

active lists AL(S(∆)) and AL(S(∆′)) must be the same to ensure that pr(∆) =

pr(∆′).

• Parametric Representation Equivalence (PRE) For any such corresponding triangles

∆ and ∆′, the parametric representation expressions for d(Ai,∆) and µ(∆) in terms

of x, y must still be valid for ∆′. As we will see below, the condition (SE) is not

sufficient for (PRE) to hold.

In the remainder of this section, we derive a partition of P into polygonal cells such

that all three conditions above hold within each cell. Thus, it will remain to efficiently

compute the parametric representations of the objective function over all cells and to

optimize them over all cells.

For an existing facility Ai, i ∈ [1 : n], the new set of corner-points, CP i(AZ), is

given by CP i(A) plus all intersection points of B(Ai, Z) with bisectors Bij , j ∈ [1 : n],

j 6= i, or with the boundary of P, plus the breakpoints of B(Ai, Z). Hence, it is easy

to compute incrementally the sets CP i(AZ), Si(AZ), and AL(S), S ∈ Si(AZ), based on

the respective sets for A and the bisector BiZ . However, the changes will be different

for different locations of Z; and even more so for the sets CPZ(AZ) and SZ(AZ) of the

new facility itself. In the following, we call CP i(AZ) and Si(AZ) the incremental sets of
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corner-points and sub-segments, respectively, and for any operational set A+
Z , VD(A+

Z ) is

called incremental Voronoi diagram.

Below, we derive a partition of the market area into cells such that the structure of

the incremental sets of corner-points and sub-segments of all facilities is identical for all

locations Z of the new facility in a cell of the partition. Let us first give a definition of

identical structure. Let Z,Z ′ ∈ P \ A, Z 6= Z ′, be two distinct locations, and let Z,Z ′

be in the interior of the same configuration cones of the existing facilities. Then, for any

i ∈ [1 : n], the bisectors B(Ai, Z) and B(Ai, Z
′) have the same, nondegenerate shape and

there is a natural correspondence between similar segments and breakpoints of B(Ai, Z)

and B(Ai, Z
′). Moreover, AZ and AZ′ := A ∪ {Z ′} satisfy Assumption B.

Definition 4 For i ∈ [1 : n], two corner-points E ∈ CP i(AZ) and E′ ∈ CP i(AZ′) are

called structurally identical, if they correspond to the same corner-point of CP i(A), or to

similar breakpoints of BiZ and BiZ′, or to the intersection points of similar segments of

BiZ and BiZ′ with the same sub-segment of Si(A). Two corner-points E ∈ CPZ(AZ) and

E′ ∈ CPZ′(AZ′) are called structurally identical, if they correspond to the same vertex of

P, or to similar breakpoints of BjZ and BjZ′, j ∈ [1 : n], or to the intersection points of

similar segments of BiZ and BiZ′ with the same edge of bd(P) or with similar segments of

BjZ and BjZ′, i, j ∈ [1 : n], i 6= j. The sets CP i(AZ) and CP i(AZ′), i ∈ [1 : n + 1], are

called structurally identical, if there is a one-to-one correspondence between corner-points

of CP i(AZ) and CP i(AZ′) such that all corner-points of CP i(AZ) are paired with their

structurally identical counterparts in CP i(AZ′).
For i ∈ [1 : n + 1], two sub-segments S ∈ Si(AZ) and S′ ∈ Si(AZ′) are called

structurally identical, if their endpoints are pairwise structurally identical. Si(AZ) and

Si(AZ′) are called structurally identical, if there is a one-to-one correspondence between

sub-segments of Si(AZ) and Si(AZ′) such that all sub-segments of Si(AZ) are paired with

their structurally identical counterparts in Si(AZ′).

Example 2 For two alternative locations Z and Z ′ of the new facility, Figure 4 depicts

the bisectors B(A1, Z) (dashed line) and B(A1, Z
′) (dotted line) and some of the additional

corner-points generated by them. Whereas the vertical segments of B1Z and B1Z′ intersect

identical sub-segments of S1(A), this does not hold for the diagonals. Hence, CP1(AZ)

and CP1(AZ′) are not structurally identical. As a result, also the incremental sets of sub-

segments are different for Z and Z ′ as well as their active lists. For example, the activity

of the sub-segments incident to E124 (the intersection of bisectors B12 and B14) depends

on the status of the additional facility if it is located at Z, but does not depend on the

status of the additional facility if it is located at Z ′.
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Figure 4: The bisectors for two distinct locations Z and Z ′ of the new facility.

Before we show how to ensure structural identity, we note that it ensures that the (SE)

condition above holds.

Lemma 3 Let i ∈ [1 : n+ 1] and CP i(AZ) and CP i(AZ′) be structurally identical. Then

the coordinates of structurally identical corner-points have the same constant or linear

representation in the coordinates x and y of the additional facility.

Proof. The result follows from the definitions and the parametric representation of the

segments of a bisector B(Ai, Z) (see Section 3.3). �

The next result establishes a sufficient criterion for the structural identity of the in-

cremental sets of corner-points and sub-segments for the already existing facilities.

Lemma 4 Let Z,Z ′ ∈ P \ A, Z 6= Z ′, belong to the interiors of the same configuration

cones of the existing facilities. Let i ∈ [1 : n]. The sets CP i(AZ) and CP i(AZ′) of

corner-points and the sets Si(AZ) and Si(AZ′) of sub-segments are structurally identical,

if similar segments of B(Ai, Z) and B(Ai, Z
′) intersect the same sub-segments of Si(A) at

interior points.

Proof. Let i ∈ [1 : n]. As Z and Z ′ belong to the interiors of the same configuration

cones of the existing facilities, BiZ and BiZ′ have the same, non-degenerate shape. If

similar segments of BiZ and BiZ′ intersect the same sub-segments of Si(A) at interior

points, then by definition the additional corner-points induced by the two bisectors are
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pairwise structurally identical in CP i(AZ) and CP i(AZ′). As corner-points of CP i(AZ)

and CP i(AZ′) corresponding to corner-points of CP i(A) or breakpoints of BiZ and BiZ′
obviously yield a one-to-one correspondence of structurally identical corner-points, the

first result follows.

Concerning the sub-segments, if similar segments of BiZ and BiZ′ intersect the same

sub-segment S ∈ Si(A) at interior points, then S is split both times into two sub-segments

that are pairwise structurally identical in Si(AZ) and Si(AZ′). Moreover, the additional

sub-segments in Si(AZ) and Si(AZ′) induced by BiZ and BiZ′ are pairwise structurally

identical, if their intersection points with sub-segments of Si(A) appear in the same order

along BiZ and BiZ′ , respectively. But this will always be the case, because the sub-

segments of Si(A) are fixed and the bisector B(Ai, Z) is a continuous mapping in Z as

long as Z remains in the interior of the same configuration cone of Ai. As sub-segments of

Si(AZ) and Si(AZ′) corresponding to sub-segments of Si(A) naturally yield a one-to-one

correspondence of structurally identical sub-segments, also the second result follows. �

Whereas structural identity is relatively easy to ensure for the incremental sets CP i(AZ)

and Si(AZ) of an existing facility i ∈ [1 : n], this is not so obvious for the new facility.

Example 3 In Figure 5, we depict for two alternative locations Z and Z ′ of the new

facility the bisectors B(Ai, Z) (on the left hand side) and B(Ai, Z
′), respectively, i ∈ [1 : 4].

Each corner-point of CPZ(AZ) has a structurally identical counterpart in CPZ′(AZ′). For

example, similar segments of B(A2, ·) and B(A4, ·) intersect, or similar segments of B(A3, ·)
intersect the same edge of P. As a result, CPZ(AZ) and CPZ′(AZ′) are structurally

identical. However, the incremental sets of sub-segments are not structurally identical

because, for example, the order of intersections of B(A1, ·) and B(A4, ·) with B(A2, ·) is

different along the latter bisector for Z and Z ′, yielding different elementary triangles.

As illustrated by Example 3, to ensure structural identity of SZ(AZ) when Z varies,

we need to ensure that the order of corner-points of Z along any bisector BiZ stays the

same, in addition to structural identity of the set of corner-points CPZ(AZ). However, it

turns out that we can derive a sufficient criterion for the structural identity of the corner-

points and sub-segments of the new facility based only on the structural identity of the

corner-points of the existing facilities, which greatly simplifies our task.

Lemma 5 Let Z,Z ′ ∈ P \ A, Z 6= Z ′, belong to the interiors of the same configuration

cones of the existing facilities. If the sets CP i(AZ) and CP i(AZ′) are structurally identical

for all i ∈ [1 : n], then the sets of corner-points CPZ(AZ) and CPZ′(AZ′) and the sets of

sub-segments SZ(AZ) and SZ′(AZ′) are structurally identical.
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Figure 5: The bisectors for two distinct locations Z and Z ′ of the new facility.

Proof. Let CP i(AZ) and CP i(AZ′) be structurally identical for all i ∈ [1 : n]. First,

we show that each corner-point of CPZ(AZ) has a structurally identical counterpart in

CPZ′(AZ′). Let E ∈ CPZ(AZ). If E corresponds to a vertex of P or breakpoint of BiZ ,

E has by definition a structurally identical counterpart in CPZ′(AZ′) (the latter because

BiZ and BiZ′ have the same, non-degenerate shape). Next, let E be an intersection point

of BiZ with an edge of P, i ∈ [1 : n]. As E is then also a corner-point in CP i(AZ), it has

a structurally identical counterpart E′ ∈ CP i(AZ′) which corresponds to the intersection

point of the same segment of BiZ′ with the same edge of P. Thus, E and E′ are also

structurally identical in CPZ(AZ) and CPZ′(AZ′). Finally, let E be an intersection point

between BiZ and BjZ , i, j ∈ [1 : n], i 6= j. As E is also on Bij , it is again a corner-

point in CP i(AZ). Thus, similar segments of BiZ and BiZ′ must intersect the same sub-

segment of Si(A). Therefore, also BiZ′ intersects Bij in a structurally identical corner-point

E′ ∈ CP i(AZ′) and this is the intersection point of BiZ′ with BjZ′ . An analogous reasoning

for j shows that similar segments of BjZ and BjZ′ intersect Bij in E and E′. Hence, similar

segments of BiZ and BiZ′ intersect similar segments of BjZ and BjZ′ . Therefore, E and E′

are structurally identical in CPZ(AZ) and CPZ′(AZ′). Summing up, there is a one-to-one

correspondence between structurally identical corner-points of CPZ(AZ) and CPZ′(AZ′)
and thus the two sets are structurally identical.

Next, we prove that the sets of sub-segments of the additional facility are also struc-

turally identical. Recall that sub-segments of SZ(AZ) are contained in edges of P or

bisectors BiZ , i ∈ [1 : n]. First, consider an edge e of bd(P). As the sets CP i(AZ) and

CP i(AZ′) are structurally identical for all i ∈ [1 : n], the same (segments of) bisectors BiZ ,

i ∈ [1 : n] intersect e for Z and Z ′. If they intersect e also in the same order along the

edge, the resulting sub-segments are clearly structurally identical. Therefore, assume that
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BiZ and BjZ are two bisectors that intersect e in a different order along the edge for Z and

Z ′, i, j ∈ [1 : n], i 6= j. A bisector B(Q,Z), Q ∈ IR2, is a continuous mapping in Z as long

as Z remains in the interior of same configuration cone of Q, and the coordinates of the

intersection point of BiZ (or BjZ) with e depend linearly on Z. Hence, there must be a

point Ẑ “between” Z and Z ′, i.e., on the straight line between Z and Z ′, such that the two

bisectors intersect the edge at the same point R. As R is on both bisectors, R is also the

intersection point of Bij with the edge and thus a corner-point of CP i(A) (and CPj(A)).

This means that the order of intersection points along e can only change at a corner-point

of Ai and not in the interior of a sub-segment of Si(A). But then BiZ must intersect

different sub-segments of Ai for Z and Z ′, yielding structurally different corner-points in

CP i(AZ) and CP i(AZ′), which is a contradiction with the assumption that CP i(AZ) and

CP i(AZ′) are structurally identical.

Now, we consider a bisector BiZ , i ∈ [1 : n]. Again, the same (segments of) bisectors

BjZ , i 6= j ∈ [1 : n], must intersect BiZ for Z and Z ′. If the order of these intersection

points along BiZ is the same for Z and Z ′, then the resulting sub-segments are again

structurally identical. Therefore, assume that BjZ and BkZ , i 6= j, k ∈ [1 : n], are two

bisectors that intersect BiZ and BiZ′ with similar segments but in a different order. Similar

to the previous case, there must be a point Ẑ on the straight line between Z and Z ′ such

that BjẐ and BkẐ intersect BiẐ at the same point R, which is then the common intersection

point of the three bisectors Bij , Bik, and Bjk of existing facilities. Consider now the bisector

Bij . The intersection point of BjZ with BiZ is on Bij and it continuously moves on Bij
towards the intersection point of BjZ′ with BiZ′ when moving from Z to Z ′. As it passes R

along this path, BiZ must intersect Bij in a different sub-segment for Z and Z ′, implying

again that sets CP i(AZ) and CP i(AZ′) are structurally different, which is a contradiction.

�

An immediate consequence of the previous results is that structural identity implies the

condition (ALE) above.

Corollary 1 Let CP i(AZ) and CP i(AZ′) be structurally identical for all i ∈ [1 : n]. Then

any two structurally identical sub-segments of Si(AZ) and Si(AZ′), i ∈ [1 : n+ 1] have the

same active lists.

Proof. The result follows from the proofs of Lemmas 4 and 5. As the additional corner-

points appear in the same order along a bisector BiZ or an edge of P, corresponding

sub-segments in Si(AZ) and Si(AZ′) must have the same active lists. �

Finally, we discuss how to partition the polygon into subsets (cells) such that the

corner-points and sub-segments are structurally identical for any location Z = (x, y) of
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the additional facility in the interior of such a subset. According to Lemmas 4 and 5, it is

sufficient to ensure that for any i ∈ [1 : n], any segment of the bisector B(Ai, Z) intersects

any specific sub-segment of Si(A) at interior points either for all Z in the subset or for

none at all. We do this using the technique developed in [5] which we sketch below with

necessary modifications.

Let i ∈ [1 : n] and a specific configuration cone CCki , 1 ≤ k ≤ 8, be given. The

representation of the bisector B(Ai, Z) is the same for each Z ∈ int(CCki ) and BiZ intersects

another bisector Bij , j ∈ [1 : n], at most once and bd(P) at most twice ([5]). Let L be a line

segment of BiZ and S = E1E2 ∈ Si(A) be a sub-segment defined by two adjacent corner-

points E1, E2 ∈ CP i(A). First, we assume that S and L are not parallel. We denote by R

the intersection point of the open-ended straight lines underlying S and L, respectively. S

and L intersect if R lies on both segments, that is, if the first (second) coordinate of R lies

between the first (second) coordinates of the endpoints of S and L. These conditions yield

in total four inequalities that together guarantee the intersection between S and L. As

the representation of the bisector segment as well as the coordinates of R are linear in x

and y (Section 3.3), the four inequalities are linear in the coordinates of Z. If L is vertical

or horizontal, it is a half-line and we can simply discard the inequality that has infinity in

the right-hand side. Each of the remaining inequalities defines a half-space, and a straight

line if considered as equality; these straight lines will be called sub-intersection lines (the

prefix “sub-” stands for “sub-segment” and is used to emphasize the difference from the

smaller set of intersection lines used in [5] and to stress that, unlike [5], the focus is on

intersections of bisectors with sub-segments rather than with edges of Voronoi diagram).

If S and L are parallel, they cannot have common interior points, just possibly a common

endpoint since BiZ intersects another bisector Bij or a segment of the boundary of P at

most once.

Summing up, each combination of a segment of B(Ai, Z) and a sub-segment S ∈ Si(A)

defines at most four sub-intersection lines. The set of all configuration and sub-intersection

lines then defines a partition of P into cells such that for any point Z in the interior of a

cell, the bisector BiZ intersects the same sub-segments of Si(A) at interior points.

As we have at most three segments for a specific bisector, the number of sub-intersection

lines for a given i ∈ [1 : n] is linear in the number of sub-segments. Hence, there are in

total O(n(n2 +m)) sub-intersection lines induced by all existing facilities. There are four

configuration lines for each facility. Each cell of the partition of the polygon P defined

by the set of all configuration and sub-intersection lines of the existing facilities is a con-

vex polygon bounded by segments of configuration or sub-intersection lines or edges of

P. Since there are O(n) configuration lines and O(n(n2 +m)) sub-intersection lines, this

partition has O(n2(n2+m)2) vertices, edges, and cells (Edelsbrunner [19]). This is also the

time required to compute this partition, because all sets of sub-segments Si(A), i ∈ [1 : n],
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can be derived in O(n(n2 +m)) time (see Section 3) and the effort required to determine

all sub-intersection lines is proportional to their number. The discussion above implies

the following result.

Theorem 1 The set of configuration and sub-intersection lines induces a partition of P
into O(n2(n2 +m)2) cells such that for any two distinct locations Z, Z ′ of the additional

facility in the interior of the same cell, the sets of corner-points CP i(AZ) and CP i(AZ′)
and the sets of sub-segments Si(AZ) and Si(AZ′) are structurally identical for all i ∈ [1 :

n+ 1]. Moreover, any two structurally identical sub-segments of Si(AZ) and Si(AZ′) have

the same active lists.

While the previous result derives a partition of P which ensures that conditions (SE)

and (ALE) are satisfied, it is not sufficient to ensure that condition (PRE) - the equiv-

alence of parametric representation - holds as well. Consider an elementary triangle

∆ = ∆AiE1E2 ∈ Ti for some i ∈ [1 : n + 1]. The closed-form expressions derived in

[23] and [5] to calculate d(Ai,∆) and µ(∆) as, respectively, cubic and quadratic functions

of the coordinates of the corners of the triangle remain valid only as long as E1 and E2 do

not cross the horizontal and vertical lines through Ai, i.e., as long as E1 and E2 remain in

the same quadrants with respect to Ai. In [5] this was ensured by introducing the concept

of quadrant identity :

Definition 5 Let Z,Z ′ ∈ P \ A, Z 6= Z ′, and Z,Z ′ belong to the interiors of the same

configuration cones of the existing facilities. Moreover, let CP i(AZ) and CP i(AZ′) be

structurally identical for all i ∈ [1 : n + 1]. We call CP i(AZ) and CP i(AZ′) quadrant

identical, if any corner-point of CP i(AZ) lies in the same quadrant with respect to Ai as

its structurally identical counterpart in CP i(AZ′).

In the following, the horizontal and vertical lines through the vertices of P are called

quadrant lines. We now add the set of quadrant lines to the set of all configuration and

sub-intersection lines and consider the resulting partition U of P.

Lemma 6 For any Z,Z ′ from the interior of the same cell of the partition U , CP i(AZ)

and CP i(AZ′) are structurally and quadrant identical for all i ∈ [1 : n+ 1].

Proof. As each sub-segment is contained in the same segment of a bisector or edge of

bd(P), the statement follows analogously to Theorem 2 in [5] using Theorem 1. �

Note that each cell is a convex polygon. For two structurally identical sub-segments

S ∈ Si(AZ) and S′ ∈ Si(AZ′), we call ∆(S) ∈ T (AZ)i and ∆(S′) ∈ T (AZ′)i matching
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elementary triangles. Observe that S and S′ must have the same slope. This gives us the

following result that ensures that condition (PRE) holds for partition U .

Lemma 7 Let Z,Z ′ ∈ P \ A, Z 6= Z ′, and Z,Z ′ ∈ int(CCki(Ai)), 1 ≤ ki ≤ 8, i =

1, . . . , n. Moreover, let CP i(AZ) and CP i(AZ′) be structurally and quadrant identical,

i ∈ [1 : n+ 1]. If ∆ ∈ T (AZ)i and ∆′ ∈ T (AZ′)i are matching elementary triangles, then

the total distance d(Ai,∆) and area µ(∆) have the same parametric representation in the

coordinates of the new facility as the total distance and area, respectively, for ∆′.

Proof. Follows from Definition 5, Lemma 3 and the representation of d(Ai,∆) and µ(∆)

from [5] as a function of the coordinates of the corners of ∆ and the intersection points

between the line containing S(∆) with the horizontal and vertical lines through Ai. �

Summing up, we have:

Theorem 2 Let U be the partition of P into cells induced by the set of all configuration,

sub-intersection, and quadrant lines. Let C be a cell of U . Then C is a convex polygon

satisfying conditions (SE), (ALE) and (PRE). Thus, the functions FM (AZ) and FMS(AZ)

are a cubic and, respectively, a quadratic polynomials in the coordinates of Z that are the

same for any Z ∈ int(C).

Proof. The claim follows from Lemmas 6 and 7 using the arguments similar to those in

the proof of Theorem 3 in [5]. �

Remark 1 We note that the obtained partition has larger cardinality than the partition

used in [5] since instead of vertices and edges of a single incremental Voronoi diagram we

have to work with corner-points and sub-segments that capture the necessary information

about the whole family of potential incremental Voronoi diagrams. We also note that more

direct attempts to use the approach of [5] would result in partitions and complexities much

larger than those in our paper. If in the case of reliable facilities their Voronoi diagram

characterizes customer allocation, then in the case of unreliable facilities a similar role

is played by the ordered order-n Voronoi diagram (OOnVD) which is the partition of the

polygon by the bisectors of all pairs of different facilities. The subregions (cells) defined by

this partition have the following property: for all customers within a subregion, the order

of the facilities according to their distances from the customers is the same. This means

that regardless of which facilities will be operational, all customers from a subregion will

patronize the same facility. So, a more direct attempt to extend the approach of [5] to

the case of unreliable facilities would be to work with the OOnVD instead of the family of
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possible Voronoi diagrams. However, the OOnVD has a much larger size than a Voronoi

diagram, as the OOnVD has O(n4 +m) edges and vertices, as opposed to O(n+m) for the

Voronoi diagram. Moreover, this is greatly amplified when we try to decompose the solution

space into subregions over which the new facility can vary without changing structurally

the OOnVD: the number of such subregions will be much larger than the cardinality of

the partition we use. Focusing instead on the family of potential incremental Voronoi

diagrams, even though this family is exponential, we are able to work only with the sets of

corner-points and sub-segments, since these sets capture all information about the family

that is needed for our purposes. Conceptually, this is the main idea of the approach of this

paper.

We will discuss the solution procedure for the conditional median, anti-median and

market share problems with unreliable facilities in the next section.

5 Solving the Conditional Location Problems

In the previous section we laid the groundwork for solution algorithms for the three con-

ditional location problems introduced in Section 3. We are now ready to discuss the

algorithms and their complexity in more detail.

5.1 Solving the Conditional Median Problem with Unreliable Facilities

(CMPUF)

Let C be a cell of the partition U . From Theorem 2 we know that FM (AZ) is a cubic

polynomial in the coordinates of Z = (x, y) that has the same representation everywhere

in the interior of C. Since FM (AZ) is continuous in Z, the parametric representation also

extends to the boundary of C.
A minimum of FM (·) over C is now either a solution of the first-order conditions or a

point on the boundary of C. As FM (AZ) is a cubic polynomial in the coordinates of Z,

the partial derivatives of FM (AZ) at Z = (x, y) ∈ int(C) are quadratic polynomials in x

and y. Hence, we can solve the resulting first-order conditions by finding the zeros of the

determinant of the Sylvester’s matrix ([12]). The determinant of the Sylvester’s matrix is

a quartic polynomial in y with at most four real-valued roots that can be derived in closed

form ([2]). Given a zero of the determinant, we substitute its value for y in one of the two

first-order conditions to obtain at most two solutions for x, and then check whether the

obtained points belong to C. This gives us at most eight candidate points for local minima

in the interior of each cell of U .

Concerning the minima on the boundary of a cell C ∈ U , when Z moves along an edge

of C, we can express x or y as a linear function of the other variable. Then, FM (A) reduces
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to a cubic single-variable polynomial whose minimum is derived in closed form.

The best of the obtained candidate points in the interiors and the boundaries of all

cells of U will be an optimal solution for CMPUF.

Computational complexity analysis.

If the explicit representation of FM (AZ) over a cell C ∈ U is given, it takes a constant

time to find the at most eight candidate points for local minima in int(C) as well as

the minima on any edge of C as described above. Because U has O(n2(n2 + m)2) cells,

edges, and vertices, a global optimum can be found in O(n2(n2 + m)2) time if explicit

representations of FM (AZ) over all cells of U are given. Since the representation of the

objective function FM (AZ) does not change over the interior of a cell C ∈ U , we can find its

explicit representation by choosing an arbitrary point Z ∈ int(C) as a proxy. Thus, using

the approach described in Section 3.4, Proposition 1 to evaluate the objective function for

each cell, the total effort to solve the conditional reliable median problem would amount

to O(n4(n2 +m)3), and O(n3(n2 +m)3) in the case of independent facility failures.

However, it is possible to do much better, if after computing the explicit representation

of FM (AZ) for a single cell C ∈ U we use this representation to derive the representation

of FM (AZ) for a neighboring cell C′ that shares an edge e with C. For simplicity, we

discuss the effect of crossing the lines that define U assuming that they do not coincide;

when several such lines coincide, the arguments are still valid since the effects of crossing

the coinciding lines would add up. If Z crosses a sub-intersection or quadrant line, only

a constant number of corner-points are affected. In the former case, the corresponding

bisector now intersects an adjacent sub-segment, affecting one corner-point and three

elementary triangles. In the latter case, only the representation of the two triangles

which have the corresponding vertex of P as a non-facility corner changes. If Z crosses a

horizontal or vertical configuration line of a facility Ai, the representation of the bisector

B(Ai, Z) changes. However, the bisector remains vertical or horizontal and intersects the

same sub-segments as for C. As B(Ai, Z) intersects another bisector Bij at most once

and bd(P) at most twice, O(n) corner-points and elementary triangles are affected by this

change. Finally, if Z crosses a diagonal configuration line of an existing facility Ai, the

bisector B(Ai, Z) changes in a major way, switching between a horizontal and a vertical

representation. This, however, can affect only the O(n2 +m) corner-points and elementary

triangles of Ai and Z.

A change affecting one elementary triangle in the parametric representation of FM (AZ)

will be called an elementary change. Updating the parametric representation of FM (AZ)

after an elementary change can be done in O(n) time under Assumption A and in O(1) time

in case of independent facility failures. Since the partition U is defined by O(n(n2 +m))
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lines, each diagonal configuration line is crossed at most O(n(n2 +m)) times, resulting in

at most O(n(n2 +m)2) elementary changes for all crossings of a diagonal configuration line

of a facility Ai. As each existing facility has four configuration lines, we conclude from the

previous discussion that the total number of elementary changes required for obtaining

explicit representations of FM (AZ) for all cells of U can be limited by O(n2(n2 + m)2).

Summing up, we obtain

Theorem 3 The conditional median problem with unreliable facilities can be solved in

O(n3(n2 + m)2) = O(n7 + n3m2) time for a probability model satisfying Assumption A,

and in O(n2(n2 +m)2) = O(n6 + n2m2) time in the case of independent facility failures.

5.2 Solving the Conditional Anti-Median Problem with Unreliable Fa-

cilities

The objective functions of the median and anti-median problem are identical. The only

differences between the two problems are that for the latter the distance between the

additional facility and each existing facility should be at least D > 0 and that we seek

the maximum instead of the minimum. To ensure the distance restriction, we add to our

partition all bounding lines of the l1-discs K≤(Ai, D). Then, we simply skip all cells of the

partition that are contained in one of the discs when searching for the optimal solution.

As this adds just O(n) lines to the partition and the parametric representation of the

objective function does not change when crossing such a line, we obtain

Theorem 4 The CAMPUF can be solved in O(n7 + n3m2) time for a probability model

satisfying Assumption A, and in O(n6 + n2m2) time in the case of independent facility

failures.

5.3 Solving the Conditional Reliable Market Share Problem

After replacing d(Ai,∆) by µ(∆), we can use essentially the same solution approach for

the conditional market share problem as for the conditional median problem, with one

exception. In contrast to the median problem, the objective function is no longer con-

tinuous if Z reaches a diagonal configuration line of an existing facility of a competitor.

The bisector then includes two quarter-planes. Recall that we assumed that in case of

distance ties customers prefer our company to competitors, and the new facility belongs

to our company. As a result, the value of the objective function FMS(A) at a point on

a diagonal configuration line is never smaller than the limiting objective value when Z

approaches this point from within the interior of the cell. Hence, the maximum over a

cell exists and is either at a vertex of the cell, or at a point in the interior of an edge of
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the cell, or at a point in the interior of the cell. To find it, we start by solving the first

order conditions to determine local maxima in the interior of the cell, if any exist. As

µ(∆) is a quadratic polynomial in x and y, the conditions are just a system of two linear

equations with two unknowns. Concerning the maxima on the edges of the cell, if the

edge is not on a diagonal configuration line, we can express x or y as a linear (or constant)

function of the other variable to obtain an expression for FMS(·) on an edge as a quadratic

single-variable polynomial. Then, it is easy to find a maximum on the edge. If the edge

is contained in a diagonal configuration line, we replace the bisector by the boundary of

the set {Q ∈ P | l1(Q,Z) ≤ l1(Q,Ai)} which consists of a horizontal and a vertical half

lines that are joined by a diagonal line. The effort to compute the new representation of

the objective function is O(n2(n2 +m)) (including updating the probability terms) under

Assumption A, and O(n(n2 +m)) in the case of independent facility failures, and is part of

the effort to update the parametric representation of the objective function when crossing

this configuration line to an adjacent cell.

Hence, using arguments similar to those used for the CMPUF, we obtain:

Theorem 5 The CRMSP can be solved in O(n7 +n3m2) time when the probability model

satisfies Assumption A, and in O(n6 + n2m2) time in the case of independent facility

failures.

6 Extensions, discussion and concluding remarks

In this paper, we presented a general exact optimization approach to conditional location

problems with continuous planar demand, rectilinear distance, continuous location space

and unreliable facilities, in the context of three specific location problems. Our approach is

to extend the general methodology of [5], based on analyzing the structure of incremental

Voronoi diagrams, to the case of unreliable facilities. The difficulty of the setting with

unreliable facilities is that instead of a single Voronoi diagram, we have to deal with an

exponential family of Voronoi diagrams that correspond to different possible realizations

of the set of operational facilities. Thus, we need to work with an exponential family of

incremental Voronoi diagrams. As in the case of [5], our approach is based on partitioning

of the convex polygonal market region of the rectilinear plane into convex polygonal cells

such that the elements of the family of incremental Voronoi diagrams that are important

for computing the objective function remain structurally identical when the location of

the new facility varies within one cell. This allowed us to decompose the problems into

simpler subproblems within the cells of the partition, which resulted in polynomial exact

algorithms. Since we have to work with a family of incremental Voronoi diagrams rather

than with a single incremental Voronoi diagram, we have to introduce new objects such
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as corner-points and sub-segments instead of vertices and edges of the Voronoi diagram

used in the case of reliable facilities [5]. We note that the partition that we obtained

for the median, anti-median and the market share problems with unreliable facilities has

larger cardinality than the partition used in [5] for problems with reliable facilities. In

the process of deriving and justifying the partition, we obtained some structural results

that are interesting and important on their own, for example that the structural iden-

tity of the incremental sets of corner-points of the existing facilities is sufficient for the

structural identity of both the incremental set of corner-points and the incremental set of

sub-segments of the new facility (Lemma 5).

An important take-away from the analysis is that the sets of corner-points and sub-

segments introduced in the paper capture all necessary information about the exponential

family of incremental Voronoi diagrams that is required for our algorithms. This allows us

to avoid having unreasonably high orders of complexity, and justifies our use of the family

of Voronoi diagrams instead of the ordered order-n Voronoi diagram which would result

in a much finer partition of the polygon (see the discussion in Remark 1 after Theorem

2), and, respectively, much higher complexity.

In the paper, the problems were considered under a rather general probabilistic model

where the probability of a specified partition of the set of facilities based on the opera-

tional status of the facilites (active, inactive and unrestricted) can be computed in linear

time. This model allows for correlations between failure events at different facilities and,

as discussed earlier, encompasses several practically important special cases (such as when

failures of different facilities are independent or conditionally independent with respect

to some background variable). Moreover, the main structural results we derive are inde-

pendent of the probability model used, as they pertain to the analysis of the family of

incremental Voronoi diagrams defined by all subsets of the set of facilities. For example,

the partition U of the polygon P (defined by the set of all configuration, sub-intersection,

and quadrant lines) would be relevant for any probabilistic model that unambiguously

defines probabilities of different constellations, and Theorem 2 is valid for any such model.

However, to use our approach for development of efficient algorithms for the considered

conditional location problems, the probabilistic model should allow for an “efficient” com-

putation of the coefficients of the polynomials mentioned in Theorem 2; our Assumption

A is one, but by no means the only, mechanism for assuring this efficiency.

We also note that a variety of different objectives in the context of unreliable facilities

can be handled using the framework of our approach. For example, the method and the

obtained partition could be used for most problems where the objective is the integral

of individual contributions of all customers, each customer uses the closest facility, and

triangulation approach is applicable for computing the objective. However, for more com-

plex objectives the subproblems over the cells may no longer be solvable analytically, and
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numerical methods would have to be applied. The same observation applies to extension

of our results to the case of Euclidean distances. While the basic ideas of triangulation and

partitioning should extend to these cases, the resulting non-linear optimization problems

within each cell of the partition no longer admit an analytical solution and can only be

solved numerically. Thus, exact polynomial algorithms do not appear to be possible in

these cases.

The assumption that the demand is distributed uniformly is a limitation of the method.

While the main geometric constructions of Sections 3 and 4 do not depend on the distribu-

tion of the demand, they become less useful for more complicated demand distributions.

The reason is that for an elementary triangle ∆, values µ(∆) and d(Ai,∆) may no longer

have compact and simple parametric representation in terms of the coordinates of the new

facility, which was the basis for the triangulation approach. Hence, the objective function

within the cells of the partition may no longer be simple. The general framework could

still be applicable for simple continuous demand distributions (e.g., when the demand

distribution is uniform but with different densities within some polygonal subareas of the

market area), but the details would require additional theory which is beyond the scope of

this paper. We note that for the case of continuous non-uniform demand distributions, be-

fore investigating location problems with unreliable facilities, first problems with reliable

facilities should be investigated, and there is no such a study at present. Hence, the case

of continuous non-uniform demand distributions may be a direction for future research.

To close, we mention several interesting open problems. As mentioned in the intro-

duction, actual measured customer demand distribution is usually discrete with very large

cardinality of the support set. The typical approach in location models with discrete de-

mand space is to aggregate individual demand points to obtain a much smaller support

set. The alternative approach adopted in the current paper is to assume a continuous

spatial distribution of demand. Clearly, both approaches lead to errors in approximating

the actual demand distribution. A focused examination of these errors and a comparison

between discrete and continuous demand space approaches would be of interest. Another

implicit assumption in the current paper is that customers are aware of whether a facil-

ity has failed before starting their journey. An alternative mechanism is to assume that

customers have to search for an operating facility - a model of this type (with discrete

demand and location spaces) is described in Berman et al. [10]. It would be interesting to

extend this modeling framework to the continuous demand and location space framework

of the current paper.
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